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SUMMARY

In this paper we consider a class of semi-parametric transformation models, under which
an unknown transformation of the survival time is linearly related to the covariates with
various completely specified error distributions. This class of regression models includes
the proportional hazards and proportional odds models. Inference procedures derived
from a class of generalised estimating equations are proposed to examine the covariate
effects with censored observations. Numerical studies are conducted to investigate the
properties of our proposals for practical sample sizes. These transformation models,
coupled with the new simple inference procedures, provide many useful alternatives to the
Cox regression model in survival analysis.

Some key words: Generalised estimating equation; Martingale; Proportional hazards model; Proportional odds
model; U-statistic.

1. INTRODUCTION

Let T be the ‘failure time’, the response variable, and Z a corresponding covariate
vector. Suppose that we are interested in making inferences about the effect of Z on the
response variable T. If there are censored observations in the data, one usually uses the
Cox proportional hazards model to examine the covariate effect (Cox, 1972, 1975). The Cox
model is semi-parametric, and its large sample inference properties have been demonstrated
using martingale theory (Andersen & Gill, 1982). Moreover, practitioners have easy access
to statistical software for this model. Therefore, there is a temptation to use the pro-
portional hazards model to analyse failure time observations, even when the model does
not fit the data well.

Let S,(.) be the survival function of T given Z. The Cox model can be written as

log[—log{Sz(1)}] = h(t) + Z"B, (11)

where h(t) is a completely unspecified strictly increasing function, which maps the positive
half-line onto the whole real line, and fis a p x 1 vector of unknown regression coefficients.
Inference about § in (1-1) can be based on the partial likelihood function. An alternative
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is the proportional odds model:
—logit {S5(t)} = h(t) + Z"B, (1-2)

where logit(x) =log{x/(1 — x)} (Pettitt, 1982; Bennett, 1983). Although this model is
appealing to practitioners, there is no theoretical justification for the large sample proper-
ties of inference procedures for § in the literature, except for the simple two-sample case
(Bickel, 1986; Dabrowska & Doksum, 1988a).

A natural generalisation of (1-1) and (1-2) is

gi82(t)} =h(t) + Z7B, (1-3)

where g(.) is a known decreasing function. The generalised odds-rate model studied by
Dabrowska & Doksum (1988a) for the two-sample problem belongs to (1-3). It is easy to
see that (1-3) is equivalent to the linear transformation model:

WT)= —Z"B+e¢, (14)

where ¢ is a random error with distribution function F =1 — g~ 1. If F is the extreme value
distribution F(s) = 1 — exp{ —exp(s)}, (1'4) is the proportional hazards model, while if F
is the standard logistic distribution, (1-4) is the proportional odds model. The parametric
version of this transformation model, with h specified up to a finite-dimensional parameter
vector, has been discussed extensively by Box & Cox (1964). For the case of h completely
unspecified, methods for analysing failure time data with (1-4) have been proposed, for
example, by Cuzick (1988) and P. J. Bickel and Ritov in an unpublished paper for the
noncensored case, ‘Local asymptotic normality of ranks and covariates in transformation
models’. Cuzick (1988) suggested a way to extend his estimator to the censored case.
Except for the proportional hazards model (1-1), however, the existing estimation pro-
cedures for f in (1-4) are either too complicated for practical use or have no rigorous
justification of their large sample properties (Clayton & Cuzick, 1986; Dabrowska &
Doksum, 1988b).

In this paper, we propose a class of simple estimating functions for f in the linear
transformation model (1-4) with possibly censored observations. Under rather mild con-
ditions, we show that the resulting estimators for f are consistent and asymptotically
normal. Numerical comparisons are also made with Cox’s estimator for the proportional
hazards model and an estimator proposed by Dabrowska & Doksum (1988a) for the two-
sample proportional odds model. With this simple new estimation procedure, model (1-4)
provides useful alternatives to the Cox regression model in survival analysis.

2. ESTIMATION FOR THE LINEAR TRANSFORMATION MODEL

Let T; be the failure time for the ith patient (i=1,..., n). For T;, one can only observe
a bivariate vector (X, A;), where X; = min(T;, C;) and A, = 1 if T; = X; and A; = 0 otherwise.
The censoring variable C; is assumed to be independent of T;. Let Z;, a p x 1 vector, be
the corresponding covariate vector for the ith patient. Furthermore, we assume that the
‘survival’ function G(.) of C; does not depend on Z,. This assumption can easily be relaxed
for the case when the covariate vector Z has a finite number of possible values.

Under the linear transformation model (1-4), h is a strictly increasing function. The
rank configuration of {h(T}),i=1,...,n} is exactly the same as that of {T;}. Therefore, it
seems natural to use the marginal likelihood of ranks to make inferences about B. The
corresponding maximum likelihood estimate and its variance, however, are difficult to
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obtain numerically. Moreover, the large sample properties of this estimator are not avail-
able for the censored case.

Consider the dichotomous variables {I(T;> T}),i+j=1,...,n}, where I(.) denotes an
indicator function. Then,

E(T,=2THZ;, Z;} =pr{WT) 2 KT)|Z,;, Z;},
which is
E(Z] o) =pr(ei—¢; = Z?}ﬁo),
where B, is the true value for 8, Z;;=2,—- Z,,

&(s) = J {1—F(t+5s)} dF (1)
and F is the completely specified distribution function of ¢. Although the dichotomous
variables {I(T;>T)),i,j=1,...,n} are dependent, one may make inferences about
po based on generalised estimating equations (Liang & Zeger, 1986). For example,
if we assume that the dichotomous variables are independent, the resulting estimating
function is

0B)= Y Y wZEAZ,U(T> T) - {ZEH), (21)
i=1j=1
where w(.) is a weight function. Although those dichotomous variables {I(T; > T;)} are
dependent, E{U(B,)} = 0. This suggests that a solution to U(8)=0 is a reasonable esti-
mator for f,. To mimic the usual linear regression technique, one may set w(.)=1; to
mimic the quasi-likelihood approach for independent observations, we may take

¢'()
W)=, (22)

v(.)

up)=73 3 wzipz,

i=1j=1

where v(.) = &(.) {1 — &(.)}.
When the failure times may be censored, the indicators {I(T;> T;)} in (2-1) are not
always observable. Since
A (X, 2 X)) I(T; 2 T)I{min(C;, C)) 2 T}}
2,2, =E| E . T,2:,2Z;
{ Gix) |7 GA(T)) » 0L
= E[IH{KT) > KT} Z:, Z;1 = E(Z]}Bo),
it seems natural to replace the dichotomous variable I(T;> 7)) in (2:1) with
AI(X; 2 X;){G(X))} ~2, where G is the Kaplan—Meier estimator for the ‘survival’ function
G of the censoring variable. Let the resulting estimating function be denoted by
A (X, = X))
=L _¥ZTh)?. 23
{ G (23)
In Appendix 1 we show that, if the weights w(.) are positive, then the equation U(f)=0
has, asymptotically, a unique solution 3 When w=1 and the observed matrix
ZZZUZ,-TJ- is positive definite, which is trivially satisfied for most practical situations, the
above equation has a unique solution. When F in (1-4) is the standard extreme value
distribution, the weight function (2-2) becomes 1. In the next section, we show through
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examples that the estimation procedure with w =1 works well for the proportional odds
model and the model with standard normal error.

In Appendix 1, we also show that the distribution of n~32U(8,) can be approximated
by a normal distribution with mean 0 and variance-covariance matrx I, where

i=1j=1k

1 n n
=52 X Z (w(ZTB)e/(B) — w(ZT:B)e(B)} Iw(Zh Béw(B) — w(ZiB)ew( B 2, Z

4 n 1 —A, ) M o
na' AL I(X > X)) {121 jzl jB)Zij Gz(X) I(XJ>X1)} ’

eij(ﬂ)=AjI(Xi>Xj){G(Xj)} 2 é(Z B)

and v®%= uAuT for a vector v. It follows from the Taylor series expansion of U( B) around
Bo that n*(B — B,) is asymptotically equivalent to n~*?AU(B,), where

A1 =n72Y Y wZhP)E (25 Pz

Therefore, the distribution of n*(8 — B,) can be approximated by a normal distribution
with mean 0 and covariance matrix £ = Af‘A Inferences for model (1-4) can then be made
based on this large sample distribution of ,B

The above procedures are valid when the distribution of the censoring variable C is
free of the covariate vector Z. This assumption may be strong for some observational
studies, but is often satisfied in randomised controlled clinical trials. Now, suppose that
one can discretise the covariate Z into K possible values. An analogue of the estimating
function (2-3) that incorporates dependence between C and Z is

{ AJI(X; = X;)
Gz,(Xj)Gz,(XJ)

U*p)= Z Z W(Z ﬂ)Zij

i=1j=1

é(Z:TjB)}, (24)

where G(.) is the Kaplan—Meier estimator for the survival function of the censoring
variable C based on those pairs {X;, A;} whose Z;=Z (I=1,...,n).

In Appendix 2, we show that the distribution of n~*?U*(,) can be approximated by
a normal distribution with mean 0 and variance-covariance matrix I'* given in (A2-1). It
follows that the distribution of n*(f — B,) can be approximated by a normal distribution
with mean 0 and covariance matrix £* = AT*A.

If there is no obvious way to discretise the covariates, one may replace G, in (2-4) with
a nonparametric functional estimate, for example a Kaplan—Meier estimate based on study
subjects whose covariates are in a ‘small neighbourhood’ of Z. The corresponding esti-
mator f is still consistent. If Z is univariate, we can choose the size of the neighbourhood
to show that f§ is also asymptotically normal. More research, however, is needed for the
multidimensional case.

3. EXAMPLES

The data in the first example are taken from Freireich (Cox, 1972). The observations
are shown in Table 1. Censoring is heavy in Sample 2. The two-sample proportional
hazards model fits the data well (Wei, 1984). Here, the group indicator is the only covariate;
that is, Z = 0 if the observation is from the first sample and Z = 1 otherwise. Cox’s maxi-
mum partial likelihood estimate for f, in (1-4) is —1-51 and the corresponding estimated
standard error is 0-41. With the estimating function U(f) in (2-3), the estimate for B, is

TTOZ ‘€T dun( uo ANISISAIUN S1elS euljoreD YLON e 610°S[euInolpiojx0-1awolq woij papeojumoq


http://biomet.oxfordjournals.org/

Analysis of transformation models with censored data 839
Table 1. Times of remission (weeks) of leukaemia patients (Cox, 1972)

Sample 1

(control) 1,1,2,2,3,4,4,5,5,8,8,8,8,11, 11,12, 12, 15,17, 22, 23

Sample 2

(drug 6MP)  6,6,6,6%,7,9%,10, 10%, 11*, 13, 16, 17, 19%, 20%, 22, 23, 25%, 32*, 327, 34+, 357

* Censored observations.

—1-74. The estimated standard error based on £ is 0-41. Since the censoring distributions
for the two groups are obviously different, it is more appropriate to use the estimating
function (2-4) to make inferences about f,. The corresponding estimate is — 1-64 with an
estimated standard error of 0-35. Thus, the results from the different approaches are
very similar.

The second example is from the Veterans Administration lung cancer trial presented by
Prentice (1973). Here, we will only use the subgroup of 97 patients with no prior therapy.
The response variable is the patient’s survival time and the covariates are tumour type, a
factor with four levels (large, adeno, small, squamous), and performance status, a measure
of general fitness on a scale from 0 to 100. Survival times range from 1 to 587 days and 6
of them are censored. Bennett (1983) and Pettitt (1984) used the proportional odds model
to fit this set of data with various likelihood functions. In Table 2(a), we give estimates of
Bo using the estimating function U with weights w=1 and with the quasi-likelihood
weights (2-2). Except for the only insignificant covariate, ‘squamous versus large’, the
results from our procedures are similar to those from Bennett’s nonparametric maximum
liketihood (1983) and Pettitt’s marginal likelihood methods (1984).

We also analysed the above data set using the proportional hazards model and the

Table 2. Estimates (standard errors) of regression coefficients for lung cancer data
(Prentice, 1973)

(a) Proportional odds model

New method New method with
with w=1 w from (2-2) Bennett (1983) Pettitt (1984)
ps —0-055 (0010) —0-055 (0-010) —0-053 (0-010) —0-055 (0-010)
Tumour type
versus large
adeno 1-556 (0-414) 1-559 (0-411) 1-314 (0-554) 1-302 (0-554)
small 1-496 (0-498) 1-494 (0-499) 1-383 (0-524) 1-438 (0-520)
squamous —0-006 (0-572) —0-004 (0-569) —0-181 (0-588) —0-177 (0-593)
(b) Proportional hazards model  (c) Model with N(0, 1) error
New method New method with
New method Cox with w=1 w from (2-2)
ps —0-037 (0-:007) —0-024 (0-006) —0-031 (0-006) —0-031 (0-006)
Tumour type
versus large
adeno 1-061 (0-284) 0-851 (0-348) 0-894 (0-236) 0-897 (0-232)
small 1-020 (0-342) 0-548 (0-321) 0-860 (0-284) 0-855 (0-284)
squamous —0-004 (0-391) —0-214 (0-347) —0-003 (0-328) —0-004 (0-322)

PS, performance status
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model with the standard normal error. The results are reported in Table 2(b), (c). Note
that our estimates under the proportional hazards model are quite different from Cox’s
counterparts. This indicates that the proportional hazards model may not fit this data set
well. For the case with the normal error, the results with weights 1 are almost identical
to those with the ‘optimal weights’ (2:2).

4. NUMERICAL STUDIES

If the observed matrix 1.3 Z;;Z; is positive definite, the estimating function U in (2-3)
with weights w = 1 gives a unique estimate § of 8,. Moreover, § and its variance estimate
can be easily obtained. Thus, if the procedure derived from this simple estimating function
is reasonably efficient, it would be useful in practice. To this end, extensive empirical
studies have been conducted to evaluate its efficiency. In one study, we considered a
proportional hazards model (1-4) with two independent covariates, the first one from a
uniform variable on (0, 1), and the second from a Bernoulli variable with ‘success’ prob-
ability 0-5. The survival time is obtained with h the natural logarithm function and ¢
having the standard extreme value distribution. Various uniform U(0, ¢) censoring vari-
ables are considered, where ¢’s are chosen with certain prespecified proportions of cen-
soring. For each selected ¢, B, and sample size n, we simulate 500 realisations {(X;, A;, Z;)}
to estimate the ratio of the mean squared error of the Cox’s maximum partial likelihood
estimate to that of the new estimate. The results are reported in Table 3. Under the
proportional hazards model, our new proposal is not expected to be as efficient as the
Cox procedure; however, in the presence of moderate censoring it performs fairly well.

Table 3. Estimated ratios of mear\ﬁquared errors ( x 100): Cox’s

versus HBW\
Censoring f5=(0,0) fo=(=1,-1)
proportion (%) n=100 n=200 n=100 n=200
0 77* 78t  76* 9% 74* 80t 73* 5%
10 85 81 85 83 82 83 79 82
20 90 88 8 89 86 87 87 84
30 90 92 94 91 99 97 96 96

* Ratio for the first component of §,.
t Ratio for the second component of f,.

We also examined the performance of our simple procedure for the proportional odds
model. Unfortunately, under this model the only inference procedure which has sound
theoretical justification is for the simple two-sample problem. Bickel (1986) and
Dabrowska & Doksum (1988a, p. 745) derived efficient estimates for f, under model (1-4)
when Z is dichotomous. In our numerical comparisons, we. let the error distribution be
the standard logistic distribution, h be the identity function, ind the censoring be various
uniform variables U(0, ¢), where ¢’s are chosen with certain prespecified censoring pro-
portions. For each n, ¢ and f,, we estimate the mean squared errors of our simple estimate
and Dabrowska & Doksum’s locally fully efficient estimate based on 500 simulated
samples. The results are reported in Table 4. The new procedure appears to be as efficient
as the optimal one proposed by Dabrowska & Doksum (1988a).

Empirical studies are also conducted to examine how sensitive the new procedure is
with respect to the assumption that the censoring distribution G is free of the covariates.
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Table 4. Estimated ratios of mean squared errors
(x 100): Dabrowska & Doksum’s (1988a) versus

new
Censoring n=100 n=200
proportion (%) Bo=0 fo=1 Bo=0 fo=1
0 106 111 103 110
10 104 112 105 112
20 106 107 104 108
30 97 103 97 111

In general, we find that the inference procedure for § based on (2-3) is rather robust. For
example, in one of our studies, we use the Stanford heart transplant data given by Miller
& Halpern (1982) to check the adequacy of the new method when the censoring variable
depends on a continuous covariate. For this particular study, it is well known that patient’s
censoring time depends on his or her entry age owing to the fact that the investigators
tried to recruit younger patients during the later part of the study. In fact, if we use the
Cox model to fit the censoring times with patient’s age as the covariate, the estimate for
the age effect is —0-018 with an estimated standard error of 0-0136, indicating that an
older patient tended to have a longer observation time than a younger patient did. To
examine the age effect on patient’s survival, the Cox proportional hazards model fits the
data well with a quadratic age model (Lin, Wei & Ying, 1993). Based on the partial
likelihood function, the point estimates for age and age? are —0-146 and 0-00234, respect-
ively. The corresponding estimated standard errors are 0-0554 and 0-00072. With the new
procedure, the results are quite similar. The point estimates are —0-157 and 0-00246 with
estimated standard errors of 0-0581 and 0-00076, respectively.

We also simulate survival times from the above fitted Cox model with various types of
covariate-dependent censorship to examine if the new confidence interval procedure based
on (2-3) has correct coverage probabilities. The results are reported in Table 5. Each entry
in the table is based on 500 random samples {(T;, C;, Z;),i=1,..., 152}, where Z, is the
vector of the observed age and age? for the ith patient in the Stanford data, T; is generated
from the Cox model with parameters estimated from the Stanford data based on the
partial likelihood, and the censoring variable C; is generated from the Cox model with a
linear age effect y and a constant underlying hazard function 5. The choice of y reflects
the degree of dependence between the censoring time and patient’s entry age. The n is
chosen with certain prespecified proportion of censoring. For each simulated sample, the
Cox model with age and age? as the covariates is utilised to fit the data. The empirical
coverage probabilities of the new interval procedure appear to be quite close to the
nominal levels especially with moderate censoring.

Table 5. Empirical coverage probabilities of interval procedures for the
linear age effect y with nominal level 0-95

Censoring y=—002 y=—003 y = —0-04 y= —005
proportion (%) New Cox New Cox New Cox New Cox
10 095 095 092 093 095 096 095 097

20 093 096 095 097 093 095 095 097

30 092 095 094 095 092 093 093 094

y, degree of dependence between censoring and age.
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5. REMARKS

We have proposed a class of estimating functions for censored transformation models.
The resulting estimation procedures for the regression parameters can easily be
implemented and should be useful for analysing nonproportional hazards models.

When there is only one covariate in the model, Dabrowska & Doksum (1988b) find
that using a wrong link function g in (1-3) has very little effect on the estimation of the
parameter. However, this does not seem to be true for the case when there is more than
one covariate in the model. Therefore, model-checking techniques are needed to examine
the adequacy of the link function g or the distribution assumption for the error term and
the deterministic portion of the fitted model.
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APPENDIX 1
Asymptotic distribution of B
First, we show that if the weights in U(f) are positive, asymptotically there is a unique solution

to the equation U(f) =0. To this end, let the distribution function of Z be denoted by H. Consider
the quantity n~2UT(B)(B — B,). With probability one, this converges to

J- w(z1;B) (2128 — 2{,80) {¢(212Bo) — £(z1,8) }dH(z,) dH(z,),

where z,, = z; — z,. Since ¢(.) is a decreasing function, the above limit is nonnegative and is zero
only when f = f,. This implies that B is consistent.
It follows from a martingale integral representation for (G — G)/G (Gill, 1980, p. 37) that

n~¥2U(Bo) =n3"? i i W(Z;rfﬁo)zu{m ¢z ‘30)}
GY(X))

i=1j=1

AJX > X)) {G(X) — G(X))}

#2070 5 5 w2yt s o)
=n~¥2 ,Z ,Z w(Z], ﬁo)zue,,(ﬁo)+2n-*kz1 i:—;th(rHo (1), (AL1)
=1 j=1 = 0

where
AI(X; = X))

eU(ABO) = GZ(X) C(Z ﬂ0)9 ﬂ(t) = hm i;l I(Xi = t)
AKX, =X
q(t) = ] iZI jgl w(Z], ﬁo)Zu_jész)j) I(X; =),

t
M()=I(X,<t,A,=0)— J 1(Xy 2 u) dAg(u),
0
and Ag(.) is the common cumulative hazard function of C’s. Using standard asymptotic theory of
multivariate U-statistics (Wei & Johnson, 1985), one can show that the distribution of n=32U(f,)
is asymptotically normal with mean 0.
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To calculate the corresponding limiting variance, note that the first term in (A1-1) is a U-statistic.
Therefore, its variance can be approximated by

[ Z Z Z {W(Z ﬂo)eij(ﬂo) W(Zjiﬂo)eji(ﬂo)} {W(Z Bo)ew(Bo) — W(Z ﬁo)eki(ﬂo)}ZUZT]

i=1 j=1k=1
k+j
For the second term in (A1-1), it follows from the standard variance calculation for a martingale

that
var{2n‘* 5 J 40 s )} f "(‘)"T(’)dAG()
k=1 Jo 7(1) o 1)

To calculate the covariance between the first and second terms in (A1-1), note that, for i +j,

AJX > X)) q'(x)\| _ AI(C, > X)) 4(C))

g G(X) “"A”nan}‘E[E{ Gy 1> ) g €7 i
(1)
w0 dAG(t)}

®AI(t> X)) q
E{J; o) 1@> 960
{Jw AI(X, 2 X)) q'(1)
o

) sy

E

dAG(t)} :

This implies that

Zi) }

S A, > X,) 4°(1)
i; j;E[f WZBo0)Zy GZ(‘X,) ] ‘i 5 d{M,(t) + M,(1)}

AJI(X, 2 X)) q'(X))
Fx) M)

_f” A (X, > X)) q"(¢)

COV{" 0 Z Z w(Z]] 1B0)Z;se15(Bo), 2n"% Z J; Alth(t)

(=1 j=1 k=1 n(t)

=~| &

z, z,]

2

2
ny

M=

i E|:W(Z ﬂo)ZU

1j=1

, W(Z[;Bo)Z,; GA(X) (X, 2 )+ I(X; > 1)} ()d/\o(t)

® A(X = X)) q'(1)
J; w(ZEﬂO)Z,j ——GZ(X_,) I(X;>1) () zZ, Zj}

-

dA¢(t)

4
_2

5 5
4 [T a0
= 4L ()

Therefore, the limiting covariance matrix for n~32U(f,) is

dAg(t).

,W[ZZZwamwmwwmmm

i=1 jm1 k=1
*J

] T
x {W(ZBo)eu(Bo) — W(Zi ﬂo)en(ﬂo)}ZUZT —4 f q(izzlt)(t)
0

A consistent estimator [* for this matrix can be obtained by replacing B,, G in ¢;;, and A; in the
above, with B G and the Nelson estimate for the cumulative hazards function of C.

dAG(t)].
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APPENDIX 2
Asymptotic distribution of B with discrete covariates

Since the covariate vector Z has a finite number of possible values, using the martingale integral
representation for G, one can show that

n"32U*(Bo)=n"3"? Z Z W(Z1jBo)Z e85 Bo)
i=1 j=1

. AIXi2X) [G(X)— Gy (X)) GZ(X)—GZ(X)}
3/2 J J i Al FAni ) i\
+n 121 j; w(Z[Bo)Z, G2,(X))Gz,(X;) { Gz,(X)) G,,(X;)

~n" Y 3 WZBo)Zyey(o) + 2 Y J D irs, 0,

i=1 j=1 k=1 Jo Tz, (t)
where

AI(X, 2 X))

e?j(ﬂo)=m EZEBo), mo(t)= '}lm n{; (X, >t,Z2,=2),
(1) = 3 AIXi> X))
0= im - § 2 M ERZ0 G )Gy " D

t
My(t)=I(X <t,A=0)— '[ I(X > u) dAg, (1),
0
and Ag,(.) is the cumulative hazard function of the censoring variable C’s whose covariate vector
is Z. It follows that the distribution of n=*2U*(f,) is asymptotically normal with mean 0.
Similar to the arguments in Appendix 1, the limiting covariance matrix for n~32U*(8,) is

|: 2 i X"] {W(Z ,Bo)eu(ﬁo —w(Z fﬂo)efx(ﬂo)} {W(Z Bo)ek(Bo) — W(Zhi o)eki(ﬂo)}zuzl
n— oo inl f=1k=1
ko j

4 r’ g*()g*"(1)
o n%k(t)

Replacing all the theoretical quantities in the above with empirical ones, we obtain a consistent
estimator I'* for the limiting covariance matrix, where

X, > 1) dAsz(t)].

ny=y

1 n n n )
F,Z ) Z WZTBey(B) — wZEB)eR (B} (WZLPrek(B) — wZLPrey PR Z, Z],
=1j=1k=
4 ! n -2
3 ) (I—A,){kZ I(szx,,z,‘=z,)}
1=1 =1
{i; jZl wiZEP)Zy = G (X))Gr (X,) 1(X,>X,)} , (A2:1)

e5(B) = AI(X, > X)) {G1(X)) Gz, (X))}~ — &(ZTP).
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