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Abstract. We apply learning vector quantization to the analysis of
tiling microarray data. As an example we consider the classification of
C. elegans genomic probes as intronic or exonic. Training is based on
the current annotation of the genome. Relevance learning techniques are
used to weight and select features according to their importance for the
classification. Among other findings, the analysis suggests that correla-
tions between the perfect match intensity of a particular probe and its
neighbors are highly relevant for successful exon identification.

1 Introduction

Tiling microarrays are used to interrogate genome-wide transcriptional activity
at high resolution in an unbiased fashion. This technology is rapidly becom-
ing one of the most important high-throughput functional genomic assays [1].
One important application is the comprehensive detection of transcribed regions
in the genome, which has changed our view of the gene expression landscape
and lead to the detection of many new genes [2]. At regular intervals along the
genome, one places probes that measure the expression level at this position.
The main goal of interpreting tiling data is to discriminate outlier probes (cor-
responding to expressed regions) from the predominant background or noise sig-
nals. This is complicated by the fact that the majority of transcribed sequences
are present at levels just above the background [3]. Moreover, background signal
intensity is strongly probe-specific. Different statistical algorithms have been ap-
plied for detecting transcribed regions in tiling array data. For example, a robust
pseudo-median estimator together with heuristic maxgap and minrun parame-
ters [4] was used for an in-depth analysis of human chromosome 21 and 22 tiling
data. Bertone et al. [5] employed binomial theory using a p-value cut-off with
maxgap/minrun for human whole-genome tiling data. A moving-window robust
principal component analysis (rPCA) with Mahalanobis distance was used by
Schadt et al. [1] for a tiling microarray experiment with multiple human sam-
ples. More recently, hidden Markov model approaches were also applied to this
problem, see e.g. [6]. For the purposes of the present paper, we consider the task
of detecting transcribed regions as a classification problem, aiming at discrimi-
nating transcribed and non-transcribed probes along the genome. The partially



validated knowledge about array data such as gene annotation is used to assist
the analysis of genomic tiling data in a supervised way.

We implement the classification by means of learning vector quantization
[7], a particularly intuitive and flexible tool which has been applied in a variety
of areas [8]. One of its most attractive features is the possibility to incorpo-
rate adaptive metrics into the training procedure. So-called relevance learning
schemes [9-13] employ a similarity measure in which features are weighted ac-
cording to their importance for the classification. Results provide insights into
the nature of the problem and allow for immediate interpretation of the classifier.

2 The Classification Problem

Our example dataset contains expression measurements from multiple C. elegans
samples hybridized to the Affymetrix 1.0R tiling array. Probes of 25 base pairs
are tiled end-to-end along the entire genome, resulting in a total of 3 million data
points per sample. In addition to probes that correspond to the genome sequence
(perfect match probes, PM), the array also contains so-called mismatch probes
(M M), which sometimes are suggested to help estimating the background signal
at a particular genome position. All probes were matched to the most recent
version of the C. elegans genome and labeled as either exonic (if they correspond
to an annotated exon region of the genome) or intronic (if they correspond to an
intron or intergenic region). This labeling is not error-free, because some genes
are transcriptionally silent (their exons are not expressed), and new genes are
regularly discovered (resulting in intergenic regions being expressed). In Sec. 5
we will discuss the effect of these two sources of mislabeling.

2.1 Features for Classification

We randomly pick a genome region [4413428:4540601] in chromosome 3 of
C.elegans. It contains 4120 probes, with 2587 and 1533 probes corresponding to
exonic and intronic/intragenic regions, respectively. We consider the following
features for each probe u: The median signal of the perfect match probe across all
samples (PM,,), the corresponding mismatch signal (M M,,), the Pearson correla-
tion between a probe and its left and right neighbors (CC.PM,, ;1,CC.PM, 1),
the calculated melting temperature (I'm,,) according to the method described
in reference [14]. Furthermore, because transcripts usually span larger areas of
the genome, the intensities of neighboring probes could also be informative for
detecting transcribed regions. We take this into account by adding the PM and
M M values of the neighboring 2 probes to the feature set (PM,, o, PM,1,...).
Finally, for each probe we tested if it shows significant strain or stage effect us-
ing ANOVA analysis. The resulting — log(p)-value was used as a feature that
indicates if a probe shows biological variation, the reasoning being that only ex-
pressed probes should have significant strain and stage effects, while noise should
be randomly distributed. All of these features are biologically motivated and can



individually discriminate between expressed and non-expressed probes to some

extent, but our results will show that not all of them are equally informative.
The above mentioned features will be referred to in the following order:

(1) PM, s, (2) PM, 1, (3) PM,, (4) PM, 41, (5) PMy 2,

(6) MM, —5, (7) MM, (8) MM, (9) MMytr, (10) MM,

(11)CC.PM, 2, (12)CC.PM, -1, (13)CC.PM, ;+1, (14)CC.PM, ;4o

(15) CC.MM,, ,;—2, (16)CC.MM,, ,,—1, (17)CC.MM,, 11, (18) CC.MM,, 142

(19) Tmy—2, (20)Tmy,—1, (21)Tmy,, (22) Tmu1, (23)Tmuqe, (24) —log(p).

2.2 Data Set and Validation Procedure

In total, a set of M = 4120 examples, i.e. labeled probes, is considered, which
we denote as ID = {&", Sﬁi}iil . Here, the annotated class membership of probe
w is denoted as S4 = 0 (intron) or Sf =1 (exon), respectively. Components of
the vectors &* € RY (N = 24) are obtained from the above listed features by
means of a z-transformation. The transformed values display zero mean and unit
variance over the set of available data, i.e. 3, &' / M = 0and 3 (&) / M = 1.
The transformation facilitates a straightforward interpretation of the relevance
factors which we define and consider in Sec. 4.1.

We consider the construction or training of classifiers from P = 3000 ran-
domly selected examples while the remaining 1120 data serve as a test set. By
comparing the classifier output and the annotated labels S%. we determine the
fraction e4q:n, of misclassified examples in the training set. Analogously, €sest
quantifies the over-all error rate in the test set. In addition, we will consider
the class specific training errors 5&23”-”, agilm and the test errors aggit, sgiit with
respect to only class 0 (intron) or class 1 (exon) data, respectively. All results
given here are obtained on average over 50 random splits of ID into training and
test set. The additional average reduces the influence of lucky set compositions.

3 Fixed Metrics Classifiers

Many classifying systems are based on a distance measure which quantifies the
similarity of a given feature vector with representatives of the classes. We will
first consider the use of a fixed measure which corresponds to the standard L,
metric. For two arbitrary vectors x,y € RY we define

d(z,y) = S |y — 5l - (1)

For all considered classifiers we have observed that the use of this so-called
Manhattan distance yields slightly better performance on our data set than the
quadratic Euclidean distance measure. For generalized L, metrics with ¢ > 3
the performance further deteriorates.

First we consider prototype based schemes which use (1) as an a priori de-
fined, fixed measure of similarity. For comparison we have also studied the stan-
dard k-nearest neighbor (KNN) classification scheme [15]. Corresponding leave-
one-out estimates of the test error are given in Table 1 for the cases k = 1



and k = 13 which turns out to yield the best results. We furthermore obtained
preliminary results for the support vector machine, i.e. a large margin linear
classifier. Its performance (gsest & 11%, aﬁﬁit ~ 5%, sgiit ~21%) is comparable to
that of the best KNN system.

Table 1. a) Leave-one-out error estimates of the KNN classifier. b) Training and test
error estimates for the CCM classification scheme. All errors are given in %.

a) KNN crest e, ), b) CCM  |e e® M
k=1 15.6 117 |22.2 training set (12.5 4.9 25.3
k=13 10.6  |3.0 23.5 test set 125 |5.0 25.3

3.1 Class Conditional Means

The KNN approach requires the explicit storage of a large set of examples and
involves the evaluation of many distances for each classification event. Hence, it is
preferential to represent the data set by only a few prototype vectors which cap-
ture essential properties of the classes. Novel data can then be labeled according
to a computationally cheaper nearest prototype classification (NPC) scheme.
The simplest set of prototypes obtained from P examples is given by the
class conditional mean (CCM) in each class, i.e. m(%) = 25:1 &1 6(S%,S) /Ps
for S = 0,1. Here, 6(k,l) = 1 if k = [ and 0 else, and the number of training
examples from class S is denoted as Ps = 3_ §(Sk,S). The resulting classifier

defines a linear decision boundary and assigns a vector £ to class 1 if d(m(l), &) <
d(m(© €) and to class 0 else. While individual samples show a large variability,
we observe that the CCM vectors of class 1 (class 0) consist of only positive
(negative) components.

Table 1 shows that the CCM system outperforms the KNN classifier for k = 1
in terms of the over-all test error.

3.2 Learning Vector Quantization

Beyond the use of CCM prototypes, we apply learning vector quantization (LVQ)
for the identification of class representatives. LVQ was originally proposed by
Kohonen [7] and has been used in a variety of problems due to its flexibility
and conceptual clarity, see [8] for up-to-date references. Here we first resort to
the original LVQ1 algorithm [7] which will be extended by a heuristic relevance
learning scheme in Sec. 4.1.

A set of vectors {w!, w?, ... w"} with wi € RY is used to parameterize
an NPC scheme. The prototypes represent classes according to the associated
labels S7 € {0,1}. We will denote the number of vectors w’ assigned to classes
0 and 1 by k, and k1, respectively. This assignment as well as the total number
of prototypes k = k, + k1 are specified prior to learning.

2



At each time step ¢ of an iterative training procedure, one example {£#, S5}
is selected randomly from the training set (1 < p < P). Its distances d(j, u) =
d(&",wi(t)) from all current vectors w?(t) are evaluated and we identify the
closest of all prototypes. In LVQ1, only this so-called winner w? (t) with d(J, u) =
miny {d(k, 1)} is updated according to

+1lif s=¢

w’ (t) = w(t) + 10 Y (SF, S7) (6" —w’ (1)) with ¢(s,t) = { —1 else. @

The update is towards (away from) the actual input & if the class labels of
winner and example agree (disagree). Initially, we place prototypes close to the
origin with a small random offset.

The learning rate 1, controls the step size of the iteration. Numerical results
given in the following correspond to the choice 7, = 1072. Note that our main
findings display only a weak dependence on rates in the range 1074 < 7, <
1072, The potential further improvement of the performance by suitable time
dependent learning rates will be addressed elsewhere.

In the simplest setting, one prototype is employed per class, i.e. k, = k1 = 1.
After about t/P = 10 randomized sweeps through the data the system has con-
verged. It exhibits slightly larger training and test errors than the simple CCM
classifier. The heuristic LVQ1 does not directly aim at minimizing the classifica-
tion error and, hence, it is not guaranteed to improve the performance over the
simple CCM system. However, the complexity and power of the LVQ system can
be increased by introducing more prototypes. Figure 1 (left panel) shows example
learning curves of different configurations. Here, the averaged over-all test error
is displayed as a function of training time. The example choice k, = 1,k; = 2
yields no significant improvement, while the system with k, = k; = 3 does
outperform the CCM. LVQ1 with k, = k1 = 6 yields a performance which is
comparable with the best KNN classifier, however at much lower computational
cost.

Etest Etest

0 5 10 15 20 0 10 20 30 40 50 60

t/P t/P

Fig. 1. Averaged test error as a function of the number ¢/P of randomized sweeps
through the training set. Left: LVQ1 training with k, =1, k1 =2 (squares), ko =k1 =3
(triangles), and ko, = k1 = 6 (circles). Right: RLVQ training with local relevances and
ko=1 and k1 =2 (upper) and with global relevances for k,=k1=6 (lower curve).



Table 2 summarizes the performance in several example settings. Note that
the larger variability of class 1 (exon) data is reflected in the observation that
Egiit > sﬁgit, in general. Consequently, configurations with k; > k, are to be
preferred over systems that assign more prototypes to class 0. This observation
agrees with recent theoretical findings within a model situation [16].

Although we do not observe an indication of over-fitting in the considered
systems, one cannot expect the performance to improve further with even larger
ko, k1. In fact, for very large k, the behavior of the nearest neighbor classifier
should be recovered.

Table 2. Test error estimates (in %) of LVQ1 systems without relevance learning.
Training errors are typically on the order 0.1% smaller than the test errors.

ko |k1 |Etest Egglt Eiilt @) )
T 1 129 [25 [306 ko [k |Stest |Erest |Siest
1T |2 [127 |56 [24.6
3 3 (121 34 [267 L 12T PO
6 [6 |[107 |43 |215 4 ]2 :

4 Adaptive Metrics Classifiers

The a priori choice of an appropriate distance measure is crucial for the success
of LVQ and similar systems. In a particularly elegant and successful framework
the metric is adapted in the course of training: Relevance learning vector quan-
tization schemes update the prototypes and, at the same time, search for a
discriminative similarity measure.

Here we follow a standard approach which was suggested and put forward
in [9, 10]. It modifies the distances (1) by attaching a scaling or relevance factor
to each dimension in feature space, see Sec. 4.1. The term global relevances will
be used when a unique set of factors is assigned to all prototypes. In this case,
the decision boundaries of the LVQ classifier remain piecewise linear. The ex-
tension to local relevances with an independent set of factors for each prototype
is formally straightforward. However, the resulting classification boundaries of
the NPC scheme become curved, i.e. piecewise quadratic. Cases of intermedi-
ate complexity, e.g. with class-wise relevances, are straightforward to introduce
but will not be considered here. The adaptation of global relevances was first
suggested in [9]. Local relevances have been studied and applied in, e.g., [11-13].

After training, the resulting relevances implement a weighting scheme which
allows to read off the importance of features for the classification. If, for instance,
the factor attached to dimension j in feature space becomes zero, the correspond-
ing feature might as well be omitted from the data set. Thus, relevance learning
can serve as a tool for the detection of, e.g., noisy features which are of little use
or can even deteriorate the classification performance if included.

In the following, we discuss two example scenarios only: global relevances in
a setting with six prototypes per class and local relevance learning with k, =1



and k; = 2. We focus on the insights that relevance learning provides into the
classification problem. A more detailed comparison of local, global, and class-
wise relevance training will be given elsewhere, including the optimization of
performance by choice of k,, k1, time dependent learning rate etc.

4.1 Relevance Learning Vector Quantization

We consider a generalized Manhattan distance of the form
i (apyt N a0
d)\('w €)= Ej:l )‘j ’wj - 5]‘ ) (3)

where the adaptive relevance factors )\é are restricted to non-negative values

and obey the normalization Ejvzl AL = 1. The special case A} = 1/N for all
7 =1,...N is analogous to the original L;-measure.

Our heuristic realization of relevance learning vector quantization (RLVQ)
follows closely the prescription of [9], where it is exemplified in terms of the
squared Euclidean distance. In parallel with the LVQ1 update (2) for the winning
prototype w, its relevance factors are adapted as follows:

T — T (1) noGY et — w ()]s AT () = max{(),:\*j](t)}
/\j (t) _/\j (t-1) 77>\1/1(ST73 )|§J j(t)|a /\j (t) = Eszl max{(),:\;g(t)},

where the second step implements the non-negativity condition and the required
normalization. In the case of global relevances, all /\§ (t) have to be set equal to

A (t) after performing (4), in addition.

The prescription decreases relevance factor )\3’ if, for instance, the winning
prototype w” does represent the correct class but the contribution ’f;‘ — w;’ ’ to
dys (w’, €7) is relatively large. On the contrary, the weight of a feature with rel-
atively small ‘f;‘ — w;-] ‘ is increased in such a case. Thus, the measured distance
will be smaller when presenting the same or a similar feature vector in the future
and the probability for correct classification increases.

The learning rate 7, controls the magnitude of relevance updates. Empiri-
cally, it has proven advantageous to set n) < 1, in comparison with the step
size of prototype updates. Numerical results presented here correspond to the
choice 1, = 1072,y = 107°. As in LVQ1 we initialize prototypes randomly
close to the origin. Prior to learning, all relevances are set to 1/N.

Figure 1 (right panel) displays the evolution of the over-all test error with the
number of randomized sweeps through the data set. Initially, errors decrease in
the course of learning, as prototypes and relevances adapt to the training data.
Test and training errors reach a common minimum after a number of sweeps
through the training set. Table 3 specifies the corresponding minimal total and
class-conditional test errors.

The learning curve for the system with six prototypes per class is shown
in Fig. 1 (right), relevance profiles are displayed in Fig. 2. Its performance in
the minimum of the learning curve is practically identical with that of the same



system without relevances, cf. Table 2. Note, however, that relevance learning has
reduced the number of features by effectively disregarding features 15-23, i.e. the
correlations of neighboring mismatch intensities and all melting temperatures. If
further training is performed, the relevance profile becomes more pronounced and
RLVQ over-simplifies the classifier, see Fig. 2 (right panel). As a consequence,
training and test errors mildly increase. In our example, the system saturates
at €gest &~ 11.5%. This performance is achieved by using only features 2,3,4
(PM,,, PM,+1) and 8, the mismatch probe intensity MM,,.

0.4 0.4
)\j 0.2 )\-7 0.2
0 0

2 4 6 8 10 12 14 16 18 20 22 24j 2 4 6 8 10 12 14 16 18 20 22 24j

Fig. 2. Global relevance profiles in RLVQ with ko = k1 = 6. Left: Relevances corre-
sponding to the minimum of the learning curve. Right: Over-simplified relevances as
observed after 60 sweeps.

The non-monotonic learning behavior suggests to introduce regularization
terms into the update rules, which control the uniformity of the relevance pro-
file. Here, we resort to the simpler early stopping strategy in order to obtain the
best achievable performance. The effect of over-simplification is also observed
in training with local relevances which we discuss in terms of the example case
ko, = 1,k1 = 2. The optimal performance of local RLVQ is superior compared
with that of original LVQ1 in the same setting, cf. Table 2 and Fig. 1 (left panel).
Thus, the introduction of relevances increases the complexity and improves the
performance of the classifier. The local relevance profiles in the minimum of the
learning curve are shown in the left panel of Fig. 3. Note that the resulting dis-
tance measures used for the identification of the two classes differ significantly.
For instance, features 11-23 (all correlations and melting temperatures) are ef-
fectively disregarded by the class 0 prototype, while the class 1 prototypes assign
relatively large relevances to perfect match intensity correlations (11-14).

Table 3. Test errors in the minima of learning curves for two different RVLQ scenarios.

relevances ko k1 |Etest Eigit Eiiit
local 1 |2 |11.8 4.5 24.0
global 6 (6 [10.7 |39 22.6

Again, the relevance profiles become more pronounced and RLVQ over-
simplifies the classifier in later stages of the training process, see Fig. 3 (right
panel). As a consequence, training and test errors increase. In the example, the
over-all test error saturates at g5 ~ 12.6%, a value which is still compara-



ble with that of the CCM result. However, the over-simplified RLVQ classi-
fier achieves this performance by using mainly three components of the data:
j = 3(PM,),12(CC.PM,_1), and 13(CC.PM,+1). We observe that, indeed,
precisely these features are selected when applying larger learning rates 7).

1 1
)\ ;01 A ;0.5
J J
o o
2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24
0. 1
2 2
)\ ;01 A 0.5
J J
0 0
2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24
0. 1
3 3
)\ ;01 )\ ;0.5
J J
0 0
2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24

Fig. 3. Results of local RLVQ with kp = 1 and k1 = 2. Left: Relevance factors in the
minimum of the learning curve; the top two profiles correspond to class 1 prototypes,
the bottom one to class 0. Right: Same as left panel, but after 140 training sweeps.

5 Discussion and Outlook

Our results demonstrate the usefulness of RLVQ as a tool for tiling microarray
data analysis. It is very interesting to observe how the unbiased, data driven
RLVQ procedure assigns the highest relevance to those features that are also
biologically expected to be the most informative. In addition to the obvious
informative feature PM,,, features like M M,,,CC.PM,, ,,—1, and CC.PM,, ;11
are also selected. The latter two are of particular importance in the identification
of exons. The large difference in test error rate for the two classes also has
a biological basis. It is due to the mislabeling problem discussed in Sec. 2. It
is relatively unlikely that new genes are discovered, so the intergenic regions
(class 0) are mostly labeled correctly. On the other hand, only about 50-80%
of genes are expressed at detectable levels at any given time, while the rest are
transcriptionally silent. Thus, between 20-50% of class 1 probes are expected to
be mislabeled and the apparent prediction error will be higher for class 1.

In forthcoming projects we will address, among other extensions, RLVQ
schemes which are capable of taking into account correlations between different
features by means of relevance matrices [12,13]. The aim is to further improve
the classification performance and to obtain novel insights into the characteris-
tics of exon and intron probes. The investigation of false introns should be of
particular interest with respect to the potential detection of new genes. In such
an analysis, the confidence of the classification should be taken into account,
which, in LVQ), is straightforward to quantify in terms of distances.

Being computationally cheap, RLVQ can be easily applied to whole-genome
tiling data (with millions of probes) while this is very challenging for other



methods like the SVM. Furthermore, the small number of tunable parameters
makes it easy to apply RLVQ to a broad range of organisms and technological
platforms.
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