
Analysis of Transport Measurements
Over a Local Area Network
Sharon Heatley
Dan Stokesberry

A HE OPEN SYSTEMS INTERCONNECTION (OSI)
protocol standards that have been under development since
1979 promise the capability to interconnect systems from dif-
ferent vendors worldwide without developing special hard-
ware or software; however, there is concern whether imple-
mentations of these communications protocols can perform
well enough to meet the end-to-end delay and throughput re-
quirements of the users of the communications service. In the
past, when data communications took place at speeds of be-
tween 110 and 9,600 b/s, the communications channel itself
was often the bottleneck. Today, the advent of high-speed local
area networks and optical fiber networks has moved the bottle-
neck to the communications processing part of the system. So,
instead of being able to achieve 10 Mb/s or 100 Mb/s, the user
can at best achieve the maximum throughput and end-to-end
delay available from his communications protocol processor.
These throughput and end-to-end delays are often disappoint-
ing. It has become fashionable to blame the protocol standards
for this poor performance, but there has been insufficient evi-
dence to date to determine how much blame should be given to
the protocol and how much belongs to a particular implemen-
tation of the protocol. In this paper, we identify some of the im-
plementation factors that affect the performance of OS1 proto-
cols.

Today, the advent of high-speed local
area networks and optical fiber
networks has moved the bottleneck to
the communications processing part of
the system.

The relationship between OS1 protocols is described by the
seven-layer reference model [I] shown in Figure I . Many im-
plementations exhibit a break between the top three layers and
the bottom four layers. The top three layers are often imple-
mented as software that runs on the host processor, while the
bottom four layers are often implemented on a front-end pro-
cessor that is plugged into the backplane of the host computer.

These bottom four layers, Transport and below, provide the
service of reliable message transmission between Transport
users. The Transport layer is the first layer which provides an
end-to-end connection through the network. (In a full seven
layer stack, the Transport user would be the Session layer.) The
performance of implementations of this transmission service
is a particularly interesting subject.

Presentation

Session

_. - -

Transport

Network

Data Link

Physical

Fig. 1. OSI protocol stack

This paper has two purposes:
To report the end-to-end delay and maximum throughput
for a typical implementation of the bottom four layers so
that readers have an idea of the performance currently
available
To identify the factors that affect performance in imple-
mentations of these layers of the OS1 protocols.
The measurements reported were obtained on Intel 3101

microcomputer systems. We measured iNA960 release 2 [2] ,
the Intel implementation of the lower four OS1 layers (Trans-

'Certain commercial equipment is identified in this paper in order
to adequately specify the experimental procedure. Such identification
does not imply recommendation or endorsement by the National Insti-
tute of Standards and Technology, nor does it imply thdt the equip-
ment identified is necessarily the best available for the purpose.

16 June 1989 - IEEE Communications Magazine U.S. Government work not protected by U.S. copyright.

port, Network, Data Link, and Physical) residing on a 552a
front-end communications processor. The user of the Trans-
port services runs on the 286/10 host processor. The 310
nodes are connected via an IEEE 802.3 Carrier Sense Multi-
ple Access with Collision Detection (CSMA/CD) local area
network [3]. The end-to-end delay (user-to-user) and maxi-
mum throughput for this commercial implementation are
typical of the performance currently available. The factors
that affect performance are identified, and the relationship
between factors are expressed in equations. For throughput,
we develop an equation that relates processing time, user
message size, and network packet size to throughput. This
equation gives the protocol implementor a tool to investi-
gate how a particular change in design (i.e., faster processor,
fewer copies of data, larger network packets) will quantita-
tively change the throughput.

In this paper, we measure the performance of the Intel
implementation of Transport Class 4 over a local area net-
work. The performance of the Motorola implementation of
Transport Class 4 over a local area network has also been
measured [4]. The performance of implementations of
Transport Class 4 over a satellite link [5] and over concate-
nated X.25 networks [6] has also been reported. In addition,
there is a study comparing TCP and Transport Class 4 per-
formance over both a local area network and on an X.25 net-
work [7]. This is not intended to be an exhaustive list but
simply a few related papers which the reader may find inter-
esting.

Protocol Overview

Transport

The Transport, Network, Data Link, and Physical protocols
are described below.

There are five classes of connection-oriented Transport [SI:
Classes 0-4, and there is also a Connectionless Transport [9]
protocol. Transport Class 4 offers the most error detection and
correction. Connectionless Transport is a “best effort”
datagram service, i.e.. there is no guarantee of delivery of mes-
sages. The implementation we measured, iNA960, contained
two Transport protocols: Transport Class 4 and Transport
Datagram. Transport Datagram is an Intel proprietary proto-
col. which offers the same services as Connectionless Trans-
port. Figure 2 shows an overview of the services provided by
iNA960. We made measurements of Transport Class 4 and
Transport Datagram services and so we will describe both in
more detail.

Transport Class 4 offers virtual circuits, error detection and
recovery, flow control, segmentation of messages, and in-order

- External
Data Link
Interface

Network

Data Link

Physical

User Process

Class4 Datagram

Connectionless

IEEE 802.3

E
Q,

- E

Fig. 2. Overview of iNA960 services

delivery of messages. One Transport Class 4 entity communi-
cates with another via Transport Protocol Data Units
(TPDUs). The error detection and recovery and flow control
functions are accomplished using Acknowledge (AK) TPDUs
transmitted by the receiving station. Each Data (DT) TPDU
has a field containing a sequence number. Every AK TPDU
contains the value of the next sequence number expected by
the receiver, thereby acknowledging the receipt of all DT
TPDUs with lower sequence numbers. The AK also contains a
credit field. The transmitting station is allowed to send DT
TPDUs with sequence number K where:

i lK seq. no. I K < (AK seq. no. + AK credit)

This range of permitted sequence numbers is known as the
window. There are retransmission timers on the transmitting
station, which are restarted when AKs are received. If an AK is
not received before the retransmission timer expires, then un-
acknowledged DT TPDUs are retransmitted. The default
retransmission timer value in iNA960 is 500 ms.

The credit returned in AKs in the iNA960 implementation
is based on the amount of receive buffer space available at the
Transport level. In addition, in the iNA960 implementation,
the credit may not be larger than the maximum Transport win-
dow parameter (default 15) or less than the minimum Trans-
port credit parameter (default 1). Since the minimum credit is
one, each AK always contains permission to send at least one
DT so that the window never closes. The Transport Class 4
standard, however, does not specify that an AK must be sent
for each DT received. In our iNA960 experiments we observed
DT:AK ratios of 1 : 1 to 5: 1.

Transport Class 4 has a maximum TPDU size parameter.
The iNA960 default for this parameter is 2,048 octets. The ac-
tual TPDU size used is the minimum of the maximum TPDU
size Transport parameter and the packet size of the underlying
network minus lower layer headers. Transport Class 4 has an
optional checksum to guarantee end-to-end data integrity. In
all of our experiments, the checksum was turned off.

In order to understand the results of
the experiments, it is important to
understand segmentation.

In order to understand the results of the experiments, it is
important to understand segmentation. Messages passed by

Host
286 I 1 0

Communications
Board 552A

the user to Transport are called Transport
Service Data Units (TSDUs). The user may
wish to send TSDUs that are too large to
send over the communications network in a
single packet. An IEEE 802.3 LAN, for ex-
ample, limits the maximum Data Link
frame size to 1.5 18 octets. One of the ser-
vices offered by Transport Class 4 is to seg-
ment into multiple TPDUs those TSDUs
which are too large to fit into network pack-
ets, where each TPDU fits into a single net-
work packet. Thus, the user of Transport
Class 4 can pass arbitrarily large TSDUs to
Transport without knowledge of the net-
work packet size.

Transport Datagram and Connection-
less Transport do not segment messages, so
that users of these services must ensure

June 1989 - IEEE Communications Magazine 17

that the size of the message is smaller than the maximum which
can be sent on the network. These protocols do not guarantee
delivery and also do not guarantee that messages are delivered
in order. The protocols therefore do not use acknowledgments
or timers.

Network
A Connectionless Internet Protocol (IP) [101 standard has been
developed for the Network layer. IP has the responsibility for
routing and relaying packets in an Internet environment, i.e.,
different networks concatenated together. When the iNA960
software is configured, the Network protocol can be chosen to
be either Connectionless IP or the null IP header. If the null IP
header is chosen, then no IP processing is done. Since all exper-
iments were done on a single LAN, the IP functions are not
needed; but we did experiments with both options in order to
determine the additional overhead added by this implementa-
tion of the IP layer.

Data Link
For local area networks, the Data Link layer is divided into

two sublayers. The top sublayer is the Logical Link Control
(LLC) [1 11. LLC type 1 provides datagram service, while LLC
type 2 provides a connection-oriented service. The bottom
sublayer is the Medium Access Control (MAC) layer. There is a
family of MAC protocols-IEEE 802.3 (CSMAICD) and IEEE
802.4 [121 (token bus) are members. FDDI [131 is another ex-
ample of a MAC protocol.

For these experiments, connectionless LLC type 1 and the
IEEE 802.3 CSMNCD MAC protocol are used. In the iNA960
implementation, the LLC protocol has an external interface so
that an application running on the host board may directly re-
quest LLC datagram service without using the services of ei-
ther Transport or Network. This service, which we will call Ex-
ternal Data Link service, is like the Transport Datagram
service in two respects: it does not guarantee delivery and it
does not segment messages. The messages passed by the user to
the LLC layer are called Link Service Data Units (LSDUs).

Physical
The Physical layer protocols specify how the individual bits

are to be sent on the physical channel. The IEEE 802.3, 802.4,
and the FDDI [141 [151 standards specify the Physical layer
protocols.

Experimental Environment

Hardware/Software Overview
The Intel 3 10 microcomputer system, as shown in Figure 3,

includes an Intel 286110 host board, 1 Mbyte of memory, and
an Intel 5 52a communications front-end board connected to-
gether by the Intel Multibus. The host board contains an 80286
processor running at a clock rate of 6 MHz. In our experiments,
the 2861 10 host runs the traffic generation software, which uses
the communication services of the front-end board and also
gathers statistics on performance. The 286110 hosts in all sys-
tems are connected to a central clock developed at NIST. This
clock makes it possible to measure end-to-end delay to within
0.1 ms.

The 552a board runs the iNA960 communications soft-
ware, which is an implementation of the lower four OS1 layers.
This board contains an 80 186 processor running at a clock rate

of 8 MHz, an 82586 LAN coprocessor, an 82501 serial inter-
face, and 256 kbytes af local memory. The 80 1 86 executes code
that implements the Transport, Network, and Data Link (LLC
Type 1) protocols. The 82586 LAN coprocessor executes the
IEEE 802.3 CSMNCD MAC protocol. It transmits and re-
ceives data over the IEEE 802.3 medium through the 82501
serial interface. The 286110 host and the 552a front-end com-
municate, using the Multibus Interprocessor Protocol (MIP),
by writing messages into the Multibus memory and then inter-
rupting the processor on the other board to indicate that a mes-
sage has been written.

The host and front-end can operate independently. The
front-end board works on the host’s communication service re-
quests while the host does other processing. On the front-end
board, the 80186 executing the Transport, Network and Data
Link protocols and the 82586 LAN coprocessor can also oper-
ate independently. Each 3 10 system contains three indepen-
dently operating processors. When there is a transmission be-
tween two systems, six independently operating processors are
involved.

2861 10

80286
1.1 MIPS

3 m /j 552A

80286
0.8 MIPS

kbytes

82586

A

Fig. 3. Intel 310 system overview.

Buffer Management
The iNA960 implementation reserves a number of Data

Link buffers in the 256-kbyte local memory on the 552a board.
The size of each transmit buffer is 1,500 octets. This is large
enough to store the memory image of a full IEEE 802.3 frame.
Receive buffers are 256 octets each: these buffers are chained
together to store the memory image of a received Data Link
frame. The number of transmit and receive buffers reserved
are configuration parameters. The default number of transmit
buffers is 5 and the default number of receive buffers is 255.

User processes on the host requesting Transport services or
Data Link services from iNA960 allocate data buffers in
Multibus memory. When the user sends iNA960 a request to
transmit data, the request contains a pointer to an associated
Multibus data buffer that contains the user message (TSDU or
LSDU). The data in the user data buffer is copied by the
iNA960 software into one or more Data Link transmit buffers
on the 552a board. More than one Data Link transmit buffer is
used if Transport Class 4 segments the TSDU into more than
one TPDU. The data is then sent out on the LAN by the 82586
LAN Coprocessor. On the receiving side, the same set of events
happens in reverse. The 82586 LAN coprocessor receives the
data and stores it in Data Link receive buffers. The data in the
Data Link receive buffers is copied into user receive buffers
previously posted by the host user process. When the buffers
are full or when they contain a complete user message, they are
returned to the user on the host.

18 June 1989 - IEEE Communications Magazine

l6 T Experimental Results
Unless otherwise noted, iNA960 default values are used for

all parameters in these experiments.

DeZuy Measurements
For the first set of experiments, we report the end-to-end

delay for Transport Class 4, Transport Datagram, and External
Data Link services. This delay is measured from transmitting
host user process to receiving host user process and is the mini-
mum delay that can be achieved when one message is transmit-
ted in an idle system (i.e., there are no queuing delays any-
where in the system). We also compare Transport delays
measured when using IP with those obtained when using the
null IP header in order to determine the additional delay asso-
ciated with this implementation of the IP protocol.

~

W e also compare Transport delays
measured when using IP with those
obtained when using the null IP header
in order to determine the additional
delay associated with this
implementation of the IP protocol.

Figure 4 shows one-way delay versus message size for
Transport Class 4 with a Null IP header (TP4/Null), Transport
Datagram with a Null IP header (TPD/Null), and External
Data Link (EDL) services. The range of message sizes is 16 to
1,500 octets. For these message sizes, all user messages fit into
a single network packet. The curves in Figure 4 can be de-
scribed by straight lines of the form T = m * x + b, where Tis
the delay in milliseconds and x is the message size in octets.
The best estimates for m and b are:

TABLE I. . . ._ _ _

TPD/NuII
EDL 0.0045

The y-intercept (i.e., b) for each line is the amount of delay that
is invariant to the size of the message. This includes:

Communications between the host board and its communi-
cations board at the sending side
The processing on the communications board needed to
send a message
The processing on the receiving communications board
needed to receive a message
Communication between the communications board and
the host board at the receiving side
The slope of each line (i.e., m) is the amount of processing

that depends on the message size. This processing includes the
copy from Multibus memory to local memory on the commu-
nications board (which is done under the control of the com-
munications CPU), transmission of the message, and the copy
from local memory to Multibus memory on the receive side.
For Transport Class 4 with IP (TP4/IP) and Transport
Datagram with IP (TPD/IP), the slope of the lines are the same

' 0 200 400 600 800 1,000 1,200 1,400
Octets

Fig. 4. One-way delay vs. message size.

as for TP4/Null and TPD/Null, but the y-intercept is one
millisecond more. The IP layer adds about an additional
millisecond of delay.

Figure 5 shows one-way delay versus message size for TP4/
IP and TP4/Null. The range of message sizes is from 16 to
about 1 1,000 octets. As noted above, Transport Class 4 can re-
ceive arbitrarily large messages from the user and segment
them into TPDUs, each fitting into one network packet. The
front-end does a certain amount of processing for each TPDU
sent or received. This processing causes the jumps in the delay
curves that occur at the points where the TSDU or user mes-
sage is segmented into an additional TPDU. Since the data link
level buffers are 1,500 octets long, each TPDU must fit into a
1,500 octet network packet. When there is a null IP header,
1,488 octets of Transport user data (and 12 octets of Transport
header) fit into one TPDU. When there is an active IP layer,
1,40 1 octets of Transport user data fit into one TPDU. The
number is smaller for the IP case because of the space required
for the IP header. Thus, for the Transport Class 4 with an IP
layer, a jump in one way delay occurs between 1,401 and
1,402-octet messages since a 1,401-octet message fits into one
TPDU and is sent in one network packet but a 1,402-octet mes-
sage must be segmented into two TPDUs and sent in two net-
work packets. A similar jump occurs between 1401 * k and
(1401 * k) + I where k = 2, 3.... The average jump in delay for
processing an additional TPDU for k = I . . . 7 is about 2.5 ms
for TPWIP and 2.0 ms for TP4/Null.

50 7 T++

- -
-+- TPUIP

TPUNuII +

04 I
0 2 4 6 8 10 12

Octets (thousands)

Fig. 5. One-way delay vs. message size.

Throughput Experiments
Throughput is reported for TPWIP and TP4/Null. Through-

put is defined as the total number of octets sent divided by the
time required to send them. Time is measured from when the

June 1989 - IEEE Communications Magazine 19

first TSDU is sent by the sending user process until the last
TSDU is received by the receiving user process. The through-
put measurements in this paper were done for memory-to-
memory bulk transfer applications. In these experiments, the
traffic generation process on the host boards allocate a pool of
one or more user transmit buffers on the transmit side and a
pool of one or more user receive buffers on the receive side.
Each buffer contains one user message. As soon as the data in a
user transmit buffer is acknowledged at the Transport level,
the transmit buffer is returned to the traffic process on the host.
This process immediately returns the buffer to iNA960 with
another transmit request. Thus, the pool of user transmit buff-
ers circulates between iNA960 and the traffic process. In a sim-
ilar way, the user receive buffers circulate between iNA960 and
the receiving traffic process. If there is more than one buffer in
the transmit or receive buffer pool then host processing and
communications processing can be overlapped.

Experiments were done to determine the values of Trans-
port Class 4 parameters which resulted in the best throughput
for a memory-to-memory bulk data transfer. The parameters
which were “tuned” for the bulk data transfer situation were
number of user transmit buffers, number of user receive buff-
ers, maximum window size, and minimum retransmission
timer setting. For the maximum window size and minimum
retransmission timer size, the iNA960 default values of 15 and
500 ms are adequate for maximum throughput. At least two
transmit buffers and three receive buffers are required for
maximum throughput. (No transmissions errors or dropped
packets occurred in our experiments. The retransmission timer
has no effect on performance unless it is too short.)

Figure 6 shows throughput versus message size for TPUIP
and TP4/Null. Message size varies from 100 octets to 25,000
octets. For all experiments reported in this section, there are 10
user transmit buffers and 10 user receive buffers. For each user
message, a certain amount of processing is required to pass the
message from the user process to iNA960 at the transmitting
side and from iNA960 to the user process at the receive side.
With 100 octet messages, this communication has to be done
10,000 times to send one Megabyte of data. With 10,000 octet
messages, this communication has to be done 100 times to
send one Megabyte of data. Reducing this processing causes
throughput to increase and, therefore, as the user message size
increases, the throughput generally goes up.

3ooT

.

O f : : : : : : : : : : : : ‘
0 2 4 6 8 10 12 14 16 18 20 22 24 26

Octets (thousands)

must be sent in a separate TPDU. To send one Megabyte of
data with 1,40 1-octet user messages, only 7 14 TPDUs are sent.
This reduces the amount of TPDU processing and increases
throughput.

The throughput drops sharply whenever the user message is
segmented into an additional TPDU, resulting in additional
processing for each user message. For example, for TPWIP,
when the message size is 1,401, one TPDU is transmitted for
each user message. When the message size is 1,402, two
TPDUs must be transmitted for each user message although
the second TPDU contains only one octet of user data. The
drop in throughput shown in Figure 6 is due to the additional
time required to process the second TPDU. The maximum
throughput measured with TPWIP and a user message size of
25,000 octets is 220 kbytes/s (1.76 Mb/s). The throughput for
TP4/Null and a user message size of 25,000 octets is 276
kbytes/s (2.2 Mb/s). This difference in throughput is due to the
extra processing time required to execute the code that imple-
ments the IP protocol.

In a previous paper we developed simple models which re-
late user message size, processing times, and maximum user
data contained in a TPDU to throughput and messages per sec-
ond [161. These models assume that either the sending or re-
ceiving 801 86 (the front-end which processes the protocols
Transport Class 4, IP, and LLC type) is the bottleneck in the
system. The other two assumptions made are that the bottle-
neck processor is continuously busy and that no errors or
retransmissions occur. The models are shown below:

THR(x) = x/(A * x + B * ceil(x/M) + C)

and

MPS(.x) = 1/(A * x + B * ceil(x/M) + C)

where x is the user message size, THR(x) is throughput in OC-
tets per second achieved for user message size x, MPS(x) is the
number of messages per second achieved for user message size
x, and Mis the maximum amount of user data that can be con-
tained in a TPDU.

Ceil(x/M) is the smallest integer greater than x/M. Therefore,
ceil(x/M) is the number of TPDUs required to transmit a user
message of size x. A, B, and C are processing times on the bot-
tleneck processor. A is the processing done per octet. This pro-
cessing includes the copy between the local memory and the
Multibus memory, which is done under the control of the com-
munications processor and may include the overhead associat-
ed with the copy between the local memory and the FIFO in the
82586 coprocessor. Transport checksum is OFF for these ex-
periments, so there is no checksum processing per octet. B is
the processing done for each TPDU in the Transport, IP, and
LLC layers (including AK processing). Cis the processing that
occurs on a per user message basis, such as the communication
between the host and the front-end.

By using curve fitting techniques, we can fit the throughput
model to the measured data shown in Figure 6 and estimate the
parameters A, B, and C [161.

Fig. 6. Throughput vs. message size.
TABLE II.

There is another factor that increases throughput as the user
message size increases from 100 octets to the maximum num-
ber of user octets in a TPDU (1,40 1 octets for TPWIP, 1,488
for TP41Null). To send one Megabyte of data, with 100 octet
user messages, 10,000 TPDUs are sent since each user message

20 June 1989 - IEEE Communications Magazine

Figure 7 shows the live throughput data and the estimated
data using the above equation for TP4lIP and TP4Null. The
difference between the live and estimated data is less than 7%.

Actual Est.
TPUIP 0 -
TP4/NuII A

O H
0 2 4 6 8 10 12 14 16 18 20 22 24 26

Octets (thousands)

Fig. 7. Throughput vs. message size.

Now that we have this throughput equation, we can see how
sensitive throughput is to changes in the parameters A, B, C,
and M. Figure 8 shows the effects on throughput of keeping the
processing per TPDU and the processing per message constant
and varying the amount of processing per octet. This illustrates
the importance of minimizing the number of copies required.
Figure 9 shows the effects on throughput of keeping the pro-
cessing per message and the processing per octet constant and
varying the processing per TPDU. In our protocol overview
section, we noted that in iNA960, the DT:AK ratio vaned from
1 : 1 to 5: 1. One way to decrease the processing per TPDU is to
increase the DT:AK ratio since AK processing is included in B.
Figure 10 shows the effects on throughput of keeping the other
processing the same and varying the amount of processing per
user message. When user message size is small in Figure 10, the
effect on throughput of varying the user message processing
can be substantial. As the user message size increases, more
TPDUs and more octets are transmitted for each user message.
The processing time per TPDU and per octet then dominate
the throughput. The effect of varying the user message process-
ing time becomes negligible for large user message sizes.

m0.c

2.11 mstTPDU-

250

200

150

100

50

0
0 2 . 4 6 8 10 12 14 16 18 20

Octets (thousands)

All curyes: 0.0014 mswtet, 4.75 mslmwsage

Fig. 9. Throughput vs. processing per TPDU.

reasonable. These assumptions are that there is a token bus
IEEE 802.4 MAC processor which operates independently
from the 801 86 processor and that the Transport, IP, and LLC
processing on the 80186 is the bottleneck in the system. We
also assume there are no retransmissions (and, in this case, no
lost tokens) and that the bottleneck processor is continuously
busy. If these assumptions are met, then a maximum user data
per TPDU of 8,000 octets on a token bus network would allow
a throughput of about 350,000 octetsk for user message sizes of
10,000.

f 200

6.75 rnshnessage
Q 100

0 2 4 6 8 10 12 14 16 18 20

Octets (thousands)

All curyes: 0.0014 msloctet, 4.11 mslTPDU

Fig. IO. Throughput vs. processing per user message.

As x (the user message size) becomes larger, the throughput
approaches I/(A + B/M). For the case of TPUIP, this maxi-
mum throughput for very large message sizes is calculated to be
230,947 octetds. As shown in Figure 6, the measured through-
put approaches this line. If we substitute 8,000 for M in the
equation above, we get a maximum throughput of about
500,000 octetsls or 4 Mbls for a token bus network.

0 2 4 6 8 10 12 14 16 18 20

Octets (thousands)

All ~ U N W : 4:ll msKPDU, 4.75 mdmessage

Fig. 8. Throughput vs. processing per octet.

Experiments were done in which the maximum TPDU size
(M) was vaned and ?hroughput was measured. In these experi-
ments, the user message size is 10,000 bytes. In Figure 1 1,
measurements are compared with the data predicted by the
throughput equation for throughput versus maximum user
data per TPDU. Since the IEEE 802.4 token bus standard has a
maximum packet size of 8,018 octets, the graph has been ex-
tended out to 8,000 octets of user data per TPDU. If we can
make the same assumptions in a token bus system as for an
IEEE 802.3 system, then extending the graph in this way seems

-
2

5
e
s!

!j
Y

Actual Est.
TP4/lP A - -.

8

0 1 2 3 4 5 6 7 8

Octets (thousands)

Fig. 11. Throughput vs. maximum user data per TPDU.

June 1989 - IEEE Communications Magazine 21

Figure 12 shows the excellent correlation between the equa-
tion for messages per second and the measurements for the
case of TPUIP and TP4RVull. The maximum number of mes-
sages per second occurs as the message size approaches zero.
The number of messages per second then approaches I/(B +
C). For TP4/IP, this gives a maximum message rate of 113
message& and, for TP4/Null, 125 message&. The measured
message rate for 100 byte messages is 100 messagesh for TP4/
IP and 122 message& for TP4RVull.

150T
Actual Est.

TPYIP 0 -
TP4/Nu,l A"...I

I
2 4 6 8 10

O J

Octets (thousands)

Fig. 12. Message rate vs. message size.

Conclusions
As noted in the introduction, there is concern whether im-

plementations of OS1 communication protocols can meet the
low end-to-end delay and high throughput requirements of cer-
tain military and industrial users. It is important to note that
all transport level protocols offering the same services as
Transport Class 4 have certain implementation problems in
common: timer management, buffer management, connection
state management, transfer of data from the user, division of
the protocol processing into processes, interprocess communi-
cation, and scheduling. It can be seen that the choices that are
made in solving these problems affect protocol processing
times and thus affect throughput and end-to-end delay. In ad-
dition, the speed of the processor, memory and bus on which
the protocol is implemented, whether it is a host or front-end
implementation and the cost of the hostlfront-end communi-
cation also affect protocol processing times. We also saw in our
experiments that the user message size and network packet size
can dramatically affect throughput.

In general, there is a need for better performance than that
available from current implementations of communications
protocols. This improvement can be obtained by either invent-
ing better protocols or by improving implementations of the
present standard OS1 protocols. It is clear that inventing new
protocols by itself is not sufficient because the choices made in

implementing the protocol have a dramatic effect on perform-
ance, whether the protocol is an OS1 protocol or some other
protocol. When deciding whether OS1 protocols will meet a set
of performance requirements, it is important to examine avail-
able performance data and to also carefully examine the imple-
mentations that produced the data; otherwise, there will be a
tendency to eliminate the use of standard protocols and lose all
their benefits just because the measurements were made on a
particular implementation which does not meet the user's re-
quirements.

References
International Organization for Standardization, Open Systems
Intemonnection-8asi Reference Model, ISO/TC 97/SC2 1, Interna-
tional Standard ISO/IS 7498 rev., 1984.
Intel.iNA96ORelesse2Programmer'sReference Manual. Jan. 1987.
Camer Sense Multiple Access with Collision L%tection, IEEE Standard
802.3, 1984.
W. T. Strayer and A. C. Weaver, 'Performance Measurement of
Motorola's Implementation of MAP," 13th Local Computer Networks
Conference, Minneapolis, MN, Oct. 1988.
R. Colella, R. Aronoff, and K. Mills, 'Performance Improvements for
IS0 Transport,' Pmeedings: Ninth DBte Communications Symposium,
Sept. 1985.
R. Colella. J. Fox, P. Markovitz, and L. Gebase, 'OS1 TP/IP Over X.25:
A Performance Study,' USENIX. June 1987.
Cole, R. and Lloyd, P., 'OS1 Transpon Protocol-User Experience,'
Open Systems '86: Online Publicetions, Pinner, Middx. UK, 1986.
International Organization for Standardization, TranspH PrvtocolSpec-
fieation, ISO/TC 97/SC 16. Draft International Standard ISO/DIS
8073 rev., June 1984.
International Organization for Standardization, Protocol for Providing
the Connectionless-mode Transpo~Setvice. ISO/TC 97/SC 6. Draft In-
ternational Standard ISO/DIS 8602 rev., June 1987.
International Organization for Standardization, Protocol for Providing
the Connectionless-mode Network Setvice. IS0 TC 97/SC 6. Draft Inter-
national Standard ISO/DIS 8473 rev., Mar. 1986.
Logical Link Control, IEEE Standard 802.2, 1984.
Token-Passing Bus Access Method, IEEE Standard 802.3, 1985.
American National Standard, Fiber Distributed Dam lnterfece (FDDI)
Token Ring Media Access Control (MAC). X3.139- 1987.
Draft Proposed American National Standards, FiberDisuibutedDataln-
tefface (FDDI), Token Ring Physicel Layer Medium Dependent (PMD),
X3.166.198X.
American National Standard, Fiber Disilibuted Dam lnterfece (FDDI),

S. Heatley and D. Stokesberry, 'Measurements of a Transpon Imple-
mentation Running Over an IEEE Local Area Network,' Pmeedingss:
Computer Networking Symposium. Washington, D.C., Apr. 1988.

, Token Ring Physical Layer Protocol (PHYJ, X3.148-1988. <'

Biography
Sharon Heatley earned an M.A. in mathematics and an M.S. in computer

science from the University of Wisconsin in Madison. She previously worked
on switching systems at Bell Laboratories and CAT scanners at General Elec-
tric Medical Systems. For the past four years, she has done research on the
performance of OS1 protocols at the National Institute of Standards and Tech-
nology.

Dan Stokesberry obtained a B.S. in physics in 1962 and an M.S.E.E. from
the University of Maryland in 1970. He has worked at the National Institute of
Standards and Technology since 1962. He is currently Manager of the Net-
work Management Group in the Systems and Network Architecture Division.

22 June 1989 - IEEE Communications Magazine

