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In this paper, we examine the problem of two-dimensional heat equations with certain initial and boundary conditions being
considered. In a two-dimensional heat transport problem, the boundary integral equation technique was applied. The problem
is expressed by an integral equation using the fundamental solution in Green’s identity. In this study, we transform the
boundary value problem for the steady-state heat transfer problem into a boundary integral equation and drive the solution of
the two-dimensional heat transfer problem using the boundary integral equation for the mixed boundary value problem by
using Green’s identity and fundamental solution.

1. Introduction

For partial differential equations, the boundary integral
equation is a basic method for analyzing boundary value
problems [1]. Various schemes have emerged to discretize
time domain boundary integral equations associated to par-
abolic problem [2]. In the inception of the boundary integral
equation method, the thermal engineering community has
been exploiting its potential in solving transient heat con-
duction problems [3, 4]. Any approach for the approximate
numerical solution of the boundary integral equations is
referred to as a boundary element method [5]. The accurate
solution of the differential equation of a two-dimensional
heat transfer problem in the domain acquired by the bound-
ary element method distinguishes the approximate solution
of the boundary value problem produced by the boundary
element method [6–9]. Only the domain’s boundary needs
to be discretized, notably in two-dimensional heat transfer
problems with a simple circle boundary.

In some applications, the physical relevant data are pro-
vided by the boundary value of the solution or its derivatives
rather than the solution in the domain boundary [10]. These
data can be derived directly from the boundary integral
equation’s solution.

The advantage of using boundary integral formulation of
partial differential equation problems is that we require only
Nd−1 unknown to discretize the boundary Γ, where N is the
number of variables in each space dimension [5, 6]. Many
different formulations have been proposed for the treatment
of heat conduction (diffusion) problems by the boundary
integral equation BIE method, the most efficient of which
is the one which employs a time-dependent fundamental
solution. The formulation adopted for this analysis employs
Green’s identity to derive the boundary integral equation in
[4, 11]. A fundamental solution is generally not available if
the coefficients of the original partial differential equation
are not constant. One can use, in this case, a parametrix
(Levi function), which is usually available, instead of funda-
mental solution Green formulae [3, 12, 13].

The solution exactly satisfies the differential equation
inside the domain; nevertheless, approximate solutions exist
because boundary conditions are only approximately satis-
fied. Because functions are defined globally, there is no need
to divide the domain into elements [14–16].

The solution also meets the criterion at infinity, so deal-
ing with infinite domains, where the finite element method
must apply either truncation or approximate infinite ele-
ments, is not an issue [10, 17, 18]. As a result, the goal of this
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work is to use Green’s identity and fundamental solution to
transform the boundary value problem for steady-state heat
transfer into a boundary integral equation and solve the
boundary integral equation for the mixed boundary value
problem [8, 19–21].

Using a boundary integral expression for a two-
dimensional heat transfer problem, we obtain a unique weak
solution and a variational solution in the Sobolev space of
order one, H1ðΩÞ [15, 22]. The remainder of the current
document is as follows: some basic definitions, theorems,
and properties of the Laplace equation that arise as a
steady-state problem for heat equation are mentioned in
Section 2. Section 3 illustrates the details of the statement
of the steady-state heat transfer problem, the boundary inte-
gral equation for the classical solution, and the boundary
integral expression for the weak solution. Section 4 provides
the conclusions of the paper.

2. Preliminaries

2.1. Laplace Equation in Two Dimensions. Let Ω ⊂ℝ2 open
and u : Ω⟶ℝ2. The Laplace equation for u is

Δu = ∂2u
∂x2

+ ∂2u
∂y2

= 0: ð1Þ

For a heat equation that does not change with time, the
Laplace equation arises as a steady-state problem [20].

Equation (1) has no dependence on time, just on the spa-
tial variables x and y. This means that the Laplace equation
described steady state situated on the temperature
distribution.

The steady-state solution satisfies Δu = 0 and boundary
condition, u is prescribed on ∂Ω, and then, we consider
the domain Ω that are circular [23].

2.2. Sobolev Space

Definition 1 (see [8]). Let 1 ≤ p ≤∞ and r ∈ℕ0, and let Ω
⊆ℝn be a nonempty open set. The Sobolev space wr

p order
r based on LpðΩÞ is defined by

wr
p Ωð Þ = u ∈ Lp Ωð Þ: ∂αu ∈ Lp Ωð Þ, for αj j ≤ r

È É
: ð2Þ

Remark 2. ∂αu is viewed as a distribution on Ω, so the con-
dition ∂αu ∈ LpðΩÞ means that there exists a function gαu

∈ LpðΩÞ such that hu, ∂αφi = ð−1Þjαjhgα, φi, ∀φ ∈D′ðΩÞ,
such that a function gα is defined as a weak derivatives of
u.

The complement of LpðΩÞ implies that wr
pðΩÞ becomes a

Banach space on putting the norm wr
pðΩÞ as

uk kWr
P Ωð Þ = 〠

αj j≤r

ð
Ω

∂αuj jpdx
 !1/p

,

uk kWr
P Ωð Þ = 〠

αj j≤r
∂αu xð Þk kpLp Ωð Þ:

ð3Þ

For p = 2, Wr
2ðΩÞ =HrðΩÞ is a Hilbert space with the

inner product.

u, vh iHr Ωð Þ = 〠
αj j≤r

∂αu, ∂αvh iL2 Ωð Þ,

u, vh iHr Ωð Þ =
ð
Ω

〠
αj j≤r

∂αu∂αv
� !

dx:

ð4Þ

The norm induced by the inner product is

uk kHr Ωð Þ = u, vh iHr Ωð Þ
� �1/2

: ð5Þ

Definition 3 (see [24]). In a particular case, the Sobolev space
H1ðΩÞ is the set of all f ∈ L2ðΩÞ such that all the first partial
derivative ∂f /∂xi belongs to L2ðΩÞ. The inner product in
H1ðΩÞ is

f , gð Þ1 =
ð

f �g+∇f :∇�gð Þdnx, ð6Þ

where ∇f :∇�g denotes ∑n
i=1ð∂f /∂xiÞ:ð∂�g/∂xiÞ. This inner

product clearly gives the norm

uk k =
ð

uj j2 + 〠
n

i=1

∂u
∂xi

����
����
2

 !
dnx

" #1/2
: ð7Þ

Then, we denote the L2 inner product by a subscript
zero.

f , gð Þ0 =
ð
f �gd2x: ð8Þ

Then, equation (6) reads

f , gð Þ1 = f , gð Þ0 + ∇f ,∇gð Þ0, ð9Þ

where ð∇f ,∇gÞ is an abbreviation for ∑ð∂f /∂xi, ∂g/∂xiÞ. In
particular,

fk k21 = fk k20 + ∇fk k20: ð10Þ

Then, the Cauchy sequence in H1ðΩÞ converges to the
element of H1ðΩÞ. In other words, H1ðΩÞ is a Hilbert space.
It is in fact the Hilbert space obtained by completing the set
of smooth function with respect to the k,k1, in the same way
that L2ðΩÞ is the Hilbert space obtained by completing the
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set of smooth functions with respect to the L2 norm [24].

ð
Ω

uDαφdx = −1ð Þ αj j
ð
Ω

vφdx ∀ϕ ∈D Ωð Þ: ð11Þ

2.3. Weak Solution [1, 15]. Consider a partial differential
operator L of order m in N variables L =∑jαj≤maαðxÞDα

where α = ðα1, α2 ⋯ αNÞ is a multi-index jαj = α1 + α2 ⋯ +
αN and aα = aα1,α2,::,αN ðx1, x2,⋯xNÞ are functions in C∞ðℝ2Þ.

Considering a differential equation LuðxÞ = f in the
sense of distribution, then the following is true.

Let φ ∈DðΩÞ; then, hLu, φi = h f , φi in Ω.

This implies hu, L∗φi = h f , φi where L∗ϕ =∑ð−1ÞjαjDαð
aðxÞϕÞ; here, the operation L∗ is the adjoint operator of L.

If the original problem was to find jαj-times differentia-
ble function u defined on the open set Ω such that LuðxÞ = f
for all x ∈Ω, called the classical solution, then an integrable
function u is said to be a weak solution if

ð
Ω

u xð ÞL∗φdx =
ð
Ω

fφdx ∀φ ∈D Ωð Þ: ð12Þ

2.4. Fundamental Solutions

Definition 4 (see [25]). A distribution D′ is a fundamental
solution of the differential operator L, if and only if

LD = δ: ð13Þ

The fundamental solution D of the differential operator L
satisfies the equation; however, D need not fulfill the pro-
vided boundary conditions. A fundamental solution that sat-
isfies the given boundary condition is known as Green’s
function [20, 21, 25].

Let Lu = f be Green’s function Gðx, ξÞ; it satisfies the
equation

LG x, ξð Þ = δ x − ξð Þ: ð14Þ

Physically, Green’s function Gðx, ξÞ represents the effect
at the point x of a Dirac delta function source at the point
x = ξ [20].

Multiply equation (14) by f ðξÞ and integrate over the
area A of the ξ circle so that

dA = dξdη: ð15Þ

Then, we have

L
ð
A
G x, ξð Þf ξð ÞdA

� �
=
ð
δ x − ξð Þf ξð ÞdA = f xð Þ: ð16Þ

Since Lu = f , we have

u xð Þ =
ð
G x, ξð Þ f ξð ÞdA: ð17Þ

The fundamental solution for the Laplace operator is as
follows.

Definition 5 (see [26]). Let E ∈D′ðR2Þ such that

ΔE = −δ x − ξð Þ x, ξ ∈ℝ2, ð18Þ

with δ being the Dirac delta function. In general dimension,
the D′ðR2Þ (distributional space in R2) is a solution of equa-
tion (18) which is called a fundamental solution of Laplace’s
equation at x = ξ. In the context of the heat equation, the
fundamental solution of the Laplace equation is crucial to
the heat kernel. In two dimensions, the fundamental radial
solution of the Laplace equation is

E = −c log r, ð19Þ

where c is the arbitrary constant and r is the distance from x
to ξ.

It is also known as a heat kernel, which is a solution to
the heat equation that corresponds to the initial condition
of an initial point source at a specified place. This method
can be used to discover a general solution to the heat equa-
tion for a given domain [21, 25, 26].

2.5. Green’s Second [16, 26]. Let u, v ∈ C1ð�ΩÞ ∩ C2ðΩÞ and
Green’s first identity for the pair u and v; then,

∬
Ω
vΔudx =

ð
∂Ω
v
∂u
∂n

ds −∬
Ω
∇u:∇vdx, ð20Þ

and again for the pair v and u,

∬
Ω
uΔvdx =

ð
∂Ω
u
∂v
∂n

ds −∬
Ω
∇v:∇udx: ð21Þ

By subtracting equation (21) from equation (20), we get
Green’s second identity [23].

∬
Ω
uΔv − vΔuð Þdx =

ð
∂Ω

u
∂v
∂n

− v
∂u
∂n

� �
ds: ð22Þ

It is valid for the pair of functions u and v.
The above integral is a line integral over the boundary

curve of two-dimensional region Ω, and ds denotes the arc
length of the boundary [16, 26].

2.6. Boundary Integral Equation. In a variety of applications,
the efficient numerical solution of partial differential equa-
tions (PDE) using boundary integral formulation is critical
[27, 28].

Consider as an example a Laplace problem of the form

−Δu xð Þ = 0: ð23Þ

In some domain Ω ⊂ℝ2 with piecewise smooth
Lipschitz boundary Γ, Green’s representation theorem
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allows us to write the solution u as

u xð Þ =
ð
Γ

G x, yð Þ ∂
∂n

u yð ÞdΓ yð Þ −
ð
Γ

∂
∂n yð ÞG x, yð Þu yð ÞdΓ yð Þ, for x ∈Ω,

ð24Þ

where n is the unit outward pointing normal at Γ and Gðx
, yÞ is a fundamental solution defined as

G x, yð Þ = −
1
2π log x − yj j: ð25Þ

Hence, in principle, if either u or ∂u/∂n is known on G,
we can recover the unknown quantity by restricting equa-
tion (24) to the boundary and solving to the unknown
boundary (see, e.g., [6, 16]).

2.7. Variational Formulation. The variational approach to
the problem not only lays the groundwork for mathematical
proofs of existence and uniqueness but also strong numeri-
cal methods like the finite element method [15, 29]. Using
the boundary conditions mentioned above in an appropriate
space of functions, we look for a unique weak solution u of
the Laplace equation Δu = 0 in S [15, 29].

k = v : v ∈H1
0, v = 0 on Γ3

È É
: ð26Þ

The problem is written in a weak form as follows:

(1) Multiply on both sides of the Laplace equation Δu
= 0 by a function v in H1

0 and integrate over Ω

ð
Ω

Δuvdx = 0 ð27Þ

(2) Apply integration by parts to arrive at

ð
Ω

∇u∇vdx +
ð
Γ

∂u
∂n

vds = 0 ð28Þ

3. Statement of the Steady-State Heat
Transfer Problem

Consider a heat-conducting body that is homogeneous and
isotropic; Ω is a simple connected and bounded domain in
ℝ2 with a Lipschitz boundary Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 when
Γ1, Γ2, Γ3 and Γ4 are disjoint parts of Γ. Convection in the
ambient medium is thought to occur at the boundary Γ1
and Γ2, temperature is kept constant at the prescribed value
T3 on Γ3, and Γ4 is insulated. The mixed boundary value
problem describes the system’s state equation as

Δθ = 0, inΩ, ð29Þ

∂θ
∂n

= −
h
k

θ − θ∞ð Þ, onΓ1 ∪ Γ2, ð30Þ

θ = 0, onΓ3, ð31Þ

∂θ
∂n

= 0, onΓ4, ð32Þ

where θ = T − T3, θ∞ = T∞ − T3 when T is temperature in
the domain, T∞ is the ambient temperature, n is the out-
ward unit normal vector, h is the convection coefficient,
and k is the conduction coefficient.

Since the classical solution θ ∈ C1ð�ΩÞ ∩ C2ðΩÞ to the
problem does not exist if x = ξ for equation (19), then ξ is
a singular point [1, 25, 30], where �Ω is closure of the domain
Ω; we can be concerned with the variational solution H1ðΩÞ.
3.1. Boundary Integral Equation for the Classical Solution.
The boundary integral equation formulation for the heat
transfer problem is based on Green’s formula with the fun-
damental solution [20, 28, 31]. The simplest method for
transforming variables to boundary variables is to use
Green’s second identity [1, 25, 32].

Let u and v be C1ð�ΩÞ ∩ C2ðΩÞ function; then, Green’s
formula of equation (22) holds. If the classical solution θ ∈
C1ð�ΩÞ ∩ C2ðΩÞ exists, we can substitute u by θ in equation
(22). However, the singularity of E in equation (19) is pre-
venting one from substituting v by E in equation (22). One
way of overcoming the difficulty is to replace Ω by Ω − Bρð
ξÞ where BρðξÞ is a circle with the small radius ρ centered
at a singular point ξ.

One can conclude from equation (22) that

ð
Ω−Bρ

EΔθ − θΔEð Þdx =
ð
Γ

E
∂θ
∂n

− θ
∂E
∂n

� �
ds +

ð
∂Bρ

E
∂θ
∂n

− θ
∂E
∂n

� �
ds,

ð33Þ

for

θ ∈ C1 �Ω
À Á

∩ C2 Ωð Þ, ð34Þ

where Ω − Bρ is the boundary of Bρ in equation (34). Since
Δ θ = 0 and Δ E = −δðx − ξÞ = 0 on Ω − Bρ, we have

ð
Ω−Bρ

EΔθdx = 0, ð35Þ

ð
Ω−Bρ

θ ΔEdx = 0: ð36Þ

The first term in the integral over ∂Bρ in equation (34)
becomes

ð
∂Bρ

E
∂θ
∂n

ds = E ρð Þ
ð
∂Bρ

∂θ
∂n

ds ≤ E ρð Þω2ρ sup
∂B

∂θ
∂n

����
����⟶ 0, as ρ⟶ 0:

ð37Þ
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Since

Cρ−1
ð
∂Bρ

θ xð Þ − θ ξð Þð Þds
�����

����� ≤ Cρ−1
ð
∂Bρ

θ xð Þ − θ ξð Þð Þj jds,

≤ Cω2 max
x∈∂Bρ

θ xð Þ − θ ξð Þj j⟶ 0, as ρ⟶ 0:

ð38Þ

The second term in integration over ∂Bρ in equation (56)
becomes

ð
∂Bρ

θ
∂E
∂n

ds = Cρ−1
ð
∂Bρ

θ xð Þds⟶ Cρ−1
ð
∂Bρ

θ ξð Þds

= Cω2θ ξð Þ, as ρ⟶ 0 = θ ξð Þ,
ð39Þ

where ω2 = 2π is the boundary length of the unit circle in ℝ2

and ω2ρ is the boundary of the circle with the radius ρ. If
one chooses C = 1/ω2 and substitutes equations (35), (36),
(37), and (39) in equation (34), then

θ ξð Þ =
ð
Γ

E
∂θ
∂n

− θ
∂E
∂n

� �
ds, for all ξ ∈Ω, θ ∈ C1 �Ω

À Á
∩ C2 Ωð Þ

ð40Þ

holds as ρ goes to zero. If ξ is on Γ, equation (40) has a sin-
gularity. Then, we can divide the boundary Γ by Γε and Γ
− Γε where Γε is half circle with small radius ε centered at
a singular ξ. Then, equation (40) becomes

θ ξð Þ =
ð
Γε

E
∂θ
∂n

− θ
∂E
∂n

� �
ds −

ð
Γ−Γε

E
∂θ
∂n

− θ
∂E
∂n

� �
ds: ð41Þ

The first term of the boundary integration over Γε in
equation (41) becomes

ð
Γε

E
∂θ
∂n

ds = E εð Þ
ð
Γε

∂θ
∂n

ds ≤ E εð Þω2ε sup
Bε

∂θ
∂n

����
����⟶ 0, as ε⟶ 0:

ð42Þ

The second term becomes

−
ð
Γε

θ
∂E
∂n

ds = Cε−1
ð
Γε

θ xð Þds: ð43Þ

Since

Cε−1
ð
Γε

θ xð Þ − θ ξð Þð Þds
�����

����� ≤ Cε−1
ð
Γε

θ xð Þ − θ ξð Þj jds,

≤
1
2Cω2 max

x∈Γε

θ xð Þ − θ ξð Þj j⟶ 0, as ε⟶ 0:

ð44Þ

Assume C = 1/ω2; then, equation (42) becomes

Cε−1
ð
Γε

θ xð Þds⟶ Cε−1
ð
Γε

θ ξð Þds = 1
2Cω2θ ξð Þ = 1

2 θ ξð Þ:

ð45Þ

By substituting equation (42) and equation (45) into equa-
tion (41) and let ε go to zero, then we obtain

1
2 θ ξð Þ =

ð
Γ

E
∂θ
∂n

− θ
∂E
∂n

� �
ds for all ξ ∈ Γ, θ ∈ C1 �Ω

À Á
∩ C2 Ωð Þ:

ð46Þ

When we use a boundary element method for the prob-
lem with ξ ∈ Γ, θðξÞis obtained numerically from equation
(46), while it is obtained from equation (40) when ξ ∈Ω.
By dividing the boundary into small segments, the classical
solution, if it exists, can be approximated numerically using
boundary integral equations (40) and (46) as illustrated
above. However, in the mixed boundary value problem, the
classical solution does not exist when x and ξ are at the same
point; then, it has a singularity and ξ is singularity of the
fundamental solution. Therefore, we cannot use equations
(40) and (46) directly.

3.2. Boundary Integral Expression for the Weak Solution. The
state equation of equations (29)–(32) is written in a varia-
tional form as

ð
Ω

∇θ∇vdx +
ð
Γ1∪Γ2

h
k

θ − θ∞ð Þvds = 0, for all v ∈ K , ð47Þ

where K is the admissible set given by K = fv/v ∈H1ðΩÞ, v
= 0 onΓ3g. The weak solution of equation (47) is unique
in H1ðΩÞ by using equations (27) and (28) and applying
the Lax-Milgram theorem. For every u ∈H1

0ðΩÞ, there exists
a unique solution θ ∈H1

0ðΩÞ.
By using the Cauchy-Schwarz inequality, let us check the

continuity of B½θ, v�:
ð
Ω

∇θ∇vdx ≤ C θk k vk k: ð48Þ

On the boundary ᴦ1 ∪ ᴦ2 by the Cauchy-Schwarz
inequality,

ð
ᴦ1∪ᴦ2

h
k

θ − θ∞ð Þvds ≤ C θk k vk k: ð49Þ

Then, from equations (47) and (48), we have continuity

B θ, v½ � ≤ C θk k vk k: ð50Þ

The following is the bilinear form of B½θ, v�:

−B θ, θ½ � =
ð
Ω

∇θ2dx +
ð
ᴦ1∪ᴦ2

h
k

θ − θ∞ð Þθds: ð51Þ
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Poincare’s inequality indicates that

ð
Ω

∇θ2dx ≥ C θk k2: ð52Þ

Then, we have

B θ, θ½ � ≥ C θk k2: ð53Þ

Therefore, the condition of the Lax-Milgram theorem is
satisfied, and there exists a unique weak solution on θ ∈H1

0
ðΩÞ [2, 8, 9, 14].

To represent the boundary integral equation for the var-
iational weak solution θ ∈H1ðΩÞ, then we need the follow-
ing theorem [8].

Theorem 6 (see [8, 21]. Green’s formula in the Sobolev space

ð
Ω

vΔu − uΔv
� �

dx =
ð
Γ

v
∂u
∂n

− u
∂v
∂n

� �
ds ð54Þ

holds for the domain Ω with the Lipschitz boundary Γ if u,
v ∈H1ðΩ, ΔÞ
whereH1ðΩ, ΔÞ = fu/u ∈H1ðΩÞ such that Δ ∈ L2ðΩÞg.

The variational solution θ is in H1ðΩ, ΔÞ, but the funda-
mental solution is not. In fact, it is in C∞ðℝ2 − fξgÞ [8].
Then, u in equation (49) can be substituted by θ but v can-
not by E. This difficulty is removed by replacing Ω by Ω −
Bρ, since E is the H1ðΩ, ΔÞ inΩ − Bρ. Then, we can conclude
from equation (54) that

ð
Ω−Bρ

EΔθ − θΔEð Þdx =
ð
Γ

E
∂θ
∂n

− θ
∂E
∂n

� �
ds +

ð
∂Bρ

E
∂θ
∂n

− θ
∂E
∂n

� �
ds, for θ ∈H1 Ω, Δð Þ:

ð55Þ

The left-hand side term of integration over Ω − Bρ is
zero, and the first term in the integration over ∂Bρ of equa-
tion (55) becomes

ð
∂Bρ

E
∂θ
∂n

ds = E ρð Þ
ð
∂Bρ

∂θ
∂n

ds ≤ E ρð Þω2ρ sup
Bρ

∂θ
∂xi

����
����⟶ 0, as ρ⟶ 0:

ð56Þ

The second term in the integration over ∂Bρ of equation
(55) becomes

ð
∂Bρ

θ
∂E
∂n

ds = Cρ−1
ð
∂Bρ

θ xð Þdx⟶ Cρ−1
ð
∂Bρ

θ ξð Þds

= Cω2θ ξð Þ, as ρ⟶ 0 = θ ξð Þ:
ð57Þ

Then, by substituting equations (56) and (57) in equa-

tion (54), we obtain

θ ξð Þ =
ð
Γ

E
∂θ
∂n

− θ
∂E
∂n

� �
ds, for all ξ ∈Ω, θ ∈H1 Ω, Δð Þ,

ð58Þ

as ρ goes to zero.
With the similar way stated in Section 3.1 in equations

(41), (42), (43), (44), and (45), if ξ is on Γ, equation (55)
becomes

1
2 θ ξð Þ =

ð
Γ

E
∂θ
∂n

− θ
∂E
∂n

� �
ds, for all ξ ∈ Γ, θ ∈H1/2 Γð Þ:

ð59Þ

If we insert the boundary condition of equations
(30)–(32) into equations (58) and (59), respectively, we can
get

θ ξð Þ =
ð
Γ1∪Γ2

E
h
k

θ − θ∞ð Þ +
ð
Γ3

E
∂θ
∂n

ds −
ð
Γ1∪Γ2∪Γ4

θ
∂E
∂n

ds,

ð60Þ

1
2 θ ξð Þ = −

ð
Γ1∪Γ2

E
h
k

θ − θ∞ð Þds +
ð
Γ3

E
∂θ
∂n

ds −
ð
Γ1∪Γ2∪Γ4

θ
∂E
∂n

ds:

ð61Þ

The solution of equations (60) and (61) in H1ðΩÞ is
equal to the variational solution, because it is unique in H1

ðΩÞ. The solution of the problem in equations (60) and
(61) can be approximated numerically by dividing the bor-
der into small parts, as shown by the previous results.

4. Conclusion

In this study, we present a two-dimensional heat transfer
problem utilizing a boundary integral equation with specific
initial and boundary conditions, and we discuss how a vari-
ational solution to a mixed boundary value problem can be
obtained even though a classical solution does not exist.
Also, we have transformed the boundary value problem for
the steady-state heat transfer problem into boundary inte-
gral equation and the solution of boundary integral equation
for the mixed boundary value problem by using Green’s
identity and fundamental solution. The boundary integral
equation for the problem guided by the Laplace operator
has a unique solution that is similar to the variational solu-
tion in H1ðΩÞ. As a result, a numerical approximation of
the variational solution for the boundary integral problem
can be obtained. Furthermore, the approach used in this
study can be used for three-dimensional heat transfer prob-
lems as well as other elliptic problems.
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