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In this paper, the analyses of traffic evolution on the road network of a roundabout having three entrances and three exiting legs are
conducted from macroscopic point of view. The road networks of roundabouts are modeled as a merging and diverging types 1 × 2
and 2 × 1 junctions. To study traffic evolution at junction, two cases have been considered, namely, demand and supply limited
cases. In each case, detailed mathematical analysis and numerical tests have been presented. The analysis in the case of demand
limited showed that rarefaction wave fills the portion of the road network in time. In the contrary, in supply limited case, traffic
congestion occurs at merging junctions and shock wave propagating back results in reducing the performance of a roundabout
to control traffic dynamics. Also, we illustrate density and flux profiles versus space discretization at different time steps via
numerical simulation with the help of Godunov scheme.

1. Introduction

Macroscopic traffic flow model was first introduced in the
1950s due to the seminal work of Lighthill and Whitham
[1] and independently by Richards [2]. The model describes
the progression of traffic density by the means of macro-
scopic characteristic governed by scalar conservation law
[3–9]. Such modeling approach is also known as LWR model
in traffic literature and has been extended to road network
with incorporating appropriate boundary condition at
junction by several authors, see for example in [10–13] and
references cited therein.

Worldwide, traffic congestion has been a significant
challenging problem related to transportation in most urban
areas. This is mainly due to rapid increase of motorizations
and limited carrying capacity of urban road networks.
Congestion is worsen at road intersections during peak hours.
Thus, congestion leads to delays in the movement of both
goods and passengers [14, 15]. As a result, it affects the devel-

opment of a national economy [16]. Real-time and precise
prediction models are capable of analyzing traffic flow trends
and characteristics on urban road network [17, 18].

Roundabouts are special road network with a one-
directional circulatory around a central island. It is another
means of regulating traffic evolutions at road intersections
rendering better safety relative to conventional road intersec-
tions [19]. A three entering and three exiting roundabout can
be described as a chain of junctions with two incoming and
one exiting roads and one incoming and two exiting roads
[20]. The dynamics of traffic on the road network of a
roundabout is assumed to be governed by nonlinear scalar
hyperbolic conservation laws. Usually, vehicles on the main
lane of the roundabout have priority over those entering a
junction from external entering roads [21].

The aim of this paper is to investigate traffic evolution on
the road networks of a roundabout having three entering and
three exiting roads by extending the work introduced in [22].
Then, we analyze the efficiency of a roundabout in regulating
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traffic dynamics under different priority parameters. We
used Godunov scheme [23] for simulation purposed as
detailed in [24].

The content of this work is structured as follows. In
Section 2, we present a mathematical model describing traffic
evolution on a road network of a roundabout having three
entering and three exiting roads. In Section 3, we discuss
Riemann Solver at junctions. In Section 4, we analyze the traf-
fic evolution on the road networks of a roundabout both in
demand and supply limited cases, respectively. The obtained
analytical results are illustrated through numerical simulations
in Section 5. Finally, we give conclusion in Section 6.

2. Mathematical Model

In this section, we describe road networks of a roundabout
having three entering and three exiting roads as indicated
in Figure 1. As displayed in Figure 1, the road networks of
roundabout can be seen as an oriented graph in which roads
are represented by arcs and junctions by vertices.

Each road segment forming main lane, entering, and
exiting roads of a roundabout can be modeled by intervals
Ii = ½ai, bi� ⊆ℝ, ai < bi, and Si = ½ci, di� ⊆ℝ, ci < di, i = 1,⋯, 6
, where Ii denotes the finite collection of entering and exiting
road segments and Si denotes the collection of roads on the
main lane of the roundabout as illustrated in Figure 2(a). In
this setting, we assume that ai tends to −∞ for all i = 2n − 1
and bi tends to ∞ for all i = 2n, n = 1, 2, 3. For convenience,
we also assume that bi = ci, i = 2n − 1, and ai = di, i = 2n, n
= 1, 2, 3. The types of merging and diverging junctions are
presented in Figure 2(b).

The dynamics of traffic on each road segment is governed
by LWR model given as

∂ρi
∂t

+
∂f i ρið Þ

∂x
= 0, t, xð Þ ∈ℝ+ × Ii, t, xð Þ ∈ℝ+ × Si,∀i = 1, 2,⋯, 6

ð1Þ

where ρi = ρiðt, xÞ ∈ ½0, ρmax,i� is the mean traffic density and

ρmax,i is the maximal traffic density allowed on each road. The

speed-density relationship is given by

vi ρð Þ = vmax,i 1 −
ρi

ρmax,i

� �
, ð2Þ

where vmax,i is the maximal speed on each road and vi : ½0

, ρmax,i�→ℝ
+ is a smooth decreasing function denoting the

mean traffic speed. The flux density relationship is defined
by

f i ρið Þ = ρiv ρið Þ, or equivalently, f i ρið Þ = vmax,iρi 1 −
ρi

ρmax,i

� �
:

ð3Þ

The flux is maximum at ρc,i ∈ ð0, ρmax,iÞ. In this paper,

we use the normalized form of the vehicle density ρðt, xÞ
to be 0 ≤ ρ ≤ 1, and we assume the following:

(1) ρmax,i = 1

(2) The speed vi depends only on the density ρi

(3) The flux f i is a strictly concave C
2 function

(4) f ið0Þ = f ið1Þ = 0

Assumptions (A3) and (A4) imply that f i has a unique
maximum point ρc,i ∈ ð0, 1Þ for all i = 1, 2, 3,⋯6:.

We briefly recall the following definition to be used in
later sections.

Definition 1 (see [14]). Let τ : ½0, 1�→ ½0, 1� be the map such
that

(i) f ðτðρÞÞ = f ðρÞ for every ρ ∈ ½0, 1� and τðρÞ ≠ ρ for
every ρ ∈ ½0, 1� \ fρcg.

Definition 2. Consider a roundabout with 6 road segments on
the main lane with 3 entrance and 3 exit links as given in

Figure 1(b). A collection of functions ðρiÞ, i = 1,⋯, 12 ∈Q12
i=1 C

0ðℝ+ ; L1 ∩ BVðIiÞÞ is an admissible solution to (1) as

in [20] if

(1) ρi is a weak solution on Ii, i.e., ρi : ½0,+∞Þ × Ii→ ½0

, ρmax,i�, such that

ð

ℝ
+

ð

Ii

ρi∂tφi + f ρið Þ∂xφið Þdxdt = 0, ð4Þ

for every φi ∈ C
1
c ðℝ

+ × IiÞ, i = 1,⋯, 12.

(2) ρi satisfies the Kruzhkov entropy condition [25] on
ðℝ × IiÞ, that is

ð

ℝ
+

ð

Ii

∣ρi − k ∣ ∂tφi + sgn ρi − kð Þ: f ρið Þ − f kð Þð Þ∂xφið Þdxdt

+

ð

Ii

∣ρi,0 − k ∣ φi 0, xð Þdx ≥ 0
�

:

ð5Þ

(3) At each junction

〠
n

i=1

f ρi t, b −ð Þð Þ = 〠
n+m

j=n+1

f ρj t, aj +
� �� �

, ð6Þ

where n,m ∈ {1,2} and i and j indicate all the links belonging
to a junction. In particular, i indicates the incoming links,
andm indicates the exiting ones. Also, bi− represents left side
of bi while ai+ denotes the right side of ai.
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3. Riemann Problem at Junction

In this section, we briefly describe construction of Riemann
solver at junctions.

Definition 3. A Riemann problem at a junction J is a Cauchy
problem for constant initial data on each road. Consistency
condition:

RS RS ρ0ð Þð Þ = RS ρ0ð Þ: ð7Þ

The detail analysis can be found in [11].

Definition 4 (see [20]. A Riemann solver for junction J is a

map RS : ½0, 1�2 × ½0, 1�→ ½0, 1�2 × ½0, 1� that associates the
Riemann data ρ0= (ρ1,0,ρ2,0,ρ3,0) at J to a vector bρ = ðbρ1,

bρ2, bρ3Þ such that the solution on the incoming road Ii, i = 1
, 2, is given by the wave ðρi, bρ iÞ and on the exiting road I j, j

= 3; the solution is given by the wave ðbρ j, ρjÞ.

For the entering road, the solution ρi(t,x) over its partic-
ular domain x< bi is given by the solution to the Riemann
problem

∂tρi + ∂x f ρið Þ = 0 t, xð Þ ∈ℝ+ × Ii

ρi 0, xð Þ =
ρi,0 if x < bi,

bρ i if x ≥ bi:

(
:

8
>><

>>:
ð8Þ

Similarly, for the exiting road, the solution ρj(t,x) over its
domain x> aj is given by the solution to the Riemann
problem

J2

I4

I2J3

S2

I3 J5

I5 J4

S4

I6

J6

I1

J1

S6

S3

S5
S1

Roundabout

Figure 1: Schematic diagram representing a roundabout with 3 entering and 3 exiting roads.
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(a) Road network under consideration
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(b) Types of entering and exiting roads at each junction

Figure 2: Road networks of a roundabout and its corresponding junction.
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∂tρj + ∂x f ρj

� �
= 0  t, xð Þ ∈ℝ+ × I j,

ρj 0, xð Þ =

ρj,0 if x > aj,

bρ j if x ≤ aj:

8
>><

>>:

8
>>>>>><

>>>>>>:

ρ1 0,:ð Þ ≡ ρ1,0, ρ2 0,:ð Þ ≡ ρ2,0, ρ3 0,:ð Þ ≡ ρ3,0:

ð9Þ

Moreover, there exists a unique 3 − tupleðbρ1, bρ2, bρ3Þ ∈

½0, 1�3 such that

bρ i ∈
ρi,0

� 	
∪ τ ρi,0

� �
, 1

� 

, if 0 ≤ ρi,0 ≤ ρc,

ρc, 1½ �, if ρc ≤ ρi,0 ≤ 1:

(
ð10Þ

On the entering road for i=1,2, the solution is given by the
wave ðρi,0, bρ iÞ and

bρ j ∈

0, ρc½ �, if 0 ≤ ρj,0 ≤ ρc,

ρj,0

n o
∪ 0, τ ρi,0

� �� �
, if ρc ≤ ρi,0 ≤ 1:

8
<

:
ð11Þ

On the exiting road for j=3, the solution is given by the wave
ðbρ3, ρ3,0Þ.

On the incoming road i = 1, 2:

(i) If ρi,0 < ρc < bρ i < 1, f ðρi,0Þ > f ðbρ iÞ and ρc < ρi,0 < 1,

then the solution of the Riemann problem consists
of a shock wave with a negative speed

(ii) If ρi,0 < ρc < bρ i < 1, f ðρi,0Þ = f ðbρ iÞ, then the solution

consists of contact wave

ρi,0 ≤ ρc⇒Ωi = 0, γi,0
� 


, γi,0 = f ρi,0
� �

,

ρi,0 ≥ ρc⇒Ωi = 0, f ρcð Þ½ �:
ð12Þ

On the exiting road j = 3:

(iii) If ρj,0 < ρc, then the solution of the Riemann prob-

lem consists of a shock wave with a positive speed.
If bρ j < ρc < ρj,0 < 1, then the solution of the Riemann

problem consists of a shock wave with a positive
speed and contact wave when f ðρj,0Þ = f ðbρ jÞ.

ρj,0 ≤ ρc⇒Ωj = 0, f ρcð Þ½ �, γj,0 = f ρj,0

� �
,

ρj,0 ≥ ρc⇒Ωj = 0, γj,0

h i
:

ð13Þ

3.1. Conditions for Junction Type 1 × 2. In this case, we apply
traffic distribution ratio α ∈ (0,1) which express the distribu-
tion of traffic among exiting roads based on the preference of
drivers at each junction J . The Riemann initial data is also
denoted by ρi,0 = ρi,0ðbiÞ for entering roads and ρj,0 = ρj,0ðaj
Þ for exiting roads. We represent the unique solution at junc-

tion, i.e., at x= bi for entering and x= ai for exiting roads, by
bρ1, bρ2, and bρ3. Traffic flux on the entering road segment is
defined by f(ρi,0) = γi,0 satisfying the following Coclite, Gara-
vello, and Piccoli (CGP) conditions [11, 20] at junction for
each distribution ratio α2,1, α3,1 ∈ ð0, 1Þ with α2,1 + α3,1 = 1

and convex set Ωi:

(1) γ1 ∈Ω1, αj,1γ1 ∈Ωj if j = 2, 3:

(2) Maximize γ1 with respect to (1)

(3) γj = αj,1γ1, j = 2, 3.

Using Ωi = ½0, ci�, i = 1, 2, 3, we obtain

γ1 =min c1,
c2
α2,1

,
c3
α3,1

� 
: ð14Þ

3.2. Conditions for Junction Type 2 × 1. In this case, traffic
distribution matrix and conservation law alone cannot give
unique solution at junction. For this reason, we introduce
the priority parameters p ∈ (0,1) at junction type, 2 × 1, two
entering and one exiting roads. We assume that all cars can-
not enter the exiting road at the time. The purpose of priority
parameters is to regulate the condition that neither impose
insufficient flows nor send excess vehicles than the carrying
capacity of the roads. Assume that N is the number vehicles
that can enter the junction. Then, pN cars come from the first
entering road and (1− p)N cars from the second entering
roads. Then, the solution of the Riemann problem (ρ1,0,
ρ2,0, ρ3,0) is formed by a single wave on each road connecting
the initial states to (ρˆ1, ρˆ2, ρˆ3) be determined in the follow-
ing way. The aim is to maximize traffic flux satisfying:

bγ3 =min γmax
1 ρ1,0

� �
+ γmax

2 ρ2,0
� �

, γmax
3 ρ3,0

� �� 	
: ð15Þ

Now let γ1 = pN and γ2 = ð1 − pÞN be traffic flux on the
exiting road such that

γ1
γ2

=
p

1 − p
: ð16Þ

Then, it follows that the intersection point of line (16) and
γ1 + γ2 = bγ3 is occurred at P such that

Ω = γ1, γ2ð Þ: 0 ≤ γi ≤ γmax
i ρi,0

� �
≤ γ1 + γ2 ≤ bγ3

� 	
: ð17Þ

In the case of Figure 3(a), there is no intersection neither
inside nor outside the feasible region. This is occurred in the
demand limited case. On the contrary, Figure 3(b) shows
intersection occurred inside the feasible region Ω which
indicates supply limited. In the case of Figures 3(c) and
3(d), the intersection point is occurred outside Ω which
indicates supply limited case. A similar analysis study on
Riemann solver also discussed in [20].

Note that in Figure 3, Q is the point of segment Ω ∩

{(γˆ1,γˆ2): γ1+ γ2=γˆ3} closest to line in equation (16). We
compute fluxes at the junction based on the following cases:
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(1) If c1 + c2 ≤ c3, we have to look for γ1 and γ2 such that

max γ1 + γ2,

w:r:t : 0 ≤ γ1 ≤ c1, 0 ≤ γ2 ≤ c2, γ1 + γ2 ≤ c3:
ð18Þ

The unique solution is found to be γ1 = c1, γ2 = c2, and
γ3 = c1 + c2.

(2) If c1+ c2≥ c3, we have to look for γ1 and γ2 such that

max  γ1 + γ2,

w:r:t :  γ1 =
p

1 − p
γ2, 0 ≤ γ1 ≤ c1, 0 ≤ γ2 ≤ c2, γ1 + γ2 ≤ c3:

ð19Þ

4. Roundabout with Demand and
Supply Limited

To study the nature of traffic evolution on the roundabout,
we focus separately in the case of light traffic and heavy
traffic.

Assumption 5. To avoid unnecessary complexity, we make
the following assumptions.

(1) Complete turn or U-turn on the roundabout is not
allowed

(2) There is no obstacle at the exit road of the
roundabout

(3) Initially, the network of the roundabout is empty

The model proposed in [22] is applied to a traffic circle
with two entering and two exiting roads. The authors
computed asymptotic fluxes and then compared the result

with traffic light. Analyzing traffic dynamics in the case of
traffic circle with two entering and two exiting is very simple
compared to a roundabout with three entering and three
exiting roads. Further, the priority parameter is applied only
at two junctions which is easily computed. In the case of a
roundabout with three entering and three exiting roads,
computing shock wave on the roundabout is very compli-
cated. So, in this section, we will analyze shock wave on the
roundabout via demand and supply limited cases.

4.1. Demand Limited Case. In this case, we assume that traffic
arriving at junctions of a roundabout as illustrated in Figure 1
is less, in the sense that the number of cars reaching the round-
about is less than the optimal carrying capacity of a round-
about. Thus, the junction stays demand limited, and we do
not need priority rule in this situation. The traffic evolution
is only governed by conservation law. However, we assign traf-
fic distribution matrix to describe how traffic coming from the
entering roads Si, i = 2n − 1, n = 1, 2, 3, choose to distribute to
their corresponding intermediate roads and external exiting
roads. Hence, we have the following assumptions [11].

Assumption 6.We assume three fixed parameter αi ∈ (0,1) for
i=1,2,3 such that

(a) If N cars reach the roundabout from I1, then α1N
drive to road I4 and ð1 − α1ÞN drive to road I5

(b) If N cars reach the roundabout from I2, then α1N
drive to road I5 and ð1 − α1ÞN drive to road I6

(c) If N cars reach the roundabout from I3, then α1N
drive to road I6 and ð1 − α1ÞN drive to road I4

Let �ρ1, �ρ2, and �ρ3 be constant densities on the external
entering roads Ii, i = 1, 2, 3, respectively. In the demand
limited case, this situation is equivalent to equilibrium state.
In this setting, we define periodic boundary condition at
junction as

P

�2

�1

�1 + �2 = �3
max (�3,0)

�2
max (�2,0)

�1
max (�1,0)

(a) No intersection

P

�2

�1

�1 + �2 = �3
max (�3,0)

�2
max (�2,0)

�1
max (�1,0)

�1 = �2
p

1 − p

(b) Intersection inside

P

Q

�2

�1

�1 + �2 = �3
max (�3,0)

�2
max (�2,0)

�1
max (�1,0)

�1 = �2
p

1 −p

(c) Intersection outside and lowerside

P Q

�2

�1

�1 + �2 = �3
max (�3,0)�2

max (�2,0)

�1
max (�1,0)

�1 = �2
p

1 −p

(d) Intersection outside and upperside

Figure 3: Cases that illustrates feasible set for solution of the Riemann solver at junctions.
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�ρi t, aið Þ ≡ �ρi i = 1, 2, 3: ð20Þ

Further, let f denotes traffic flux on the roads network of
a roundabout. Then, the constant fluxes on each road do not
exceed the maximum flux f ðρcÞ, that is, f ð�ρ1Þ + ð1 − α3Þf ð
�ρ3Þ < f ðρcÞ, f ð�ρ2Þ + ð1 − α1Þf ð�ρ1Þ < f ðρcÞ and f ð�ρ3Þ + ð1 −
α2Þf ð�ρ2Þ < f ðρcÞ: If αi f ð�ρiÞ of the flux leaves the roundabout
at junction J i, the remaining ð1 − αiÞf ð�ρiÞ will continue on
the links of a roundabout until reaching the next exiting road
as depicted in Figure 4.

Theorem 7. Consider a roundabout with three entering and
three exiting roads as displayed in Figure 4. Then, there exists
time dependent coefficient αi : ½0,∞�→ ½0, 1Þ, i = 1, 2, 3. Pro-
vided that the boundary condition hold at t = 0 and the solu-
tion ρ(t) is constantly equal to that of Figure 4 for t≥T>0.

Proof. Since by its nature, the traffic behavior is time depen-
dent, and thus, it is common to assume that αi varies with
time. This means, we move forward in time to construct
the solution of Riemann problem at each junction and joined
them together. By assumption, the traffic evolution is light on
the roundabout. This implies that the cars from roads I1, I2,
and I3 reach either of the existing roads I4, I5, and I6 through
rarefaction wave. At each time step, rarefaction waves reach
either of the junction J1, J3, or J5. We regulate the correspond-
ing traffic distribution coefficient in such a way that cars
reach the correct road. Further, the existence of such
coefficient is also depends on driver’s preference. Thus, the
crossing coefficients at equilibrium situations are

(i) (S1,I4,S2)

αS1 ,4 =
α1 f �ρ1ð Þ + 1 − α3ð Þf �ρ3ð Þ

f �ρ1ð Þ + 1 − α3ð Þf �ρ3ð Þ
, αS1 ,S2 =

1 − α1ð Þf �ρ1ð Þ

f �ρ1ð Þ + 1 − α3ð Þf �ρ3ð Þ
,

ð21Þ

(ii) (S3,I5,S4)

αS3 ,5 =
α2 f �ρ2ð Þ + 1 − α1ð Þf �ρ1ð Þ

f �ρ2ð Þ + 1 − α1ð Þf �ρ1ð Þ
, αS3 ,S4 =

1 − α2ð Þf �ρ2ð Þ

f �ρ2ð Þ + 1 − α1ð Þf �ρ1ð Þ
,

ð22Þ

(iii) (S5,I6,S6)

αS5 ,6 =
α3 f �ρ3ð Þ + 1 − α2ð Þf �ρ2ð Þ

f �ρ3ð Þ + 1 − α2ð Þf �ρ2ð Þ
, αS5 ,S6 =

1 − α3ð Þf �ρ3ð Þ

f �ρ3ð Þ + 1 − α2ð Þf �ρ2ð Þ
:

ð23Þ

A car started from I1 reach I4 and I5. Then, we set αS1,4=α1
and αS1,S2=(1−α1). A car started from I2 reach I5 and I6.
Then, we set αS3,5=α2 and αS3,S4= (1−α2). A car started from
I3 reach I6 and I4. Then, we put αS5,6=α3 and αS5,S6= (1−α3).
Under the given assumption, we modify in time the distribu-
tion coefficient. With such choice, one can find a time T > 0
so that the solution is given by the flux indicated in Figure 4
hold for each t≥T. This completes the proof.

4.2. Supply Limited Case. In this case, we have possible traffic
jams if the constant fluxes on each road in Figure 4 do exceed
the maximum flux f(ρc), such that f(¯ρ1) + (1−α3)f(¯ρ3)> f(ρc),
f(¯ρ2)+ (1−α1)f(¯ρ1)> f(ρc), and f(¯ρ3)+ (1−α2)f(¯ρ2)> f(ρc)
conditions hold. Instantaneously, shocks are produced on road
networks of the roundabout at junctions J1, J3, and J5.

Now suppose that 0< pi< 1,i=1,2,3 be the priority param-
eter applied at merging junctions J1, J3, and J5. Assume
further that

γmax
1 = f 1, γmax

2 = f 2, γmax
3 = f 3, γmax

S1
= f �ρ1ð Þ + 1 − α3ð Þf �ρ3ð Þ

= f ρcð Þ,γmax
S3

= f2 ρ2ð Þ + 1 − α1ð Þf1 = f ρcð Þ and 

γmax
S5

= f2 ρ2ð Þ + 1 − α1ð Þf1 = f ρcð Þ:

ð24Þ

For simplicity, we take a: = (1−α1), b: = (1−α2), c: =
(1−α3), and fi: = f(¯ρi), i=1,2,3 to be used in the following
theorem. We summarized junction wave interaction in
Table 1.

I6

I1

I2

I4

I5
�2f(�

–
2) + (1 − �1)f(�

–
1)

�1f(�
–
1) + (1 − �3)f(�

–
3)

�3f(�
–
3) + (1 − �2)f(�

–
2)

f(�–2) + (1 − �1)f(�
–
1)

f(�–2)

f(�–1)

f(�–3) + (1 − �2)f(�
–
2)

f(�–1) + (1 − �3)f(�
–
3)

I3

f(�–3)

S5 S3

S1

Figure 4: Free-body diagram sketch for traffic at equilibrium situation.
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Assume that we are in case 1 as given in Table 1 at junc-
tions J1, J3, and J5. Then, rarefaction waves are produced on
roads S2, S4, and S6. These rarefaction waves decrease the
traffic density at their respective junctions, and thus, the road
network of the roundabout is not congested. Thus, we have
proved the follow result.

Theorem 8. Suppose that pi ∈ ½0, 1�, i = 1, 2, 3 be priority
parameters at J1, J3 and J5 of the roundabout, respectively,
such that p1 ≤ 1 − cð f3/f ðρcÞÞ, p2 ≤ 1 − að f1/f ðρcÞÞ and 
p3 ≤ 1 − bð f2/f ðρcÞÞ at these junctions, then traffic flux on
the road networks of a roundabout never jammed.

Next, we give detailed analysis at each junction when the
situation is fully supply limited.

This corresponds to case 2 of Table 1 at junctions J1, J3,
and J5. Since a shock is produced on all entering roads at each
junctions, then rarefaction are produced on roads S2, S4, and
S6. We present this situation case by case as follows.

4.2.1. Case (i). The flux on road S1 composed of p1f(ρc) from
road I1 and (1− p1)f(ρc) from road S6. Since α1 of the flux
from road S1 exists through roads I4, the part of the flux on
S1 is α1p1f(ρc) + (1− p1)f(ρc) = (1− ap1)f(ρc) that exits to road
I4. All flux from road S6 leave the system through road I4. The
remaining flux ap1f(ρc) will proceed to road S2. In terms of

Roundabout J2

I4

I2J3

S2

I3 J5

I5 J4

S4

I6

J6

I1

J1
S6

S3

S5
S1

x3
n−1x3

n

x2
n−1

x8
n−1
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n
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n
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n−1
x5
n

x5
n−1

x9
n−1

x4
n−1

x4
n

x9
n

x7
n−1

x1
n−1

x8
n

Figure 5: Wave junction intersections on the network of a roundabout.

Table 1: Shock wave at merging junctions.

Derivation Case 1 Case 2 Case 3

J1

f1 + cf3 > f ρcð Þ⇒
f1

f ρcð Þ
> 1 − c

f3
f ρcð Þ

:

p1 ≤ 1 − c f3
f ρcð Þ

,

bγ1 = f ρcð Þ − cf3,
bγS6

= cf3.

1 − c f3
f ρcð Þ

< p1 <
f1

f ρcð Þ
,

bγ1 = p1 f ρcð Þ,
bγS6

= 1 − p1ð Þf ρcð Þ:

p1 ≥
f1

f ρcð Þ
,

bγ1 = f1,
bγS6

= f ρcð Þ − f1:

Interpretation → Shock produced on I1 not on S6
Shock produced on I1 and

S6
Shock produced on S6 not on I1

J3

f2 + af1 > f ρcð Þ⇒
f2

f ρcð Þ
> 1 − a

f1
f ρcð Þ

:

p2 ≤ 1 − a f1
f ρcð Þ

,

bγ2 = f ρcð Þ − af1,
bγS2

= af1:

1 − a f1
f ρcð Þ

< p2 <
f2

f ρcð Þ
,

bγ2 = p2 f ρcð Þ,
bγS2

= 1 − p2ð Þf ρcð Þ:

p2 ≥
f2

f ρcð Þ
,

bγ2 = f2,
bγS2

= f ρcð Þ − f2:

Interpretation → Shock produced on I2 not on S2
Shock produced on I2 and

S2
Shock produced on S2 not on I2

J5

f3 + bf3 > f ρcð Þ⇒
f3

f ρcð Þ
> 1 − b

f2
f ρcð Þ

:

p3 ≤ 1 − b f2
f ρcð Þ

,

bγ3 = f ρcð Þ − bf2,
bγS4

= bf2:

1 − b f2
f ρcð Þ

< p3 <
f3

f ρcð Þ
,

bγ3 = p3 f ρcð Þ,
bγS4

= 1 − p3ð Þf ρcð Þ:

p3 ≥
f3

f ρcð Þ
,

bγ3 = f3,
bγS4

= f ρcð Þ − f3:

Interpretation → Shock produced on I3 not on S4
Shock produced on I3 and

S4
Shock produced on S4 not on I3
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traffic distribution matrix, this is equivalent to saying that
αS21= ap1. Since the shock wave produced on the entering
road propagates back with negative speed, then the shock
produced at junction J3 reaches J2. Thus, we have a shock
on S1. We displayed wave junction interaction in Figure 5.

The values of traffic flux on road S1 just after the shock
junction interaction are equal to

αS21x
n
1 = 1 − p2ð Þxn−12 ⇒ xn1 =

1 − p2ð Þ

ap1
xn−12 , ð25Þ

where xn−12 represents the value of the flux on road S2 after
the shock junction intersection. Also, after interaction, the
traffic flux on I2 is x

n
2 = p2x

n−1
3 . All the flux from road S2 leave

the network of the roundabout through I5.

4.2.2. Case (ii). The flux on S3 is composed of p2f(ρc) from
road I2 and (1− p2) from road S2. Since α2 of the flux exit
the system of the roundabout through I5, the flux that leave
the network of the roundabout through I5 equal to
α2p2f(ρc) + (1− p2)f(ρc) = (1− bp2)f(ρc). The remaining flux
(1−α2)p2f(ρc) will go to S4. This is equivalent to saying that
αS43= (1−α2)p2. As a consequence of backward propagation
of shock on the entering road, the shock produced at junction
J5 reaches junction J4; then, we have a shock on road S4. On
the other hand, the flux on road S5 composed of p3f(ρc) from
road I3 and (1− p3)f(ρc) from road S4. Therefore, the value of
traffic flux on road segment S3 just after the shock junction
interaction becomes:

αS43x
n
3 = 1 − p3ð Þxn−14 ⇒ xn3 =

1 − p3ð Þ

bp2
xn−14 : ð26Þ

Again, just after shock junction interaction, the traffic
flux on the entering road I3 is given by xn9 = p3x

n−1
5 . Further-

more, the flux on road S5 contains p3 f ðρcÞ from the entering
road I3 and ð1 − p3Þf ðρcÞ from road S4. Thus, the flux on S4
can be expressed as xn4 = ð1 − p3Þx

n−1
5 .

4.2.3. Case (iii). Similarly, the traffic flux on road S5 com-
posed of p3f(ρc) from road I3 and (1− p3)f(ρc) from main
road S4. But α3 of the traffic flux from the entering road I3
leaves the roundabout through I6 which amounts to
α3p3f(ρc) + (1− p3)f(ρc) = (1− cp3)f(ρc). The remaining traffic
flux cp3f(ρc) moves to road S6. In terms of traffic distribution
matrix, this amounts to αS56= (1−α3)p3, with similar analysis
as previous cases, the value of the traffic on road S5 just after
wave junction interactions

αS65x
n
5 = 1 − p1ð Þxn−16 ⇒ xn5 =

1 − p1ð Þ

cp3
xn−16 : ð27Þ

The traffic flux on road S6 equals to x
n
6 = ð1 − p1Þx

n−1
1 after

shock junction interaction. Similarly, on the entering road I1,
we have xn7 = p1x

n−1
1 . Thus, the shocks are produced on the

whole roads of the roundabout recursively and compactly
in matrix form

�A =

1 − p2
ap1

0 0

0
1 − p3
bp2

0

0 0
1 − p1
cp3

0

BBBBBBBB@

1

CCCCCCCCA

: ð28Þ

Since the new shock induced on the roads S1, S3, and S5 of
the roundabout, then we focus only on the matrix formed by
xn1 , x

n
3 , and xn5 denoted by �A. The eigenvalue of the matrix �A

are

λ1 =
1 − p2ð Þ

ap1
, λ2 =

1 − p3ð Þ

bp2
, λ3 =

1 − p1ð Þ

cp3
and λ1λ2λ3

=
1 − p1ð Þ 1 − p2ð Þ 1 − p3ð Þ

abcp1p2p3
:

ð29Þ

Moreover, at junctions J2, J4, and J6, respectively, we can
observe that

1 − p2ð Þf ρcð Þ < af1, 1 − p3ð Þf ρcð Þ < bf2and 1 − p1ð Þf ρcð Þ < cf3:

ð30Þ

Furthermore, from

1 − c
f3

f ρcð Þ
< p1 <

f1
f ρcð Þ

⇒ p1 f ρcð Þ < f1,

1 − a
f1

f ρcð Þ
< p2 <

f2
f ρcð Þ

⇒ p2 f ρcð Þ < f2,

1 − b
f2

f ρcð Þ
< p3 <

f3
f ρcð Þ

⇒ p3 f ρcð Þ < f3:

8
>>>>>>>><

>>>>>>>>:

ð31Þ

From equations (30) and (31), we obtain

1 − p2ð Þf ρcð Þ < af1, p1 f ρcð Þ < f1,

1 − p3ð Þf ρcð Þ < bf2, p2 f ρcð Þ < f2,

1 − p1ð Þf ρcð Þ < cf3, p3 f ρcð Þ < f3:

8
>><

>>:
ð32Þ

Simplifying, we get

p1
1 − p2ð Þ

<
1

a
,

p2
1 − p3ð Þ

<
1

b
, and

p3
1 − p1ð Þ

<
1

c
: ð33Þ

Since all are positive quantities, multiplication does not
influence the inequalities. That is,

p1p2p3
1 − p1ð Þ 1 − p2ð Þ 1 − p3ð Þ

<
1

abc
⇒

abcp1p2p3
1 − p1ð Þ 1 − p2ð Þ 1 − p3ð Þ

< 1:

ð34Þ
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Figure 6: Continued.
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Equivalently,

1 − p1ð Þ 1 − p2ð Þ 1 − p3ð Þ

abcp1p2p3
> 1: ð35Þ

From traffic point of view, p1 f ðρcÞ < f1, p2 f ðρcÞ < f2, and

p3 f ðρcÞ < f3 suggest that flow is congested but not jammed.

That means, γmax
1 = f1, γ

max
2 = f2, and γmax

3 = f3, as illustrated

in case 2 of J1, J3, and J5. Even though excess traffic flux on
the entering roads, the roundabout is not stuck. Thus, we
proved the following result.

Proposition 9. Assume that
cð f3/f ðρcÞÞ < p1 < f1/f ðρcÞ, 1 − að f1/f ðρcÞÞ < p2 < f2/f ð

ρcÞ and 1 − bð f2/f ðρcÞÞ < p3 < f3/f ðρcÞ are satisfied for α1, α2

, α3 and for all the right of way parameters p1, p2, p3. If

1 − p1ð Þ 1 − p2ð Þ 1 − p3ð Þ

abcp1p2p3
> 1, ð36Þ

then the traffic flow on the roundabout does not stuck.

Proposition 10. If

f1 = p1 f ρcð Þ, f2 = p2 f ρcð Þ, f3 = p3 f ρcð Þ, and
1 − p1ð Þ 1 − p2ð Þ 1 − p3ð Þ

abcp1p2p3
= 1,

ð37Þ

then the traffic flow on the roundabout is not jammed.
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Figure 6: Density and flux profiles on the entrance and main lane of a roundabout in case 1. In case (a), shock waves are produced on roads I1
, I2, and I3, and rarefaction waves are created on roads S2, S4, and S6 as shown in (c) with corresponding fluxes displayed in (b) and (d), respectively.
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Figure 7: Continued.
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Proof. From case (iii) we know that cf3 = f ðρcÞ − f1, since f1
= p1 f ðρcÞ. Then, cf3 = f ðρcÞ − p1 f ðρcÞ = ð1 − p1Þf ðρcÞ. On
the other hand, traffic flux on S1 equals f1 + cf3 = f ðρcÞ⇔
p1 f ðρcÞ + ð1 − p1Þf ðρcÞ = f ðρcÞ, similar for other cases. This
implies that all the traffic flux are entered the junction
smoothly. Thus, it attains maximum flow.

Finally, we consider case 3 given Table 1. If the strict
inequality hold at all junctions J1ðI1, S6, S1Þ, J3ðI2, S2, S3Þ,
and J5ðI3, S4, S5Þ, then rarefactions are produced on the
roads S1, S3, and S5 while shocks are produced on roads S2,
S4, and S6.

Proposition 11. If pi > f i/f ðρcÞ, i = 1, 2, 3,, then the traffic
flux on the roundabout is completely jammed.

Proof. Following the arrangement given under case 2, we get
the following inequalities:

1 − p2ð Þf ρcð Þ < af1, p1 f ρcð Þ > f1,

1 − p3ð Þf ρcð Þ < bf2, p2 f ρcð Þ > f2,

1 − p1ð Þf ρcð Þ < cf3, p3 f ρcð Þ > f3:

ð38Þ

This is the same as saying

1 − p2ð Þf ρcð Þ < ap1 f ρcð Þ,  1 − p3ð Þf ρcð Þ < bp2 f ρcð Þ, 

and  1 − p1ð Þf ρcð Þ < cp3 f ρcð Þ:

ð39Þ
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Figure 7: Density and flux profiles on the entrance and main lane of a roundabout in case 2. Due to traffic congestion, shock waves are
produced on roads (I1, I2, I3) in the case of (a) and on (S2, S4, S6) in the case of (c) with corresponding fluxes as shown in (b) and (d),
respectively.
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Figure 8: Continued.
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From this, we conclude that

1 − p1ð Þ 1 − p2ð Þ 1 − p3ð Þ < abcp1p2p3⇒
1 − p1ð Þ 1 − p2ð Þ 1 − p3ð Þ

abcp1p2p3
< 1:

ð40Þ

5. Numerical Simulations

In this section, we present numerical scheme used to solve
problem given in (1). We define a numerical grid in ð0, TÞ
×ℝ using the following notation: Δx is the fixed grid space,
Δt is the time step given by the CFL condition and ðtn, x jÞ

= ðnΔt, jΔxÞ for n ∈ℕ, and j ∈ℤ are the grid points. Each

road is divided into N + 1 cells numbered from 0 to N . The
first and last cells of an edge are always a junction, and we
assume that these cells are ghost cells. The scheme used for
solving equation (1) is the Godunov scheme as introduced
in [20, 23] and it is based on exact solutions to the Riemann
problem. The main idea of this method is to approximate the
initial datum by a piecewise constant function; then, the
corresponding Riemann problems are solved exactly, and a
global solution is obtained by piecing them together. Under
the CFL (Courant-Friedrichs-Lewy) condition, it holds:

Δtmaxj∈ℤ∣λ
n
j+1

2
∣ ≤ Δx, ð41Þ
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Figure 8: Density and flux profiles between the merging and diverging main lane of the roundabout under consideration and on the existing
roads. In the case (a), shocks are produced on roads S1, S3, and S5. Further, rarefaction waves are produced on roads I4, I5, and I6 as shown in
(c). Corresponding traffic fluxes are shown in (b) and (d), respectively.
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Figure 9: Continued.
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where λnj+1/2 is the speed of the wave of the Riemann problem

solution at the interface x j+1/2 at the time tn, the numerical

scheme can be written as

ρn+1j = ρnj −
Δt

Δx
F ρnj , ρ

n
j+1

� �
− F ρnj−1, ρ

n
j

� �� �
, ð42Þ

where the numerical flux F for a concave flux function is
given by

F u, vð Þ =

min f u, vð Þ if u ≤ v,

f uð Þ if v < u < ρc,

fmax if v < ρc < u,

f vð Þ if ρc < v < u:

8
>>>>><

>>>>>:

ð43Þ

5.1. Boundary Conditions. Each road is divided in N + 1 cells
numbered from 0 toN . For the entering roads, we proceed by
setting:

ρn+10 = ρn0 −
Δt

Δx
F ρn0 , ρ

n
0ð Þ − F ρn0 , ρ

n
1ð Þ½ �, ð44Þ

while for the exiting ones, we set

ρn+1N = ρnN −
Δt

Δx
F ρnN−1, ρ

n
Nð Þ − F ρnN , ρ

n
Nð Þ½ �: ð45Þ

5.2. Conditions at the Junctions. From the entering roads
which are connected at the junction at the right endpoint,
we set

ρn+1N = ρnN −
Δt

Δx
bγ in − F ρnN−1, ρ

n
Nð Þ½ �, ð46Þ

while for the exiting ones, connected at the junctions at the
left point, we set

ρn+10 = ρn0 −
Δt

Δx
F ρn0 , ρ

n
1ð Þ − bγout½ �: ð47Þ

5.3. Simulation Results. For simulation purpose, we chose a
concave fundamental diagram as introduced in equation (3)
with the following values for parameters: vmax = 1 ; ρmax = 1
; L = 50 ; ρc = 0:5 ; T = 20, Δx = 0:0196, Δt = 0:0196. We
assume that at initial time t = 0 all the roads are empty and
influx at boundary of entering roads are equal to 0:9. In the
case of demand limited, the traffic evolution is governed by
conservation law and the splitting rate to describe how traffic
coming from the entering roads choose to distributed to their
corresponding intermediate roads and the external exiting
roads. Thus, in this case, rarefaction wave fill the portion of
the roads of the roundabout. But, in the supply limited case,
the traffic congestion can occur at merging junctions and
shock wave propagating back, which is the one we simulated
in the results.

The results obtained are the evolution of density and flux
on entrance roads, on exit roads, roads between merging and
diverging junctions, and roads between diverging and
merging junctions versus space discretization at different
time steps as shown in Figures 6–8. Figure 9 displays the evo-
lution of traffic density profiles versus priority parameters. In
these figures, different colors show different traffic scenarios
over simulation time. The blue color corresponds to demand
limited case while the red color denotes congested state with
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(d) Density profile on the main lane of a roundabout when priority is given to traffic on the main lane itself

Figure 9: Evolution of density profiles on the entrance road and main lane of a roundabout versus priority parameters for time simulation T
between 2 ≤ T ≤ 6.
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value indicated on the color bars. In Figure 6, we illustrate the
simulation result corresponds to case 1 at merging junctions
J1, J3, and J5.

Similar to case 1, we performed numerical simulation for
case 3. In this case, shock waves are produced on the roads
S2, S4, and S6 propagating back while rarefaction waves on
I1, I2, and I3 propagating forward in time. In the next, we
describe the simulation results for case 2. In this case, the
roundabout under consideration is fully supply limited case
as shown in Figures 7 and 8. The shock wave occurred on
the entrance roads (I1, I2, I3), and between diverging and
merging junctions of roads (S2, S4, S6) is depicted in
Figure 7. As a result, backward propagating shock wave pro-
duced between merging and diverging junctions, that is, on
the roads (S1, S3, S5) as displayed in Figure 8(a).

Figure 9 shows the evolution of traffic profiles on the
entrance road and main roads of a roundabout versus prior-
ity parameters for simulation time T between 2 ≤ T ≤ 6. The
impact of priority parameters on the external entrance roads
is shown in Figure 9(a), and on the main lanes of the round-
about are also displayed in Figure 9(b). Figures 9(c) and 9(d)
present density profile on the main lane of a roundabout
when priority is given to entering traffic and when priority
is also given to traffic on the main lane itself, respectively.

6. Conclusion

In this paper, we presented the analysis of traffic evolution on
road network of roundabout with three entering and three
exiting roads. The flow of traffic on the whole road network
of the roundabout is governed by nonlinear scalar hyperbolic
conservation laws or the LWR model. We used traffic distri-
bution matrix at diverging and priority parameters at merg-
ing junctions. Also, we investigated the performance of a
roundabout in regulating traffic evolution both in the case
of demand and supply limited cases with details mathemati-
cal analysis. In demand limited case, the number of cars
reaching the roundabout is less than the optimal capacity of
the roundabout. Thus, the junction stays demand limited,
and we did not need priority rule in that situation. The traffic
evolution is only governed by hyperbolic conservation laws.
However, we assigned traffic distribution ratio to express
how traffic coming from the entering roads choose to distrib-
uted to their corresponding intermediate roads and the exter-
nal exiting roads. Since the number of cars reaching the
roundabout was greater than the optimal capacity of the
roundabout in supply limited case, we have been used prior-
ity rule at merging junctions. We solved the problem using
the Godunov scheme. Finally, we presented results of simula-
tions of traffic evolution on road network in terms of density
and flux versus space discretization at different time steps.
The simulation result indicated that rarefaction waves fill
the portion of the roads of the roundabout in demand limited
case, and the traffic congestion occurs at merging junctions
and shock wave propagating back in supply limited case
(congested state) which reduced the efficiency of a round-
about in controlling traffic flow problem. The experiment
with field study and validation of the model with real data
will be considered in the future work.
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