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Abstract

There has been little work in the literature on the speaker diarization of meetings with multiple distance
microphones since the publications in 2012 related to the last National Institute of Standards (NIST) Rich
Transcription Evaluation Campaign in 2009 (RT09). Lately, the Second DIHARD Challenge Evaluation has also
covered diarization at dinner party meetings that include multiple distant microphones. Dinner party meetings are
somehow harder than office meetings because their participants can move freely around the room. In this paper,
we studied some of the algorithms on speaker diarization for meetings with multiple distant microphones for the
NIST Rich Transcription Evaluation Campaign in 2007 (RT07) and RT09 and provide definite and clear improvements.
On the one hand, little or no care has been taken to the problem of penalizing or favoring transitions between
speakers other than proposing a minimum duration of a speaker turn or calculating the speakers’ probabilities
using Variational Bayes (VB). We have studied this issue and determined that a transition penalty term is needed
that should be independent both of the number of active speakers and the minimum duration of speaker turns.
On the other hand, the determination of a method to automatically select the right number of parameters is crucial
in developing good models for speakers. Previous studies have proposed the dynamic selection of the number of
parameters based on the duration of the speaker’s speech with a mixed performance when tested at one distant
microphone meetings or multiple distant microphones meetings. In this paper, we propose a new method that
takes into account both the duration of speaker’s speech to determine a minimum number of parameters, and the
question of overfitting issue to determine a maximum number of them, also taking into account the computation
time in order to reduce it.
We have carried out experiments to support our findings, and we have been able to improve our baseline speaker
error rate with multiple distant-microphone meetings. Both methods achieve improved performance over the
baseline. The first method obtains a 21.6% decrease in relative speaker error for the development set and a 4.6%
decrease in relative speaker error for the test set (RT09). The second method obtains a 46.47% decrease in relative
speaker error for the development set and a 17.54% decrease in relative speaker error for the test set. Both
methods complement each other, and when they are applied in combination, we obtain a 47.2% decrease in
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relative speaker error for the development set and a 22.02% decrease in relative speaker error for the test set.
The performance obtained with our proposal is outstanding in some subsets of the development test such as the
NIST RT07 and among the best for RT09 using our proposed simple modifications. Furthermore, with our algorithm
we obtain gains in computation time without jeopardizing performance. Results with a different publicly available
database, augmented multiparty interaction (AMI) obtains a 28.44% decrease in relative speaker error confirming
the validity of our methods. Preliminary experiments with a single stream (mfcc) endorse the validity of our
findings. Comparisons with an x-vector system deliver superior performance of our system on unseen test data.

Keywords: Speaker diarization, Speaker segmentation, Model complexity selection, Speaker modeling

1 Introduction
Speaker diarization consists of transcribing a recording

with speaker labels. This task is usually done with no

knowledge as to the number or identity of the speakers.

Thus, two tasks are necessary; the first one is to identify

the number of speakers, and the second one is to iden-

tify the specific regions in which every speaker inter-

venes. The speaker diarization is needed when

transcribing a recording with multiple speakers. An

overview of automatic speaker diarization systems is

given in [1–3].

There have been the National Institute of Standards

(NIST) evaluations for speaker diarization for meetings

with multiple distant microphones (MDM) in 2005,

2006, 2007, and 2009. No further NIST evaluations have

been made since then. Recently, new interests in speaker

diarization have appeared with the launch of The First,

Second, and Third DIHARD Speech Diarization Chal-

lenge which includes diarization in complex acoustic en-

vironments such as broadcast interviews, sociolinguistic

interviews, meeting speech, speech in restaurants, clin-

ical recordings, extended child language acquisition re-

cordings, and YouTube videos [4]. However, recordings

with multiple distant microphones are only available for

dinner parties that differ from the meetings of NIST.

Also in the Third DIHARD Challenge, no multiple

microphone meetings are included.

The components of a typical speaker diarization are

(1) the speech activity detector, (2) the feature extractor,

and (3) the segmenting and clustering algorithm. The

objective of the speech activity detector is to separate

speech from other sounds such as silence or others using

two models (speech and non-speech) [5] or more models

(i.e., speech, non-speech, and silence) [6, 7]. The feature

extractor processes the speech and calculates different

spectral characteristics such as the Mel-frequency ceps-

tral coefficients (MFCC), [8, 9], fundamental frequency

(F0) [10, 11], the combination of neural network features

with MFCC features [12, 13], the use of a phoneme

background model [14], and other long-term features

[15, 16] or energy features in the case of using multiple

distant microphones [17].

The segmenting and clustering algorithm can be either

bottom-up [6, 18] or top-down [19]. In a work published

in [20], a comparison between both methods is made. In

another work, the information on the role of speakers is

used to adjust the segmentation [21]. Speaker models

can be established using Gaussian mixture models

(GMM) [22] or more recent I-Vector models [23, 24],

CNN-I-Vectors [25], or X-Vectors [26]. X-Vectors have

shown good performance; however, they need much

more training data than our experiments because we do

not use any external data other than that available from

the recording session. In this sense, our GMM system is

self-contained both for speaker modeling and for speech

activity detection and is independent from any external

sources 1. The more generally used distance metrics de-

pend on the speaker models and the most common are

the Bayes information criterion BIC [27], T test distance

[28], information theoretic approach [29, 30], and cosine

distance and probabilistic linear discriminant analysis

(PLDA) for I-Vectors [16, 31].

Since the duration of a speaker’s turn is not known, a

significant problem is how to decide when a speaker’s

turn is feasible. One way of doing it is through compari-

sons of acoustic models before and after the turn. Some

people use Viterbi segmentation [32] but penalizing

transitions dependent of the number of active clusters.

Another possible parameter to use is the minimum dur-

ation of a speaker turn, which limits the total number of

speaker’s turns [2] in a recording. The problem of penal-

izing transitions has also been analysed in [33] and [34]

proposing a different alternative although the number of

speakers is known in their experiments. Recent research

focuses on this topic and proposes the learning of the

1At the time that this technology was created, voice activity detection,
for instance, was pretty much dependent on the type of background
noise, and in this way, the results of an external VAD could generate
unstable results. Equally, if we had to use the system in different
rooms, different scenarios, different types of backgrounds etc., the use
of external sources would deliver spurious results. If we assume that
we have a model that is universal enough that could be used as a
background and adapted in a second step to our room, certainly the
method could be more robust.
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speaker turn priors [24, 35]. In this work, we propose to

revisit this problem of classic methods and present alter-

native solutions that produce better and more robust

results.

As regards the cluster (speaker) models, an important

decision when modeling a speaker with a GMM or other

models is the determination of the number of mixtures

or parameters needed. In general, it is known that the

amount of available data for training plays a crucial role

in defining the number of parameters of a model, since

with little data, it is impossible to create good models if

the model has a lot of parameters. On the other hand, if

we have plenty of data and as many parameters as we

want, we encounter the problem of overfitting and the

model does not generalize well. This topic is addressed

in most pattern recognition books; see for instance [36].

In [37], this problem is analyzed and the number of

frames needed to create a model is determined using the

so called “cluster complexity ratio” which is a parameter

that relates the number of frames of data available to the

number of mixtures in a GMM that models this data.

After each change in the amount of data assigned to

each cluster due to segmentation, a new number of mix-

tures is defined that is related to the number of frames

now assigned to the new model. Some positive results

have been obtained in single distant microphone (SDM)

experiments with a database of 16 meetings in the devel-

opment set and 10 meetings in the test set (improve-

ments of 2.9% relative in the diarization error (DER) for

the development set and 19.39% relative in the DER for

the test set). But when new experiments with a bigger

development set (24 meetings) and new set of 8 meet-

ings in the test set (meetings from the NIST Rich Tran-

scription Evaluation Campaign in 2006 (RT06)) and

testing in both the SDM and MDM scenario, the results

only improve by 2.7% relative in the the DER for the de-

velopment set and no improvement at all in the test set

[32]. Contradictory results are again obtained in [38], in

which the SDM results in the test set do not improve

but degrade performance by 17.5% relative in the DER.

Furthermore, their procedure does not take into account

the overfitting issue because more frames, even if they

do not add new information, are modeled with more pa-

rameters and the speaker model may overfit and not

generalize sufficiently. Other researchers [39] have dem-

onstrated that the number of Gaussians used to model a

speaker is important in the creation of a good segmenta-

tion. Their experiments include a consensus based on

different models each trained with a different number of

Gaussians.

The problem of selecting the number of parameters is

also important when mixing acoustic features with delay

features in a weighted model [40]. The delay features do

not need as many parameters as the spectral features

since their dimensionality is usually lower and should

not receive the same treatment.

The objective of this paper is to study the complexity

of the models in the context of the MDM meetings’ dia-

rization, carry out a thorough analysis of it, propose two

parameters and its interrelation for solving the problem,

and obtain justified conclusions. This study was not

done before. Furthermore, we propose a new strategy to

prevent overfitting and save computation time without

significantly decreasing performance. Preliminary ana-

lysis of our methodology applied to single-channel re-

cordings is also presented.

The paper is organized as follows. In Section 2, the

baseline system is described. In Section 3, the database

used for experiments is explained. In Section 4, we

present the analysis of the problem of the transition

penalty when segmenting speakers. In Section 5, we

introduce the second objective: how to select the right

model for a speaker. Section 6 is a section that merges

the approaches of Sections 4 and 5. Section 7 presents

results for the best systems with a publicly available

database and a set of comparisons of our results with

other published data. Finally, Section 8 is the discussion

and Section 9 ends with our conclusions.

2 Description of the baseline system
2.1 Introduction

The architecture of the system is presented in Fig. 1.

Every microphone produces a signal that is filtered to

suppress some channel noise. After that, there is a mod-

ule that calculates the time difference of arrival (TDOA)

between two signals. In our case, these signals are the

output of the microphones. The method used is the gen-

eralized cross-correlation method (GCC) [41]. The

cross-correlations between any pair of channels are cal-

culated as well. The channel with the highest cross-

correlation is used as a reference [42]. The next step is

the creation of a beamformed signal by delaying and

summing the signals coming from the different micro-

phones (weighted sum).

The Mel-frequency cepstrum coefficients (MFCC) are

extracted from the beamformed signal, every 10 ms

using a window width of 30 ms. The MFCC coefficients

form what we call the mfcc vector. The beamformed sig-

nal is also processed by a voice activity detector (VAD)

that classifies speech frames versus non-speech frames

using a two-model Gaussian mixture model (GMM) and

Viterbi resegmentation [5]. The output of the VAD

module is fed into the agglomerative clustering module.

The localization features estimation creates a vector of

TDOAs for each 10 ms frame. This vector is obtained by

choosing an optimized set of channel pairs and calculat-

ing a TDOA for every pair. The concatenation of the

TDOAs forms what we call the tdoa vector. Several
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methods were tried and tested in order to find the

optimum representation of the localization features in-

cluding the principle component analysis (PCA) trans-

formations and using cross-correlation as a measure of

quality. The method used was the selection through

cross-correlation between channels, see [43].

Both mfcc vectors and tdoa vectors are fed to the next

block which is the segmentation and agglomerative clus-

tering of speech regions. This block has several parts

(see Fig. 2). There is an initialization module that creates

a first set of segments based on a maximum number of

clusters (speakers) L (we use the maximum number of

expected speakers). The full recording (only the speech

part) is divided uniformly into L parts.

Each cluster is modeled by a Gaussian mixture model

(GMM). There is a minimum duration per cluster,

typically 2.5 s (see Fig. 3) [22]. The minimum duration

per cluster is determined empirically. Due to this mini-

mum duration, short interjections such as “yes,” “heah,”

and “no” will be ignored by the system. However, the

scoring mechanism does not ignore such words. They

will be considered errors in our system. The problem of

short words or affirmation is one of the drawbacks of

our method. The GMM consists initially of a minimum

number of components, 5 for the mfcc vector and 1 for

the tdoa vector. The next module is the segmentation

and training module. The sentence is segmented by the

Viterbi algorithm using the original cluster models.

Then, after segmentation, a new training is carried out

followed by a subsequent segmentation. This process is

repeated several times (from 3 to 5). The next module is

“Cluster pair comparison”. Every combination of two

Fig. 1 Baseline system architecture

Fig. 2 Block diagram of the baseline segmentation and clustering
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clusters is compared to determine if they should be

merged or not. If the stopping criterion is not met, a pair

of clusters is selected to be merged. When this happens,

the number of components in the merged cluster is the

sum of the components of the individual clusters. When

the stopping criterion is met, the process ends. The

number of components of any cluster model will depend

on the number of times that this cluster has participated

in a merging, regardless of the duration of the final clus-

ter once the resegmentation has been carried out.

We use the ΔBIC measure to decide if any merging is

still possible (see Eq. 1) [27]. Notice that there is no pen-

alty term λ in the BIC score because there is no difference

in the number of parameters from the two modeling hy-

potheses as shown in [22]. In the following equation, X

represents the full recording. XA represents the part of the

recording assigned to speaker A, and XB represents the

part of the recording assigned to speaker B.

ΛBIC ¼ logpðX ξÞ − logpðXA ξAÞ −j logpðXB ξBÞjj
X ¼ XA∪XB

ξAis the model created withXA

ξBis the model created withXB

ξis the model created withX

ð1Þ

The combination of the mfcc vector and the tdoa vec-

tor is made using the methodology presented in [40].

We apply a weight factor to the mfcc vector of 0.85 as in

[43] since we use the same set of localization features.

2.2 Baseline segmentation method

The model of a cluster consists of a series of Hidden

Markov Model (HMM) states that share the same

GMM. The number of these states is equal to the mini-

mum number of frames assigned to a speaker turn (in

the baseline this is 250 equivalent to 2.5 s). In the last

state, following the recommendation in [32, 37], the

probability of staying in the last state (alpha) or jumping

to another cluster (beta) is set to 1. At this point, neither

value can be considered as probabilities anymore since

they do not add up to 1. But when calculating the accu-

mulated Viterbi probability, alpha and beta do not add

any extra duration model to the last state of a cluster.

After the jump to another cluster, the value of beta

changes to beta/M, M being the number of remaining

active clusters (see Fig. 4).

This value beta/M adds a new penalization factor to a

transition. Furthermore, this penalization factor is

dependent on the number of active clusters since it

changes after every iteration in the clustering and mer-

ging process starting from the L initial clusters and de-

creasing by one at each step. The penalization factor

then increases at each iteration (M is lower). This in-

crease is somehow artificial and totally independent of

the number of speakers in the recording (since it is not

Fig. 3 Cluster models with minimum duration
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known). This factor is not usually taken into account in

classic diarization systems. Some recent research pro-

poses methods to learn this factor [24, 35]. One of the

objectives of this paper is to focus on the study of this

factor and propose an alternative that improves the

baseline system. Preliminary experiments on this topic

have been presented in [44].

3 Database and metrics
There has been little work in the literature on speaker

diarization of meetings with multiple distance micro-

phones since the last RT09. There is some new work on

RT09 but using only one distant microphone and oracle

speech/non-speech detector [12] or assuming that the

number of speakers is known a priori [45].

We do not have a training set. Our development set

used to train hyper-parameters consists of a subset of 12

meetings extracted from NIST Rich Transcription 2002–

2005 sets (RT02-05). This set was previously used by us

in published work (devel06 in [40]). We add the RT06

set and RT07 set and conform what will be called DEVE

LSET from now on, see Table 1. The evaluation set will

be RT09. The performance of the systems was calculated

using the scored speaker time and the segments of the

recordings officially selected by NIST for the annual

evaluations. The amount of time is 15,484.34 s or 4.3 h

(1,548,434 frames) for the DEVELSET and 5932.88 s or

1.64 h (593,288 frames) for the RT09 set. We did include

overlap regions and 0.25 s of forgiveness factor as in the

official evaluations. The calculation of the DER and the

speaker error (SER) is carried out using the tools pro-

vided by NIST [46]. We will focus primarily on the SER

since the miss speaker error (MISS) and the false alarm

error (FA) are fixed in all our experiments. DER is also

presented for comparison purposes with other published

works with the same data sets.

4 Segmentation independent of the number of
active clusters
4.1 Statement of the problem

We have mentioned above that in the baseline, every

change of speaker includes a factor 1/M. M is the num-

ber of current clusters after the previous merging. The

factor 1/M (always less than 1) decreases the probability

of changing the speaker versus staying with the current

speaker. An undesirable extra effect is that M is variable

at each iteration so the factor 1/M is also variable. One

would reasonably be tempted to think that if M is bigger,

the probability of a speaker change should be higher but

this kind of probability is not known neither it is

attempted to use in our system. Thus, in the absence of

this information, what is not right is to take into consid-

eration the number of “remaining clusters M” in the al-

gorithm. Let us use a penalizing or regularizing factor

similar to the penalizing factor that weighs language

model versus acoustic model in speech recognition.

When a Viterbi segmentation is carried out, there is

an accumulated log-likelihood associated with the last

sub-state of each cluster, which is the accumulated sum

of log-likelihoods corresponding to the previous frames.

Fig. 4 Diagram of the dependency of turn speaker changes with the number of active speakers
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A speaker’s turn takes place when the left-hand part in

the formula below is lower than the right-hand part

X

iþ MIN DUR

i

logL cl j; fri
� �

< log Kð Þ þ
X

iþ MIN DUR

i

logL clu; frið Þ

ð2Þ

in which logL() is the log-likelihood, K the transition

weight (in the baseline system this is 1/M), clu the candi-

date cluster ,clj the current cluster, and fri the frame be-

ing evaluated. The left part represents the sum of the

last “minimum duration” log-likelihoods of the frames if

they belong to the current cluster. The right-hand part

represents the same total of log-likelihoods of the frames

if they belong to a different cluster plus the log of a tran-

sition weight K. Every increase in the transition weight

force a speaker turn since the condition in (2) is easily

met. On the other hand, if K is very small (much smaller

than one if M is big), it makes the transition more diffi-

cult because in the right-hand part, we substract some

quantity. In summary, in the current formula, a factor is

included that has no relation to the current acoustics

and is somehow arbitrary.

In the baseline system, at the beginning of the agglom-

erative clustering, M is large, K is small, log (K) is nega-

tive, and the condition in (2) does not hold, so the

transitions are penalized; however, at the end of the iter-

ations, M is much lower, thus favoring transitions. This

undesired effect is the one that we want to eliminate.

In order to do so, we propose a set of experiments

with variations of this factor, but independently of the

number of current active clusters. We will also experi-

ment with high values of K, thus favoring transitions

between speakers. The case of K = 1 (the change of

speaker determined only by the acoustics) will also be

tested.

4.2 Experiments

As explained before, we will be focusing on the SER.

The difference between the speaker error rate and the

DER is that the DER includes SER plus MISS that is the

part in which the system does not find or identify a

speaker (in our system, each overlap time will contribute

to one or more errors since we deliver just one speaker

hypothesis) and FA which is the part in which the sys-

tem proposes a speaker and there is silence (the VAD

module is responsible for this error). The VAD module

also contributes to the MISS error (there is a true

speaker and the VAD module thinks that it is not

speech). Since we are not changing the VAD module

neither doing any overlap handling, the MISS error plus

the FA error will be 7.44% in our DEVELSET in all the

experiments. In our test set (RT09), the MISS error plus

the FA error is 8.70% in all cases. We give those two

values for comparison purposes to be able to calculate

the DER. We use a no-score collar of 0.25 at speaker

boundaries as usual in standard Rich Transcription (RT)

evaluations. We use a weight factor of 0.85 for the mfcc

vector and 0.15 for the tdoa vector.

Figure 5 represents the speaker error versus the transi-

tion weight K in formula (2) for different values of the

minimum duration of a speaker’s turn. The baseline SER

is also shown. Analyzing the results, we notice a big dis-

persion across the K values and across the minimum

duration values. For minimum duration = 200 (2 s), the

new methodology improves the results of the baseline

for an ample range of values of K. At the same time, it is

less dependent on the values of K. It is interesting to

note that for K < 1, the results are less stable than for K

> 1. We cannot find a good reason to justify it. It is very

Table 1 List of meetings used for the development set (DEVELS
ET)

Meeting # of microphones

1 devel06 AMI_20041210-1052 12

2 AMI_20050204-1206 16

3 CMU_20050228-1615 3

4 CMU_20050301-1415 3

5 ICSI_20000807-1000 6

6 ICSI_20010208-1430 6

7 LDC_20011116-1400 8

8 LDC_20011116-1500 8

9 NIST_20030623-1409 7

10 NIST_20030925-1517 7

11 VT_20050304-1300 2

12 VT_20050318-1430 2

13 RT06 CMU_20050912-0900 2

14 CMU_20050914-0900 2

15 EDI_20050216-1051 16

16 EDI_20050218-0900 16

17 NIST_20051024-0930 7

18 NIST_20051102-1323 7

19 VT_20050623-1400 4

20 VT_20051027-1400 4

21 RT07 CMU_20061115-1030 3

22 CMU_20061115-1530 3

23 EDI_20061113-1500 16

24 EDI_20061114-1500 16

25 NIST_20051104-1515 7

26 NIST_20060216-1347 7

27 VT_20050408-1500 4

28 VT_20050425-1000 7
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much dependent on the kind of acoustics and the type

of meetings and speakers at each meeting. But we have

used many different meetings in different rooms, so the

experimental results are solid. The fact that for K < 1,

the results are less stable give us a good reason not to

rely on a K = 1/M which is even more unstable since it

depends on the iteration of the algorithm. Remember

that in the baseline, K is variable at each iteration and

less than one. Two proofs are shown in the picture, the

first one is that K should not follow the previous strategy

(changing it depending on the number of active

speakers) but it should be independent of it. At the same

time, the parameter “minimum duration” is dependent

on K, so both parameters should be explored to find and

optimum.

In Table 2, the performance of both DEVELSET and

the test set (RT09) are presented for different values of

K. Since in the baseline, the minimum duration is 250,

and in the new methodology, the minimum duration is

200; we have included the case for baseline and mini-

mum duration equal to 200 in the table. In the baseline

system, there is no significant difference from minimum

duration of 250 to the minimum duration 200. It can be

observed that for the development set, any value of K

Fig. 5 SER of the development set for minimum duration of speaker turn of 150, 200, 250, and 300 frames against the transition weight

Table 2 SER for all the systems developed, confidence intervals are also included. M is the number of active clusters at each
iteration. Weight applied to MFCCs is 0.85 and weight applied to TDOA is 0.15

Transition
weight

Minimum
duration

DEVELS
ET

Relative improvement over DEVELSET
(%)

RT09 Relative improvement over RT09
(%)

1/M (baseline) 250 4.11 ±
0.03

7.82 ± 0.07

1/M 200 4.07 ±
0.03

1.94 7.73 ± 0.07 1.15

1.0 200 3.57 ±
0.03

13.14 8.45 ± 0.07 − 8.05

2.0 200 3.29 ±
0.03

19.95 7.72 ± 0.07 1.28

3.0 200 3.22 ±
0.03

21.65 7.46 ±
0.07

4.6

4.0 200 3.06 ±
0.03

25.55 7.57 ± 0.07 3.20

Martínez-González et al. EURASIP Journal on Audio, Speech, and Music Processing         (2021) 2021:12 Page 8 of 24



between 1 and 4 and minimum durantion 200 is better

than the baseline with either minimum duration of 250

or 200, demonstrating the validity of our approach. If we

analyze the results on the test set, we notice that every

value of K with the exception of K = 1 improves the

baseline. The best result with the DEVELSET, which is

K = 3 or 4 also improves the baseline results. We can

conclude that the new methodology delivers better re-

sults than the baseline methodology.

It is interesting to note that with K > 1, we are favor-

ing speaker changes while in the baseline, K is always

less than 1, thus penalizing speaker changes. At the same

time that we have discovered that favoring speaker

changes is better in our experiments, we have eliminated

the somehow arbitrary variations of K depending on the

iteration of the algorithm and the number of active

speakers at each iteration (baseline).

One important characteristic of speaker diarization for

meetings is that the results across different rooms,

different location of microphones, different number of

microphones, and different number of speakers etc., are

very unstable. Some of them are very good but some

others are terrible [47]. Thus, the best way to demon-

strate technological improvements is to test the system

with as many recordings as possible. We have tried the

system with 28 meetings for development and 9 for test

so our experimentation is ample. Furthermore, the data

that we use belong to a community standard and can be

contrasted with results of other researchers.

4.3 Experiments with a single channel

In order to check if the previous method works for

single-channel recordings, we have selected the mfcc

vector coming from the acoustic fusion (see Fig. 1) and

discarded the tdoa feature channel. In this case, the dia-

rization is similar to the use of a single microphone re-

cording. Figure 6 represents the speaker error across

different values of the transition weight and different

minimum duration values. It can be seen that there are

several values below the baseline of 8.98 SER. This pic-

ture demonstrates the validity of our proposal. The base-

line uses a transition weight dependent on the number

of remaining clusters, but a constant transition weight

improves the SER performance. However, it can be no-

ticed that in this case, the minimum SER values are lo-

cated at different working points. Two minimums can

be considered, one at the point 350 minimum duration

and transition weight of 0.001 with an 8.29% SER which

represents an improvement of 8.3% relative and another

one at a minimum duration of 400 frames and transition

values of 0.01 with an 8.39% SER that represents an im-

provement of 7.0% relative SER.

Table 3 presents the results obtained for the working

points for the test set. Both points improve the baseline

of the system by 42% relative SER and 7.0% relative SER,

respectively. We can notice in the table that the

optimum working point with a single channel differs

substantially from the optimum working point obtained

previously (minimum duration of 200 and transition

weight of 3). The conclusion that we extract from this

result is that the method is valid also for a single channel

and it can be used, but the parameters should be tuned

for each case. The minimum duration and the transition

weight interact with each other in the system, and they

cannot be universally determined but through an em-

piric study. But it can be proved that both working

points also improve the test set, in a case with noticeable

improvement.

Fig. 6 SER for the DEVELSET for a single mfcc stream across different values of the transition weight and different minimum durations of a
speaker turn of 300, 350, and 400 frames

Martínez-González et al. EURASIP Journal on Audio, Speech, and Music Processing         (2021) 2021:12 Page 9 of 24



5 Model selection
5.1 Introduction to the problem

In the baseline system, when merging two clusters, the

ΔBIC distance used to determine whether the clusters

should be merged eliminates the need for the adjustable

λ parameter by setting the number of Gaussians of the

merged cluster as the sum of the Gaussians of the ori-

ginal clusters to be merged. In this way, the merged

clusters now have many more Gaussians independently

of their duration. But the new number of Gaussians may

be too small or too big to model properly the new clus-

ter and the remaining clusters after a segmentation step

have been carried out.

In the proposal of Anguera [37], an attempt to solve

the problem was addressed. Instead of keeping the num-

ber of Gaussians dependent on the number of times that

a cluster has been merged with another one (because the

total number of parameters is kept constant after mer-

ging), the number of Gaussians is always recalculated

depending on the duration of the clusters after merging

and resegmenting. In this way, a small cluster could be

modeled with a single Gaussian. But the proposal by

Anguera does not address the problem of using many

Gaussians for a long cluster—thus expending a lot of re-

sources—or the risk of overfitting the model. In this

paper, we have shown that there is very little improve-

ment by increasing the number of Gaussians after a cer-

tain limit because even if more data were available, this

data would not add new information to the model.

In Fig. 7, the normalized log likelihood of a speaker

extracted from a session from the development set using

the true references is plotted versus the number of

Gaussians used to train it. The speaker has 55,114

frames (551 s). We normalize the log likelihood by divid-

ing the total log likelihood by the number of frames. It

can be observed that the likelihood has a long tail, and it

does not improve substantially when the number of

Gaussians is over 100 indicating that there is no need to

use so many Gaussians to model the speaker. This fact is

better illustrated when we plot the derivative of the nor-

malized log-likelihood (see Fig. 8). We notice that after a

certain number (i.e., 100) of Gaussians, the derivative re-

mains approximately constant. On the one hand, we

need a minimum number of Gaussians to model a

speaker of a certain number of frames adequately (dur-

ation). On the other hand, we do not gain a lot by aug-

menting the number of Gaussians after a certain value

and we could save computation by limiting the max-

imum number of them. Figure 9 illustrates the same

concept, this time the number of Gaussians is kept con-

stant at 5 and the normalized log-likelihood is plotted

against the number of frames. This picture clearly dem-

onstrates that when few frames are available 5 Gaussians

is not a good parameter to use in this case and it distorts

the model. The picture shows a minimum of log-

likelihood at 3674 frames (36 s) having a value at that

point which is comparable to values in the previous pic-

ture for the same number of Gaussians. This figure

Table 3 SER for all the systems developed using a single channel. M is the number of active clusters at each iteration

Transition weight Minimum duration DEVELSET Relative improvement over DEVELSET RT09 Relative improvement over RT09

1/M (baseline) 250 8.98 21.21

0.001 350 8.29 8.3% 14.87 42%

10 400 8.39 7.0% 19.81 7.0%

Fig. 7 Normalized log-likelihood of a cluster versus the number of Gaussians used to train it. The likelihood improves asymptotically and very
slightly to a maximum number independent of the number of Gaussians
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shows that having 3674 frames generates a model that

can be compared to other clusters. But if we have many

fewer frames, using 5 Gaussians is not appropriate and

the comparison would have been biased favoring the

cluster with a smaller duration (note also that we are

using logarithms so the dynamic range of the arithmetic

is lower). On the other hand, adding more frames to the

model does not significantly change its log likelihood.

Our proposal is to modify this strategy and use two

new parameters to determine the number of Gaussians

per model, one is the number of frames, and the other is

the maximum number of Gaussians per cluster, as will

be presented in the next section.

5.2 Proposed method

We propose a method to take into account the problems

mentioned in Section 1. The algorithm is presented in

Fig. 10 in which the modules that change with respect to

the baseline algorithm are marked with “NEW”. In the

new proposed algorithm, both at the initialization step

and after any new segmentation a recalculation of the

number of Gaussians used to model each cluster is im-

plemented according to formula (3). Two parameters are

used, A = the minimum duration to train any single

Gaussian and B = the maximum number of Gaussians

used to model a cluster.

n ¼ min
n:of seconds of the cluster=A

B

�

ð3Þ

In Fig. 11, the DER values for the DEVELSET for differ-

ent parameters of the minimum number of seconds per

Gaussian (A) and the maximum number of Gaussians (B)

are represented together with the average of all of the

values (marked “AVE”). We can see that with this

Fig. 8 Smoothed derivative of normalized log-likelihood of a cluster versus the number of Gaussians used to train it. The derivative changes
abruptly for a low number of Gaussians and remains constant after 50 Gaussians

Fig. 9 Normalized log-likelihood of a cluster trained with 5 Gaussians as a function of the number of frames used to train it
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algorithm after using 50 or more Gaussians as the max-

imum, there are improvements in the DEVELSET. We

can also observe that the minimum values are obtained

with 7 s per Gaussian which also corresponds to the mini-

mum number of frames found in Fig. 9 for 5 Gaussians.

The absolute minimum is found with 100 Gaussians

which corresponds to the turning point in Fig. 8 in which

increasing the number of Gaussians does not add infor-

mation in the log-likelihood. One hundred Gaussians are

also the minimum of the average line (AVE) in this pic-

ture. In Fig. 12, the DER for different values of parameter

“A” are represented for “B” = 100. It can be clearly seen

that below 7 s per Gaussian, the results are worse than

those above it although the evolution of the DER values

across parameter A is not descending monotonically. It is

important to highlight that the standard DER and SER

measure for speaker diarization for meetings is very sensi-

tive to errors in the final number of speakers detected.

This occurs because SER is a frame-based measure and

one error in its calculation and depending on the duration

of the speaker’s speech may change the SER significantly.

The best way to obtain good conclusions in this area of

research is to experiment with as many diverse meetings

as possible as mentioned before.

Fig. 10 Bloc diagram of the proposed algorithm. The changes to the baseline system are in dotted captions
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In Fig. 13, the ratio of computation time of the pro-

posed method (using parameter A = 7) to the computa-

tion time of the baseline for the DEVELSET versus the

parameter B (maximum number of Gaussians) is pre-

sented. The computation cost increases with the max-

imum number of Gaussians. When there are more

Gaussians to train, the algorithm takes longer. It has a

saturation limit at 200 because the maximum is rarely

reached at over 200. By observing Fig. 11, we can see

that after 100 Gaussians, the error does not diminish.

Thus, a good compromising working point would be to

use a maximum number of 100 Gaussians. In fact, if we

would like to obtain a good working point, we could

think of a merit factor that weights 90% the SER and

10% the ratio of computation time over the baseline. If

we plot this merit factor against the maximum number

of Gaussians (Fig. 14), we can observe this minimum at

B = 100. There is another minimum at B = 50. By using

a limit in the number of Gaussians, we can obtain a

saving of 25.38% of computational time compared to not

using the limit.

The relative improvement in SER over the baseline in

the development set is 42.09% for the pair of parame-

ters A-B = (7–50) and 46.47% for the pair of parameters

A-B = (7–100) see Table 4. This is a very impressive

result. For comparison purposes, we have calculated the

SER for a subset of the development set (the RT07 set)

obtaining a value of 2.1% which is outstanding perform-

ance (remember that the MISS+FA error for RT07 is

6.82). The meetings of this subset is part of our DEVE

LSET and has therefore been used for training, still we

include the speaker error of this subset separately only

for a fast comparison with other works which were

using this RT07 set. In Table 4, we also present the

results of SER for the test set RT09. Improvements can

be obtained for both combinations of parameters

provided. Relative improvements in SER range from

15.36 to 17.54% for the two proposed working points.

Fig. 11 DER for the DEVELSET versus different values of minimum number of seconds per Gaussian (parameter A) and maximum number of
Gaussians (parameter B)

Fig. 12 DER for the DEVELSET across different A values for B = 100
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In Table 5, we present detailed results for the RT09

set meeting by meeting both for the baseline system and

for our proposed method using the optimum values (A,

B) = (7–100). Four of the meetings present a decrease in

SER, two others remain with a similar SER and one of

the meetings increases the SER. On average, the SER

decreases as we have already mentioned. The results

obtained are among the best published to date [10, 39] (you

need to add 8.7% of MISS+FA error to obtain the DER).

In Table 6, the number of identified, missed, and

false-alarm speakers is presented. The proposed

method reveals two more correctly identified speakers

than the baseline and two fewer missed speakers

although there are three new false-alarm speakers.

The influence of new false-alarm speakers in the SER

is small. This fact can be easily explained by the fact

that the SER is a time-weighted measure, and the

new false-alarm speakers possibly intervene for a

short period of time and it is not significant in the

overall computation. It can also be seen in Table 5

that the meetings that usually have a very high SER

also have a very high overlap error, and since we do

not propose any solution for the overlaps, we cannot

decrease this error with our method.

5.3 Preliminary experiments with a single channel

In order to check how the model selection method be-

haves for a single channel, we have selected the mfcc

vector coming from the acoustic fusion and discarded

the tdoa vector. Figure 15 represents the SER for a single

mfcc stream and a mixture of parameters (A) and mini-

mum duration across different values of maximum num-

ber of Gaussians (B). It can be noticed that the method

also improves the baseline results for single-channel re-

cordings although the minimum SER values are obtained

at a slightly different parameter values. The first thing to

notice is that the optimum minimum duration is now

350 frames compared to 250 frames of the baseline. This

change was also noticed in Section 4.3 above with the

experiments changing the transition weight. The second

change is the number of seconds per Gaussian that in

this case is 11 compared to the optimum in previous

Fig. 13 Number of times that the proposed system is more computationally expensive than the baseline

Fig. 14 Merit factor versus number of Gaussians
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section that was 7. More seconds per Gaussian are

needed in order to create good models. This parameter

change may be due to the numeric interaction of the

mfcc vector with the tdoa vector that only occurs when

using both vector streams. The system that uses both

streams has better performance and stability, and it is

less sensitive to parameter variations. Both streams com-

plement each other. Looking at Fig. 15, we find several

values that improve the baseline. We can choose the

value 11-350-40, and the value 12-350-30 that give a

SER of 8.3% and 8.14%, respectively, which represents

8.1% and 10.3% relative improvement over the baseline.

Table 7 presents the results with the RT09 set. It can be

seen that for the point 11,350,40, the relative SER im-

provement over the baseline is 36.75% which is a very

significant improvement. With these results, we demon-

strate that the method works not only when using both

mfcc and tdoa streams but also for a single mfcc stream.

6 Fusing model selection and speaker
segmentation independent on the number of
clusters
6.1 Experiments with two streams

After analyzing previous results with transition weight

independent of the number of clusters and the results

using a method to select an appropriate number of

Gaussians per cluster, the obvious next step is to merge

both methods. However, the first method as seen in

formula (2) uses a tuning parameter K to adjust transi-

tion probabilities to penalize or favor speaker changes in

the same manner as in a speech recognition system in

which the acoustics are appropriately weighted with the

linguistic model probabilities in order to insert more or

less word hypothesis. If we now consider, our new

method of selecting the number of frames per cluster

that is dependent on the duration of each cluster and

taking into account that there is a maximum number of

Gaussians per cluster to model a speaker, the likelihoods

calculated in formula (2) may vary. In fact, if the model

is a better fit to the speech, the likelihoods should be

greater and the transition weight could change. In the

same manner, the optimum value for minimum duration

may also change.

In Fig. 16, we present the SER across different transi-

tion probabilities and for minimum duration 250 (We

also did experiments with a minimum duration of 200

with worse results). In Fig. 17, we show the SER for the

working point 7-50 compared with the baseline transi-

tion probability (1/M). Analyzing Figs. 16 and 17, we no-

tice that now the best K is found at 0.01 with both

systems but now the working point 7-50 is slightly better

than the 7-100 (although not significant) in contrast

with our previous results (SER 2.17% vs 2.2%). What is

interesting is that if we compare the results of this ex-

periment for the working point 7-50 with those obtained

with the baseline transition weight (1/M), the results

Table 4 SER for the baseline and for the proposed system with two different parameter settings. The percentage improvement over
the baseline is presented in brackets

System SER DEVELSET (% error improvement) SER RT09 (% error improvement)

Baseline 4.11 ± 0.03 7.82 ± 0.07

Proposed system I (A, B) = (7–50) 2.38 ± 0.02
(42.09%)

6.61 ± 0.06
(15.36%)

Proposed system II (A, B) = (7–100) 2.2 ± 0.02
(46.47%)

6.44 ± 0.06
(17.54%)

Table 5 Detailed % SER results comparing baseline systems and the improvements for rt09. The last two columns show the overlap
speech/non-speech errors common to both of them

Meeting # Mic. SER baseline SER proposed method (system II 7–100) Overlap MISS + FA Error

EDI 20071128-1000 24 0.5 0.3 3.06 6.9

EDI 20071128-1500 24 1.6 1.86 7.01 12.1

IDI 20090128-1600 8 1.3 7.09 3.66 4.8

IDI 20090129-1000 8 4.8 2.65 3.54 9.6

NIST 20080201-1405 7 44.7 35.10 14.76 19.3

NIST 20080227-1501 7 2.4 1.84 8.41 8.8

NIST 20080307-0955 7 13.9 4.95 3.53 4.7

All 7.8 ± 0.07 6.44 ± 0.06 5.58 8.7

Improvement over the baseline 17.54%
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improve significantly 2.17% vs 2.38%. For comparison

purposes with other published works, we have calculated

the SER for the working point 7-50 for a subset of the

development set (the RT07 set) obtaining a value of

1.84% which is again outstanding and even better than

the result of the previous section. With these experi-

ments, we can show that both systems can be combined

in order to improve the results. With these experiments,

we now show that both working points are similarly

good ones. Both working points have been tested with

the test set giving the results presented in the last two

rows of Table 8. The first three rows in Table 8 repro-

duce the results of the previous section.

If we now analyze the results for the RT09 set, we can

see that at the point 7-50, K = 0.01 is significantly better

than the others and better than those using K = 1/M.

The results on the test set confirm that both methods

contribute to improvements in the system. The fact that

the results on the DEVELSET do not change for the 7-

100 system may be due to the already very low SER

which is quite difficult to decrease. In Table 9, we

present the results meeting by meeting for the RT-09

set. We can see that our proposed method improves in

all the meetings except one. This single meeting is the

one that create the biggest part of the error (SER 46.97),

and it is the meeting that has also the biggest overlap

error. The average SER for the rest of the meetings is

comparable or even better than the results for the baseline

and better than the state of the art (see Section 7.2 below).

6.2 Preliminary experiments with the fusion system and a

single stream

In this section, we present experiments fusing the transi-

tion weight scheme with the model selection scheme for

a single mfcc stream. Figure 18 presents results for the

DEVELSET using the fusion scheme. We can find sev-

eral sets of parameters that have a SER below the base-

line. But unfortunately, in our preliminary search, we

could not find a minimum better than the minimum

that we found using the model selection scheme. Both

optimums found are not statistically different (8.22 vs

8.14 SER). The results obtained for the RT09 set for

Table 6 Number of identified speakers, missed speakers, and false-alarm speakers for rt09 and all the systems tested

Meeting Baseline Proposed method (system II)

ID_SPK MISS FA ID_SPK MISS FA

EDI_20071128-1000 4 1 4 1

EDI_20071128-1500 4 4 1

IDI_20090128-1600 4 1 4 1

IDI_20090129-1000 4 4 1

NIST_20080201-1405 3 2 3 2 1

NIST_20080227-1501 6 6

NIST_20080307-0955 7 4 9 2

ALL 32 6 2 34 4 5

Fig. 15 SER for the DEVELSET for a single mfcc stream across different values maximum number of Gaussians and other parameters such as
number of Gaussians per cluster (parameter A) and minimum duration of a speaker turn
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these optimums are presented in Table 10 and are not

as good as the results that we get for a different mini-

mum in the DEVELSET (i.e., the 8.29 DEVELSET SER

in Table 10). The search for an optimum using the fu-

sion scheme is more complex since there are many pa-

rameters involved. In any case, the results for both the

development set and for the evaluation set improve sig-

nificantly the baseline system, both in the DEVELSET

and the RT09 set.

6.3 Comparing results with a single stream versus two

streams

Table 11 shows detailed results by meeting comparing

the results when using the tdoa features versus the case

in which we use a single mfcc stream. It can be noticed

a big performance degradation when the tdoa informa-

tion is not present. There is an exception with the meet-

ing NIST 20080201-1405 whose results are very bad

anyhow, but the results with a single mfcc stream are su-

perior. We think that this is due to the speakers moving

around the room that corrupts tdoa information.

7 Comparisons with other published results
7.1 Comparison with the AMI dataset

The databases used in this paper devel06, rt06, rt07, and

rt09 are not publicly available in full (they are only avail-

able to the institutions that participated in the corre-

sponding competitions). In order to test our proposals

with other publicly available databases, we have used a

subset of the AMI meeting corpus available from the

University of Edinburgh [48] just for testing without

changing the development set. The set of meetings used

(specified in Table 12) includes recordings only from the

Idiap Research Institute (IDIAP) site and has been used

by other authors [49].

Our results with those databases using the optimum

parameters obtained in our development set are pre-

sented in Table 13. The MISS+FA error is the same for

every experiment and equal to 12.64%.

If we analyse the results, we can see that using the first

alternative (changing just the transition cost parameter

from the baseline) and using the cost that was obtained

in the DEVELSET database does not improve perform-

ance. This result may easily be due to the mismatch

Table 7 SER for the DEVELSET and the RT09 set when using the model selection method and a single mfcc stream

Secs per
Gaussian

Minimum
duration

Maximum number of
Gaussians

DEVELS
ET

Relative improvement over
DEVELSET

RT09 Relative improvement
over RT09

(Baseline) 250 8.98% 21.21%

11 350 40 8.3% 8.19% 15.51% 36.75%

12 350 30 8.14% 10.31% 18.34% 15.64%

11 350 30 8.34% 7.67% 18.37% 15.4%

Fig. 16 SER across transition weight K for the DEVELSET for two working points used in previous section 7-100 and 7-50 and minimum
duration 250.
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between the development set and the test set. We think

that the transition cost is an important parameter but

that it has to be adjusted with a development set similar

to the test set. In contrast, the parameters obtained with

the DEVELSET database for the second approach separ-

ately (model selection) do improve in both cases (7–50)

and (7–100) demonstrating that the second method has

somehow obtained robust parameter settings. When the

model selection mechanism is joined with the transition

cost approach, there are also extra improvements for the

(7–100) case. The fact that there is no improvement

with the (7–50) set may be due again to the use of a differ-

ent database for which no development set has been

developed and the transition cost may be dependent on the

database and on the maximum number of Gaussians per

state. In any event, it can be demonstrated again that

both the transition cost and the model selection are

good strategies that may influence the results in a positive

manner.

7.2 Comparison with other RT multiple streams published

results

The best results on RT09 published up to now are the

ones by Nwe et al. [39], in their Table IV. Table 14

shows their published results compared to ours. It can

be noticed that our results are extremely bad for a single

meeting (the NIST 20080201-1405 meeting) possibly be-

cause the speakers in the meeting move around the

room. Our way of using the tdoa vector needs that the

speakers stand in one place; otherwise, the tdoa vector

corrupts the decision of the system. If we had to report

on the SER excluding meeting NIST 20080201-1405 our

results would be better than the published results.

Another comparison could be made if we consider the

RT07 set (8 meetings). We obtained a SER of 1.84% for this

subset, although they were part of our 28 development set

meetings. The best RT07 SER published up to now used as

a test set is 2.8% (see [39], Table III). In terms of computa-

tional complexity, our method is only 2.5 times more

Fig. 17 SER across transition weight K for the DEVELSET for the point 7-50 compared to SER of the baseline (1/M)

Table 8 Overall results for the develset and the RT09 set for different alternatives

System SER DEVELSET
(% error improvement)

SER RT09
(% error improvement)

Baseline 4.11 ± 0.03 7.81

Proposed system I (A,B) = (7–50) K = 1/M 2.38 ± 0.02
(42.09%)

6.61 ± 0.06
(15.36%)

Proposed system II (A,B) = (7–100) K = 1/M 2.2 ± 0.02
(46.47%)

6.44 ± 0.06
(17.54%)

(A, B) = (7–50) with K = 0.01 2.17 ± 0.02
(47.20%)

6.09 ± 0.06
(22.02%)

(A,B) = (7–100) with K = 0.01 2.22 ± 0.02
(45.98%)

6.6 ± 0.06
(15.49%)
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expensive than our baseline. The computational demand of

our baseline is just an iterative algorithm of segmenting

and merging process AHC. In contrast, the state of the art

system in [39] uses several steps one after the other. The

first step is by itself an initial clustering process using only

tdoa values but with two phases, a previous intra-pair seg-

mentation and clustering and a subsequent inter-pair clus-

tering fusion. The second step is similar to ours with a

cluster modelling and cluster merging process. But the

third step is quite complex since it includes 10 iterations of

training and clustering runs with different number of

Gaussians settings (55 different) and MAP adaptation for

each run. In total, there are 550 training and clustering

runs. Then, there is a process of consensus-based cluster-

ing. Although we do not have data to compare absolute

computational cost of both systems, we could say that our

model is much simpler and easier to reproduce.

7.3 Comparison with an x-vector system for a single channel

With the objective of comparing our system with the recent

proposals of neural network-based x-vectors, we have

processed our DEVELSET and tested our RT09 set with a sys-

tem that is available at and that was proposed as a baseline for

the Second DIHARD Challenge [4, 50, 51]. We used the same

waveform files that we have used in our research for a single-

vector stream and the voice activity detector of our system.

Table 15 presents our findings. The x-vector approach con-

sists of an x-vector extraction mechanism followed by a PLDA

scoring and an adaptation to the development database. The

system adjusts its thresholds to the development set. While

the SER results for the DEVELSET are better than our

results, the results with the test database are much worse.

It could be said that the x-vector system overfits its

training to the development database but that it has lower

prediction power in the test database. Table 16 presents

the results of this comparison meeting by meeting. The x-

vector system is worse than ours in 5 out of 7 meetings.

7.4 DER comparison with information bottleneck [9] for a

single channel

In [9], information bottleneck principle for a single

channel is proposed. Our DER results for a subset of the

Table 9 Detailed results for the RT-09 set with the best system ((A-B) = (7-50) with K = 0.01)

Meeting # Mic. SER baseline SER best method Overlap MISS + FA error

EDI 20071128-1000 24 0.5 0.24 3.06 6.9

EDI 20071128-1500 24 1.6 1.36 7.01 12.1

IDI 20090128-1600 8 1.3 0.59 3.66 4.8

IDI 20090129-1000 8 4.8 1.85 3.54 9.6

NIST 20080201-1405 7 44.7 46.97 14.76 19.3

NIST 20080227-1501 7 2.4 2.12 8.41 8.8

NIST 20080307-0955 7 13.9 4.89 3.53 4.7

All 7.8 ± 0.07 6.09 ± 0.06 5.58 8.7

Improvement over the baseline 22.02%

Fig. 18 SER for the DEVELSET using a single mfcc stream across the maximum number of Gaussians and different sets of parameters
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DEVELSET, the devel06 set (see Table 17) are 12.24%

compared to the weighted published results of [9]

16.53% (see Table 1). For the RT06 set, our DER is

21.56% compared to 22.8% for their system. However, it

is fair to mention that the information bottleneck

method is faster than our method.

8 Discussion
In the first part of the paper, we have analyzed the effect

of the transition cost on the SER by demonstrating that

there is a strong influence of the transition cost on the

performance of the system both for two streams and for

a single stream but the results should be taken carefully.

The tuning transition weight K may depends on the

quality of the models (as shown in the last part of the

paper) and on the minimum duration applied. We have

discovered that the method that we were using previ-

ously (1/M) is not supported by any solid theory as it

varies during the diarization process and that it is better

to look for a good match of the transition weight for the

problem at hand. In summary, the transition weight K

should be adapted to the development data. The adapta-

tion should explore also possible variations on the

minimum duration applied to a speaker turn. Both adap-

tations should be done in tandem. The experiments

done with a single stream (mfcc) demonstrate also the

validity of our proposal being able to improve the rela-

tive SER in the test set by 42%.

Published works on speaker diarization [39] showed

some evidence that the number of parameters used to

model a speaker is a significant topic. This is also known

from other areas of pattern recognition such as speaker

verification or speech recognition. The solution in [39]

uses a consensus method based on many repetitions of

the algorithm and it is very computationally demanding.

We have researched and proposed a simple modifica-

tion to our previous baseline system that consistently

improves the results significantly without dramatically

increasing the computation cost. Instead of defining the

model only at the initialization step based on empirical

data and sticking to it throughout the entire process as

Table 10 Results using a single mfcc stream and all the proposed methods

System SER
DEVELSET (±
0.04)

Relative improvement over
baseline

SER
RT09 (±
0.09)

Relative improvement over
baseline

Baseline 8.98% 21.21%

Transition weight (transition weight, minimum
duration) (0.001-350)

8.29 8.3% 14.87% 42%

Model selection (A, B, minimum duration)
(12-30-350)

8.14% 10.31% 18.34% 15.64%

Model selection (A, B, minimum duration)
(11-40-350)

8.3% 8.19% 15.51% 36.75%

Fusion (transition weight, A,B, minimum duration)
(0.001-11-30-350)

8.22% 9.2% 20.62% 2.8%

Fusion (transition weight, A,B, minimum duration)
(0.01-11-30-350)

8.4% 6.9% 18.70% 13.4%

Fusion (transition weight, A, B, minimum duration)
(0.001-11-40-350)

8.44% 6.4% 16.64% 27.46%

Table 11 Results meeting by meeting comparing the system
that uses TDOAS versus the system that does not use it

Meeting SER two streams SER single stream

EDI 20071128-1000 0.24 1.8

EDI 20071128-1500 1.36 11.77

IDI 20090128-1600 0.59 15.94

IDI 20090129-1000 1.85 12.47

NIST 20080201-1405 46.97 40.16

NIST 20080227-1501 2.12 10.31

NIST 20080307-0955 4.89 20.06

Overall SER 6.09 14.87

Table 12 List of meetings from AMI meeting corpus

# Set Meeting # of microphones

1 AMI single site IS1000a 12

2 IS1001a 12

3 IS1001b 12

4 IS1001c 12

5 IS1003d 12

6 IS1006b 12

7 IS1006d 12

8 IS1008a 12

9 IS1008b 12

10 IS1008c 12

11 IS1008d 12
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in previously published results or calculating it based

only on the number of frames assigned to the speaker,

we have chosen it dynamically depending on the dur-

ation of the current hypothesis and setting a maximum

number of Gaussians. This process has been applied to

the mfcc stream leaving the method applied to the tdoa

stream unchanged. The strategy used to prevent overfit-

ting has been to do hyper parameter tuning based on a

large set of meetings. The set of meetings come from

many different places, rooms, speakers, time of record-

ings, types of microphones, etc.

We have determined two working points of our pa-

rameters and have achieved improvements with this

method in all sets that we have used. Our algorithm has

resulted in astonishing improvements using only 2.5

times the computation time compared to the baseline

particularly for the development set (a 42.09% reduction

in speaker error). The algorithm also provides an

optimum at 4 times the computation time of the base-

line (a 46.47% reduction in speaker error). The improve-

ments in SER for the test set with the model selection

technique is more modest (17.54%) but still relevant and

demonstrates the validity of the approach.

We have tested also the model selection proposal with

a single stream meeting obtaining improved perform-

ance over the baseline, both in the development set and

the test set.

When both methods are combined together, the re-

sults go down to 2.17% and 6.09% SER for the

development and the test set respectively (a relative im-

provement of 47.20% and 22.02%). The SER obtained for

a subset of the development set, the RT07 set (1.84%) is

outstanding without the need for complicated algorithms

and using a very simple modification of our baseline.

If we had to report on the DER obtained for the RT09

set, we should notice that it is still high but we should

be aware that a large part of it is due to overlap and

MISS+FA error (5.58% overlap and a MISS+FA error of

8.7%) and it heavily depends on one single meeting

(14.76% overlap and 19,3% total MISS-FA error). One

possible reason for it is that our method assumes that

the speakers do not move from their places. Another

possible reason may be due to overlap. Our algorithm

does not take overlap into account because there is only

one hypothesized output for every frame. The fact that

this meeting has 14.76% of overlap surely corrupts our

models. The overlap error is still a problem that remains

mostly unsolved [49, 52, 53]. Taking into account that

the biggest part of our DER error comes from overlap and

speech/non-speech detection, our efforts should go in this

direction in the future. If we had to report on SER results

for RT09 without taking into account this meeting, our

SER results would be better than the state of the art.

We have extrapolated our approach to a new test data-

base (AMI), demonstrating that the proposed methods

consistently improve the performance of the baseline

method although again a tunning of the K parameter is

needed.

Table 13 Overall results for the AMI single site dataset and the RT09 set for different alternatives

System SER AMI single site (% error improvement)

Baseline 22.05

Transition cost K = 3 22.47 (− 1.90)

Proposed system I (A,B) = (7–50) K = 1/M 17.54 (20.45)

Proposed system II (A,B) = (7–100) K = 1/M 16.51 (25.12)

(A,B) = (7–50) with K = 0.01 19.71 (10.61)

(A,B) = (7–100) with K = 0.01 15.78 (28.44)

Table 14 Comparison of our results for RT09 with other published results [39]

Meeting # of scored speaker seconds SER New et al. [39] Table IV SER our method

EDI 20071128-1000 934.8 1.8 0.24

EDI 20071128-1500 777.93 2.3 1.36

IDI 20090128-1600 1207.97 0.7 0.59

IDI 20090129-1000 957.82 2.6 1.85

NIST 20080201-1405 574.97 7.4 46.97

NIST 20080227-1501 675.17 1.6 2.12

NIST 20080307-0955 804.2 3.6 4.89

Overall SER 2.5 6.09

Weigthed SER excluding NIST 20080201-1405 meeting 2.01 1.7
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Finally, we made an effort to compare our system with

a more recent x-vector diarization system. While the

SER of the x-vector system is lower than ours for the de-

velopment set, the results for the test set are much

higher indicating that the x-vector system is not working

well with unseen data. We have compared also the re-

sults of our single-stream system with the information

bottlenect system in [9] obtaining a superior perform-

ance on a subset of the DEVELSET.

9 Conclusions
In this paper, we have demonstrated that a new transi-

tion weight and the minimum duration of a cluster are

important parameters that should be explored in diariza-

tion algorithms. We have also investigated a method to

automatically determine the number of GMMs needed

to model a speaker. We have established a system that

takes into account both the duration of the speaker’s

speech and the maximum number of Gaussians used.

We have added it to our current diarization algorithm

and tested it and demonstrated its value. We have ob-

tained improvements in all sets used, both development

and test, and reached relative improvement values ran-

ging from 17.54 to 46.47% in speaker error for the test

set and development set respectively. When looking for

the optimum of these parameters, significant improve-

ments can be made. Our final combined methods obtain

47.2% and 22.02 % relative improvements in SER for the

development and test set, respectively. The results ob-

tained are particularly good with a subset of the develop-

ment set, the RT07 set. Most of the remaining errors of

SER for the test set concern a single meeting that has a

lot of overlap that corrupts our speaker models. When

our methods are applied to a new publicly available

database, they show an improvement in performance of

28.44% relative error against the baseline method. Pre-

liminary experiments with a single-stream (mfcc) en-

dorse the validity of our findings. Comparisons with an

x-vector system deliver superior performance of our sys-

tem when tested on unseen data.

10 Methods
The aim of this study is to revise, analyze, and improve

some algorithms for speaker diarization of meetings with

multiple microphone recordings. The meetings are held

in different places and different cities as established in

NIST evaluations. The participants in each meeting are

variable in number and depend on the meeting place

and date of recording. The number of participants is un-

known for the algorithms and one of the objectives of

the algorithms is to discover it. The characteristics of

the participants are detailed in the NIST documents al-

though their identity remains anonymous. All of the par-

ticipants in the meeting have approved the availability of

their recordings for research purposes.

The materials obtained after the recording are the files

containing the digitized microphone outputs. The re-

cordings are processed by the algorithms proposed in

this paper. The statistical analysis tool to present the re-

sults is the standard evaluation script provided by NIST

and it is available on their web page [46].

Abbreviations

NIST: National Institute of Standards; RT09: NIST Rich Transcription Evaluation
Campaign in 2009; RT07: NIST Rich Transcription Evaluation Campaign in
2007; RT06: NIST Rich Transcription Evaluation Campaign in 2006; RT02-
05: NIST Rich Transcription Evaluation Campaign from 2002 to 2005; RT: Rich
transcription; VB: Variational Bayes; AMI: Augmented multiparty interaction;
MDM: Multiple distant microphones; DIHARD: Diarization is hard; MFCC: Mel
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Table 15 Comparison of the results of our system with an x-vector system

System SER
DEVELSET (± 0.04) (%)

SER
RT09 (± 0.09) (%)

Transition weight (Transition weight, minimum duration) (0.001-350) 8.29 14.87

Model selection (A,B, minimum duration)
(11-40-350)

8.3 15.51

x-vector [50] 5.6 29.04

Table 16 Detailed comparison for the RT09 of our best system
with an x-vector system

Meeting SER x-vector SER our best method

EDI 20071128-1000 29.16 1.8

EDI 20071128-1500 43.43 11.77

IDI 20090128-1600 26.51 15.94

IDI 20090129-1000 5.91 12.47

NIST 20080201-1405 39.26 40.16

NIST 20080227-1501 42.31 10.31

NIST 20080307-0955 53.9 20.06

Overall SER 29.04 14.87
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