
Analysis of Transport Measurements 
Over a Local Area Network 
Sharon Heatley 
Dan Stokesberry 

A HE OPEN SYSTEMS INTERCONNECTION (OSI) 
protocol standards that have been under development since 
1979 promise the capability to interconnect systems from dif- 
ferent vendors worldwide without developing special hard- 
ware or software; however, there is concern whether imple- 
mentations of these communications protocols can perform 
well enough to meet the end-to-end delay and throughput re- 
quirements of the users of the communications service. In the 
past, when data communications took place at speeds of be- 
tween 110 and 9,600 b/s, the communications channel itself 
was often the bottleneck. Today, the advent of high-speed local 
area networks and optical fiber networks has moved the bottle- 
neck to the communications processing part of the system. So, 
instead of being able to achieve 10 Mb/s or 100 Mb/s, the user 
can at best achieve the maximum throughput and end-to-end 
delay available from his communications protocol processor. 
These throughput and end-to-end delays are often disappoint- 
ing. It has become fashionable to blame the protocol standards 
for this poor performance, but there has been insufficient evi- 
dence to date to determine how much blame should be given to 
the protocol and how much belongs to a particular implemen- 
tation of the protocol. In this paper, we identify some of the im- 
plementation factors that affect the performance of OS1 proto- 
cols. 

Today, the advent of high-speed local 
area networks and optical fiber 
networks has moved the bottleneck to 
the communications processing part of 
the system. 

The relationship between OS1 protocols is described by the 
seven-layer reference model [ I ]  shown in Figure I .  Many im- 
plementations exhibit a break between the top three layers and 
the bottom four layers. The top three layers are often imple- 
mented as software that runs on the host processor, while the 
bottom four layers are often implemented on a front-end pro- 
cessor that is plugged into the backplane of the host computer. 

These bottom four layers, Transport and below, provide the 
service of reliable message transmission between Transport 
users. The Transport layer is the first layer which provides an 
end-to-end connection through the network. (In a full seven 
layer stack, the Transport user would be the Session layer.) The 
performance of implementations of this transmission service 
is a particularly interesting subject. 
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Fig. 1. OSI protocol stack 

This paper has two purposes: 
To report the end-to-end delay and maximum throughput 
for a typical implementation of the bottom four layers so 
that readers have an idea of the performance currently 
available 
To identify the factors that affect performance in imple- 
mentations of these layers of the OS1 protocols. 
The measurements reported were obtained on Intel 3101 

microcomputer systems. We measured iNA960 release 2 [ 2 ] ,  
the Intel implementation of the lower four OS1 layers (Trans- 

'Certain commercial equipment is identified in this paper in order 
to adequately specify the experimental procedure. Such identification 
does not imply recommendation or endorsement by the National Insti- 
tute of Standards and Technology, nor does it imply thdt the equip- 
ment identified is necessarily the best available for the purpose. 
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port, Network, Data Link, and Physical) residing on a 552a 
front-end communications processor. The user of the Trans- 
port services runs on the 286/10 host processor. The 310 
nodes are connected via an IEEE 802.3 Carrier Sense Multi- 
ple Access with Collision Detection (CSMA/CD) local area 
network [3]. The end-to-end delay (user-to-user) and maxi- 
mum throughput for this commercial implementation are 
typical of the performance currently available. The factors 
that affect performance are identified, and the relationship 
between factors are expressed in equations. For throughput, 
we develop an equation that relates processing time, user 
message size, and network packet size to throughput. This 
equation gives the protocol implementor a tool to investi- 
gate how a particular change in design (i.e., faster processor, 
fewer copies of data, larger network packets) will quantita- 
tively change the throughput. 

In this paper, we measure the performance of the Intel 
implementation of Transport Class 4 over a local area net- 
work. The performance of the Motorola implementation of 
Transport Class 4 over a local area network has also been 
measured [4]. The performance of implementations of 
Transport Class 4 over a satellite link [5] and over concate- 
nated X.25 networks [6] has also been reported. In addition, 
there is a study comparing TCP and Transport Class 4 per- 
formance over both a local area network and on an X.25 net- 
work [7]. This is not intended to be an exhaustive list but 
simply a few related papers which the reader may find inter- 
esting. 

Protocol Overview 

Transport 

The Transport, Network, Data Link, and Physical protocols 
are described below. 

There are five classes of connection-oriented Transport [SI: 
Classes 0-4, and there is also a Connectionless Transport [9] 
protocol. Transport Class 4 offers the most error detection and 
correction. Connectionless Transport is a “best effort” 
datagram service, i.e.. there is no guarantee of delivery of mes- 
sages. The implementation we measured, iNA960, contained 
two Transport protocols: Transport Class 4 and Transport 
Datagram. Transport Datagram is an Intel proprietary proto- 
col. which offers the same services as Connectionless Trans- 
port. Figure 2 shows an overview of the services provided by 
iNA960. We made measurements of Transport Class 4 and 
Transport Datagram services and so we will describe both in 
more detail. 

Transport Class 4 offers virtual circuits, error detection and 
recovery, flow control, segmentation of messages, and in-order 
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Fig. 2. Overview of iNA960 services 

delivery of messages. One Transport Class 4 entity communi- 
cates with another via Transport Protocol Data Units 
(TPDUs). The error detection and recovery and flow control 
functions are accomplished using Acknowledge (AK) TPDUs 
transmitted by the receiving station. Each Data (DT) TPDU 
has a field containing a sequence number. Every AK TPDU 
contains the value of the next sequence number expected by 
the receiver, thereby acknowledging the receipt of all DT 
TPDUs with lower sequence numbers. The AK also contains a 
credit field. The transmitting station is allowed to send DT 
TPDUs with sequence number K where: 

i lK  seq. no. I K < (AK seq. no. + AK credit) 

This range of permitted sequence numbers is known as the 
window. There are retransmission timers on the transmitting 
station, which are restarted when AKs are received. If an AK is 
not received before the retransmission timer expires, then un- 
acknowledged DT TPDUs are retransmitted. The default 
retransmission timer value in iNA960 is 500 ms. 

The credit returned in AKs in the iNA960 implementation 
is based on the amount of receive buffer space available at the 
Transport level. In addition, in the iNA960 implementation, 
the credit may not be larger than the maximum Transport win- 
dow parameter (default 15) or less than the minimum Trans- 
port credit parameter (default 1). Since the minimum credit is 
one, each AK always contains permission to send at least one 
DT so that the window never closes. The Transport Class 4 
standard, however, does not specify that an AK must be sent 
for each DT received. In our iNA960 experiments we observed 
DT:AK ratios of 1 : 1 to 5: 1. 

Transport Class 4 has a maximum TPDU size parameter. 
The iNA960 default for this parameter is 2,048 octets. The ac- 
tual TPDU size used is the minimum of the maximum TPDU 
size Transport parameter and the packet size of the underlying 
network minus lower layer headers. Transport Class 4 has an 
optional checksum to guarantee end-to-end data integrity. In 
all of our experiments, the checksum was turned off. 

In order to understand the results of 
the experiments, it is important to 
understand segmentation. 

In order to understand the results of the experiments, it is 
important to understand segmentation. Messages passed by 

Host 
286 I 1 0  

Communications 
Board 552A 

the user to Transport are called Transport 
Service Data Units (TSDUs). The user may 
wish to send TSDUs that are too large to 
send over the communications network in a 
single packet. An IEEE 802.3 LAN, for ex- 
ample, limits the maximum Data Link 
frame size to 1.5 18 octets. One of the ser- 
vices offered by Transport Class 4 is to seg- 
ment into multiple TPDUs those TSDUs 
which are too large to fit into network pack- 
ets, where each TPDU fits into a single net- 
work packet. Thus, the user of Transport 
Class 4 can pass arbitrarily large TSDUs to 
Transport without knowledge of the net- 
work packet size. 

Transport Datagram and Connection- 
less Transport do not segment messages, so 
that users of these services must ensure 
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that the size of the message is smaller than the maximum which 
can be sent on the network. These protocols do not guarantee 
delivery and also do not guarantee that messages are delivered 
in order. The protocols therefore do not use acknowledgments 
or timers. 

Network 
A Connectionless Internet Protocol (IP) [ 101 standard has been 
developed for the Network layer. IP has the responsibility for 
routing and relaying packets in an Internet environment, i.e., 
different networks concatenated together. When the iNA960 
software is configured, the Network protocol can be chosen to 
be either Connectionless IP or the null IP header. If the null IP 
header is chosen, then no IP processing is done. Since all exper- 
iments were done on a single LAN, the IP functions are not 
needed; but we did experiments with both options in order to 
determine the additional overhead added by this implementa- 
tion of the IP layer. 

Data Link 
For local area networks, the Data Link layer is divided into 

two sublayers. The top sublayer is the Logical Link Control 
(LLC) [ 1 11. LLC type 1 provides datagram service, while LLC 
type 2 provides a connection-oriented service. The bottom 
sublayer is the Medium Access Control (MAC) layer. There is a 
family of MAC protocols-IEEE 802.3 (CSMAICD) and IEEE 
802.4 [ 121 (token bus) are members. FDDI [ 131 is another ex- 
ample of a MAC protocol. 

For these experiments, connectionless LLC type 1 and the 
IEEE 802.3 CSMNCD MAC protocol are used. In the iNA960 
implementation, the LLC protocol has an external interface so 
that an application running on the host board may directly re- 
quest LLC datagram service without using the services of ei- 
ther Transport or Network. This service, which we will call Ex- 
ternal Data Link service, is like the Transport Datagram 
service in two respects: it does not guarantee delivery and it 
does not segment messages. The messages passed by the user to 
the LLC layer are called Link Service Data Units (LSDUs). 

Physical 
The Physical layer protocols specify how the individual bits 

are to be sent on the physical channel. The IEEE 802.3, 802.4, 
and the FDDI [ 141 [ 151 standards specify the Physical layer 
protocols. 

Experimental Environment 

Hardware/Software Overview 
The Intel 3 10 microcomputer system, as shown in Figure 3, 

includes an Intel 286110 host board, 1 Mbyte of memory, and 
an Intel 5 52a communications front-end board connected to- 
gether by the Intel Multibus. The host board contains an 80286 
processor running at a clock rate of 6 MHz. In our experiments, 
the 2861 10 host runs the traffic generation software, which uses 
the communication services of the front-end board and also 
gathers statistics on performance. The 286110 hosts in all sys- 
tems are connected to a central clock developed at NIST. This 
clock makes it possible to measure end-to-end delay to within 
0.1 ms. 

The 552a board runs the iNA960 communications soft- 
ware, which is an implementation of the lower four OS1 layers. 
This board contains an 80 186 processor running at a clock rate 

of 8 MHz, an 82586 LAN coprocessor, an 82501 serial inter- 
face, and 256 kbytes af local memory. The 80 1 86 executes code 
that implements the Transport, Network, and Data Link (LLC 
Type 1) protocols. The 82586 LAN coprocessor executes the 
IEEE 802.3 CSMNCD MAC protocol. It transmits and re- 
ceives data over the IEEE 802.3 medium through the 82501 
serial interface. The 286110 host and the 552a front-end com- 
municate, using the Multibus Interprocessor Protocol (MIP), 
by writing messages into the Multibus memory and then inter- 
rupting the processor on the other board to indicate that a mes- 
sage has been written. 

The host and front-end can operate independently. The 
front-end board works on the host’s communication service re- 
quests while the host does other processing. On the front-end 
board, the 80186 executing the Transport, Network and Data 
Link protocols and the 82586 LAN coprocessor can also oper- 
ate independently. Each 3 10 system contains three indepen- 
dently operating processors. When there is a transmission be- 
tween two systems, six independently operating processors are 
involved. 
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Fig. 3. Intel 310 system overview. 

Buffer Management 
The iNA960 implementation reserves a number of Data 

Link buffers in the 256-kbyte local memory on the 552a board. 
The size of each transmit buffer is 1,500 octets. This is large 
enough to store the memory image of a full IEEE 802.3 frame. 
Receive buffers are 256 octets each: these buffers are chained 
together to store the memory image of a received Data Link 
frame. The number of transmit and receive buffers reserved 
are configuration parameters. The default number of transmit 
buffers is 5 and the default number of receive buffers is 255. 

User processes on the host requesting Transport services or 
Data Link services from iNA960 allocate data buffers in 
Multibus memory. When the user sends iNA960 a request to 
transmit data, the request contains a pointer to an associated 
Multibus data buffer that contains the user message (TSDU or 
LSDU). The data in the user data buffer is copied by the 
iNA960 software into one or more Data Link transmit buffers 
on the 552a board. More than one Data Link transmit buffer is 
used if Transport Class 4 segments the TSDU into more than 
one TPDU. The data is then sent out on the LAN by the 82586 
LAN Coprocessor. On the receiving side, the same set of events 
happens in reverse. The 82586 LAN coprocessor receives the 
data and stores it in Data Link receive buffers. The data in the 
Data Link receive buffers is copied into user receive buffers 
previously posted by the host user process. When the buffers 
are full or when they contain a complete user message, they are 
returned to the user on the host. 
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l6 T Experimental Results 
Unless otherwise noted, iNA960 default values are used for 

all parameters in these experiments. 

DeZuy Measurements 
For the first set of experiments, we report the end-to-end 

delay for Transport Class 4, Transport Datagram, and External 
Data Link services. This delay is measured from transmitting 
host user process to receiving host user process and is the mini- 
mum delay that can be achieved when one message is transmit- 
ted in an idle system (i.e., there are no queuing delays any- 
where in the system). We also compare Transport delays 
measured when using IP with those obtained when using the 
null IP header in order to determine the additional delay asso- 
ciated with this implementation of the IP protocol. 

~ 

W e  also compare Transport delays 
measured when using IP with those 
obtained when using the null IP header 
in order to determine the additional 
delay associated with this 
implementation of the IP protocol. 

Figure 4 shows one-way delay versus message size for 
Transport Class 4 with a Null IP header (TP4/Null), Transport 
Datagram with a Null IP header (TPD/Null), and External 
Data Link (EDL) services. The range of message sizes is 16 to 
1,500 octets. For these message sizes, all user messages fit into 
a single network packet. The curves in Figure 4 can be de- 
scribed by straight lines of the form T = m * x  + b, where Tis 
the delay in milliseconds and x is the message size in octets. 
The best estimates for m and b are: 

TABLE I.  . . ._ _ _  

TPD/NuII 
EDL 0.0045 

The y-intercept (i.e., b) for each line is the amount of delay that 
is invariant to the size of the message. This includes: 

Communications between the host board and its communi- 
cations board at the sending side 
The processing on the communications board needed to 
send a message 
The processing on the receiving communications board 
needed to receive a message 
Communication between the communications board and 
the host board at the receiving side 
The slope of each line (i.e., m) is the amount of processing 

that depends on the message size. This processing includes the 
copy from Multibus memory to local memory on the commu- 
nications board (which is done under the control of the com- 
munications CPU), transmission of the message, and the copy 
from local memory to Multibus memory on the receive side. 
For Transport Class 4 with IP (TP4/IP) and Transport 
Datagram with IP (TPD/IP), the slope of the lines are the same 

' 0  200 400 600 800 1,000 1,200 1,400 
Octets 

Fig. 4. One-way delay vs. message size. 

as for TP4/Null and TPD/Null, but the y-intercept is one 
millisecond more. The IP layer adds about an additional 
millisecond of delay. 

Figure 5 shows one-way delay versus message size for TP4/ 
IP and TP4/Null. The range of message sizes is from 16 to 
about 1 1,000 octets. As noted above, Transport Class 4 can re- 
ceive arbitrarily large messages from the user and segment 
them into TPDUs, each fitting into one network packet. The 
front-end does a certain amount of processing for each TPDU 
sent or received. This processing causes the jumps in the delay 
curves that occur at the points where the TSDU or user mes- 
sage is segmented into an additional TPDU. Since the data link 
level buffers are 1,500 octets long, each TPDU must fit into a 
1,500 octet network packet. When there is a null IP header, 
1,488 octets of Transport user data (and 12 octets of Transport 
header) fit into one TPDU. When there is an active IP layer, 
1,40 1 octets of Transport user data fit into one TPDU. The 
number is smaller for the IP case because of the space required 
for the IP header. Thus, for the Transport Class 4 with an IP 
layer, a jump in one way delay occurs between 1,401 and 
1,402-octet messages since a 1,401-octet message fits into one 
TPDU and is sent in one network packet but a 1,402-octet mes- 
sage must be segmented into two TPDUs and sent in two net- 
work packets. A similar jump occurs between 1401 * k and 
(1401 * k) + I where k = 2, 3.... The average jump in delay for 
processing an additional TPDU for k = I . . .  7 is about 2.5 ms 
for TPWIP and 2.0 ms for TP4/Null. 

50 7 T++ 
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Fig. 5. One-way delay vs. message size. 

Throughput Experiments 
Throughput is reported for TPWIP and TP4/Null. Through- 

put is defined as the total number of octets sent divided by the 
time required to send them. Time is measured from when the 
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first TSDU is sent by the sending user process until the last 
TSDU is received by the receiving user process. The through- 
put measurements in this paper were done for memory-to- 
memory bulk transfer applications. In these experiments, the 
traffic generation process on the host boards allocate a pool of 
one or more user transmit buffers on the transmit side and a 
pool of one or more user receive buffers on the receive side. 
Each buffer contains one user message. As soon as the data in a 
user transmit buffer is acknowledged at the Transport level, 
the transmit buffer is returned to the traffic process on the host. 
This process immediately returns the buffer to iNA960 with 
another transmit request. Thus, the pool of user transmit buff- 
ers circulates between iNA960 and the traffic process. In a sim- 
ilar way, the user receive buffers circulate between iNA960 and 
the receiving traffic process. If there is more than one buffer in 
the transmit or receive buffer pool then host processing and 
communications processing can be overlapped. 

Experiments were done to determine the values of Trans- 
port Class 4 parameters which resulted in the best throughput 
for a memory-to-memory bulk data transfer. The parameters 
which were “tuned” for the bulk data transfer situation were 
number of user transmit buffers, number of user receive buff- 
ers, maximum window size, and minimum retransmission 
timer setting. For the maximum window size and minimum 
retransmission timer size, the iNA960 default values of 15 and 
500 ms are adequate for maximum throughput. At least two 
transmit buffers and three receive buffers are required for 
maximum throughput. (No transmissions errors or dropped 
packets occurred in our experiments. The retransmission timer 
has no effect on performance unless it is too short.) 

Figure 6 shows throughput versus message size for TPUIP 
and TP4/Null. Message size varies from 100 octets to 25,000 
octets. For all experiments reported in this section, there are 10 
user transmit buffers and 10 user receive buffers. For each user 
message, a certain amount of processing is required to pass the 
message from the user process to iNA960 at the transmitting 
side and from iNA960 to the user process at the receive side. 
With 100 octet messages, this communication has to be done 
10,000 times to send one Megabyte of data. With 10,000 octet 
messages, this communication has to be done 100 times to 
send one Megabyte of data. Reducing this processing causes 
throughput to increase and, therefore, as the user message size 
increases, the throughput generally goes up. 

3ooT 
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must be sent in a separate TPDU. To send one Megabyte of 
data with 1,40 1-octet user messages, only 7 14 TPDUs are sent. 
This reduces the amount of TPDU processing and increases 
throughput. 

The throughput drops sharply whenever the user message is 
segmented into an additional TPDU, resulting in additional 
processing for each user message. For example, for TPWIP, 
when the message size is 1,401, one TPDU is transmitted for 
each user message. When the message size is 1,402, two 
TPDUs must be transmitted for each user message although 
the second TPDU contains only one octet of user data. The 
drop in throughput shown in Figure 6 is due to the additional 
time required to process the second TPDU. The maximum 
throughput measured with TPWIP and a user message size of 
25,000 octets is 220 kbytes/s (1.76 Mb/s). The throughput for 
TP4/Null and a user message size of 25,000 octets is 276 
kbytes/s (2.2 Mb/s). This difference in throughput is due to the 
extra processing time required to execute the code that imple- 
ments the IP protocol. 

In a previous paper we developed simple models which re- 
late user message size, processing times, and maximum user 
data contained in a TPDU to throughput and messages per sec- 
ond [ 161. These models assume that either the sending or re- 
ceiving 801 86 (the front-end which processes the protocols 
Transport Class 4, IP, and LLC type) is the bottleneck in the 
system. The other two assumptions made are that the bottle- 
neck processor is continuously busy and that no errors or 
retransmissions occur. The models are shown below: 

THR(x) = x/(A * x + B * ceil(x/M) + C) 

and 

MPS(.x) = 1/(A * x + B * ceil(x/M) + C) 

where x is the user message size, THR(x) is throughput in OC- 
tets per second achieved for user message size x, MPS(x) is the 
number of messages per second achieved for user message size 
x, and Mis the maximum amount of user data that can be con- 
tained in a TPDU. 

Ceil(x/M) is the smallest integer greater than x/M. Therefore, 
ceil(x/M) is the number of TPDUs required to transmit a user 
message of size x. A,  B, and C are processing times on the bot- 
tleneck processor. A is the processing done per octet. This pro- 
cessing includes the copy between the local memory and the 
Multibus memory, which is done under the control of the com- 
munications processor and may include the overhead associat- 
ed with the copy between the local memory and the FIFO in the 
82586 coprocessor. Transport checksum is OFF for these ex- 
periments, so there is no checksum processing per octet. B is 
the processing done for each TPDU in the Transport, IP, and 
LLC layers (including AK processing). Cis the processing that 
occurs on a per user message basis, such as the communication 
between the host and the front-end. 

By using curve fitting techniques, we can fit the throughput 
model to the measured data shown in Figure 6 and estimate the 
parameters A, B, and C [ 161. 

Fig. 6. Throughput vs. message size. 
TABLE II. 

There is another factor that increases throughput as the user 
message size increases from 100 octets to the maximum num- 
ber of user octets in a TPDU (1,40 1 octets for TPWIP, 1,488 
for TP41Null). To send one Megabyte of data, with 100 octet 
user messages, 10,000 TPDUs are sent since each user message 
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Figure 7 shows the live throughput data and the estimated 
data using the above equation for TP4lIP and TP4Null. The 
difference between the live and estimated data is less than 7%. 
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Fig. 7. Throughput vs. message size. 

Now that we have this throughput equation, we can see how 
sensitive throughput is to changes in the parameters A, B, C, 
and M. Figure 8 shows the effects on throughput of keeping the 
processing per TPDU and the processing per message constant 
and varying the amount of processing per octet. This illustrates 
the importance of minimizing the number of copies required. 
Figure 9 shows the effects on throughput of keeping the pro- 
cessing per message and the processing per octet constant and 
varying the processing per TPDU. In our protocol overview 
section, we noted that in iNA960, the DT:AK ratio vaned from 
1 : 1 to 5: 1. One way to decrease the processing per TPDU is to 
increase the DT:AK ratio since AK processing is included in B. 
Figure 10 shows the effects on throughput of keeping the other 
processing the same and varying the amount of processing per 
user message. When user message size is small in Figure 10, the 
effect on throughput of varying the user message processing 
can be substantial. As the user message size increases, more 
TPDUs and more octets are transmitted for each user message. 
The processing time per TPDU and per octet then dominate 
the throughput. The effect of varying the user message process- 
ing time becomes negligible for large user message sizes. 
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Fig. 9. Throughput vs. processing per TPDU. 

reasonable. These assumptions are that there is a token bus 
IEEE 802.4 MAC processor which operates independently 
from the 801 86 processor and that the Transport, IP, and LLC 
processing on the 80186 is the bottleneck in the system. We 
also assume there are no retransmissions (and, in this case, no 
lost tokens) and that the bottleneck processor is continuously 
busy. If these assumptions are met, then a maximum user data 
per TPDU of 8,000 octets on a token bus network would allow 
a throughput of about 350,000 octetsk for user message sizes of 
10,000. 
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Fig. IO.  Throughput vs. processing per user message. 

As x (the user message size) becomes larger, the throughput 
approaches I/(A + B/M). For the case of TPUIP, this maxi- 
mum throughput for very large message sizes is calculated to be 
230,947 octetds. As shown in Figure 6, the measured through- 
put approaches this line. If we substitute 8,000 for M in the 
equation above, we get a maximum throughput of about 
500,000 octetsls or 4 Mbls for a token bus network. 
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Octets (thousands) 

All ~ U N W :  4:ll msKPDU, 4.75 mdmessage 

Fig. 8. Throughput vs. processing per octet. 

Experiments were done in which the maximum TPDU size 
(M) was vaned and ?hroughput was measured. In these experi- 
ments, the user message size is 10,000 bytes. In Figure 1 1, 
measurements are compared with the data predicted by the 
throughput equation for throughput versus maximum user 
data per TPDU. Since the IEEE 802.4 token bus standard has a 
maximum packet size of 8,018 octets, the graph has been ex- 
tended out to 8,000 octets of user data per TPDU. If we can 
make the same assumptions in a token bus system as for an 
IEEE 802.3 system, then extending the graph in this way seems 
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Fig. 11. Throughput vs. maximum user data per TPDU. 
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Figure 12 shows the excellent correlation between the equa- 
tion for messages per second and the measurements for the 
case of TPUIP and TP4RVull. The maximum number of mes- 
sages per second occurs as the message size approaches zero. 
The number of messages per second then approaches I/(B + 
C). For TP4/IP, this gives a maximum message rate of 113 
message& and, for TP4/Null, 125 message&. The measured 
message rate for 100 byte messages is 100 messagesh for TP4/ 
IP and 122 message& for TP4RVull. 

150T 
Actual Est. 

TPYIP 0 - 
TP4/Nu,l A ...."...I .... 

I 
2 4 6 8 10 

O J  

Octets (thousands) 

Fig. 12. Message rate vs. message size. 

Conclusions 
As noted in the introduction, there is concern whether im- 

plementations of OS1 communication protocols can meet the 
low end-to-end delay and high throughput requirements of cer- 
tain military and industrial users. It is important to note that 
all transport level protocols offering the same services as 
Transport Class 4 have certain implementation problems in 
common: timer management, buffer management, connection 
state management, transfer of data from the user, division of 
the protocol processing into processes, interprocess communi- 
cation, and scheduling. It can be seen that the choices that are 
made in solving these problems affect protocol processing 
times and thus affect throughput and end-to-end delay. In ad- 
dition, the speed of the processor, memory and bus on which 
the protocol is implemented, whether it is a host or front-end 
implementation and the cost of the hostlfront-end communi- 
cation also affect protocol processing times. We also saw in our 
experiments that the user message size and network packet size 
can dramatically affect throughput. 

In general, there is a need for better performance than that 
available from current implementations of communications 
protocols. This improvement can be obtained by either invent- 
ing better protocols or by improving implementations of the 
present standard OS1 protocols. It is clear that inventing new 
protocols by itself is not sufficient because the choices made in 

implementing the protocol have a dramatic effect on perform- 
ance, whether the protocol is an OS1 protocol or some other 
protocol. When deciding whether OS1 protocols will meet a set 
of performance requirements, it is important to examine avail- 
able performance data and to also carefully examine the imple- 
mentations that produced the data; otherwise, there will be a 
tendency to eliminate the use of standard protocols and lose all 
their benefits just because the measurements were made on a 
particular implementation which does not meet the user's re- 
quirements. 
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