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Abstract

Background

Randomized Controlled Trials almost invariably utilize the hazard ratio calculated with a

Cox proportional hazard model as a treatment efficacy measure. Despite the widespread

adoption of HRs, these provide a limited understanding of the treatment effect and may

even provide a biased estimate when the assumption of proportional hazards in the Cox

model is not verified by the trial data. Additional treatment effect measures on the survival

probability or the time scale may be used to supplement HRs but a framework for the simul-

taneous generation of these measures is lacking.

Methods

By splitting follow-up time at the nodes of a Gauss Lobatto numerical quadrature rule, tech-

niques for Poisson Generalized Additive Models (PGAM) can be adopted for flexible hazard

modeling. Straightforward simulation post-estimation transforms PGAM estimates for the

log hazard into estimates of the survival function. These in turn were used to calculate rela-

tive and absolute risks or even differences in restricted mean survival time between treat-

ment arms. We illustrate our approach with extensive simulations and in two trials: IPASS

(in which the proportionality of hazards was violated) and HEMO a long duration study con-

ducted under evolving standards of care on a heterogeneous patient population.

Findings

PGAM can generate estimates of the survival function and the hazard ratio that are essen-

tially identical to those obtained by Kaplan Meier curve analysis and the Cox model.

PGAMs can simultaneously provide multiple measures of treatment efficacy after a single

data pass. Furthermore, supported unadjusted (overall treatment effect) but also subgroup

and adjusted analyses, while incorporating multiple time scales and accounting for non-pro-

portional hazards in survival data.
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Conclusions

By augmenting the HR conventionally reported, PGAMs have the potential to support the in-

ferential goals of multiple stakeholders involved in the evaluation and appraisal of clinical

trial results under proportional and non-proportional hazards.

Introduction

The Cox Proportional Hazard (CPH) model, proposed in 1972[1] is currently the preferred

method for the analysis of censored data from randomized controlled trials (RCTs) and obser-

vational studies of time to event outcomes. CPH circumvents the statistical complications cre-

ated by censoring of survival data, by working in the probability rather than the time domain

and calculates Hazard Ratios (HR) as measures of treatment efficacy. Despite the popularity of

HR among clinicians, the endorsement by the Cochrane Handbook for systematic reviews[2]

and a CONSORT statement that recommends them as measures of intervention efficacy[3],

HRs are not ideal summaries of intervention efficacy for a number of reasons. First, they are

routinely misinterpreted by clinicians[4] as relative risks, odds ratios or as relative speed. Sec-

ond, HRs do not readily convey the information required by patients (absolute measures of sur-

vival) or third parties in the context of shared decision making[5,6] and health care evaluation.

Lastly, the HRs are sensitive to the proportionality assumption of the PH model; when the lat-

ter is violated, the estimated HRs no longer provide unbiased summaries of the treatment effect

as the true HR varies with time. These potential pitfalls are addressable by shifting to paramet-

ric regression models, direct modeling of the survival[7], or the hazard function with flexible

functions of time.

In this paper, we show how flexible hazard models may be used as a comprehensive analyti-

cal framework for the simultaneous generation of multiple treatment effect measures under

proportional or non-proportional hazards. The approach we propose borrows concepts from

lifetable analysis[1,8,9] and techniques from Generalized Additive Models(GAM) [10] for

Poisson regression (PGAM) to achieve these goals. We undertake extensive numerical evalua-

tions and statistical simulations to demonstrate that the PGAM approach can yield unbiased

estimates of treatment effects and survival probabilities, comparable to the Cox model and the

Kaplan Meier (KM) procedure, under proportional and non-proportional hazards. We illus-

trate the approach in two clinical datasets: a two arm oncology clinical trial (IPASS)[11] for

which we reconstruct the data from the study manuscript, and a nephrology RCT (HEMO)

[12] for which patient level information is available, thus enabling a covariate adjusted analysis.

IPASS is an example of a study in which the violation of the proportionality assumption com-

plicates the interpretation of the intervention effect. HEMO is a high-quality, RCT of long du-

ration conducted under evolving standards of care on a heterogeneous patient population.

Natural questions to ask in such a situation, is whether the estimate of the HR may be con-

founded by secular trends in treatment standards or center effects, and whether the treatment

effect was the same across patient subgroups. We consider the implications of the proposed ap-

proach for the reporting and communication of different treatment effect measures to clinical

audiences and policy makers and the utility of PGAMs to support objective trial analyses that

cater to the inferential needs of different consumers of clinical trial data.
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Materials and Methods

Survival analysis with Gaussian quadrature and Poisson Generalized
Additive Models

By splitting the observation time in arbitrary small intervals (the "lifetable" approach), previous

work has shown that it is possible to use Poisson regression approximations for survival analysis

(see S1 Appendix, Section A1 for a timeline of these ideas and a literature survey). Our approach

extends previous work by proposing a time-splitting scheme based on Gaussian quadrature that

limits the computational resources required to apply this method, while maintaining control

over the numerical precision of the approximation. Within this framework we utilize flexible

models (e.g. with within Poisson regression (Poisson Generalized Additive Models—PGAM) to

model the log-hazard function. The recent availability of R software packages[10] for the fast fit-

ting of GAMs to big datasets makes this approach practical for large applications. As we demon-

strate below, PGAMs are ideally suited for clinical trials as they support a variety of analyses

relevant to the context of RCTs: non-proportional hazards modeling, stratification variables,

correlated outcomes, treatment by covariate interactions and multiple time scales. Non-linear

functions of PGAM estimates (PGAM predictions) and their confidence intervals[13] may be

used as alternative to the hazard ratio measures of treatment effects (S1 Appendix, Section A2).

Approximating Survival Likelihoods with Poisson Models

Consider a set of N individual patients for whom individual observations are available at times

F ¼ fFig
N

i¼1
with censoring indicators D ¼ fdig

N

i¼1
assuming the value of zero if the corre-

sponding observation was censored (patient had not experienced the event of interest) and one

otherwise. Patients are assumed to come under observation at times Ε ¼ fEig
N

i¼1
and these

times may not necessarily be equal to zero in order to allow for delayed entry into the study.

Under the assumption of non-informative censoring, the likelihood is given by:

YN

i¼1

f ðFiÞ
di � SðFiÞ

1�di

SðEiÞ
¼

YN

i¼1

hðFiÞ
di � expð�

ðFi

Ei

hðtÞdtÞ Eq 1

where in going from the left to the right hand side we have use of the definitions of the hazard,

cumulative hazard survival, density functions. Numerical integration (quadrature) methods

may be used in order to approximate the integral with a weighted sum over a set of nodes ti,j:

ðFi

Ei

hðtÞdt ffi
Xni

j¼1

wi;jhðti;jÞ Eq 2

After substituting the sum for the integral and introducing the auxiliary variables di,j = 1 if

the nodes of the quadrature (ti,j) are event times and zero otherwise, we obtain the(approxi-

mate) likelihood:

YN

i¼1

Yni

j¼1

hðti;jÞ
di;j � e�wi;jhðti;jÞ Eq 3

This can be recognized as the kernel of the Poisson likelihood with variable exposures (off-

sets) given by the logarithm of the quadrature weights (wi,j). To use this connection in

Generalized Additive Models in Randomized Controlled Trials

PLOS ONE | DOI:10.1371/journal.pone.0123784 April 23, 2015 3 / 33



applications, one expands the dataset with additional “pseudo-observations” for each individu-

al. These are inserted at the set of nodes of the integration scheme other than the event times.

Parameter estimates and covariance matrices produced by the maximization of the Poisson

likelihood are valid approximations to analogous functions obtained by optimizing the exact

likelihood in a well defined sense: as the number of nodes of the integration scheme increases,

the accuracy of the discrete sum approximation improves, so that in the limit ni!1 the ap-

proximation becomes exact. For a finite number of nodes, n, the ratio of the approximate and

the exact likelihoods depends on the error term, Rn(Fi,Ei;f) of the quadrature rule. The total

error incurred by the N numerical integrations in the approximate likelihood is bound by:

YN

i¼1

eRnðFi;Ei;f Þ ¼ eNhRnðFi;Ei ;f Þi � N �max
i
ðeRnðFi ;Ei;f ÞÞ Eq 4

The accuracy of the Poisson approximation improves exponentially fast with the error of

the quadrature rule. Consequently judicious use of the quadrature rule may be used to achieve

a balance between numerical accuracy and computational resources (number of nodes/size of

the dataset) used during model fitting. We consider these issues in the following sections.

Time Discretization Schemes for the Analysis of Survival Data

The simplest quadrature rule for the integration of the hazard function is the trapezoid rule,

which splits the dataset to the unique failure times (as in the approach for grouped survival

data by Efron[8] and implicitly in the PH[1]) or even the unique observation times irrespective

of censoring[14–16]. This discretization expands the original dataset to very large sizes equal to

0.5×(N2+N) i.e.>500000 Poisson-like observations for a study of N = 1000 people. To over-

come this computational limitation, we applied the Gauss-Lobatto (GL) quadrature rule, in

which the set of nodes consists of the endpoints augmented by additional abscissas symmetri-

cally distributed around zero in the interval [–1,1] (see[17] Section 4.6.1). Gaussian quadrature

converges exponentially fast and thus requires fewer nodes to achieve the same level of preci-

sion (see[17] pages 179–193) as the trapezoidal rule. The practical implication of using the GL

rule as opposed to other Gauss rules[18] is that the entry and last follow-up time are used as

nodes. This feature introduces two constraints into the Poisson approximation: a) that no pa-

tient can fail at their entry time (an implicit assumption to all survival modeling) and b) that

time/event status at the end of follow-up are represented exactly in the dataset.

The number of the nodes can be heuristically selected by considering the functional form of

the error (remainder) term in the GL rule:

RnðFi; Ei; f Þ ¼ �
nðn� 1Þ

3
½ðn� 2Þ!�

4

ð2n� 1Þ½ð2n� 2Þ!�
3

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

ðFi � EiÞ
2n�1

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{B

f ð2n�2ÞðxÞ; Ei < x < Fi Eq 5

This expression, which follows from transforming the error of the rule in the [–1,1] interval

(page 104[19]) to the domain of integration [Ei,Fi], shows that the absolute magnitude of the

error depends on a term (A) that decreases very fast with the order of the integration, a factor

that increases with the length of the integration interval (B) and finally the value of the 2n-2th

order derivative of the hazard function within the domain of integration. The kind of functions

we will consider in this work, model the log-hazard as cubic or one-dimensional thin plate
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splines, both of which are local third degree polynomials. Consequently, the 2n-2th derivative

of the hazard at any given point is given by:

f ð2n�2ÞðxÞ ¼ ðexpðgþ axþ bx2 þ cx3ÞÞ
ð2n�2Þ

¼ expðgþ axþ bx2 þ cx3Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
hðxÞ

QðxÞ e
n

hðxÞx4n�4ð3cÞ
2n�2

Eq 6

This expression which follows from repeated application of the chain rule, shows that as

more nodes are added, the last term in Eq 5, which is the product of a high order polynomial

(Q(ξ)) and the hazard function, will asymptotically increase in absolute magnitude. Hence,

there are diminishing returns to be expected from increasing the number of nodes after some

point, suggesting that a limited number of nodes will suffice for applications.

Flexible (log-)hazard modeling in randomized trials

The building block for all analyses presented in this paper resolves the (log-) hazard function at

of the ith patient at the jth time point as:

logðhðti;jÞÞ ¼ l0ðti;jÞ þ xiβ Eq 7

In the previous expression λ0(t) is the baseline log-hazard, xi are treatment group assign-

ments and possibly, but not necessarily, other baseline covariates which one wants to adjust the

analysis for, and β are the corresponding log-hazard ratios. This model can be extended to ac-

commodate the following analyses:

• Stratification, which substitutes the single baseline log-hazard with additional smooth func-

tions of time, e.g. in a multicenter study one can specify one such function for each center:

logðhðti;jÞÞ ¼
XS

k¼1

lkðti;jÞ þ xiβ Eq 8

• Non-proportional effects, in which the proportionality assumption is relaxed for one or more

covariates and the model is augmented with the interactions of these covariates with time.

This is conceptually and mathematically similar to carrying out a stratified analysis if the

aforementioned covariate is categorical (e.g. gender) and to a varying coefficient model if the

covariate is continuous (e.g. age). In the context of a randomized trial one can use this feature

to simultaneously detect and account for the violation of the proportionality assumption for

the treatment effects. This adjustment can take one of two equivalent forms, which for a two

arm trial may be equivalently expressed as:

logðhðti;jÞÞ ¼ l0ðti;jÞ þ xiβþ bTðtÞ ¼ l0ðti;jÞ þ xiβþ bT þ b
NC

T ðtÞ Eq 9

with bTðtÞ ¼ bT þ b
NC

T ðtÞ, the overall treatment effect, βT the component of the log-hazard

ratio that is constant with time and bNC

T ðtÞ the non-constant, time varying effect. A statistical

test for the equality of bNC

T ðtÞ to zero amounts to a test for the proportionality of hazards, while

a test for the equality of βT to zero is simply a test for the constant component of the log-hazard

similar to the one conducted by the PH model. Finally, testing whether βT(t)is equal to zero is a

test for an overall difference of the hazard function, and thus the survival, between treatment

arms or more generally for different covariate values.

Generalized Additive Models in Randomized Controlled Trials
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• Heterogeneous/correlated/frailty effects obtained by augmenting the second component of

the log-hazard function with a random effects model to model correlations among individu-

als within the same cluster (k).

logðhðtk;i;jÞÞ ¼ l0ðti;jÞ þ xiβþ zkb; b eNð0;GÞ Eq 10

In the equation above the covariates for the random effects component are given by zk and the

random effects themselves by b. The latter are assumed to be normally distributed with a co-

variance matrix equal to G. For example in a multicenter study one could assume that the treat-

ment effect in the various study centers are not identical, but are related e.g. as realizations

from a hypothetical population of centers with a common mean and (co-)variance matrix.

Cluster randomized trials (CRT), in which whole centers rather than individual patients are

randomized to specific interventions, are a special case of this formulation.

• Multiplicity of time scales, in which the effects of additional scales are modeled with smooth

functions of the corresponding time scale. RCTs are conventionally analyzed under the as-

sumption that the only time-scale that is relevant is “study time”, and thus concentrate on

the analysis of the duration of the follow-up. The incorporation of disease scale effects relaxes

the assumption that the intervention has the same effects in participants at different points

during their disease process. Allowing for period effects, i.e. those occurring on the calendar

time scale (“secular trends”) acknowledges the possibility that changing standards of therapy

may have impacted the effectiveness of the intervention. Even though the randomized nature

of clinical trials is thought to protect against secular trends as they would affect all trial arms,

it cannot guard against trends that affect preferentially the intervention arm. Hence, one

could model the hazard not only as function of the time since the beginning of observation,

but also as a function of the calendar time the observation was made:

logðhðti;j; cÞÞ ¼ l0ðti;jÞ þ xiβþ f ðcÞ Eq 11

Explicit modeling of interactions among multiple time scales is implemented through multidi-

mensional (tensor-product) smooth functions that adjust the baseline hazard function.

Flexible log-hazard penalized fitting in Poisson Generalized Additive
Models

In the PGAM framework the log-hazard model (Eq 7) and its extensions (Eqs 8–11), a smooth

function is decomposed as a linear combination of a finite number of basis functions:

f ðxÞ ¼
XJ

j¼1

gjðxÞyj Eq 12

Associated with this representation is a “wiggliness”measure of the function’s smoothness,

J(f) = θTSθ, where S is a symmetric positive semi-definite matrix of coefficients. This matrix pe-

nalizes the wiggly components of f but leaves the remaining unpenalized. Common choices for

the basis functions include cubic smoothing or thin plate splines over a small set of a number

of knots[10]. In this work we fit such spline models using only a small number of degrees of

freedom, corresponding to a few knots (5–10) that are placed in corresponding quantiles of the

partitioned observation time. The PGAM formulation may be expressed as a generalized

mixed effects model (see Chapter 6 in [10], particularly pages 316–318 and section 3.19 in[20])

through the eigen-decomposition of the Smatrix into components that are unpenalized (fixed

effects) and those that are penalized (random effects). For the cubic spline basis the former

Generalized Additive Models in Randomized Controlled Trials
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would include the constant and linear term, while the quadratic and cubic factors would be pe-

nalized. The one-dimensional thin plate spline which is a local cubic polynomial[10] without a

quadratic term, also penalizes the cubic term but not the constant or the linear function. Irre-

spective of the choice of the basis, penalization of the higher order components not only results

in smooth, parsimonious models but also has the added benefit of improving the approximation

error due to the numerical quadrature. The order of the latter depends on the coefficient of the

cubic factor (Eq 6), so that penalized fitting, that shrinks the value of this coefficient towards

zero, moderates the magnitude of the error.

Fitting of GAMs may be undertaken via Generalized Cross Validation (GCV), or exploiting

their mixed model representation with Restricted Maximum Likelihood (REML). We collective-

ly designate the components of the smooths (θj), the constant terms (β), the frailty random ef-

fects (b) as ψ̂, and the associated variance-covariance matrix as V̂ψ. By specifying a prediction

matrix Xp, i.e. a combination of covariates for which one wants to obtain predictions about the

log-hazard function, one can use the multivariate normal distributionNðψ̂; V̂ψÞ to generate pre-

dictions and their standard errors. For linear functions of the fitted model, e.g. the difference in

the log-hazard function between the groups of a two-arm RCT, linear contrasts and standard

probability theory (see page 245 in [10]) are sufficient. For non-linear functions of the fitted

model, e.g. alternative to the HRmeasures of treatment effect, a post-estimation simulation is

employed to generate predictions and their associated standard errors instead. This involves

sampling of a large number of replicates ~ψ
k
fromNðψ̂; V̂ψÞ, calculating the non linear function

implied by the prediction matrix Xp for each set of replicate values and summarizing the simula-

tions of the non-linear functions in terms of means, standard deviations and quantiles. In S1 Ap-

pendix, Section A3 we highlight the simulation steps required to predict the survival probability.

Unconditional, Conditional and Population Averaged PGAM Treatment
Effects

Treatment effects may be calculated from a unconditional perspective in which the mean out-

come is computed for intervention and control group, averaging over the entire population in

the study without adjusting for any covariates[21]. Though this is the most commonly employed

method in the clinical literature, a substantial number of RCTs employ adjusted analyses and we

consider them as well. To calculate these adjusted values we employ the following procedure:

after fitting an adjusted flexible hazard model, we use this model to generate predictions for each

individual in the study, which are then averaged over all the participants allocated to a given

arm. This approach, known as the corrected group prognosis[22] for survival probability predic-

tions, has been shown to generate directly adjusted survival probabilities[23–25] that closely

track the unadjusted, KM curves in real world studies[22]. The interventions are subsequently

compared taking groupwise averages over the distribution of the covariate values in the study

participants and then forming differences or ratios depending on the effect measure chosen.

Simulations

We undertook simulations to evaluate the error of the time discretization implied by the GL

rule and the performance of the PGAM estimates vis-à-vis those generated by the Cox model

(HR) and the KM procedure for the survival function. Finally we assessed whether the PGAM

can yield unbiased estimates of the RMST as an alternative to HR, in the setting of either pro-

portional or non-proportional hazards. The latter simulations are informative about the ro-

bustness of the PGAM with respect to mis-specification: unless one knows exactly the form of

the hazard rate function, almost any basis function will be locally mis-specified against the

Generalized Additive Models in Randomized Controlled Trials
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truth. For example, if the deviation from the baseline hazard obeys the proportional hazards as-

sumption, then the cubic or a thin plate spline third degree PGAM basis is a mis-specified

model. One would like to know whether mis-specified PGAMs can still yield unbiased esti-

mates of the treatment effect on the RMST scale that does not depend on the proportional haz-

ards assumption. For each of the simulations described below, we used distinct and widely

spaced seeds for the random number generator to reduce correlations between the datasets

generated. We used the same set of datasets when comparing the PGAM against the HR or the

KM. This “matched pair design” eliminates the within sample variability and increases the sen-

sitivity of the simulation to detect differences between the statistical methods compared[26].

Numerical Evaluation of the Gauss Lobatto Error

A numerical exploration of the error associated with the use of the GL rule may be undertaken

by considering bounds of Eq 5. Since cubic and thin plate splines are local cubic polynomials,

our investigations focused on error incurred during integration of exponentiated cubic polyno-

mials. In particular, the direct optimization of the 2n-2th derivative of the hazard function for

various combinations of the parameters (γ, a, b, c) of the polynomial is used to bound this

error for a given length of the integration interval (Fi-Ei). Combinations of parameters of the

cubic polynomial were generated as quasi random numbers[27,28] using a Sobol low discrepan-

cy sequence[29]. These low discrepancy numbers have the property to cover the multidimen-

sional space of the parameters of interest more uniformly than pure (pseudo-) random

numbers. Numbers generated in the unit hypercube were then mapped to the space

[-1,1]3×[0,1] defining the range of the parameters (γ, a, b, c) respectively. We selected this

range to yield a range of expected survival times typical of many clinical trials (roughly 3.2–

44.1 months, median 8.9, mean 10.5 months) in the fields of oncology and nephrology. For

each unique combination of (γ, a, b, c) we calculated the mean (expected) survival time by nu-

merical integration (MST) as the area under the curve of the corresponding survival function

(S1 Appendix, Section A2). Subsequently we substituted the calculated MST for Fi into Eq 5

and maximized this expression over ξ assuming right censored data (i.e. Ei = 0). Such a maxi-

mization yields the worse-case error for the average lifetime of the survival distribution corre-

sponding to a particular choice of (γ, a, b, c). An arithmetic average yields an estimate of the

expected error of the GL rule over the space (γ, a, b, c) for a given order of integration (n in Eq

5). We used 1000 pseudo random points to calculate this average error which is a typical num-

ber of quasi-random points for the low (four-) dimensional space we explored.

PGAM estimates against the Kaplan Meier estimator and the Cox model

We simulated survival from the three different parametric lifetimes: Weibull, Gompertz and

Lognormal. We assumed four different baselines from each of these distribution parameterized

as: a)Weibull (shape/scale: 0.8/0.1, 1.2/0.1, 0.8/0.2, 1.2/0.2) b) Gompertz (shape/scale: -0.01/

0.05, 0.1/0.05,-0.01/0.15, 0.1/0.15) and c) Lognormal (mean/scale: 0.5/1.0, 1.0/1.0, 1.5/1.8, 1.5/

0.8). Within each of the three parametric families, these choices lead to survival curves that are

well separated from each other over time. To assess the performance of the PGAM against the

Kaplan Meier estimator we simulated 300 individuals from each of the 4 aforementioned Wei-

bull, Gompertz and Lognormal baselines under two different percentages (30% and 70%) of

censored observations. Censoring was assumed to follow an exponential distribution with a

rate parameter that was adjusted using numerical integration/optimization to yield a censoring

percentage of either 30% or 70% for each simulation scenario. The resulting 12000 datasets

were analyzed with the PGAM and the KM procedure and survival probability estimates were

generated at 50% and 95% of the maximum observation time for each dataset. We selected
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these points in order to compare methods at points in time with a sufficient number of events

to calculate the survival probability and its associated standard errors with the KM procedure.

For the PGAM, these survival probabilities are obtained as predictions using the approach de-

scribed in S1 Appendix, Section A3. The number of the repetitions was selected to yield an esti-

mate of the survival probability to an accuracy (δ) of slightly better than 9% of its standard

deviation (σ) according to the formula[26]: B ¼
Z1�a=2s

d

� �2

, with Z1-a/2 the 1-a/2 quantile of the

standard normal distribution.

To assess the ability of the PGAM to yield unbiased estimates of the HR, we simulated stud-

ies of 600 participants (300 per arm) with the survival of the control arm being given by each of

the 4 aforementioned Weibull and Gompertz baselines. Within each of these simulations the

survival of the experimental arm was assumed to follow the same parametric baseline but with

a HR of 0.5, 0.7, 0.9 for each of the baselines assessed. For these simulations we also assumed

exponential censoring under two different censoring percentages i.e. 30% and 70%. Therefore

our simulation strategy for assessing the PGAM evaluated a total of 2 x 4 x 3 x 2 = 48 unique

combinations of parametric families/baseline hazards/hazard ratios and censoring proportions.

We simulated 500 repetitions of trials from each combination (a total of 24000 datasets) in

order to yield estimates of the HR with an accuracy that was slightly better than 9%. These

datasets were analyzed with both the Cox proportional hazards model (as implemented in the

coxph package in R) and the PGAM approach and the corresponding hazard ratio point esti-

mates was and standard errors were stored for subsequent analyses (see 2.4).

PGAM estimates of the RMST

For the evaluation of the PGAM to yield unbiased estimates of the RMST under either propor-

tional or non-proportional hazards we simulated from four different lifetime distributions that

were implicitly defined through their baseline log-hazard function:

logð0:05Þ þ 0:20t þ 0:02t2; ðAÞ

logð0:10Þ � 0:10t þ 0:02t2; ðBÞ

logð0:05Þ � 0:02t þ 0:02t2; ðCÞ

logð0:10Þ þ 0:10t þ 0:01t2; ðDÞ

Similar to the HR we assumed randomized trials of 600 patients (300 in each arm), with the

log-hazard function of the control given by A-D and that of the experimental arm defined

through proportional (PH), linear, quad(ratic) and linear-quadratic (LQ) deviations from the

baseline log hazard:

logðHRÞ; ðPHÞ

logðHRÞ þ at; ðLinearÞ

logðHRÞ þ bt2; ðQuadÞ

logðHRÞ þ at þ bt2; ðLQÞ

We examined two different censoring proportions (30 and 70%), giving a total of 32 combi-

nations of baseline hazards/deviations from the hazard and censoring percentages. For each of

these 32 unique combinations of two arm trials we generated 500 datasets, sampling (HR, a, b)

uniformly over the domain: [log(0.7),log(0.9)]×[-0.1,0.1]×[-0.009,0.009]. By varying these

Generalized Additive Models in Randomized Controlled Trials

PLOS ONE | DOI:10.1371/journal.pone.0123784 April 23, 2015 9 / 33



parameters in the 16000 datasets rather than keeping them fixed, we were able to assess the

PGAM performance against a large combination of treatment effects and deviations (or near

deviations) from non-proportionality. With these particular choices for the baseline hazard

and deviation from baseline we ensured that the PGAM will be mis-specified with respect to

the simulated truth. In particular, the cubic spline basis we utilized is locally a third degree

polynomial and it is only through shrinkage of the quadratic and cubic coefficients that these

may approximate the Linear and LQ deviations. As the linear and the constant coefficients are

not penalized by the PGAMs, the latter are always mis-specified against the PH and the Quad

deviations from the baseline. To generate individual lifetimes within each synthetic dataset we

employed the Bender, Augustin and Blettner algorithm for simulating from general lifetime

distributions defined through their baseline hazard[30]. This is a computationally demanding

algorithm that combines numerical integration and non-linear root solving to transform uni-

formly distributed variates over the unit interval to lifetimes from the desired survival distribu-

tion. For the purpose of this paper we implemented the algorithm in the R programming

language using the builtin numerical integration and root finding capabilities of base R.

To calculate the RMST, the PGAM was applied to generate estimates of the baseline hazard

function in the control arm and the deviation from baseline in the experimental arm. Using the

approach described in S1 Appendix, Section A3, we generated survival estimates at times given

by the nodes of a 10 node GL rule defined in the interval [0,Tmax] with Tmax equal to the maxi-

mum follow up time in each survival dataset. These were weighted by the corresponding

weights of the GL rule so as to calculate the area under the survival curve of the control and ex-

perimental arms. The two areas were then subtracted to generate a single estimate for the

RMST; the average and the standard error of these differences over the number of simulations

were stored for subsequent analyses. For each dataset we calculated the theoretical RMST from

the simulated parameters and baseline hazards with the adaptive numerical integrator (21

point Gauss Kronrod[31]) built in the R language.

Performance measures for evaluating simulation output

We used the simulations to assess the PGAM the Cox and the Kaplan Meier curve in terms of

bias, accuracy and coverage. Each simulation generates an estimate for a parameter of interest

b̂ i(e.g. log-hazard ratio, survival probability or RMST); the standard error of b̂ i over all

simulations,SEðb̂ iÞ, is an empirical estimate that can be used to index the absolute bias. We

chose to report this standardized bias rather than the absolute bias, since the consequences of

the bias depend on the uncertainty of the parameter of interest[26]. We used the Mean Square

Error (MSE) as an index of accuracy. Finally we report two measures of coverage: p-value cover-

age, i.e. the proportion of times the 95% confidence interval includes the true value of the pa-

rameter of interest and the average length of the confidence interval (CIL) over the simulations

performed. P-value coverage was considered acceptable if the p-values from a set of N simula-

tions fall within 2 Standard Errors of the nominal coverage probability (p)

[26],SEðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=N

p
. To the extent that the parameters of interest are unbiased, then

narrower confidence intervals imply more precise estimates[26]. These in turn may translate in

higher efficiency and power. Formulas for the calculation of the standardized bias, MSE, p-

value and confidence interval length may be found in Table 1 of Burton et al[26].

Clinical trial datasets

We used data from two large RCTs: IPASS and HEMO to illustrate the utility of PGAM to pro-

vide unbiased estimate of treatment effects under non-proportional hazards and multivariable
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adjustments respectively. The IPASS[11] trial was a randomized controlled trial reporting on

the progression-free survival of two regimens of gefitinib v.s. carboplatin-paclitaxel in patients

with advanced pulmonary adenocarcinoma. The primary outcome was analyzed using an un-

adjusted proportional hazards model. The study’s results were reported with this model despite

the violation of the proportional hazards assumption implied by the crossing of the two surviv-

al curves. Since we did not have access to the individual participant data (IPD), we recon-

structed the dataset from the Kaplan Meier curves appearing in the published study

manuscript. Reconstruction of IPD is not an integral component of our methodology; we

merely used it to obtain access to a real world dataset that violates the proportionality assump-

tion in a way that limits the clinical inferences from the particular study [32,33]. Reconstruct-

ing IPD from the published Kaplan Meier curves is a well established approach for secondary

analyses of survival data (including meta-analysis) when the actual IPD are not accessible[34–

38]. To reconstruct the IPD from the IPASS trial, we digitized the survival curves from the im-

ages in the Portable Document Format (PDF) version of the manuscript with the Engauge

open source software[39]. Subsequently, we use the digitized curves along with reported num-

ber of patients at risk to reconstruct the study data with the aid of a recently reported algorithm

[40]. The reconstructed individual patient data (provided in S1 and S2 Datasets) are then ana-

lyzed with PGAMs. R source code for the analysis of the reconstructed IPASS dataset (includ-

ing the generation of survival curves and the calculation of all measures of treatment efficacy

considered in this paper) via PGAMs is provided in S1 Text.

Table 1. Estimates of the Hazard Ratio and the upper (UCI) and lower (LCI) confidence intervals of the
treatment effect of Gefitinib in the IPASS trial.

HR LCI UCI

Cox 0.73 0.64 0.83

GL3 0.68 0.59 0.77

GL4 0.77 0.67 0.88

GL5 0.72 0.64 0.82

GL6 0.72 0.63 0.82

GL7 0.73 0.64 0.83

GL8 0.73 0.64 0.83

GL9 0.73 0.64 0.83

GL10 0.73 0.64 0.83

GL11 0.73 0.64 0.83

GL12 0.73 0.64 0.83

GL13 0.73 0.64 0.83

GL14 0.73 0.64 0.83

GL15 0.73 0.64 0.83

GL16 0.73 0.64 0.83

GL17 0.73 0.64 0.83

GL18 0.73 0.64 0.83

GL19 0.73 0.64 0.83

GL20 0.73 0.64 0.83

Cox: estimate based on a Cox proportional hazard model. GL: Gauss Lobatto rule. The number behind GL

designates the number of nodes in the numerical integration rule. This number is equal to the number of

sub-intervals used to split each observation time in the dataset.

doi:10.1371/journal.pone.0123784.t001
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The HEMODIALYSIS (HEMO) study[12] was a multicenter RCT that used a 2 x 2 factorial

design to examine the effects of HD dose and membrane flux on survival in prevalent hemodi-

alysis patients (those who had been on dialysis for more than three months, with minimal re-

sidual kidney function). The primary outcome of the study was all cause mortality with the HR

chosen as measure of efficacy. In many aspects HEMO is an ideal dataset for the evaluation of

PGAMs. First, the statistical analysis protocol of the primary investigators[41] specified the co-

variates to be used for the analysis of outcomes, allowing us to verify the results of PGAMs

against those of the Cox model. Second, the known variability of dialysis practices and out-

comes across dialysis clinics and centers[42] provides an opportunity to explore center hetero-

geneity with respect to the baseline hazard in stratified analyses.

During the 6.5 years of the HEMO study (May 1995—December 2001) there was continu-

ous improvements in the mortality rate of prevalent hemodialysis patients in the United States

(Figure 5.1 in [43]) and the performance characteristics of the dialysis membranes. Hence ask-

ing whether these secular trends had an impact in the assessment of study outcomes is a valid

question. Hence, we undertook a multiple time scale modeling of the outcomes in HEMO in

the three scales of study time, disease duration and calendar time.

The PGAM re-analysis of HEMO affords the opportunity to explore a number of clinical

relevant questions in the field, in particular whether albumin concentration and duration of

dialysis dependency were effect modifiers. To date, two studies i.e. HEMO and the Mem-

brane Permeability Outcomes (MPO) trial contribute the bulk of evidence (>96% weight in a

recent Cochrane meta-analysis[44]) about the effects of high flux membranes on outcomes

in clinical dialysis. MPO suggested[45] that high flux dialyzers are more efficacious than low

flux ones in the subgroup of hypoalbuminemic incident patients, i.e. who had been on dialy-

sis for less than three months. On the other hand HEMO did not find a statistically signifi-

cant effect of high flux dialysis in prevalent patients, i.e. those who had been on dialysis for

more than 3 months. Independent commentary have attributed the discrepant results to

these participant characteristics (lack of focus on a sicker population with low albumin levels,

long dialysis dependency) [45–47]. Therefore, we applied flexible modeling techniques to ex-

plore the hypothesis that the efficacy of high flux dialysis in HEMO depended on the baseline

albumin concentration (treatment by covariate interaction). We also explored the effects of

dialysis duration upon this relationship. For these analyses we utilized the patient level data

from the study that were provided by the National Institute for Digestive and Kidney Dis-

eases (NIDDK).

The Institutional Review Board (IRB) of the University of New Mexico Health Sciences

Center approved the secondary analysis of the flux effect in HEMO (Study ID 13–468 decision

of 12/12/2013). All study participants had provided informed consent to participate in HEMO,

and the ethics committees/IRBs of participating centers had reviewed and approved the con-

sent form among the other study forms and study protocol. These documents may be down-

loaded with the HEMO data from the NIDDK repository (https://www.niddkrepository.org/

search/study/, study acronym HEMO). Individual HEMO participants were not consented for

this secondary analysis, because the data as distributed by the NIDDK has been de-identified

and the data use agreement between the investigators of this paper and NIDDK prohibits us

from making any contact to identify individuals, families or communities for any purpose (in-

cluding obtaining an updated consent). The IRB of the University of New Mexico Health Sci-

ences Center waived the requirement for an informed consent for this secondary analysis after

reviewing the original consent form that HEMO participants signed upon their enrollment in

trial, the data use agreement between the investigators and NIDDK and the associated research

protocol submitted to the NIDDK.
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Results

The Gauss Lobatto is an accurate numerical integration scheme for
survival distributions

In our simulations of survival distributions with a log-hazard cubic polynomial function, the

MST was inversely related to the maximum hazard rate function as expected (Fig 1A). The ex-

pected GL error expressed in (base 10) logarithmic scale was -2.44, -9.51, -15.43, -26.04, -37.18,

while the maximum error was 1.03, -0.06, -1.39, -4.51, -8.37, -23.33 for orders of integration of

7,7,10,15,20 respectively. The error declined fairly rapidly with increasing orders of the quadra-

ture rule (Fig 1B). This decline was faster for smaller integration intervals (Fig 1C), but the im-

provement in performance was not as pronounced for larger integration intervals (e.g. MST>

2 Fig 1C). On the other hand, higher maximum hazard were associated with smaller errors (Fig

1D) as a result of the smaller lifetimes associated with these high hazard ratios (not shown).

PGAMs generate unbiased and accurate predictions of survival
probabilities with acceptable coverage

Standardized Bias of survival probabilities at the midpoint (50% of the largest observation

time) was acceptable (<40%)[26] for both the PGAM and the KMmethod, irrespective of

Fig 1. Bounds of the Gauss Lobatto (GL) approximation error for the integration of survival data. A)
relationship between (log) MST and the logarithm of the MaximumHazard rate function for survival
distributions with a cubic polynomial log baseline hazard function (B) Box plots of the GL error as a function of
the number of nodes in the quadrature rule (C) GL error as a function of the length of the integration interval
(taken equal to be equal to the MST for each distribution examined) for different orders of the quadrature rule
(D) GL error as a function of the maximum value of the hazard rate for different orders of the quadrature rule.

doi:10.1371/journal.pone.0123784.g001
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censoring (Fig 2, top row) and parametric form of the true distribution. At the right tail of the

survival curve (95% of the largest observation time), PGAM generated estimates with smaller

standardized bias than the KM curve. MSE was similar for both methods (Fig 2, second row)

and most of the p-values fell within the acceptable region (Fig 2, third row, upper and lower

horizontal black lines). At higher censoring percentages, more KM p-values fell outside the ac-

ceptable region compared to the PGAM. Although the CIL was of similar magnitude for both

approaches, the PGAM tended to generate shorter intervals (Fig 2, bottom row).

PGAM based treatment effects are unbiased, accurate and have
acceptable coverage

HRs were estimated with small standardized Bias by for both PGAM and the Cox model irre-

spective of censoring (Fig 3, top row), magnitude of the HR and baseline hazard of the true dis-

tribution. MSE was similar for both methods (Fig 3, second row) and most of the p-values fell

within the acceptable region (Fig 3, third row, upper and lower horizontal black lines). The CIL

Fig 2. Standardized Bias (top row), Mean Square Error (MSE, second row), p-value coverage (third
row) and average confidence interval (CIL) coverage (bottom row) for the survival probabilities from
four different baselines of the Gompertz, Weibull and Lognormal distributions. 500 datasets of 300
individuals were simulated for each combination of baseline hazard, parameters and censoring percentage
(either 30% or 70%) and were subsequently analyzed with the Kaplan Meier method (blue) and the Poisson
GAM (red). The three horizontal black lines in the p-value coverage graph give the nominal coverage (0.95)
and ± 2 SE(0.95). Coverage is considered acceptable if the p-values fall within the upper and lower
horizontal lines.

doi:10.1371/journal.pone.0123784.g002
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was of similar magnitude for both approaches and increased by a similar amount when censor-

ing increased from 30% to 70% (Fig 3, bottom row).

Predicted RMSTs were unbiased (standardized bias<8%), accurate and with acceptable

coverage irrespective of the censoring percentage, baseline, and the form of the deviation from

it (Fig 4). In particular the performance of mis-specified PGAMs (PH, Quad) was not quantita-

tively different from correctly specified PGAMs (Linear, LQ) in terms of coverage.

Fig 3. Standardized Bias (top row), Mean Square Error (MSE, second row), p-value coverage (third row) and average confidence interval (CIL)
coverage (bottom row) of the Hazard Ratio (HR) from four different baselines of the Gompertz andWeibull. 500 datasets of 300 individuals per arm
(total 600 patients) were simulated for each combination of baseline hazard, parameters, HR and censoring percentage (either 30% or 70%). These were
subsequently analyzed with the Cox proportional hazards model (Cox, blue) and the Poisson GAM (PGAM, red). The three horizontal black lines in the p-
value coverage graph give the nominal coverage (0.95) and ± 2 SE(0.95). Coverage is considered acceptable if the p-values fall within the upper and lower
horizontal lines.

doi:10.1371/journal.pone.0123784.g003
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Non-proportionality of hazards in the IPASS trial

The KM curve and the GAM estimated survival curves in IPASS are shown in Fig 5. There is

an apparent violation of the proportionality of hazards assumption as the two KM curves

cross. The PGAM estimates of the survival function are smooth curves which closely track the

KM curves and cross at the same point as the latter. In the original report of the IPASS trial,

the investigators reported a HR of 0.74 (95% Confidence Interval (CI) of 0.65–0.85) in favor of

gefitinib[11], which is similar to the Cox model estimate we obtained in the reconstructed data

i.e. a HR of 0.73 (95%CI: 0.64–0.83). When applied to the same dataset a proportional hazards

Fig 4. Standardized Bias (top row), Mean Square Error (MSE, second row), p-value coverage (third row) and average confidence interval (CIL)
coverage (bottom row) of the Restricted Mean Survival Time (RMST) from four different baselines (A-D) of a general lifetime distribution. 500
datasets of 300 individuals per arm (total 600 patients) were simulated for each combination of baseline hazard, parameters, deviation from the baseline log-
hazard (Proportional (PH), Linear, Quad(ratic) and Linear-Quadratic (LQ)) and censoring percentage (either 30% or 70%). These datasets were
subsequently analyzed with the Poisson GAM to generate predictions for the Restricted Mean Survival Time (RMST). The three horizontal black lines in the
p-value coverage graph give the nominal coverage (0.95) and ± 2 SE(0.95). Coverage is considered acceptable if the p-values fall within the upper and lower
horizontal lines.

doi:10.1371/journal.pone.0123784.g004
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PGAM yields nearly identical estimates (Table 1) to the Cox model. Furthermore, these esti-

mates are rather insensitive to the choice of a finer discretization of study time, i.e. splitting

time from seven to 20 subintervals did not materially affect the estimates (Table 1).

To address the non-proportionality of hazards in the IPASS dataset we also fit non-propor-

tional hazards PGAMs and contrasted different measures of treatment efficacy (Fig 6) between

proportional and non-proportional PGAMmodels. The crossing of the survival curves is not

reflected in the efficacy measures of the proportional hazard fit since the HR is constant (hori-

zontal line in second panel in Fig 6) while the RR slowly increases towards parity with the dura-

tion of follow-up. In contrast, estimates from non-proportional PGAM exhibit a bi-phasic

decreasing-increasing (HR,RR, RMST) or increasing-decreasing (AR) patterns. Similar to the

proportional PGAM case, the non-proportional PGAM estimates are essentially identical

when survival time is more finely split. The RMST which measures treatment efficacy on the

time scale also differs between proportional and non-proportional PGAM fits. In particular,

the early decline in survival time (corresponding to the segment of the KM curves before they

cross) is not captured by the proportional hazards model. RMSTs do not change after the 20th

month since the overwhelming majority of patients in both arms have experienced the event of

interest. The proportional model yields more optimistic estimates of the gain in survival time

than the non-proportional model in IPASS. Approximating the MST with the RMST at 40

months we obtained estimates of 1.60 months (95%CI 1.01–2.24) v.s. 1.42 (95% CI: 0.73–2.12)

respectively. Though the magnitude of the difference is not clinically meaningful, it may have

Fig 5. Kaplan Meier curves and superimposed smooth survival curves estimated by Poisson GAM
regression in the IPASS trial. Black: carboplatin/paclitaxel arm and Blue: gefitinib arm. The smooth lines
are the PGAM survival estimates for the corresponding trial arms. The step functions are the Kaplan
Meier curves.

doi:10.1371/journal.pone.0123784.g005
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important implications for Health Technology Assessments (HTA). In the latter, the incre-

mental survival benefit relative to incremental cost is evaluated against cost effectiveness

thresholds (e.g. between 50–100000 dollars per QALY in the US[48,49]) before recommending

the use of a new healthcare technology. Depending on the difference in costs one can envision

scenarios in which methodology dependent differences in the calculated values of the MST im-

pact policy decisions for costly technologies[50,51].

Center effects, multiple time scales and subgroup analyses in the HEMO
trial

PGAM estimates of HRs adjusted for baseline covariates in HEMO were insensitive to the

granularity used to split survival time. These estimates were numerically similar to those ob-

tained with the stratified, Cox model (Table 2) used in the primary analysis of HEMO. In par-

ticular, the treatment effects of the two interventions (dose and membrane flux) estimated by

the PGAM were identical to the ones obtained with the Cox model. Estimates of the baseline

hazard function stratified by center are shown in Fig 7. With the exception of three centers,

Fig 6. Measures of treatment efficacy in the IPASS trial using proportional hazards (PH) and non proportional hazards PGAMs of two different
numerical integration orders: a 10 node Gauss Lobatto (GL10) and a 20 node Gauss Lobatto (GL20) rule. ARD: Absolute Risk Difference, RR: Relative
Risk, HR: Hazard Ratio, RMST: Restricted Mean Survival Time. Dotted lines are the associated 95% pointwise confidence interval of the GL10 PGAM.

doi:10.1371/journal.pone.0123784.g006
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these appear to decay exponentially with time, though both the intercept and the rate of decline

differ among centers implying the existence of moderate to large center effects. However, a ran-

dom effects analysis to look for flux by center interactions in the HR did not show evidence for

variability of the efficacy of the flux intervention by center (not shown).

To model the effects of the duration and calendar time scales we used a two-dimensional

tensor product of smooths[10]. With such a construction, models used to analyze HEMO are

adjusted for secular trends in mortality of dialysis patients (calendar time scale), dialysis depen-

dency duration (duration time scale) and their interaction (as secular rates may have differen-

tially improved for patients with different ESRD durations). The interaction between in

calendar time and disease duration is shown in Fig 8 allowing for several observations. First,

within each year the hazard rate is higher for patients who had been on dialysis longer. At the

same time, mortality v.s. dialysis duration is generally lower for patients dialyzing in later

years, i.e. outcomes improved for dialysis patients throughout the 90s. Finally, improvements

are larger for patients who had been on dialysis for longer periods of time e.g. contrast the

steepness of the decline in the log hazard ratio for patients who have been on dialysis for 10

years compared to those who had been dialysis dependent for five years or less.

To examine the modification of the effects of HF membranes by dialysis duration and base-

line albumin concentration we included tensor product terms for albumin, duration of dialysis

and the interaction between this tensor term and high flux assignment. Both terms were statis-

tically significant (p<0.001 and p = 0.049 respectively); a visual representation of the effect

modification of flux by albumin levels and dialysis dependency is depicted in Fig 9. This re-

sponse surface shows that HF dialysis was associated with numerically smaller log hazard ra-

tios, indicative of a more beneficial effect, in patients who had been on dialysis longer and

those with lower albumin concentrations. However these relationships are not constant across

the entire range of these covariates; whereas patients with low albumin (less than 3.5) exhibit a

rather steep relationship between the log-hazard rate ratio and dialysis duration, the steepness

decreases for higher albumin values, and may even change direction when the latter is greater

than 4 g/dl. To aid visualization of the complex relation between flux, albumin and dialysis du-

ration we created continuous loop animations for the adjusted hazard rate function across the

Table 2. Estimates of the Hazard Ratio and associated 95%CI in the HEMO trial.

Cox GL7 GL10 GL20

Variable HR 95% CI HR 95% CI HR 95%CI HR 95%CI

High Kt/V 0.96 0.84–1.10 0.96 0.84–1.09 0.96 0.84–1.09 0.96 0.84–1.09

High Flux 0.92 0.81–1.05 0.92 0.81–1.06 0.92 0.81–1.06 0.92 0.81–1.06

Age (per 10) 1.41 1.33–1.50 1.42 1.33–1.51 1.42 1.33–1.51 1.42 1.33–1.51

Female 0.85 0.73–0.98 0.85 0.73–0.98 0.85 0.73–0.98 0.85 0.73–0.98

Black 0.77 0.66–0.91 0.77 0.66–0.91 0.77 0.66–0.91 0.77 0.66–0.91

Diabetic 1.29 1.11–1.50 1.29 1.11–1.5 1.29 1.11–1.5 1.29 1.11–1.5

Duration 1.04 1.02–1.06 1.04 1.02–1.05 1.04 1.02–1.05 1.04 1.02–1.05

ICED 1.37 1.25–1.50 1.38 1.27–1.51 1.38 1.27–1.51 1.38 1.27–1.51

Alb (per 0.5 g/dl) 0.51 0.43–0.62 0.53 0.45–0.64 0.53 0.45–0.64 0.53 0.45–0.64

Alb X Time interaction 1.11 1.04–1.19 1.09 1.02–1.16 1.09 1.02–1.16 1.09 1.02–1.16

Cox: Cox proportional hazards model analysis, GL7-GL20: estimates produced by a Poisson GAM using 7, 10 or 20 nodes for the numerical integration of

the cumulative hazard function. ICED: Index of Coexistent Disease, Alb: albumin. Analyses were stratified by study center, which implies that the Cox

model used a separate baseline hazard for each participating center, while GAM models incorporated explicit interactions between study center and

observation time. Variables used to adjust estimates were prespecified in the HEMO analysis protocol.

doi:10.1371/journal.pone.0123784.t002
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range of albumin and dialysis duration. These are shown both in the log (S1 Fig) and linear

scales (S2 Fig). Where the high flux albumin-duration surface (red) is below the low flux sur-

face (almost invariably when albumin< 3.5 g/dl), the hazard ratio will be below one (suggest-

ing a protective effect of high flux dialysis) and vice versa. Hence, high flux dialysis is

associated with a beneficial effect (smaller hazard rate) on survival in hypo-albuminemic dialy-

sis patients, but a neutral effect in those with normal albumin.

In order to quantify the divergent effects of dialysis in hypo-albuminemic patients we com-

puted population averagedmeasures of treatment efficacy in the subgroups of patients with

albumin� 3.5 v.s.> 3.5 g/dl and the entire HEMO sample. High flux dialysis is approximately

associated with a 5% absolute risk reduction, a hazard ration of 0.77, a relative risk of 0.94 and

a RMST of 0.27 years after being exposed to HF dialysis for 6.5 years (the end of follow up in

HEMO). In contrast, the effects on patients with higher albumin concentrations and the overall

HEMO cohort are smaller (Fig 10). The extended PGAMmodel used to derive Figs 9 and 10

incorporated six proportional covariates, 15 stratification terms, a flexible interaction of albu-

min with time, three tensor product terms modeling the impact of the calendar and duration

time scales as well as the effect of albumin and dialysis duration and its modification by flux. In

Fig 7. Baseline hazard functions in the 15 centers of the HEMO trial produced by a 10 node Gauss
Lobatto quadrature rule.

doi:10.1371/journal.pone.0123784.g007
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spite of the large number of terms, the penalized GAM procedure resulted in a model with

57.48 estimated degrees of freedom corresponding to 15.15 events per degree of freedom as

there were 871 events in HEMO.

Discussion

We have presented an overview of the PGAM approach for flexible modeling of survival data

using standard software. Theoretical considerations, numerical explorations and simulations

demonstrate that the PGAM yields unbiased and accurate estimates of survival probabilities,

hazard ratios and alternative treatment effects. We have shown how multiple measures of treat-

ment efficacy can be obtained using this approach in both adjusted and un-adjusted analyses in

real world datasets. PGAMs support subgroup analyses, center effects and multiple time scales

while accounting for non-proportional hazards. By augmenting the hazard ratios convention-

ally reported by trialists, PGAMs have the potential to support the inferential goals of multiple

stakeholders involved in the evaluation and appraisal of clinical trial results[52].

Fig 8. Log hazard rate function for the interaction between calendar time and duration of ESRD at the
beginning of HEMO. This was estimated via a tensor based smooth in a stratified by center PGAM adjusting
for all prespecified baseline covariates in HEMO, a general (not linear) interaction between baseline albumin
concentration and observation time, the combined effects of albumin and disease duration (as a tensor
product smooth) and the modification of the latter by high flux dialysis.

doi:10.1371/journal.pone.0123784.g008
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The relation of the PGAM to the Cox Model and the Kaplan Meier
procedure

In spite of their different theoretical underpinnings PGAMs yield nearly identical estimates to

the KM curve and HRs obtained by Cox proportional hazard models in simulations and clini-

cal trial datasets. This is hardly surprising because, both these classical survival analysis meth-

ods are numerically equivalent to Poisson regression[16,53–57], if the observation time is split

at the unique failure times, the baseline hazard is assumed to be piecewise constant and the

trapezoidal rule is used to numerically integrate the hazard function. From a numerical per-

spective the PGAM approach we utilized differs from the KM and the Cox model only in these

technical but crucial aspects. In particular, we split time at the nodes of the GL quadrature rule

used to numerically integrate the hazard function, while employing a penalized smooth spline

basis, rather than step functions, to model the log-hazard rate. These technical innovations al-

lowed us to substantially reduce the computational resources used to fit these models, address-

ing a major limitation of Poisson regression for survival data[9,16]. Our theoretical and

Fig 9. Log hazard rate function for the interaction between albumin and duration of ESRD at the
beginning of HEMO and flux. This was estimated via a tensor based smooth in a stratified by center PGAM
adjusting for all prespecified baseline covariates in HEMO, a general (not linear) smooth interaction between
baseline albumin concentration and observation time, the interaction between albumin and disease duration
(as a tensor smooth) and the triple interaction between albumin, disease duration and high flux arm
assignment (shown in the Fig). A 10 node Gauss Lobatto quadrature rule was used to numerically integrate
the cumulative hazard function.

doi:10.1371/journal.pone.0123784.g009
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numerical explorations are the first to demonstrate the utility of the GL to facilitate PGAM

analyses of survival data. Penalized fitting offers a parsimonious option for realistic modeling

of survival data without spending a large number of degrees of freedom during model fitting.

The latter aspect is important when one is considering multiply adjusted models, subgroup

analyses and multiple time scales which all require degrees of freedom to be spent for

their estimation.

PGAMs v.s. other flexible approached for modeling survival

In the context of flexible, yet parametric alternatives to the Cox model, the major alternatives

to the PGAM are shown in Table 3. The method most closely related to the PGAM is the

“stgenreg” [18]. While this manuscript was under review, these authors provided additional de-

tails about their methodology[58] allowing a more complete comparison. Both methods use

Gaussian quadrature to integrate the baseline hazard, i.e. Legendre[58] v.s. Lobatto (PGAM)

but differ in the estimation method (REML in PGAM but Maximum Likelihood (ML) in

“stgenreg”). The PGAM but not “stgenreg”, allows modeling of correlated outcomes via frailty

terms. Both methods are in principle able to support multiple measures of treatment effect ei-

ther directly (during model estimation) or post-estimation by simulation but the PGAM’s

Fig 10. Adjustedmeasures of treatment efficacy in the HEMO trial using the corrected group
prognosismethod in the subgroups patients with albumin less than 3.5 g/dl, greater than 3.5 g/dl and
the entire HEMO sample. A 10 node Gauss Lobatto quadrature rule was used to numerically integrate the
cumulative hazard function. ARD: Absolute Risk Difference, RR: Relative Risk, HR: Hazard Ratio, RMST:
Restricted Mean Survival Time. Dotted lines are the associated 95% pointwise confidence interval of the
GL10 PGAM.

doi:10.1371/journal.pone.0123784.g010
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repertoire is wider and includes integrated measures such as the RMST. Direct, flexible model-

ing of the Cumulative Hazard function via maximum likelihood is also possible (“stpm2”[59])

with HR and RMST measures derived post-estimation via numerical differentiation and inte-

gration respectively. There exist Bayesian alternatives to the PGAM framework (BayesX[60])

to the PGAM framework. BayesX builds on the generalized mixed model approach to

Table 3. Options for parametric, flexible modeling of survival data.

GAM (this paper) stgenreg[18,58] BayesX[60] stpm2[59]

Default Scale Log-hazard Log-hazard Log-hazard Log-Cumulative
Hazard

Time Continuous (Poisson)Grouped(Logistic) ‡ Continuous Continuous (Poisson)
Grouped(Logistic)

Continuous Time

Delayed Entry Yes Yes Yes Yes

Non-proportional hazards Yes Yes Yes Yes

Measures of (treatment)

effect

1. HR (estimated) 2. RMST, ARR, RR, R
(prediction by simulation post- estimation)

1.HR, R (estimated) 1. HR (estimated) 2.
RMST, ARR, RR, R
(prediction by simulation
post—estimation) ‡

1. CHR, R
(estimated) 2. HR,
RMST (post-
estimation)

Excess mortality models Yes 1. During model fitting, by fitting the
identity rather than the log link for
PGAMs‡ 2. Prediction of excess (relative)
Mortality by simulations after model fitting

Yes Specified when
fitting the model

Yes Predictions of excess
(relative) mortality by
simulation after model
fitting‡

Yes Specified when
fitting the model

Flexible function basis for

modeling the (baseline) log-

hazard

Penalized, Cubic or Thin Plate Splines or
user defined basis

Restricted Cubic
Splines

Piecewise Exponential or
P-splines

Restricted Cubic
Splines (Log-
cumulative hazard)

Ability to handle multiple time

scales simultaneously

Yes Yes‡ Yes‡ Unclear

Complex multidimensional

interactions between

continuous and discrete

covariates

Yes No Yes No

Random Effects Yes No Yes No

Correlated Outcomes Yes 1. Frailty (adjusted effects) 2.
Population averaged effects by simulation
post-estimation

Yes 1. Robust (cluster)
Standard Errors 2.
Frailty not currently
implemented

Yes 1. Frailty (adjusted
effects) 2. Population
averaged effects by
simulation post-estimation‡

No

Estimation REML for GAMs GCV for GAMs‡ ML (direct optimization) REML/MCMC ML(direct
optimization)

Numerical quadrature Gauss Lobatto Gauss Legendre Trapezoid Rule Not Applicable

Availability of specialized “Big

Data” implementations

Yes Unclear No Unclear

Scalability and opportunities

for parallelization

Yes 1. Parallel threads on shared
memory multi-core machines (estimation)
2. Clusters (OpenMP[99]) for “Big Data”
applications (estimation) 3.
“Embarassingly” Parallel[62,63]
simulations post-estimation executed in
multi-core machines, clusters or even
GPGPUs

Unclear Partial Parallel chains
when using MCMC
simulation for Bayesian
model fitting

Unclear

‡ Not pursued by the authors

Abbreviations: ARR (Absolute Risk Reduction), CHR (Cumulative Hazard Ratio), GAM (Generalized Additive Model), GCV (Generalized Cross

Validation), GPGPU (General Purpose Graphics Processing Unit) HR (Hazard Ratio), MCMC (Markov Chain Monte Carlo), ML (Maximum Likelihood),

OpenMP (Open Multi-Processing), PGAM(Poisson Generalized Additive Model), R(Relative Survival), REML (Restricted Maximum Likelihood), RR

(Relative Risk).

doi:10.1371/journal.pone.0123784.t003
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penalized fitting in order to carry out survival analyses of either grouped or continuous time

survival data. The former are fit using logistic regression (an approach well established in the

literature[61]), which is also accessible from the GAM framework by substituting the Poisson

with logistic regression. We did not pursue this approach in our work. When smooth baseline

hazards are assumed, BayesX directly optimizes a numerically integrated likelihood, hence it is

most properly viewed as a Bayesian extension of the “stgenreg”[18] approach. A major short-

coming of BayesX is that it uses the trapezoidal rule over a uniform grid to numerically inte-

grate the baseline hazard. This leads to large datasets and slow fitting times even when REML

estimation (rather than Markov Chain Monte Carlo) is used. Out of all the possible alternatives

considered (Table 3) it is only the PGAM that has specialized implementations for “big data”

and the only one that offers extensive opportunities for parallelization using a variety of archi-

tectures (multi-core processors, or clusters) when fitting the model. Furthermore the post-esti-

mation simulations are “embarrassingly” parallelizable[62,63] using a variety of hardware

architectures opening up the opportunity to derive personalized treatment effect predictions

after multivariable adjustment. Considering the features of all the “competing” approaches in

Table 3, it seems that the PGAM offers the best combination of analytic capabilities and

computational advantages.

PGAMs, alternative measures of treatment effect and the
multistakeholder environment of RCTs

An important advantage of PGAMs is the capability to calculate all conceivable alternatives to

the HR through simulation, which in our view this provides a major justification for their use

in RCTs. The predominance of the HR in the clinical literature overshadows the deficiencies

complicating its use as previously pointed by authors from biostatistical[7,64] and clinical per-

spectives[4,65]. The need for multiple measures is underscored by the observation that HRs

may be large even when the actual benefit in survival time is small. This was evident in our

analysis of IPASS in which a HR of<0.80 translated in only small improvements in measures

of (restricted) mean survival time. However the major criticism in the current era involves the

indirect manner in which HRs support the inferential goals of non-physician stakeholders in-

volved in the evaluation and appraisal of clinical trial results. For these stakeholders (third

party payers, policy makers and patients), the effect of treatment on survival probabilities or

even the survival time are more relevant. Before these alternative measures of treatment effica-

cy can be reported however, the baseline hazard should be estimated along with a relative mea-

sure of treatment effect (e.g. the hazard ratio). Hence, even if the proportionality of hazards

assumption is verified, the PGAM approach, that estimates the same numerical hazard ratio as

the Cox model, has a distinct advantage in the current environment in which clinical trials are

undertaken. In particular, current trends in best medical practices[5,6,66–68] and legal provi-

sions in the US[69] put increasing emphasis on sharing clinical trial information with patients.

However there is still a knowledge gap concerning the appropriate measure to communicate to

patients[70–72]. The PGAM addresses this gap by providing a method that can analyze clinical

trial data in a rigorous fashion while generating a variety of effect measures to facilitate patient

communication and clinical decision making.

PGAMs and the proportionality of hazards assumption in survival
analysis

In the case of non-proportional hazards some investigators have argued that the overall HR

computed by a Cox model be given an average (over the observed death times) interpretation

and have even proposed estimation procedures based on time weighting schemes[73]. This
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view may appeal to audiences accustomed to the use of the HR, yet it is not is not particularly

satisfactory[64]. In particular, the average HR is a function of the follow-up time leading to the

counterintuitive situation in which increasing the duration of follow-up may lead to estimates

of the HR that are furthest from the truth[74]. We have also illustrated this shortcoming when

discussing[75] the analysis of a real world dataset in which the violation of the proportionality

assumption[76] may critically impact the selection of treatment modalities by both clinicians

and patients. In such a situation, fitting a non-proportional hazard model is the mathematically

correct procedure, even though by being a function of time this function will no longer provide

a single numerical summary of the treatment effect in the trial. Nevertheless a PGAM one can

generate the curve relating the HR to time, providing further insights into the effects of the in-

terventions studied[75]. Such curves may be of great utility when communicating the temporal

risk tradeoffs of a given intervention (e.g. kidney transplantation[77] or the choice between al-

ternative forms of maintenance dialysis[78]) and have traditionally been derived with piecewise

exponential models. The PGAM is an extension of this approach which has the advantage of

providing visually smooth reconstructions of the HR curve without making arbitrary choices

about the point in time in which the HR may change magnitude or direction.

Our simulations suggest that the PGAMs are robust with respect to mis-specification of a

non-proportional hazards model in the case of proportional hazards as long as an integrated

measure of treatment efficacy is used for results reporting. Alternatively one fit a non-propor-

tional PGAM, and test the coefficients of its time-varying part for proportionality as we com-

ment in the Methods. This would amount to a simultaneous testing of the proportionality

assumption and a test of significance for a non-null treatment effect, an idea that was first pro-

posed more than 20 years in the context of spline estimation for survival data[79,80]. Neverthe-

less it may be more appealing to use shrinkage smoothers[10] which can automatically select a

proportional model if the source data do not suggest a variation of the log-hazard with time.

This is rather straightforward, technical application of the PGAM that can be explored in con-

texts in which the RSMT is a less desirable treatment effect summary than the HR.

PGAMs for adjusted or subgroup analyses in RCTs

Though multivariable adjustment and subgroup analyses are not overwhelmingly endorsed by

trialists or regulators[81], there are widely applied in clinical trials[82–84]. Our adjusted and

subgroup analyses in the HEMO trial highlight several features of PGAMs in this context, in-

cluding the robustness of the estimates to the granularity of time-splitting, their ability to visu-

alize the baseline hazard and center effects in stratified models and the support of very general,

even multidimensional, interaction terms between treatment and baseline covariates. The latter

allows one to introduce interactions without making any assumptions about the latter’s direc-

tion, magnitude or functional form. In our opinion these represent significant advantages for

the defense of the “objectivity” of adjusted/subgroup analyses with PGAMs. As previously

pointed out[21,85], the tension implicit in these analyses involves a compromise between the

conflicting goals of detailed modeling that makes the most out of the available data, while at

the same time guarding against “data fishing”. We demonstrate the ability of PGAMs to

achieve such a balance in the subgroup analysis of the effects of membrane flux on outcomes of

hypoalbuminemic patients in HEMO. Our finding of a benefit of high flux dialysis on patients

with serum albumin of 3.5 gm/dl is in remarkable agreement with the findings of the MPO

controlled trial[45], once the differences in the albumin assays used in these two trials are ac-

counted for[86,87]. However this association emerged from visualization of general continuous

interaction between baseline albumin and serum flux instead of specifying a cutoff for the cate-

gorization of albumin based on the MPO results.
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In our analyses the direct adjusted HR obtained by averaging over the covariate distribution

of the HEMO study participants is nearly identical to an unconditional PGAM estimate. The

explanation for this observation may be found in the seminal paper by Gail et al[88] which

considered the bias in the estimation of treatment effects when covariates were omitted from

non-linear regressions of randomized experiments. In particular, unconditional estimates of

the mean parameter in a Poisson regression (e.g. the log-hazard in a PGAM) are unbiased

against their covariate averaged counterparts for large samples. This general feature of Poisson

and thus PGAM regression suggests they may be able to fill an important gap between uncon-

ditional, unadjusted effects for policy making and adjusted ones that inform care decisions for

specific patient subpopulations. Specifically, we suggest the use of adjusted PGAM analyses to

account for imbalances in prognostically important covariates and to explore treatment effect

heterogeneity in subgroups so as to get “as close as possible to the clinically most relevant sub-

ject-specific measure of treatment effect”[89]. Subsequently one could average these adjusted

estimates to generate overall treatment effects which are the focus of clinical trialists and regu-

lators. We use the HEMO trial to illustrate this PGAM based approach in generating the com-

plementary treatment effect measures for these dissimilar audiences. In HEMO averaging over

the model incorporating albumin by flux interaction yields an overall treatment effect which

does not deviate from the unconditional estimate, and thus does not alter the interpretation of

the trial results. At the same time the adjusted estimate provides an insight into the treatment

effects on a particularly susceptible, medically important subpopulation with low serum albu-

min levels. Since HEMO and MPO are the largest trials to date to examine the effects of high

flux dialysis on outcomes[44], this subgroup analysis of HEMOmay be relevant for strengthen-

ing the evidence basis of clinical guidelines[90–92] which support the use of high flux dialyzers

in patients with low albumin.

PGAMs, multiple time scales and secular trends in RCTs

Randomized controlled trials are seldom adjusted for secular trends or drift during the dura-

tion of the study because the presence of a control (comparison) arm is thought to guard

against biases introduced by drift. Nevertheless, secular trends may affect the internal validity

i.e. by affecting (unmeasured) confounders and risk modifiers that limit the effects of treat-

ment[93]. More importantly, secular trends of improvement of the outcomes in the compari-

son group may decrease the trial’s sensitivity to detect a true effect[94], or even tip the risk

benefit balance so that an once efficacious treatment is associated with relatively worse out-

comes. Though secular trends did not affect the treatment effect estimate in HEMO, we did ob-

serve large secular trends in the risk of death during the course of the study. Analysis from the

United States Renal Data System (USRDS) registry have shown that mortality of dialysis pa-

tients declined during the 90s (the period during which HEMO was being carried out)[43],

while these secular reductions in mortality were numerically higher in patients with longer di-

alysis dependency USRDS (e.g. contrast Fig.s5.1 and 5.4[43]) a pattern that was seen in our

analysis of the HEMO trial. As randomized controlled trials cannot be completely insulated

against secular trends, the ability of PGAMs to incorporate multiple scales may make them

particularly useful for the analysis of designs that are particularly susceptible to drift(e.g. long

duration or community level trials[93,95,96]). Nevertheless, secular trends may also be seen in

individually randomized RCTs e.g. in depression[97] and cardiovascular disease[94,98] so that

the ability of the PGAM to account for multiple scales should be strongly contemplated, at

least for the secondary analyses of such trials.
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Limitations and future extensions

Our focus in this work is more applied than theoretical so we mainly demonstrated how

PGAMs can be applied to address practical problems of the analyst facing actual trial data.

However, we did not pursue mathematically rigorous derivations that address technical issues

including the optimality of the Gauss Lobatto quadrature rule and the degree of time splitting

to apply for a particular dataset. Though these may seem major limitations, their implications

for applications are likely limited. In particular, the Gauss quadrature formulas are among the

most computationally efficient ones, so it is unlikely that an alternative choice would make a

substantial difference on results. Furthermore, one may always split time using a finer grid if

the accuracy of the PGAM results is in question. Theoretical considerations and our numerical

exploration of the GL error suggest that for most realistic datasets discretizing observation time

to 10–20 intervals should give an adequate approximation. Future research that considers the

numerical accuracy and error estimates of quadrature schemes should be pursued to elucidate

such issues. Until the theoretical resolution of these issues, the robustness of PGAM estimates

should be subjected to a sensitivity analysis as with all numerical methods.

Conclusions

In this paper we illustrate the use of the Poisson Generalized Additive Model approach for flex-

ible modeling of survival data using standard software. We have shown how multiple measures

of treatment efficacy can be obtained from a single pass through the data in both adjusted and

un-adjusted analyses. Our analyses highlight the flexibility of PGAMS in supporting subgroup

analyses, incorporating multiple time scales while accounting for non-proportional hazards. By

augmenting the hazard ratios conventionally reported by clinical trialists, PGAMs have the po-

tential to support the inferential goals of multiple stakeholders involved in the evaluation and

appraisal of clinical trial results.
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