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Modal analysis by proper orthogonal decomposition (POD) and dynamic mode
decomposition (DMD) of experimental data from a fully turbulent flow is pre-
sented. The flow case is a turbulent confined jet with co-flow, with Reynolds
number based on the jet thickness of Re=10700. Experiments are performed
with time-resolved Particle Image Velocimetry (PIV). The jet is created in a
square channel with the confinement ratio is 1:5. Statistics of the flow are pre-
sented in terms of mean and fluctuating fields. Analysis of spatial spectra and
temporal spectra reveal the presence of dominant wavelengths and frequen-
cies embedded in broad-band turbulent spectrum. Frequencies in the shear
layer migrate from St ≈ 1 near the jet inlet to St < 0.1 at 18 jet thickness
downstream.

This flow case provides an interesting and challenging benchmark for test-
ing POD and DMD and discussing their efficacy in describing a fully turbulent
case. At first, issues related to convergence and physical interpretation of the
modes are discussed, then the results are analyzed and compared. POD analy-
sis reveals the most energetic spatial structures that are related to the flapping
of the jet; a low frequency peak (St = 0.02) is found when the associated tem-
poral mode is analyzed. Higher order modes revealed the presence of faster
oscillating shear flow modes combined to a recirculation zone near the inner
jet. The flapping of the inner jet is sustained by this region. A good agreement
is found between DMD and POD; however, DMD is able to rank the modes by
frequencies, isolating structures associated to harmonics of the flow.

1. Introduction

While until the last decade investigations of turbulent flow fields were mainly
performed based on a local approach – e.g. hot-wire or Laser Doppler Ve-
locimetry (LDV) single point measurements – recent advances in experimental
techniques – e.g. high-speed stereo and tomographic particle image velocime-
try (PIV) – and direct numerical simulations (DNS) have provided access to
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Figure 1. Example of PIV snapshots. The contours show the
streamwise velocity component.

spatially and temporally resolved flow data. This also changed the approach
to data analysis. Local analysis of temporal spectra and autocorrelations have
been very useful tools to investigate coherent structures (Hussain 1986) from
local time series, but with the advent of PIV and similar techniques that in-
troduced spatially resolved data many other methods could be applied. For
example one of the classical problems of the analysis of local time series is
to convert from temporal to spatial scales. Very often Taylor’s hypothesis of
frozen turbulence is used to go from the former to the latter. Having temporally
and spatially resolved data from DNS, Álamo & Jiménez (2009) uses spatio-
temporal spectra and correlations to measure directly convection velocities in
wall bounded turbulent flows and proposed correct Taylor’s hypothesis.

However, in order to fully exploit the potential of these techniques, it is be-
coming increasingly important to develop tools that have a global view, which
can give an insight not only on the topology of the coherent structures but
also on the dynamics. This is of great importance for understanding complex
natural or industrial flows, such as atmospheric and environmental flows, com-
bustion chambers, etc. One possible approach to simultaneously make use of
the temporal and spatial resolution is to use snapshots of the flow field obtained
by time-resolved PIV (see figure 1) or DNS to build a matrix that somehow
contains information about the dynamics of the system. Understanding what
are the most relevant dynamic structures in a flow is extremely important from
a physical point of view to study the instability mechanisms that lead to transi-
tion to turbulence or the coherent structures hidden in the turbulent flows, but
also, from an engineering point of view, to help building reduced order models
that can be used in the design and optimization of complex flow systems (Ilak
& Rowley 2008; Bagheri et al. 2009).

1.1. Snapshot-based modal analysis

Among the snapshot-based methods, one of the most commonly used is the
proper orthogonal decomposition (POD) (see, e.g., Holmes et al. 1996; Sirovich
1987). POD ranks the modes based on the most energetic structures as solution
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of the eigenvalue problem related to the cross-correlation matrix computed
from the snapshots. The most energetic modes often (but not necessarily)
correspond to the most relevant coherent structures of the flow. The temporal
information can be recovered using the bi-orthogonal decomposition (BOD),
(Aubry 1991). Two sets of modes are computed, related to the two alternative
ways of computing the cross-correlation matrix; indeed, the eigenvectors of
the temporal-averaged cross-correlation matrix are the spatial modes, while
the eigenvectors of the spatial-averaged cross-correlation matrix provide the
temporal modes. Following the literature, we refer to the temporal structures
as chrono-modes (chronos) and to the spatial structures as topo-modes (topos).

The spectral analysis of the chronos provides the temporal frequencies
characterizing the topos, whereas the analysis in time domain can reveal the
presence of temporal periodicities or limit cycles. However, a first drawback
of the technique has to be mentioned here: in general, these structures are
associated to more than one frequency; thus, the only possible way to rank
POD modes is energy-based. Unfortunately, this criterion is not always a cor-
rect measure: low-energy structures associated to instabilities can be relevant
(Noack et al. 2008). Moreover, this is a statistical method, hence the results
obtained are intrinsically connected to the conditions in which the snapshots
were obtained.

Recently, the dynamic mode decomposition (DMD) has also been applied
to the analysis of experimental data and the results have been encouraging
(Schmid et al. 2010). The DMD algorithm belongs to the category of the
Arnoldi methods, widely used for the computation of the eigenvalues and re-
lated eigenvectors for linearized flow system (Ruhe 1984). In Schmid (2010),
an improvement of the method is introduced and applied to nonlinear flows,
also for experimental cases. From the mathematical point of view, the the-
oretical background relies on the spectral analysis of the Koopman operator
(Mezić 2005); indeed, as shown in Rowley et al. (2009), the DMD algorithm
approximates the Koopman modes, which can be seen as the averaged har-
monic components of the flow, oscillating at certain frequencies given by the
eigenvalues of the operator. From the physical point of view, it can be shown
that the Koopman modes coincide with the global modes for linearized flows,
and with the Fourier modes for periodic flows (see Bagheri 2010).

1.2. Aim of the paper

In this paper we focus on the analysis of time-resolved PIV measurements of
a turbulent co-flowing jet confined in a square channel. The flow case has
been chosen not only because it is relevant for several practical applications
(papermaking, combustion engines, etc.) but also for its complexity, since it
is a fully turbulent flow that also contains periodic structures as, for example,
the flapping of the inner jet due to the interaction with recirculating areas
on its sides (Maurel et al. 1996; Davidson 2001; Goldschmidt & Bradshaw
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1973). These periodic structures can be hard to identify with spectral analysis,
since they are often embedded in the turbulent flow, however here we try to
identify them by means of POD and DMD. Issues concerning the choices of the
snapshots and convergence are addressed and the results obtained with two
methods are discussed.

1.3. Structure of the paper

The paper is organized as follows. In section 2, a brief theoretical overview
of the modal analysis is proposed. The experimental setup is briefly described
in section 3; details of the measurement technique and the flow quality are
provided. Section 4 is devoted to the spectral analysis of the flow; spatial
distribution of the dominant frequencies are discussed. The analysis of the
coherent structure using POD is given in section 5, while the Koopman analysis
is carried out in section 6. The paper ends with a summary of the main
conclusions (section 7).

2. Theoretical background

The aim of this section is to provide a brief theoretical background of the
modal decompositions used here. First, proper orthogonal decomposition is
introduced. In the second part, Koopman modes analysis is summarized; the
focus of the section is mainly on the DMD that provides an approximation of
the modes; for a detailed description of the numerical methodology we refer
to Schmid (2010), while more theoretical details are provided by Mezić (2005),
Rowley et al. (2009) and Bagheri (2010).

2.1. Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) is a well known method for extracting
coherent structures of a flow from a sequence of flow-field realizations. Given
a dataset of flow realizations {u(t1), u(t2), . . . , u(tm)} stacked at m discrete
times – usually referred as snapshots or strobes – POD ranks the most energetic
structures of the flow, computed as solution of the eigenvalue problem

∫

X

R∗ (x, x′)ϕkdx
′ = λkϕk (x) , (1)

where the integral is defined on the spatial domain and

R∗ (x, x′) =

∫

T

u (x, t)u (x′, t)
T
dt (2)

is the time-average cross-correlation; the integral is performed in time domain.
By definition, the function R∗ is positive semidefinite. The eigenfunctions
Φ = {ϕ1, ϕ2, . . . , ϕm} are orthogonal and real-valued, while each eigenvalue λk

contains the energy associated to each mode.
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The technique was originally proposed as a statistical tool by Loève (1978);
in this context, it is usually referred in literature as Karhunen-Loève decom-
position (KL). According to the related theorem, a random function can be
expanded as a series of deterministic functions with random coefficient. In
such a way, the deterministic part – represented by the POD modes – is sepa-
rated from the random part. Lumley (1970) applied the method to turbulence
analysis; the flow field is expanded using the spatial eigenfunctions obtained
from the KL decomposition, where the statistical ensemble employed for the
decomposition is represented by a dataset of snapshots.

The temporal information can be recovered projecting back the entire se-
quence of snapshots on the obtained basis; the projection results in time coef-
ficients series related to the spatial structures. An alternative way to proceed
is formalized by Aubry (1991), where bi-orthogonal decomposition (BOD) is
introduced. Essentially, a second eigenvalue problem related to the temporal
cross-correlation function

R∗∗ (t, t′) =

∫

X

u (x, t) u (x, t′)
T
dx (3)

is cast. Denoting the eigenvectors obtained from the diagonalization of (3)
as Ψ = {ψ1, ψ2, . . . , ψm}, it can be shown that the following correspondence
between spatial and temporal modes holds

ψk = λ−1
k Xtϕk, (4)

where Xt : X → T is a mapping between the temporal and spatial domain;
this decomposition allows to split the space and the time dependence in the
form

u (x, t) =
m

∑

k=1

λkϕk (x)Tψk (t) (5)

It can be shown that a projection onto the space spanned by m POD modes
provides an optimal finite-dimensional representation of the initial data-set of
dimension m (Holmes et al. 1996).

The temporal structures give access to the analysis of the frequencies dom-
inating each modes; in general, more then a frequency is identified for each
structure.

2.2. Approximating Koopman modes: dynamic modal decomposition

As already noticed, although frequencies are captured by the chrono-modes, we
cannot identify structures related to only one frequency using POD. Moreover,
the correlation function provides second-order statistics ranked according to the
energy content; in general, low-energy structures can be relevant for a detailed
flow analysis. Koopman modes analysis is a promising, novel technique that
can tackle these drawbacks. The method was recently proposed by Rowley
et al. (2009) and is also available for experimental measurements.
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In order to describe this technique, we need to introduce the definition
of observable. An observable is a function that associates a scalar to a flow
field; in general, one does not have access to the full flow field in experiments:
the velocity - or the other physical quantities are probed at a point, using hot
wires, or in a plane, using PIV. However, considering a fully nonlinear flow, the
analysis of the observable for a statistically long interval of time is sufficient to
reconstruct the phase space and investigate the flow dynamics. By definition,
the Koopman operator U is a linear mapping that propagates the observable
a (u)

Ua (u) = a (g (u)) (6)

and is associated to the nonlinear operator g. The spectral analysis of the oper-
ator provides information on nonlinear flows; in particular, the technique allows
to compute averaged harmonic components of the flow, oscillating at certain
frequencies given by the eigenvalues of the operator, hereafter indicated with
µ. In particular, the phase of the eigenvalue arg(µ) determines the oscillating
frequency.

The DMD algorithm proposed by Schmid (2010) provides modes that ap-
proximate the Koopman modes, as shown by Rowley et al. (2009) and Bagheri
(2010); the complete demonstration is beyond the scope of this paper, however
it is relevant to outline briefly the main steps of the DMD algorithm.

Essentially, the DMD algorithm enters the category of the Arnoldi methods
for the computation of the eigenvalues and related eigenvectors. A projection
of the system is performed on a basis; the best - and computationally more
involved - choice is represented by an orthonormal basis. In the classical Arnoldi
method the basis is computed via a Gram-Schmidt orthogonalization (Arnoldi
1951; Saad 1980), that requires a model of the system. A second possibility
is given by forming the projection basis simply using a collection of samples
or snapshots (Ruhe 1984). This alternative represents the most ill-conditioned
among the possible choices, but can be applied in cases when a model of the
system is not available.

Given a snapshot at time tj , the successive snapshot at a later time tj+1

is given by

uj+1 = Auj (7)

The resulting sequence of snapshots Xr = [u1 Au1 Au2 . . . Aur] will
become gradually ill-conditioned; indeed, the last columns of it will align along
the dominant direction of the operator A. This observation motivates the
possibility to expand the last snapshot r on a basis formed by the previous
r − 1 ones, as

ur+1 = c1u1 + c2u2 + . . .+ crur + ũr+1. (8)

Here, ũr+1 indicates the residual error. The aim is to minimize the residual
such that ũr+1⊥Xr; a least square problem is cast, such that the elements cj
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are given as a solution of it. Introducing the companion matrix

M =















0 0 · · · 0 c1
1 0 · · · 0 c2
0 1 · · · 0 c3
...

. . .
...

0 0 · · · 1 cr















(9)

equation (8) is re-written in matrix-form as

AXr = XrM + ũr+1e
T
r . (10)

The action of the companion matrix is clear: it propagates one step forward
in time the entire sequence of snapshots, whereas the last snapshot is recon-
structed using the coefficients cj . Moreover, the equivalence represented by (8)
shows that the operator A ∈ R

n is now substituted by M ∈ R
r, with r ≪ n.

It results that the eigenvalues of M – usually referred as Ritz values – approx-
imate the eigenvalues of the real system. The related eigenvectors are given
by Φ̃ = XrT, where T are the eigenvectors of the companion matrix M. As
observed by Schmid (2010), this algorithm can be used to extract Ritz values
and the related vectors from experimental data or sequence of snapshots of
nonlinear simulations.

It is worth mentioning two features of the algorithm: first, the modes
are characterized by a magnitude that can be easily computed as the norm
of the modes |φ̃j |. The resulting amplitudes are essential for separating the
wheat from the chaff: as shown by Rowley et al. (2009), high-amplitude modes
are related to the most important and convergent eigenvectors. Moreover, (10)
allows to estimate the norm of the residual error as ‖ũ‖ = ‖AXr−XrM‖. The
analysis of the residuals is helpful for the identification of the snapshots dataset;
indeed, the selection of ∆ts and the proper time windows of investigation are
related to the residual analysis.

The linear dependency of the dataset, necessary for identifying the last
snapshot, makes this method prone to convergence issues and ill-conditioness.
An improvement is proposed by Schmid (2010), where a self-similar transfor-
mation of the companion matrix M is obtained as a result of the projection of
the dataset on the subspace spanned by the POD generated from it. To this
aim, a preliminary singular value decomposition (SVD) of Xr is performed; the
SVD allows to disregard the redundant states and the transformed companion
matrix is now a full matrix: both these features make the eigenvalues problem
better conditioned.

3. Experimental setup

The experiments are performed in a square channel whose dimension D is 50
mm. The first 300 mm of this square channel are divided into three sections
of dimensions 19, 10 and 19 mm by means of two horizontal walls that span
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Figure 2. Experimental setup.

the entire width, see figure 2c. The end of the splitter walls corresponds to
the beginning of a planar co-flowing jet, which is our measurement domain, see
figure 2a. The thickness d of the inner jet is 10 mm, which gives a confinement
ratio d/D of 1:5. The flow in the three jets is supplied by two independent
pumps through two radial distributors, one connected to the inner and one
to the two outer channels, see figure 2d. This configuration allows to control
the flow rates of the inner and the outer sections independently, therefore two
non-dimensional parameters can be varied in the present setup: the velocity
ratio λr = Uj/Us, where Uj and Us are the centerline velocities of the inner
and the outer jets respectively, and the Reynolds number Re = Ujd/ν, where
ν is the kinematic viscosity of the fluid.
In this work we show results for λr = 2.1 and Re = 10700.

3.1. Measurement technique

The time-resolved measurements of the flow were done by high-speed Particle
Image Velocimetry. The PIV system used in this work consists of a double
cavity 10 mJ Nd:YLF laser (repetition rate 2-20000 Hz) as a light source, and
two high-speed cameras (up to 3000 fps at full resolution) with resolution of
1024×1024 pixels.



Analysis of time-resolved PIV of a confined jet 175

The arrangement of the cameras and the laser-sheet is shown in figure 2b. The
two cameras were used to acquire two 2-D velocity fields, each of them of 50x100
mm2. The second camera was tilted by 5◦ in order to reach an overlap between
the two fields of about 20 mm, so that the total downstream length over which
the measurement extends is of about 180 mm.
The two cameras were calibrated by taking images of a calibration plate with
known reference points in situ, and the calibration parameters were extracted
using a pinhole-based model (see Willert 2006).
The flow was seeded with 10µm silver-coated tracer particles, and a series of
double-frame, single-exposure images were acquired at a rate of 1500Hz for a
total time of 4 seconds. The velocity fields were calculated using the commer-
cial PIV software DaVis 7.2 from LaVision GmbH. The algorithm used is a
multi-pass correlation with continuous windows deformation and shift, which
allowed to achieve a final interrogation window size of 8x8 pixels. The size of
the interrogation window is of about 0.75x0.75 mm2 in physical space, which
sets the lower limit for the spatial resolution. The window overlap was 50%. For
detailed information about the performance of the PIV algorithm, see Stanislas
et al. (2008).

3.2. Flow quality

In order to establish the characteristics of the flow in the channel, we measured
cross-stream profiles at 5 spanwise stations including the channel centerline,
and spanwise profiles at the centerline of the three jets. In this paper we refer
to the direction parallel to the x-coordinate as the streamwise direction, the
direction parallel to y as the cross-stream and the one parallel to z as the
spanwise direction. The streamwise and cross-stream velocity components are
U and V , respectively.
Figure 3 shows the streamwise development of the time average of U (〈U〉)
and the root mean square (r.m.s) of the streamwise turbulent fluctuations u′

(〈u′2〉) at the channel centerline (z = 0). The profiles are scaled to fit the figure,
and the x and y coordinates are normalized by the inner jet thickness d. Two
main features can be observed in the mean velocity profiles: the boundary
layers developing at the channel walls and the two wakes generated by the
blunt end of the splitter walls on the profiles near the inlet. The r.m.s. profiles
show the characteristic local maxima at the two shear layers. The dashed
lines show the centerlines of the three jet regions. The dashed-dotted lines
follow the development of the jet half width L, defined as the point where
(U − Us)/(Uj − Us) = 0.5.

The spanwise evolution of the velocity profiles have also been investigated
to assess to what extent the flow can be considered two-dimensional. Figures
4a and b show the cross-stream profiles of 〈U〉 at 5 spanwise stations (Z/d =
−2,−1, 0, 1, 2), whereas figures 5a − b show the spanwise profiles. The latter
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Figure 3. Streamwise evolution of the mean (thick line) and
r.m.s. (thin line) profiles of U are at the channel centerline
(z/d=0). The profiles are scaled to fit the figure.

has been measured by rotating the channel 90◦ around the x-axis, so that the
light sheet was parallel to the z-axis.
These figures show that although the inlet profiles are not perfectly top-hat,
the flow rates on upper and lower channel are quite the same and the boundary
layer at the side walls never reaches the center of the channel. Therefore we
can consider the flow as quasi-2D.
Normalized mean, r.m.s. and Reynolds stress profiles profiles are shown in
figure 6. The normalizing scales are the local velocity excess U0 = Uj − Us for
the mean velocity, and the jet half width L for the y coordinate. From figure 6a
we can see that the mean velocity profiles are still affected by the wake behind
the walls splitter but self-similarity is reached already at x/d = 5, see figure 6b.
From these figures we can also see the growth of the boundary layers from the
channel walls, which however do not reach the self-similar region at the core of
the jet. Figures 6f and 6d show that r.m.s and Reynolds stresses reach self-
similarity later than the mean flow, at around x/d = 10, as reported by Chua &
Lua (1998) in a similar flow case. It is interesting to note that the typical saddle
shape of the r.m.s profiles is not symmetric and seem to be inclined so that the
r.m.s values on the lower part of the channel are higher than in the upper part.
This might be an indication of a recirculation zone induced by the confinement
due to a slight asymmetry of the experimental setup. Recirculation zones
around a jet due to confinement has been observed by Maurel et al. (1996);
Davidson (2001); Goldschmidt & Bradshaw (1973). In these works it has been
shown that the re-circulation zone can induce self-sustained oscillation of the
jet. The frequency of the oscillations are dependent on the geometry and the
confinement ratio but in general they have low frequency and are characterized
by Strouhal numbers based on the jet thickness of St ≈ 0.01.
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Figure 6. Self similar profiles of mean streamwise velocity,
normal and shear stresses 〈u′〉 and 〈u′v′〉.
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4. Spectral analysis

4.1. Computational procedure

Time resolved PIV measurements were done at the center of the channel, on
the x-y plane (see figure 2). As an output of the PIV measurements, for each
point of the measurement domain ( 0 < x/d < 18 ) we obtained a time signal
made of 6000 samples for a total sampling time of 4 seconds. We therefore have
spatially and temporally resolved data from which we can detect the presence
of dominant wavelength and frequencies by the analysis of the Power Spec-
tral Density (PSD). Temporal spectra are calculated using the Welch method
seeking a compromise between smoothness and good resolution of the low fre-
quencies. For the spatial spectra we followed a similar approach, but in this case
the maximum length of the signal was determined by the physical length of the
measurement domain, and the final PSD estimate was obtained by averaging
the spectra at different time steps.

Examples of temporal and spatial spectra (Φu and Θu, respectively) can
be seen in figure 7. Figure 7a shows the normalized PSD of the streamwise
velocity fluctuations at 5 streamwise stations (x/d = 0, 1.5, 7, 10, 15) along the
jet centerline. It can be seen that the slope of the spectra approaches the value
of -5/3 as we move downstream, where we expect to have nearly isotropic
turbulence in the jet core. Peaks might also be present in some regions of the
spectra but it is hard to distinguish it from the noise, since the time series
are relatively short due to the limited capabilities of PIV to acquire long time
series do not allow us further smoothing.

Therefore, in order to get an idea of the dominant scales in the different
regions of the flow we can plot the contours of the spectra as a function of y as
shown in figure 8. The normalized spectra here are presented on a logarithmic
scale, thus they are premultiplied by the frequency or wavelength vector. Figure
7(a) shows the temporal spectra computed at the jet outlet, whereas figure 7(b)
shows the distribution of spatial spectra. In the latter, it can be seen that much
of the energy is contained in the two regions corresponding to the shear layer,
with a maximum peak located at d/λx ≈ 0.3−0.4, which corresponds to about
half of the channel width D/2 in physical terms. In the same region we can
observe two peaks in the temporal spectra at St = 1, where St indicates the

Strouhal number and is defined as St = f(d/2)
Uj−Us

, with f being the dimensional

frequencies. In the rest of the domain instead, most of the energy is contained
at low St, in particular in the co-flow region peaks appear at St < 0.1. This is
another evidence of low-frequency structures, like a re-circulation zone due to
the jet confinement, even if the St is higher than the one reported in previous
studies. This can be explained by the fact that due to the limited length of the
time series and the windowing used to compute the spectra, the resolution of
the low frequencies is poor.
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Figure 7. Φu and Θu at y = 0
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Figure 8. Φu and Θu at x/d = 0

4.2. Spatial distribution of dominant frequencies

The spectra shown in figure 7a are computed at the jet outlet. However it
is interesting to analyze what happens further downstream. This is shown
in figure 9, where the y distribution of Φu is show at 8 streamwise stations:
x/d = 0.38, 0.75, 1.13, 1.50, 3.40, 7.16, 10.90 and 15.80. What it can be ob-
served from this sequence is that the two high-frequency peaks in the shear
layer tend to ”migrate” towards lower frequencies as we move downstream,
to approach the value of St = 0.1 for x/d > 10, i.e. in the self-similar re-
gion. This can be explained by the fact that in the region x/d < 5 we still
have small scale/high-frequency structures due to the wake behind the splitter

walls, which can influence the dynamics of the shear layer, as reported in Örlu
et al. (2008). However, further downstream the most dominant structures are
large/low frequency due to the flapping of the inner jet (Maurel et al. 1996;
Davidson 2001; Goldschmidt & Bradshaw 1973).
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(c) x/d = 1.13
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Figure 9. Contours of premultiplied spectra StΦu. The con-
tour lines are drawn at: 0.4, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70.
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Figure 10. U -component of the first topo-modes (mean-flow).

5. Analysis of coherent structures I: POD

5.1. Choice of the snapshots

The mapping Xt provides a relation between the space and time domains; thus,
the diagonalization of (3) provides temporal modes, while the spatial modes
can be evaluated using (4). A discrete form of this procedure was introduced
by Sirovich (1987). Here the author shows that the corresponding discrete form
of the operator Xt can be built by stacking Nt snapshots of the flow field to
form a matrix of dimensions n × Nt, where n is the number of grid points in
space and Nt is the number of snapshots. Therefore this method is known as
snapshot method. The advantages of the technique relies on the dimensions of
the eigenvalue problems associated with the two alternative cross-correlations;
indeed, the number of snapshots stacked in time is usually smaller than the
number of spatial degrees of freedom; thus, the eigenvalue problem associated
with the spatial cross-correlation matrix is more expensive than diagonalizing
the temporal cross-correlation; however, relation (4) provides a means for re-
covering the spatial modes from the temporal modes using the mapping Xt.
Note that the same results can be achieved performing a singular value decom-
position (SVD); in this case, the temporal structures and the spatial structures
are obtained simultaneously, see Schmid (2010). The two procedures are equiv-
alent, and the former method was used in our calculations.

When choosing the snapshots, there are two important choices to be made:
the total number of snapshots Nt and the time interval between two consec-
utive snapshots ∆ts. In fact, as already mentioned, the modes obtained by
POD are always the optimal (in a least square sense) representation of the
snapshots used to compute the cross-correlation matrix, but it has to be kept
in mind that POD modes are representative of the flow just as much as the
cross-correlation matrix is. Therefore if we want to extract physically relevant
information of the flow structures, Nt has to be chosen so that there are a
sufficient number of independent samples to ensure converged statistics, and
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Figure 11. Eigenvalues and temporal modes for ∆t = 1/750
(black), 1/250 (blue) and 1/125 (red).

that the time spanned by the snapshots is long enough to contain the slowest
scales of the flow. Provided the above conditions, the topos-mode (i.e. the
spatial modes) do not seem to depend at all on the time of sampling ∆ts.
However, when recovering the temporal information by (4), it is clear that this
parameter determines the temporal resolution of the chronos-modes; thus, if
∆ts is too large, the chronos-modes associated with high frequencies do not
converge. An example of this idea is shown in figures 11b and 11c, where we
see the chronos-modes corresponding to mode number 1 and 29 respectively. It
can be seen that the time series of mode 1, which shows mainly low-frequency
quasi-periodic fluctuations is well captured for every ∆ts, whereas for mode 29
the time series obtained with the largest ∆ts does not follow the ones obtained
with smaller time interval between the snapshots. Differences appear also in
the eigenvalues, see figure 11a. The spectra obtained with ∆ts=1/750 and
1/250 are basically the same, whereas the spectrum computed with the largest
interval diverges as the number of modes, N , increases.

5.2. Spatial and temporal modes

From the first convergence analysis of the previous section we conclude that
a ∆ts of 1/250 is adequate to temporally resolve the structures of our flow
case.An acquisition time of 3.3s is chosen, corresponding to Nt = 834 is fixed
which is on the order of about three times the slowest time scale of the flow.
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As a convergence test, we take three sets of 5000 snapshots which differ from
a time offset of ≈ 0.2s from each other. The convergence is directly analyzed
by comparing the POD eigenvalues obtained from each set. A relative error
of order O(10−4) is obtained among the set; this value is deemed sufficient to
guarantee convergence of the results. A further numerical test is related to the
orthogonality of the modes. The condition is satisfied down to O

(

10−13
)

for
all the modes.

In figure 11a, the eigenvalues related to the POD modes are shown; the
portrait obtained is rather typical: the first mode contains 97% and is related
to the meanflow of the jet. Hereafter, we will denote it as 0-mode. As expected,
the corresponding chrono-mode is constant.

The remaining modes are related to the fluctuating part of the flow field,
and the sum of their eigenvalues represents the turbulent kinetic energy (TKE).
A first eye-inspection of the topo-modes reveals that some of the modes come
in pairs. This is evident for example for mode 1 and 2, as shown in figures
12a-b. Here we can see that the structure of the two modes is the same,
except for a shift in phase: they are both anti-symmetric with respect to the x-
axis, and they both present two large lobes located downstream. The analysis
of the corresponding chrono-modes confirms the similarities between the two
structures: they both show periodicity with similar amplitude of the peaks.
This is an evidence that the modes represent a wave-like periodic structure of
the flow. In fact, since the POD modes are real, two modes are needed to
describe a flow structure traveling as a wave (see e.g. Rempfer & Fasel 1994).
From a physical point of view this structure represent the flapping of the jet,
which is the most energetic feature of the flow. A frequency analysis of the
signal from the chrono-modes (see figure 12d) shows that there is a very clear
peak at St = 0.02 for both mode 1 and 2. This is in line with the previous
frequency measurements of flapping of confined turbulent jets mentioned in the
earlier sections. It is remarkable that, although in general each POD mode can
be associated with more than one frequency, the peak at St = 0.02 appears
more clearly than in the spectral analysis of the time series. This is because
the time series contains information about all the turbulent structures, whereas
the considered modes isolate only one feature.

Finally, figure 12e shows the temporal orbit obtained by projecting the
flow field onto the subspace spanned by ϕ1 and ϕ2. It is clear that the trajec-
tory shows an attractor-like behavior, similar to what we would observe from
the vortex shedding behind a cylinder. This confirms the impression that the
modes represent a physical coherent structure and are important for the recon-
struction of the dynamics of the flow system.

In figure 13a-c, the modes 3-5 are shown. These modes are characterized by
smaller scales and higher frequencies (see figures 13d and 13e) than the previous
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Figure 12. The first and second POD modes are analysed.
The streamwise component of the topo-modes is shown. The
first chrono-mode is indicated with a solid line, the second one
with a dashed line.

ones, but they are also clearly associated with oscillations of the shear layer.
One interesting feature emerging from these modes is a structure in the lower
part of the channel that seems to be associated with a recirculation zone. This
recirculation might be responsible for the jet self-sustained oscillations, which
is confirmed by the fact that in the POD this feature appears in the mode
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(a) Third topo-mode (b) Fourth topo-mode
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Figure 13. The third, fourth and fifth POD modes are
shown. The streamwise component of the topo-modes is
shown. The first chrono-mode is indicated with a solid line,
the second one with a dashed line and the third with a dashed-
dotted line.

corresponding to shear layer oscillations. The analysis of the related chrono-
modes in spectral space (figure 13e) reveals the presence of three well defined
frequencies in all these modes; however, the peaks have different magnitudes
in the three modes.

Note that the frequency increases as the energy associated to the modes
decreases. This might be a consequence of the fact that lower energy is asso-
ciated to smaller scales; indeed, an eye-inspection of the modes shows that, as
the rank increases, the topo-modes are characterized by low-energy structures,
progressively smaller, while the corresponding chrono-modes are dominated by
higher frequencies. This trend is confirmed by figure 14, where the normal-
ized spectrum for each of the first N = 100 modes is depicted. In addition, it
can be noticed that strong peaks occur for high-energy modes; moreover the
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Figure 14. Spectral analysis of the first Nm = 100 chrono-modes.

number of peaks increase with the order of the modes; thus, modes containing
high-energy, are also characterized by few and well distinguished frequencies
(i.e. they are associated with periodic coherent structures).

6. Analysis of coherent structures II: Koopman modes

6.1. Convergence tests and selection of the modes

As mentioned in section 2.2, the linear dependency of the snapshots dataset
allows to write (10); however, this feature makes the method prone to ill-
conditioness. Thus, to ensure the effectiveness of the numerical procedure, we
carry out ad − hoc tests. In particular, the choice of an adequate sample of
snapshots turns out to be crucial; following the guidelines already discussed for
the POD, we select as parameters for the choice, the number of snapshots Nt

and the sampling time ∆ts, i.e. the interval between two successive snapshots.
To this aim, we make use of the residuals ũ (see section 2.2), analysing their
trend when changing Nt or ∆ts: the main idea is to select the set of parameters
that guarantees the smaller residual.

Figure 15a reports the behavior of the residual as function of time. Two
different sampling-strides are considered: the dashed line indicates a stride
Ns = 20, while for the continuous line Ns = 10. The overall trend shows a
reduction of the residual value as the number of samples increases. In figure
15(b), the residual value is analysed as function of the number of snapshots
spanning the sampling interval ∆ts for two datasets: the original PIV mea-
surements (dashed lines) and a filtered set of snapshots (solid lines). The
cut-off frequency of the filter is of 250 Hz, which reduces the measurement
noise but leaves unaltered all the relevant scales of the flow. The third param-
eter considered in the graph is the time-window of observation: the lines are
darkened progressively according to the chosen final time of the time-window,
from t = 0.667 to 4.0. We can summarize as follows the main results included
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sampling.

in figure 15(b):

1. In all cases, a monotonic reduction of the value is obtained when reduc-
ing ∆ts.

2. Longer windows of observation yields better results.
3. Fixing the sampling parameters and using the filtered data, an improve-

ment of about 20% is observed for the residual values.

However, we need to keep in mind also the physical point of view; clearly,
longer sampling intervals act as a filter; thus, high-frequency modes cannot be
resolved if a too large ∆ts is chosen. The filtering of the dataset theoretically
imposes the lower limit ∆tS = 1/250; however, the SVD pre-processing of the
dataset allows to circumvent the problem, disregarding the states numerically
not relevant, usually related to linear dependencies. In more detail, denoting
with σ the singular values computed for the snapshots dataset, the ratio σj/σ1

provides an estimation of the condition number. A threshold can be selected:
as a rule of thumb, one can consider the numerical precision – if DNS data
are used – or the precision given by the experimental instrumentation. The
states associated to the singular values that are below this threshold can be
disregarded.

The amplitudes associated to the Koopman modes serve efficiently as pa-
rameter for the selection of the modes. Here a further convergence criterion is
introduced due to the complexity of the analysed flow. In particular, three sets
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Figure 16. The spectrum obtained from the DMD is shown
in (a). In (b) the associated amplitudes are shown (except for
the first mode). The physical relevant ones are kept in (c).

of snapshots are formed: each of them is characterized by Nt = 700 and a snap-
shots stride of ∆Nt = 8: the resulting interval in time for each case is ∆t = 3.3s;
the sets differ in the selected time-window, which slides forward with a small
∆t. Since the investigation involves a flow fully developed after the transient,
we expect that the most important features appear in all the considered sets:
thus, our procedure relies on the comparison of the modes obtained applying
the DMD to the three sets. We consider convergent the eigenvalues that for
each set had a difference in frequency below a chosen tolerance. Moreover, the
corresponding eigenvectors are compared via a cross-correlation, in order to
ensure the physical correspondence among the modes picked in each set.

6.2. Spatial modes by DMD

In figures 16a, the discrete spectrum obtained for the first set – spanning the
time interval t = [0, 3.3s] – is shown. As observed in Mezić (2005) and Bagheri
(2010), for t → ∞, the Koopman operator is unitary, thus all the eigenvalues
will lie exactly on the unit circle. Indeed, we can observe that nearly all the
eigenvalues lie close to the unit circle. The amplitudes of the modes are depicted
in 16b with the same color; the darker the color, the higher the amplitude of
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(a) Mean flow (b) St < 0.01

Figure 17. The streamwise component of the meanflow is
shown in (a). In (b) the low frequency mode associated with
the highest amplitude is shown.

the mode. The peaks are still quite numerous and, although quite well resolved,
the result demonstrates the necessity of introducing the convergence method
for the selection of the modes physically meaningful.

After the selection is performed, only a part of the eigenvalues is kept,
as shown in figure 16c where the corresponding Strouhal number is reported
for each of them; in the latter figure, the spectrum is in continuous form,
obtained using the relation ω = logµ/(∆ts). In particular, the selected modes
approach the 0 growth limit; indeed, in a nonlinear flow we cannot expect
growing/decaying structures. The presence of a growth rate is mainly related
to the time-window of observation; in principle, due to the property of the
Koopman operator referred above, infinite time of observation would lead to
eigenvalues characterized by null growth. The distance from the ωi = 0 can
be also regarded as a convergence test: the more the eigenvalues are close, the
more are convergent the modes, i.e. physically relevant.

The black dot indicates the mean-flow, appearing as the 0 frequency mode
in the continuous spectrum and shown in figure 17a. The first mode is charac-
terized by a low Sthroual number (figure 17b; the structures are anti-symmetrical
with the respect to the streamwise direction and mostly located downstream,
where two elongated lobes dominate the structures. This mode, and the ones
characterized by low frequency, closely resemble the POD modes shown in fig-
ure 12; indeed, from a physical point of view, these structure are related to the
flapping of the jet, as confirmed by the St in line with the previous frequency
measurements.

The DMD/Koopman mode analysis turns out particular fruitful for the
analysis of the recirculation close to the jet-inlet. In figure 18a, the mode
related to this feature is shown; an elongated lobe is observed in the lower, up-
stream region of the domain where the previous analysis showed the presence
of recirculation. The corresponding St number is in agreement with the former
measurements. Note that this region was highlighted also by POD analysis;
however, the modes (figure 13) were characterized by the simultaneous presence
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of the shear flow and the recirculation phenomena, as confirmed by the analy-
sis of the chrono-modes (figure 13d-e). Using the Koopman modes, it is now
possible to clearly distinguish the physical phenomena related to the frequency
peaks (figure 13e). In particular, figures 18b-d show the shear-flow structures
associated to the Strouhal number obtained by spectral analysis (13e). The
modes are anti-symmetric; the finer structures located downstream in the do-
main are associated to higher frequencies and closely resemble the structure
already observed with the POD analysis.

7. Conclusions

POD and DMD have been applied to experimental data from PIV measure-
ments of a turbulent confined jet with co-flow. The jet is fully turbulent,
however the results from the spectral analysis have shown the presence of pe-
riodic features, arising from the flapping of the jet induced by a recirculation
zone on the side of the inner jet.

Jet flapping appears as two large structures located downstream (x/d >
10) on the first two POD modes. These two modes appear to be coupled
to each other, since they only differ from each other by a phase shift both
in time (from the analysis of the chrono-modes) and in space. Frequency
analysis of the topo-modes show a clear peak at St = 0.02, which is in line with
previous experimental results. Modes 3, 4 and 5 show the coupling between the
recirculation zone near the inlet and shear-layer oscillation, which is believed
to be the leading sustaining mechanism for the jet flapping. Although the
recirculation zone and the shear layer oscillations are characterized by different
frequencies, they appear coupled in the POD modes since the two structures
are correlated. Instead, in the DMD modes the two structures appear in two
separate modes; thus, the method efficiently isolates structures with a single
frequency. The peaks found by spectral analysis of the topo-modes are in good
agreement with the frequencies found by DMD.

DMD modes are selected with an iterative procedure that identify con-

sistent modes by projecting the results of one iteration on the previous one
obtained with another set of snapshots that have an offset origin in time, and
retaining those whose projection is larger than a user defined threshold. We
observed that the most consistent modes (i.e. those who survive increasing the
threshold) are those whose growth rate is closer to 0; moreover, these modes
are generally the ones characterized by high amplitude, in accordance with the
theoretical results.
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(a) St = 0.01 (b) St = 0.04

(c) St = 0.06 (d) St = 0.07

Figure 18. The streamwise component of four Koopman
modes is shown. The associated Strohual number is reported
in each label.
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