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Abstract—Vectorial modal analysis of a 2-D magneto-dielectric
grating structure is presented. The modal analysis is combined with
the generalized scattering matrix to obtain the transmission and
reflection coefficients of multilayered 2-D magneto-dielectric grating
slabs. The results are verified with available commercial codes.
Physical interpretation of the grating slab behavior is introduced. An
equivalent homogeneous magneto-dielectric slab is found using a simple
approach for extracting the equivalent permittivity and permeability.
Several examples are presented to find the relation between the physical
parameters of magneto-dielectric grating slabs and their equivalent
parameters. Emphasis on the possibility of designing a metamaterial
with equivalent negative permittivity and/or negative permeability by
using these grating structures is considered.

1. INTRODUCTION

Periodic structures have found great interests in different electromag-
netic and optical applications. This was the motivation to develop
different techniques for studying different configurations of periodic
structures. However, only a few published works have discussed the
properties of magneto-dielectric periodic structures [1, 2]. Recently, it
has been shown that such magneto-dielectric periodic structures can
also be used to design double negative (DNG) metamaterial where both
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the relative permittivity and the relative permeability are negative val-
ues [3]. Such metamaterials with negative permittivity and/or negative
permeability have found important applications in focusing the fields
of low directivity antennas [4, 5]. However, the available study for de-
signing metamaterial based on a periodic magneto-dielectric structure
is based on analytical forms for a special case where the structure is
composed of spherical magneto-dielectric spheres arranged in three-
dimensional (3D) cubic cells [3]. For practical applications, it would
be more appropriate to study the possibility of realizing such metama-
terials by using a 2-D grating slab of finite thickness as shown in Fig. 1.
In addition, including the relative permeability as a design parameter
represents another degree of freedom for designing grating structures.

Figure 1. Geometry of a 2-D Magneto-dielectric grating slab.

From the analytical point of view, the problem of a magneto-
dielectric grating slab can be solved by using different techniques; such
as MoM, FDTD, FDFD, FEM, and modal analysis [1, 2, 6–12]. This
problem has been discussed previously by using MoM [1, 2]. However,
the main complexity of this method is the large number of expansion
functions that are required to represent the induced volume electric
and magnetic currents. This complexity also increases by increasing
the thickness of the slab. Unlike MoM, modal analysis is based on
obtaining the tangential field distributions of the different modes and
the corresponding propagation constants in the longitudinal directions.
Then the problem is treated as cascaded sections of guiding structures
by using the generalized scattering method [13]. In this case, the
complexity of the problem is independent of the thickness of the grating
structure. Coves et al. [8, 9] applied this modal analysis to study
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the reflection and transmission of 1-D dielectric grating structures.
They showed good agreement with other techniques and experimental
results. They also showed good convergence and flexibility in their
modal analysis to include complex dielectric permittivity. Another
advantage of this technique is that the required integrations can be
calculated analytically for simple shapes of the implanted rods. Attiya
and Kishk [17] generalized this modal analysis method to study 2-D
dielectric grating slab. This paper presents an additional generalization
to include also the effect of changing the relative permeability on the
characteristics of a 2-D magneto-dielectric grating slab.

The remaining problem is how to extract the equivalent
parameters of the grating slab by using its reflection and transmission
coefficients. Cheng and Ziolkowski [14] have obtained approximate
formulas for such a problem based on the equivalent T-network.
However, their approximation is limited to normal incidence and very
thin thicknesses. Such an approximation was not found to be suitable
for the structures proposed in this article. Thus, the problem is
formulated as an inverse problem where the equivalent parameters
are obtained by a simple optimization process. The objective for this
optimization is to find the equivalent parameters that minimize the
difference between the actual reflection and transmission coefficients
and the corresponding ones for a homogeneous slab of the same
thickness excited by the same incident field.

The following section presents the modal analysis of a 2-D
magneto-dielectric grating structure and how it can be used to obtain
the transmission and reflection coefficients of multilayered grating
slabs. Then the problem of extracting equivalent parameters is
discussed in Section 3. Section 4 presents sample results for different
magneto-dielectric grating slabs and their equivalent parameters. This
section presents also detailed discussions on the possibility of designing
metamaterials by using magneto-dielectric grating slabs.

2. MODAL ANALYSIS OF MAGNETO-DIELECTRIC
GRATING

An infinite 2-D grating can be assumed as a guiding structure where
the total field is a superposition of discrete modes. The transverse
magnetic field distribution and propagation constants of these discrete
modes can be obtained by solving the following eigenvalue problem:

L[�ht] = β2�ht (1)

where the longitudinal dependence is assumed to e−jβz, β is the
propagation constant and L[◦] is a transverse differential operator.
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For the case where both εr and µr are functions of the transverse
coordinates, the transverse differential operator L[◦] can be derived by
using Maxwell’s equations as follows:

L[◦] =
[
∇2

t (◦) + k2
0µrεr(◦) +

(∇tεr

εr

)
× (∇t × ◦) + ∇t

(∇tµr

µr
· ◦

)]

(2)
To solve Eq. (1) numerically, the transverse magnetic field distribution
can be approximated as a series of orthonormal expansion functions of
unknown amplitudes as

�ht = �hTE
t + �hTM

t =
∑
p

CTE
(p)

�̃
hTE

(p) + CTM
(p)

�̃
hTM

(p) (3)

where �̃
hTE

(p) and �̃
hTM

(p) are the TE and TM expansion functions of the pth
mode and CTE

(p) and CTM
(p) are the corresponding unknown amplitudes

of the expansion functions. Appropriate choices for these expansion
functions for the case of a 2-D periodic structure in the transverse
plane are

�̃
hTE

mn =
exp(−jkxmx − jkyny)√

DxDy
(cos φinc�ax + sin φinc�ay) (4a)

�̃
hTM

mn =
exp(−jkxmx − jkyny)√

DxDy
(− sin φinc�ax + cos φinc�ay) (4b)

where each mn combination corresponds to a particular mode in
Eq. (3),

kxm = kx0 + 2πm/Dx (4c)
kyn = ky0 + 2πn/Dy (4d)
kx0 = k0 sin θinc cos φinc (4e)
ky0 = k0 sin θinc sin φinc (4f)

Dx and Dy are the dimensions of the periodic cell, and θinc and φinc

correspond to the direction of incidence. The orthonormality relation
can be easily verified for these expansion functions as follows

〈
�̃
hζ

mn,
�̃
hξ

m′n′

〉
=

Dx∫
0

Dy∫
0

�̃
hζ∗

mn · �̃hξ
m′n′dxdy = δmm′δnn′δζξ (5)

By applying Eq. (3) in Eq. (1) and using Galerkin’s method, one can
formulate the eigenvalue problem of Eq. (1) as a matrix eigenvalue
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problem
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where L
ξ/ζ
pq =

〈
�̃
hξ

(p), L

[
�̃
hζ

(p)

]〉
. By solving the above matrix eigenvalue

problem, one can obtain the unknown amplitudes of the expansion
functions for each mode as the eigenvectors and the propagation
constants as the square roots of the corresponding eigenvalues. For the
special case of a grating structure composed of rectangular dielectric
rods, the matrix elements of Eq. (6) can be obtained in closed forms
as shown in Appendix A. Other shapes of implanted rods can also be
subdivided to several rectangular rods.

To obtain the reflection and transmission coefficients of the
different modes between two adjacent semi-infinite gratings of the
same periodicity, it is required to match the tangential electric and
magnetic field distributions on the transverse interface between two
grating structures. The tangential magnetic field distribution of each
mode is obtained directly by using the resultant eigenvectors of Eq. (6).
On the other hand, the transverse electric field distribution can be
obtained as a function of the transverse magnetic field distribution as
follows:

jωε0εr�et =
[
∇t × �az

(
−jβ−1

(
µ−1

r ∇tµr · �ht + ∇t · �ht

))
− jβ�az × �ht

]
(7)

This electric field distribution can also be approximated as a series of
orthonormal expansion functions

�et = �eTE
t + �eTM

t =
∑
p

ΦTE
(p)

�̃eTE
(p) + ΦTM

(p)
�̃eTM

(p) (8)

where the expansion functions of the electric field are orthogonal to
the corresponding expansion functions of the magnetic field such that
�̃eTE

(p) = −�az × �̃
hTE

(p) and �̃eTM
(p) = −�az × �̃

hTM
(p) . The electric field amplitude

matrix Φ can be obtained by using the bi-orthogonal property of the
electric field modal expansion function as follows:

jωε0

〈
�̃e, εr, �et

〉
=

〈
�̃e,

[(
−jβ−1C

(
µ−1

r ∇tµr ·�̃ht+∇t · �̃ht

))
−jβC�az×�̃

ht

]〉

(9)
By solving (9), it can be shown that the electric field amplitude matrix
Φ is

Φ =
1

jωε0

(
jβ−1CQAT − jβ−1CAAT + jβC

)
Ψ−1 (10)
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where A =
[

ATE

ATM

]
, Q =

[
QTE

QTM

]
, and Ψ =

[
ΨTE 0

0 ΨTM

]
.

ATE is a diagonal matrix with the elements ATE
pp = (−jkx(p) cos φinc −

jky(p) sin φinc) and ATM is a diagonal matrix with the elements ATM
pp =

(jkx(p) sin φinc−jky(p) cos φinc). ΨTE = ΨTM is a matrix with elements
given as

ψpq =
1

DxDy

Dx∫
0

Dy∫
0

εr(x, y)ej(kx(p)−kx(q))xej(ky(p)−ky(q))ydxdy (11)

and the elements of the QTE and QTM matrices are

QTE
pq =

(
Q1x

(
kx(p) − kx(q), ky(p) − ky(q)

)
cos φinc

+ Q1y

(
kx(p) − kx(q), ky(p) − ky(q)

)
sin φinc

)
(12a)

QTM
pq =

(
−Q1x

(
kx(p) − kx(q), ky(p) − ky(q)

)
sin φinc

+ Q1y

(
kx(p) − kx(q), ky(p) − ky(q)

)
cos φinc

)
(12b)

where Q1x and Q1y are given by Eqs. (A3e) and (A3f) in Appendix A.
By matching the tangential electric and magnetic fields on the

interface between two adjacent semi-infinite 2-D grating structures
of the same periodicity, one can obtain the corresponding scattering
matrix elements

S11 = I − 2
(
C2C

−1
1 + Φ2Φ−1

1

)−1
C2C

−1
1 (13a)

S12 = 2
(
C1C

−1
2 + Φ1Φ−1

2

)−1
(13b)

S21 = 2
(
C2C

−1
1 + Φ2Φ−1

1

)−1
(13c)

S22 = I − 2
(
C1C

−1
2 + Φ1Φ−1

2

)−1
C1C

−1
2 (13d)

where the Ci and Φi matrices represent the tangential magnetic
and electric field distributions of the ith grating structure and I is
the unit matrix of the same dimension. By using such scattering
matrices combined with the corresponding propagation constants of
the different expansion modes and applying the generalized scattering
matrix approach [13], one can obtain the reflection and transmission
coefficients of multilayered grating slabs of finite thicknesses.
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3. EXTRACTION OF EQUIVALENT PARAMETERS

After determining the reflection and transmission coefficients of a
multilayered grating slab, it is useful to obtain the parameters of an
equivalent homogenous slab of the same thickness that has the same
transmission and reflection coefficients. These equivalent parameters
can be an appropriate method to understand the characteristics of the
different resonances in the grating structures. This also can be a good
tool for designing metamaterials with negative permittivity and/or
negative permeability by using a grating slab. Transmission through
a prism represents the most appropriate approach for characterizing
DNG metamaterial [15]. However, the present analysis is based on
a constant-thickness slab. Cheng and Ziolkowski [14] introduced a
simple approach based on an equivalent T network to extract the
equivalent parameters in closed forms for a finite-thickness slab from
its scattering parameters. However, their approach is limited to very
small thickness compared with the operating wavelength and to normal
incidence. To generalize their approach we introduced an equivalent
inverse problem, which can be presented as an optimization problem
as shown in Fig. 2. The reflection and transmission coefficients of the
equivalent homogenous slab are obtained in closed forms [16]. Any
simple optimization technique or minimum-search can be used for
obtaining the equivalent parameters that minimize the corresponding
error function.

Figure 2. Block diagram of equivalent parameters extraction
technique.
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Figure 3. Reflection of a 2-D magneto-dielectric grating slab
embedded between two dielectric slabs. The parameters of the grating
slab are Dx = Dy = 2 mm, lx1 = ly1 = 1 mm, x01 = y01 = 10 mm,
h = 2 mm, εrb = 1, µrb = 1, εr1 = 2 and µr1 = 4. The thickness
of each dielectric slab is 1 mm. The dielectric constants of the upper
and the lower slabs are 2.2 and 4, respectively. The excitation is a TM
oblique incident plane wave with θinc = 30◦ and φinc = 60◦.

4. RESULTS AND DISCUSSIONS

Different configurations of 2-D magneto-dielectric grating slabs are
discussed in this section to show their main characteristics and
equivalent parameters. Most of the following examples are solved
by using only 49 expansion functions with −3 ≤ m, n ≤ 3 in
Equation (4). However, for large differences between the parameters
of the base slab and the implanted rods, it is preferred to use a
larger number of expansion functions up to (−9 ≤ m, n ≤ 9) to
obtain convergent solutions. To verify the validity of the present
approach, a comparison between modal analysis and MoM solutions
for calculating the reflection coefficient of a magneto-dielectric grating
slab embedded between two homogeneous dielectric slabs for an
obliquely incident TM waves is shown in Fig. 3. One can notice
very good agreement between the two results. Another example is
considered to verify the present analysis. As a self-consistency test,
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Figure 4. Magnitude of reflection coefficient of a 2-D grating slab due
to normal incident plane wave with Dx = Dy = 20 mm, lx1 = 10 mm,
ly1 = 10 mm, x01 = 10 mm, y01 = 10 mm, h = 2 mm; the solid line
corresponds to εrb = 2, µrb = 1, εr1 = 7 and µr1 = 1, and the dashed
line corresponds to the dual problem where εrb = 1, µrb = 2, εr1 = 1
and µr1 = 7.

Figure 5. Equivalent parameters of the dielectric grating slab of
Fig. 4; εrb = 2, µrb = 1, εr1 = 7 and µr1 = 1.
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Figure 6. Magnitude of reflection coefficient of a 2-D grating slab
due to normal incident plane wave. Dx = Dy = 20 mm, lx1 = 10 mm,
ly1 = 10 mm, x01 = 10 mm, y01 = 10 mm and h = 2 mm, εrb = 2, µrb =
2, εr1 = 3 and µr1 = 3.

the reflection coefficients of the above dielectric grating structure (Fig.
3) are computed under normal incidence and compared with its dual
grating slab. As expected, the structure and its dual give the same
reflection coefficients as shown in Fig. 4. Fig. 5 shows the equivalent
material parameters of the dielectric grating structure of Fig. 4. It
is observed that the increase of the reflection coefficient in this case
is effectively due to the increase in the stored electrical energy in the
grating structure, which corresponds to the increase in the equivalent
permittivity. Around the resonance frequency, the dielectric slab
is converted from highly positive permittivity to a highly negative
permittivity. Then, the highly negative permittivity is increased to
be positive as the frequency increases farther. On the other hand, the
relative permeability is increased as a sharp peak around the center
of the negative permittivity. However, this peak is much less than the
peak of the relative permittivity. In this band, the total stored energy
is converted to magnetic energy. At higher frequencies, the equivalent
relative permittivity is converted back gradually to positive value. This
explains the reflection minimum that just follows the resonance of the
grating structure in this case. Similarly, one can explain the resonance
behavior of the magnetic grating slab. In the case of magneto-dielectric
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Figure 7. Equivalent relative permittivity and permeability of
the grating slab of Fig. 6. Shaded region corresponds to DNG
metamaterial.

grating structures with εr1 > µr1 and εrb > µrb it is found that such
structures have quite similar properties to dielectric grating slabs, while
magneto-dielectric grating structures with µr1 > εr1 and µrb > εrb

have quite similar properties to magnetic grating slabs. On the other
hand, a magneto-dielectric grating can be tailored for a special case
where both the base slab and the implanted rods have the characteristic
impedance of free space and have different propagation constants such
that εr1 = µr1 and εrb = µrb where εr1 �= εrb. In this case the
reflection coefficient of such grating structure due to normal incidence
is characterized by a narrow band resonance surrounded by very low
reflection coefficient as shown in Fig. 6 for a 2-D grating slab with the
following parameters; Dx = Dy = 20 mm, lx1 = 10 mm, ly1 = 10 mm,
x01 = 10 mm, y01 = 10 mm, h = 2 mm, εrb = 2, µrb = 2, εr1 = 3
and µr1 = 3. The equivalent parameters for such a grating structure
are shown in Fig. 7. It can be noticed that the resonance in this
case is mainly due to stored magnetic energy. It can also be noted
that both the relative permittivity and relative permeability turn
simultaneously into negative values in a very narrow band to form
an equivalent DNG slab. Fig. 8 shows the reflection coefficients of
the same magneto-dielectric grating slab for TE and TM obliquely
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Figure 8. Magnitude of TE and TM reflection coefficients of a 2-D
grating slab due to an obliquely incident plane wave; θinc = 30◦ and
φinc = 0◦. The parameters of the grating structure are the same as for
Fig. 6.

incident waves where θinc = 30◦ and φinc = 0◦. One may notice
that the resonance bandwidth is increased slightly as the interaction
between the two nearby resonances and the value of the background
reflection surrounding the resonance are also increased. Due to the
symmetry of this grating structure and the duality effects of the relative
permittivity and relative permeability on TM and TE waves, the TE
and TM responses in this case are identical. The slight difference
shown between the results can be related to the numerical accuracy of
solving the combined eigenvalue problems. Fig. 9 shows the equivalent
parameters in this case for both TM and TE incident waves. Note
that the total resonance is composed of two resonances. For the TM
case these resonances are due to large stored electric energy followed
by large stored magnetic energy, while the reverse behavior applies for
the TE case. One may also note that the equivalent parameters do not
turn simultaneously into negative values. This means that the DNG
property, which is found with the normal plane wave incidence in a
narrow band, disappears for the oblique incidence case. Fig. 10 shows
the effect of increasing the values of εr1 and µr1 for the case of normal
incidence. A bandwidth increase is noted in this case. The equivalent
parameters for Fig. 10 case are shown in Fig. 11 providing a wider
bandwidth for the DNG property. By comparing Fig. 11 with Fig. 7 it



Progress In Electromagnetics Research, PIER 74, 2007 207

Figure 9a. Equivalent relative permittivity and permeability of the
grating slab of Fig. 8 for TM incident wave.

Figure 9b. Equivalent relative permittivity and permeability of the
grating slab of Fig. 8 for TE incident wave.
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Figure 10. Magnitude of reflection coefficient of a 2-D grating
slab due to normally incident plane wave. Dx = Dy = 20 mm,
lx1 = 10 mm, ly1 = 10 mm, x01 = 10 mm, y01 = 10 mm and h = 2 mm,
εrb = 2, µrb = 2, εr1 = 7 and µr1 = 7.

Figure 11. Equivalent relative permittivity and permeability of the
grating slab of Fig. 8 for TE incident wave.
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Figure 12. Magnitude of reflection coefficient of a 2-D grating
slab due to normally incident plane wave. Dx = Dy = 20 mm,
lx1 = 5 mm, ly1 = 5 mm, x01 = 10 mm, y01 = 10 mm and h = 2 mm,
εrb = 4, µrb = 4, εr1 = 1 and µr1 = 1.

can be noted that the magnitude of the equivalent parameters in the
DNG region is decreased by increasing εr1 and µr1. It is also observed
that the DNG properties disappear as εr1 and µr1 increase.

In the previous examples the relative permittivity and permeabil-
ity of the implanted rods are greater than the corresponding ones of
the base slab. Fig. 12 shows another example where the implanted
rods are free space holes inside a magneto-dielectric slab. The reso-
nance behavior in this case due to normal incidence is quite similar
to the previous case shown in Fig. 6. However, the equivalent param-
eters shown in Fig. 13 for this case present another explanation for
the resonance characteristics, where either the relative permittivity or
the relative permeability becomes negative but not both of them si-
multaneously. From these two examples, it can be concluded that the
DNG property can be obtained only for implanted rods of relative per-
mittivity and permeability greater than the corresponding ones of the
supporting slab.

Figure 14 shows another special case where the values of the
relative permittivity and relative permeability of the base slab and the
implanted rods are interchanged such that εr1 = µrb and εrb = µr1.
In this case the characteristic impedance of the base and the rods are
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Figure 13. Equivalent relative permittivity and permeability of the
grating slab of Fig. 12.

Figure 14. Magnitude of reflection coefficient of a 2-D grating slab
due to normal incident plane wave. Dx = Dy = 20 mm, lx1 = 10 mm,
ly1 = 10 mm, x01 = 10 mm, y01 = 10 mm and h = 2 mm, εrb = 2, µrb =
7, εr1 = 7 and µr1 = 2.
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Figure 15. Equivalent relative permittivity and permeability of the
grating slab of Fig. 14.

different but the wave propagation constant is the same. It can be
noticed that the behavior of the reflection coefficient in this case for
the lower frequency band is similar to the corresponding one of the
dielectric or magnetic grating slab shown in Fig. 4. However, over
the higher frequency band multiple closed resonances create a wide
reflection band. The effective parameters of this grating structure are
shown in Fig. 15. It can be noticed that this structure can be used to
design either negative permittivity or negative permeability material
but it cannot be used to design a DNG metamaterial slab.

5. CONCLUSION

Detailed modal analysis of a 2-D magneto-dielectric grating structure
was discussed. This modal analysis combined with the generalized
scattering matrix approach was used to study the reflection and
transmission coefficients of different multilayered 2-D magneto-
dielectric grating slabs. The accuracy of this modal analysis combined
with the generalized scattering matrix approach was verified by
comparison with MoM and verification of duality between dielectric
and magnetic grating slabs. A general approach for extracting
the equivalent parameters of a finite thickness slab based on its
transmission and reflection coefficients for an arbitrary incidence plane
wave was discussed. This approach was used to extract the equivalent
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parameters of different magneto-dielectric grating slabs. It was found
that a dielectric (magnetic) grating could be used to design a negative
permittivity (permeability) slab. A magneto-dielectric grating with
dominating variation in its relative permittivity was found to have
similar behavior of dielectric grating slab and vise versa. It is also
found that magneto-dielectric grating of εr1 = µr1 and εrb = µrb

can be used to design a narrow band DNG for normal incidence if
εr1 > εrb. Such DNG bandwidth increased by increasing the difference
between εr1 and εrb. However, increasing this difference decreased
the magnitude of the equivalent negative parameters. For larger
differences between εr1 and εrb the DNG could not be obtained. Also
the DNG property could not be obtained by using a finite grating
slab with oblique incidence. For a magneto-dielectric grating with,
the resonance behavior is found to be equivalent to either negative
permittivity or negative permeability but not both together. Another
property of the magneto-dielectric grating with εr1 = µr1 and εrb = µrb

was the narrow bandwidth resonances which were characterized by
narrow band high reflection coefficients embedded between wideband
low reflection coefficients. Another special case was discussed where
the values of the relative permittivity and relative permeability of the
base slab and the implanted rods were interchanged such that εr1 = µrb

and εrb = µr1. The properties of such grating structures were found
to be similar to the corresponding properties of magnetic or dielectric
grating slabs. However, this grating structure was found also to have
multi-resonances, which created a wider reflection bandwidth.

APPENDIX A.

For the special case where the transverse periodic cell of the
grating is composed of rectangular rods, the relative permittivity and
permeability as functions of transverse coordinates are given by

εr(x, y) = εrb +
ND∑
i=1

[(εri−εrb)(H(x−x0i+lxi/2)−H(x−x0i−lxi/2))

×(H(y−y0i+lyi/2) − H(y−y0i−lyi/2))] (A1a)

µr(x, y) = µrb +
ND∑
i=1

[(µri−µrb)(H(x−x0i+lxi/2)−H(x−x0i−lxi/2))

×(H(y−y0i+lyi/2) − H(y−y0i−lyi/2))] (A1b)

where H(x) is the Heaviside function, εrb and µrb are the relative
permittivity and permeability of the base material, εri and µri are the
relative permittivity and permeability of the ith rod, lxi and lyi are the
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transverse dimensions of the ith rod, (x0i, y0i) is the transverse central
location of the ith rod, and ND is the number of dielectric rods per
unit cell. For this case, the matrix elements of Eq. (6) can be obtained
in closed forms as follows

LTE/TE
pq = β̃2

pδpq + k2
0R0(kx(p) − kx(q), ky(p) − ky(q))

+(jkx(q) sin φinc − jky(q) cos φinc)
×(−R1x(kx(p) − kx(q), ky(p) − ky(q)) sin φinc

+R1y(kx(p) − kx(q), ky(p) − ky(q)) cos φinc)
−(jkx(p) cos φinc + jky(p) sin φinc)
×(Q1x(kx(p) − kx(q), ky(p) − ky(q)) cos φinc

+Q1y(kx(p) − kx(q), ky(p) − ky(q)) sin φinc) (A2a)

LTM/TM
pq = β̃2

pδpq + k2
0R0(kx(p) − kx(q), ky(p) − ky(q))

+(jkx(q) cos φinc + jky(q) sin φinc)
×(−R1x(kx(p) − kx(q), ky(p) − ky(q)) cos φinc

−R1y(kx(p) − kx(q), ky(p) − ky(q)) sin φinc)
−(jkx(p) sin φinc − jky(p) cos φinc)
×(−Q1x(kx(p) − kx(q), ky(p) − ky(q)) sin φinc

+Q1y(kx(p) − kx(q), ky(p) − ky(q)) cos φinc) (A2b)

LTE/TM
pq = −(jkx(q) cos φinc − jky(q) sin φinc)

×(−R1x(kx(p) − kx(q), ky(p) − ky(q)) sin φinc

+R1y(kx(p) − kx(q), ky(p) − ky(q)) cos φinc)
−(jkx(p) cos φinc + jky(p) sin φinc)
×(−Q1x(kx(p) − kx(q), ky(p) − ky(q)) sin φinc

+Q1y(kx(p) − kx(q), ky(p) − ky(q)) cos φinc) (A2c)

LTM/TE
pq = −(−jkx(q) sin φinc + jky(q) cos φinc)

×(R1x(kx(p) − kx(q), ky(p) − ky(q)) cos φinc

+R1y(kx(p) − kx(q), ky(p) − ky(q)) sin φinc)
−(−jkx(p) sin φinc + jky(p) cos φinc)
×(Q1x(kx(p) − kx(q), ky(p) − ky(q)) cos φinc

+Q1y(kx(p) − kx(q), ky(p) − ky(q)) sin φinc) (A2d)

where

β̃p =
√

εrbk
2
0 − k2

x(p) − k2
y(p) (A3a)
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R0(kx, ky) =
1

DxDy

ND∑
i=1

4(εriµri − εrbµrb)
sin(kxlxi/2)

kx

×sin(kylyi/2)
ky

ej(kxx0i+kyy0i) (A3b)

R1x(kx, ky) =
1

DxDy

ND∑
i=1

8j
(εri − εrb)
(εri + εrb)

sin(kxlxi/2)

×sin(kylyi/2)
ky

ej(kxx0i+kyy0i) (A3c)

R1y(kx, ky) =
1

DxDy

ND∑
i=1

8j
(εri − εrb)
(εri + εrb)

sin(kxlxi/2)
kx

×sin(kylyi/2)ej(kxx0i+kyy0i) (A3d)

Q1x(kx, ky) =
1

DxDy

ND∑
i=1

8j
(µri − µrb)
(µri + µrb)

sin(kxlxi/2)

×sin(kylyi/2)
ky

ej(kxx0i+kyy0i) (A3e)

Q1y(kx, ky) =
1

DxDy

ND∑
i=1

8j
(µri − µrb)
(µri + µrb)

sin(kxlxi/2)
kx

×sin(kylyi/2)ej(kxx0i+kyy0i) (A3f)
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