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Abstract

Testing for differences between two groups is among the most frequently carried out
statistical methods in empirical research. The traditional frequentist approach is to
make use of null hypothesis significance tests which use p values to reject a null
hypothesis. Recently, a lot of research has emerged which proposes Bayesian versions
of the most common parametric and nonparametric frequentist two-sample tests. These
proposals include Student’s two-sample t-test and its nonparametric counterpart, the
Mann–Whitney U test. In this paper, the underlying assumptions, models and their
implications for practical research of recently proposed Bayesian two-sample tests are
explored and contrasted with the frequentist solutions. An extensive simulation study
is provided, the results of which demonstrate that the proposed Bayesian tests achieve
better type I error control at slightly increased type II error rates. These results are
important, because balancing the type I and II errors is a crucial goal in a variety of
research, and shifting towards the Bayesian two-sample tests while simultaneously
increasing the sample size yields smaller type I error rates. What is more, the results
highlight that the differences in type II error rates between frequentist and Bayesian
two-sample tests depend on the magnitude of the underlying effect.

Keywords Bayesian hypothesis testing · Two-sample hypothesis tests · Null
hypothesis significance testing · Parametric and non-parametric two-sample tests ·
Type I and II error rates

1 Introduction

In a lot of quantitative research like the medical and social sciences, two-sample
tests like Student’s t-test are among the most widely carried out statistical procedures
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(Nuijten et al. 2016). In randomized controlled trials (RCT), the goal often is to test
the efficacy of a new treatment or drug and find out the size of an effect. In usual study
designs, a treatment and control group are used and differences in a response variable
like the blood pressure or cholesterol level between both groups are recorded. The
gold standard for deciding if the new treatment or drug was effective compared to the
status quo treatment or drug is the p value, which is the probability, under the null
hypothesis H0, of obtaining a difference equal to or more extreme than the difference
observed. The dominance of p values when comparing two groups in medical (and
other) research is striking: For example, Nuijten et al. (2016) showed in a large-scale
meta-analysis that of 258105 p values reported in journals between 1985 until 2013,
26% belonged to a t-statistic.

Besides the importance of two-sample tests, it is well known that the usually applied
frequentist hypothesis tests have their limitations. Null hypothesis significance tests
which employ p values are prone to inflate false-positive error rates if the distributional
assumptions are violated (Rochon et al. 2012), if optional stopping rules are applied
(Kruschke and Liddell 2018b; Berger and Wolpert 1988), or the study conducted is
underpowered (McElreath and Smaldino 2015). To mitigate these problems, a lot of
research has been carried out in the last decade on developing Bayesian counterparts
to popular frequentist two-sample tests like Student’s t-test and the Mann–Whitney
U test (van Doorn et al. 2020; Gönen et al. 2005; Wetzels et al. 2009; Wang and Liu
2016; Gronau et al. 2019). Bayesian versions of such traditional frequentist hypothesis
tests have become much more popular recently, in particular, in the biomedical and
cognitive sciences (Van De Schoot et al. 2017; Wagenmakers et al. 2016; Morey et al.
2016). Also, the general use of Bayesian statistics (maybe due to the availability of such
Bayesian counterparts to traditional hypothesis tests) has become more popular: Van
De Schoot et al. (2017) conducted an extensive meta-analysis of n = 1579 published
articles dealing with Bayesian statistics including Bayesian hypothesis testing in the
cognitive sciences, and concluded:

“Our review indicated that Bayesian statistics is used in a variety of contexts
across subfields of psychology and related disciplines. There are many different
reasons why one might choose to use Bayes (e.g., the use of priors, estimat-
ing otherwise intractable models, modelling uncertainty, etc.). We found in this
review that the use of Bayes has increased and broadened in the sense that this
methodology can be used in a flexible manner to tackle many different forms of
questions.” (Van De Schoot et al. 2017, p. 1)

Narrowing the focus on Bayesian hypothesis tests, the last decade also has brought
various proposals of Bayesian counterparts to traditional null hypothesis significance
tests. These range from two-sample tests (Kelter 2020d; Gönen et al. 2005; Rouder
et al. 2009; Wetzels et al. 2009, 2011; Wang and Liu 2016; Gronau et al. 2019;
van Doorn et al. 2020) over tests in regression models (van Doorn et al. 2019) to
tests in the analysis of variance (van Dongen et al. 2019; Rouder et al. 2012). Based
on the literature, Bayesian hypothesis testing is now often advocated as a possible
replacement or alternative to NHST and p values in the biomedical and cognitive
sciences (Wagenmakers et al. 2016; Ly et al. 2016a, b; Etz and Wagenmakers 2015;
Kelter 2020b, a, d).
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Among the advantages of the Bayesian tests are the adherence to the likelihood
principle (Birnbaum 1962), the independence of the researchers’ intentions (Edwards
et al. 1963; Kruschke and Liddell 2018b, a), and the simplified interpretation of cen-
sored data (Berger and Wolpert 1988). Importantly, the use of the developed Bayesian
hypothesis tests allows researchers to use optional stopping: That is, to stop recruiting
study participants and report the results of a hypothesis test when the data already show
overwhelming evidence after only a fraction of the planned sample size is observed
(Edwards et al. 1963). This is a strong benefit of the Bayesian hypothesis tests (and of
Bayesian data analysis, in general).

On the other hand, Bayesian inference comes with its own problems, which include
prior selection, the robustness of the analysis, and convergence diagnostics of Markov-
Chain-Monte-Carlo algorithms (Kelter 2020b). Also, as Bayesian analysis proceeds
by deriving a posterior distribution p(θ |x) of the parameter(s) θ of interest via combi-
nation of a prior distribution p(θ) on θ with the model likelihood f (x |θ), the influence
and selection of (reasonable) priors used in any Bayesian analysis is of particular inter-
est. In addition to these aspects, Bayesian inference has multiple indices of significance
or size of an effect available which can be used in conjunction with a posterior distribu-
tion p(θ |x) (Makowski et al. 2019; Kelter 2020a). While few studies have compared
and investigated different indices directly, the currently widely adopted and recom-
mended standard is given by the Bayes factor, which is also not without problems.
In summary, due to the progress made, Bayesian versions of two-sample tests have
become more popular in recent literature, and in this paper, these are reviewed and
contrasted with their frequentist counterparts.

2 Frequentist two-sample tests

Frequentist two-sample tests can be divided into two distinct categories: Parametric
tests, which assume a parametric distribution of the data to be analysed, and nonpara-
metric tests, which omit this assumption. The most popular member in the class of
parametric two-sample tests is probably Student’s two-sample t-test.

2.1 Student’s two-sample t-test

Student’s two-sample t-test assumes in its most restricted setting normally distributed
data with the same standard deviation σ in both groups, so that

X i ∼ N (µ1, σ
2) Y j ∼ N (µ2, σ

2) (1)

and tests the null hypothesis of no difference, that is H0 : µ2 − µ1 = 0, for sample
sizes i = 1, . . . , nx , j = 1, . . . , ny , nx , ny ∈ N. To do this, the t statistic
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t =
X̄ − Ȳ

sp

√
1

nx
+ 1

ny

(2)

is calculated, where

sp =

√

(nx − 1)s2
x + (ny − 1)s2

y

nx + ny − 2
(3)

is the pooled standard deviation, and s2
x and s2

y are the usual unbiased estimators of
the variances of both samples:

s2
x =

1

nx − 1

nx∑

i=1

(X i − X̄)2 (4)

and s2
y analogue. Under the null hypothesis H0 : µ2 − µ1 = 0, the quantity t is

tnx +ny−2 distributed, and for a prespecified test level α ∈ [0, 1], the two-sample t-test
rejects H0, if Pr(t ≥ t(X1, X2)|H0 : µ2 − µ1 = 0) < α. Removing the restriction
of identical standard deviations σ in both groups and allowing different standard
deviations σ1, σ2 then leads to Welch’s t-test, for which only approximations to the
true test statistic’s distribution exist. The t statistic to test whether the group means
µ2 and µ1 are different is then calculated as

tW S =
X̄ − Ȳ

s∆̄

, s∆̄ :=

√

s2
x

nx

+
s2

y

ny

(5)

where s2
x and s2

y are again the unbiased estimators of the variance of the two groups.
The distribution of the test statistic t is then approximated as a Student’s t-distribution
via the Welch-Satterthwaite equation

d f =

(

s2
x

nx
+ s2

y

ny

)2

(s2
x /ny)

2

nx −1 +
(

s2
y/ny

)2

ny−1

(6)

which estimates the degrees of freedom of the t-distribution of the test statistic tW S .
While the true distribution of tW S depends on the unknown group variances σ 2

1 and σ 2
2 ,

the approximation via the Welch-Satterthwaite equation is precise enough for practical
purposes.
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2.2 Mann–Whitney’s U test/Wilcoxon rank sum test

Removing the assumption of normally distributed data in both groups of the previous
section makes application of the parametric Student’s two-sample t-test impossible. If
data are only assumed to be independent in each group and two independent samples X i

and Y j with sample sizes i = 1, . . . , nx and j = 1, . . . , ny are given, the nonparamet-
ric Mann–Whitney U test can be conducted, also known under the name Wilcoxon rank
sum test (Wilcox 1998). The Wilcoxon rank sum test tests the hypothesis H0 : F = G,
where F is the distribution of X i and G the distribution of Y j . First, both samples are
combined into a combined sample (y1, . . . , ynx +ny ) := (x1, . . . , xnx , y1, . . . , yny ),
and the Mann–Whitney U test statistic

Unx ,ny :=
nx∑

i=1

ny
∑

j=1

S(xi , y j ) (7)

is calculated, where S(xi , y j ) = 1, if y j < xi , S(xi , y j ) = 1/2, if y j = xi and else
S(xi , y j ) = 0. For reasonably large nx , ny (nx , ny > 3 and nx + ny > 19), it can be
shown that U is normally distributed:

Unx ,ny ∼ N

(
nx ny

2
,

nx ny(nx + ny + 1)

12

)

(8)

Therefore, via the central limit theorem the following test statistic Z is standard normal:

Znx ,ny :=
Unx ,ny − nx ny

2
√

nx ny(nx +ny+1)

12

∼ N (0, 1) (9)

For a given test level α ∈ [0, 1] therefore, the Mann–Whitney U test rejects H0 : F =
G, iff |Z | > cα , where cα is the α-quantile of N (0, 1). For situations in which nx , ny

are not large enough, the distribution of U and Z has been tabulated. It is also possible
to use the Wilcoxon rank sum statistic

Wnx ,ny :=
ny
∑

i=1

R(yi ) (10)

where R(yi ) is the rank of observation y j in the pooled sample (y1, . . . , ynx +ny ) :=
(y1, . . . , yny , x1, . . . , xnx ). It can be shown that

Wnx ,ny = Unx ,ny +
ny(ny + 1)

2
(11)

and therefore

Wnx ,ny ∼ N

(
ny(ny + nx + 1)

2
,

nx ny(nx + ny + 1)

12

)

(12)
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so that also Wnx ,ny can be used for testing H0 : F = G based upon an identical central
limit argument.

3 Bayesian two-sample tests

As illustrated above, frequentist parametric or nonparametric two-sample tests are
based on sampling statistics which follow a known distribution. This allows rejecting
a null hypothesis H0 via the use of p values. Recently Bayesian alternatives to the
two-sample t-test and Mann–Whitney U test have been proposed (Gönen et al. 2005;
Wetzels et al. 2009; Wang and Liu 2016; Gronau et al. 2019; van Doorn et al. 2020),
and in what follows these are reviewed briefly before illustrations and an example are
provided for the comparison of both approaches.

3.1 A parametric Bayesian two-sample t-test

In the last years an increasing interest in Bayesian versions of the two-sample t-test
can be observed (Gönen et al. 2005; Wetzels et al. 2009, 2011; Wang and Liu 2016;
Gronau et al. 2019). Most of these approaches utilise Bayes factors as a measure of
evidence for the null hypothesis H0 against an alternative H1 or vice versa, see for
example Gönen et al. (2005), Rouder et al. (2009), Wetzels et al. (2009), Wang and
Liu (2016) and Gronau et al. (2019). A different widely used approach is based on
the region of practical equivalence (ROPE), see Kruschke (2013, 2015, 2018) and
also Lakens (2017) and Lakens et al. (2018). Less widely known indices like the
probability of direction, the MAP-based p-value and the ROPE-based Bayes factor
have been studied by Makowski et al. (2019) and Kelter (2020a). Bayesian hypothesis
testing is often conducted via the Bayes factor, the predictive updating factor which
measures the change in relative beliefs about both hypotheses H0 and H1 given the
data x :

P(H0|x)

P(H1|x)
︸ ︷︷ ︸

Posterior odds

=
p(x |H0)

p(x |H1)
︸ ︷︷ ︸

B F01(x)

·
P(H0)

P(H1)
︸ ︷︷ ︸

Prior odds

(13)

The Bayes factor can be rewritten as the ratio of the two marginal likelihoods under
both models, where the marginal likelihood under each model is calculated by inte-
grating out the respective model parameters according to the prior distribution of the
parameters. In general, the calculation of these marginals can be complex for non-
trivial models and in the case of the two-sample t-test, Gronau et al. (2019) note
that the null hypothesis H0 : δ = 0 of no effect specifies the two free parameters
ζ = (µ, σ ) and the alternative hypothesis H1 : δ �= 0 of a non-null effect three free
parameters (ζ, δ) = (µ, σ, δ). Once the priors π0(ζ ) and π1(ζ, δ) are specified, the
Bayes factor is given by the ratio of the two marginal likelihoods:

B F10(x) =
∫

∆

∫

Z
f (x |δ, ζ, H1)π1(δ, ζ )dζdδ

∫

Z
f (x |ζ, H0)π0(ζ )dζ

(14)
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Here Z is the parameter space of ζ and ∆ the parameter space of δ. While Jeffreys
(1939) was the first to introduce not only the Bayes factor but also a first one-sample
Bayesian t-test, his proposal was simplified by the reparameterization of Gönen et al.
(2005).

Gönen et al. (2005) developed a first version of a Bayesian t-test in 2005. Assum-
ing normally distributed, independent data with identical standard deviation in both
groups, that is X i ∼ N (µ1, σ

2), i = 1, . . . , nx , Y j ∼ N (µ2, σ
2), j = 1, . . . , ny ,

they derived a Bayesian version of the two-sample t-test for testing H0 : µ2 −µ1 = 0
against the two-sided alternative H1 : µ1 − µ2 �= 0. The novel idea was to put a prior
on the effect size µ1−µ2

σ
(which is the key quantity of interest in a large part of applied

research) instead of putting it on just µ1 − µ2. Gönen et al. (2005) specified the prior
on the effect size as N (λ, σ 2

δ ) and chose a non-informative prior
∏

(µ, σ 2) ∝ 1/σ 2

for (µ, σ 2) under both the null hypothesis H0 and the alternative H1. Completing the
prior modelling by setting P(δ = 0) = 0.5 as the prior probability of H0 being true,
Gönen et al. (2005) derived the Bayes factor B F10(x) = p(x |H1)/p(x |H0) as

B F10 =
Tν(t |0, 1)

Tν(t |n1/2
δ · λ, 1 + nδσ

2
δ )

(15)

where Tν(·|a, b) denotes a non-central tν probability density function with location
a, scale b0.5 and ν degrees of freedom, t is the pooled variance two-sample t statistic

x̄−ȳ

sp/n
1/2
δ

, λ and σ 2
δ are the prior mean and variance of the effect size. In the above, nδ =

(n−1
x +n−1

y )−1 is the effective sample size, s2
p = [(nx −1)s2

x +(ny−1)s2
y ]/(nx +ny−2)

is the pooled-variance estimate and x̄, ȳ and s2
x , s2

y are the respective sample means

and variances. In most situations, the hyperparameter λ of the prior N (λ, σ 2
δ ) on δ

will be set to λ = 0, because a priori it is unknown which direction of the effect is
more reasonable. Using these priors, Gönen et al. (2005) showed that the Bayes factor
in this setting can be simplified to

B F10 =

[

1 + t2/ν

1 + t2/{ν(1 + nδσ
2
δ )}

](ν+1)/2

· (1 + nδσ
2
δ )−1/2 (16)

The solution of Gönen et al. (2005) has two important benefits:

1. It offers an analytical way to conduct a Bayesian version of the frequentist two-
sample t-test by inserting the necessary quantities in the above expression. These
are the two-sample t-statistic t and the effective sample size, both of which are
easily obtained from the dataset at hand; the prior-variance σ 2

δ is set in advance so
it can be inserted also directly whereas the degrees of freedom ν also follow from
the dataset under study.

2. It explains ‘Bayesian tests in terms of unconditional (central and non-central T)

distributions’ (Gönen et al. 2005, p. 5)
3. Within Bayesian inference it is possible to reinterpret classical testing procedures

in terms of a particular prior distribution imposed in the model. Details are the
conditional frequentist tests developed by Berger et al. (1997, 1994), and other
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examples outside the scope of hypothesis tests are given by the ridge regression
estimator (Hastie et al. 2015) or the LASSO (Hastie et al. 2017) in regression
models, which can be identified as Bayesian MAP estimates under a specific
prior (van Erp et al. 2019). For frequentist hypothesis tests, similar results have
been derived by Berger et al. (1997, 1994), who showed that several frequentist
tests are identical to Bayesian tests when conditioned on a specific choice of
ancillary statistic. This issue is important, as for some orthodox Bayesians, classical
procedures have Bayesian nature and can be treated as a particular prior choice
among continuum alternatives. Berger and Wolpert (1988) even argued that “A
cynic might argue that frequentist statistics has survived precisely because of
such lucky correspondences.” (Berger and Wolpert 1988, p. 65). However, the
relationship between Bayesian and frequentist hypothesis tests is not so clear as
sometimes stated in the literature. For example, there is no one-to-one relationship
between the solution of Gönen et al. (2005) and the frequentist two-sample t-test.
Also, theoretical results are only available for specific indices like p values and
Bayes factors under specific assumptions (Berger and Sellke 1987; Liao et al.
2020).

In 2009, Rouder et al. (2009) extended the solution of Gönen et al. (2005) and added
a layer of modelling by putting an inverse chi-square prior on the prior variance σ 2

δ :
σ 2

δ ∼ χ−2
1 . The original idea goes back to Zellner (1980). The normal prior N (λ, σ 2

δ )

on the effect size δ = µ1 −µ2 combined with the hyper-prior σ 2
δ ∼ χ−2

1 can be shown
to be equivalent to a Cauchy prior on the effect size, that is δ ∼ Cauchy, see (Rouder

et al. 2009, p. 231). The standard model X i
i id∼ N (µ − α

2 , σ 2) for i = 1, . . . , nx and

Yi
i id∼ N (µ + α

2 , σ 2) for i = 1, . . . , ny , where µ denotes the grand mean and α the
total effect, and nx and ny denote the respective sample sizes in the first and second
group was used. Rouder et al. (2009) then employed Jeffrey’s prior p(σ 2) = 1/σ 2 on
the variance σ 2, a flat prior p(µ) = 1 on the grand mean, and the Cauchy prior C(0, γ )

on the effect size δ = α/σ . The model of Rouder et al. (2009) is also displayed in
Fig. 1. This prior model of Rouder et al. (2009) is also called Jeffreys-Zellner-Siow

(JZS) prior which can be used as a prior for one- and two-sample t-tests, leading to
the JZS Bayes factor

B F10 =

∫ ∞
0 (1 + Ng)−1/2

(

1 + t2

(1+Ng)ν

)−(ν+1)/2
(2π)−1/2g−3/2e−1/(2g)dg

(

1 + t2

ν

)−(ν+1)/2

To calculate this Bayes factor, the researcher only needs to provide the observed t-
statistic and the sample size N (where N = nx + ny)). While being more objective
than the solution of Gönen et al. (2005), the JZS Bayes factor of Rouder et al. (2009)
has the drawback that it still assumes the same variance σ 2 in both groups which
limited its use. Wetzels et al. (2009) extended the approach of Rouder et al. (2009) and
constructed the Savage–Dickey (SD) test based on the JZS Bayes factor to address this
limitation. The SD test allowed the testing of order-restricted hypotheses like δ > 0
and removed the restriction of equal variances across groups.
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Fig. 1 Model for the Bayesian
parametric two-sample t-test of
Rouder et al. (2009), which is
itself a special case of the model
of Gronau et al. (2019). Data xi

and yi is distributed
xi ∼ N (µ − α

2 , σ 2) and

yi ∼ N (µ + α
2 , σ 2) with grand

mean µ, standard deviation σ

and total effect α = δσ . The
grand mean µ is assigned a flat
prior p(µ) = 1, σ 2 is assigned
Jeffreys prior p(σ 2) = 1/σ 2

and the effect size δ is assigned a
C(0, γ ) prior

To achieve this, Wetzels et al. (2009) made use of the Savage-Dickey density ratio

B F01 =
p(D|H0)

p(D|H1)
=

p(δ = 0|H1, D)

p(δ = 0|H1)
(17)

and used a half-Cauchy(0, 1) prior on the standard deviation σ (which is proper, in
contrast to Jeffrey’s prior utilised by Rouder et al. 2009) in combination with the
Cauchy prior C(0, 1) on the effect size δ as also chosen by Rouder et al. (2009). Using
Markov–Chain–Monte–Carlo sampling, Wetzels et al. (2009) then obtained samples
of the posterior of δ to compute the Bayes factor B F10 = 1/B F01 by making use
of the Savage–Dickey ratio (17), see also Wagenmakers et al. (2010), Dickey and
Lientz (1970) and Verdinelli and Wasserman (1995). To address the Behrens–Fisher
problem and generalise their method to the situation of the two-sample t-test, Wetzels
et al. (2009) further extended their model and used the pooled standard deviation, after
which the procedure is analogue to the previous case (for details see Wetzels et al.
2009, p. 757).

Wang and Liu (2016) further improved the proposed solutions by solving some
of the main issues of the previous approaches, the Jeffreys–Lindley-paradox (Lindley
1957) and the information paradox (Wang and Liu 2016, p. 5). The Jeffreys–Lindley
paradox states that the Bayes factor always favors the null hypothesis H0 when the
prior information is minimized, that is, when σ 2

δ is sufficiently large. In general, the
posterior probability of H1 should be larger than the posterior probability of H0 if
data are indeed generated under H1. As a consequence, the t-statistic should converge
to ∞. The information paradox which results from the t-test introduced by Gönen
et al. (2005) is identified by noticing that the Bayes factor of Gönen et al. (2005)
given in Eq. (16) converges the constant (1 + nδσ

2
δ ) when the t-statistic t converges to

infinity. Instead, it should indicate evidence for H1 without bound, which would match
the desired information consistency of the Bayes factor. Information consistency is
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a central desiderata of the Bayes factor which was requested by Jeffreys (1939). To
solve this problem, Wang and Liu (2016) proposed to put a hyper-prior on the prior
variance σ 2

δ of the prior N (λ, σ 2
δ ) on the effect size δ itself. They selected a Pearson

type VI distribution with shape parameters a > −1, b > −1 and scale κ > 0 and
showed that for the specific choice of κ := nδ (where nδ is the effective sample size
as defined previously) and b := (ν + 1)/2 − a − 5/2 the resulting Bayes factor can
be expressed as

B F10 =
Γ (ν/2)Γ (a + 3/2)

Γ ((ν + 1)/2)Γ (a + 1)

(

1 +
t2

ν

)(ν−2a−2)/2

(18)

Wang and Liu (2016) then showed that their proposed Bayes factor does not suffer
from the information paradox, making it an attractive option to consider.

Gronau et al. (2019) proposed a different solution to circumvent problems with
predictive matching or information consistency. They proposed a Bayes factor based
on any proper prior π(δ) on the effect size δ. They exploited the fact that the Bayes
factor B F10 can be expressed as

B F10(d) =
∫

Tν(t |
√

nδδ)π(δ)dδ

Tν(t)
(19)

when π0(µ, σ ) ∝ 1/σ , where Tν(t |a) again denotes a t-density with ν degrees of
freedom and non-centrality parameter a. Gronau et al. (2019) employed a t-prior
1
γ

Tκ(
δ−µδ

γ
) for the effect size δ to incorporate expert knowledge, where µδ is a location,

γ a scale and κ a degrees of freedom hyper-parameter. Their proposed solution contains

the Bayes factor of Gönen et al. (2005) as a special case when γ =
√

σ 2
δ and κ → ∞

and the Cauchy prior proposed by Rouder et al. (2009) is obtained as a special case
when setting κ = 1, µδ = 0. At a first glance this proposal seems to be solely beneficial
because it includes the objective prior of Rouder et al. (2009) and at the same time (for
a different set of hyperparameters) makes incorporation of expert knowledge possible.

However, the solution suffers from not fully attaining predictive matching and
information consistency as desired by Jeffreys (1939). As detailed above, the Bayes
factor of Gönen et al. (2005) also suffered regarding information consistency lead-
ing to the information paradox. To counterfeit these problems, Gronau et al. (2019)
developed two measures for the departure from Jeffrey’s desiderata, which at least
allow researchers to judge the deviation from predictive matching and information
consistency resulting from a specific choice of prior π(δ).

In summary, except for the Bayes factor based t-test proposed by Wang and Liu
(2016), the existing solutions suffer from problems regarding predictive matching
or information consistency (there are special cases in which the other solutions are
predictively matched or information consistent, but not for all hyperparameters λ,µ

and κ). What is more, all of them use Bayes factors, which is not without problems.
A clear advantage of the Bayes factor as developed by Gronau et al. (2019) is its
flexibility to incorporate prior knowledge while at the same time providing quantitative
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information on how strong the calculated quantity deviates from predictive matching
and information consistency.

Notice that Liang et al. (2008) and Goddard and Johnson (2016) proposed Bayes
factors for the two-sample t-test, too. These are special cases of Bayes factors for the
normal linear model with a g-prior on the regression coefficients, compare Held and
Ott (2018). The general approach here is to formulate the t-test as a linear model and
then derive the resulting Bayes factor. Still, in most applied research the effect size
is the quantity of interest and, as a consequence, the perspective which models the
effect size explicitly via a prior instead of putting a prior on linear model regression
coefficients is preferred in this paper.

3.2 A nonparametric Bayesian two-sample t-test

van Doorn et al. (2019, 2020) recently proposed a nonparametric Bayesian version
of the two-sample t-test as a Bayesian counterpart to the frequentist Mann–Whitney
U test. In contrast to the parametric two-sample t-tests, now only ranks are observed.
The general idea in van Doorn et al. (2020) is to use latent normal variables Z x

i and
Z

y
j where the observed ranks r x

i and r
y
j are realisations of these latent variables for

i = 1, . . . , nx , j = 1, . . . , ny . van Doorn et al. (2020) note that the parameter δ of
Z x

i and Z
y

j “produce latent normal data zx and zy , and these in turn yield ordinal

data” (van Doorn et al. 2020, p. 4), where the ordinal data are the observed ranks r x
i

and r
y
j . They make the assumption that the latent scores are normally distributed, that

is Z x
i ∼ N (−δ/2, 1) and Z

y
j ∼ N (δ/2, 1) governed by the effect size parameter δ.

The effect size δ itself is modelled via a Cauchy prior δ ∼ C(0, γ ) with hyper-(scale)-
parameter γ . This is remodelled by placing a normal prior N (0, g) on the effect size

δ, where g itself gets assigned an inverse Gamma prior IG( 1
2 ,

γ 2

2 ). Data augmentation
as introduced by Tanner and Wong (1987) and Bayes’ rule is subsequently applied to
obtain the joint posterior distribution of (1) the model parameter δ and (2) the latent
normal values (zx , zy) given the observed ranked data x = r x and y = r y (where
r x = (r x

1 , . . . , r x
n ) and r y analogue) in both groups. The joint posterior can can be

written as

P(zx , zy, δ|x, y) ∝ P(x, y|zx , zy) × P(zx , zy |δ) × P(δ)

In the above, the likelihood P(x, y|zx , zy) consists of the marginal of P(x, y|zx , zy)×
P(zx , zy |δ), and the prior on the model parameter (the effect size δ) is given as P(δ).
The prior can be interpreted as the difference in location of the distributions of the
random variables Z x and Z y . van Doorn et al. (2020) then employed a Gibbs sampler
(Geman and Geman 1984) to sample from the posterior of δ, Z x , Z y as follows:

Wilcoxon rank sum Gibbs sampler

1. For each i in (1, . . . , nx ), sample Z x
i from a truncated normal distribution with

lower threshold ax
i := max

j :x j <xi

(zx
j ) and upper threshold bx

i := max
j :x j >xi

(zx
j ):

(Z x
i |zx

i ′ , z
y
i ) ∼ N(ax

i ,bx
i )(−0.5δ, 1) (20)
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Fig. 2 Model of the Bayesian
Wilcoxon rank sum test used for
Gibbs sampling by van Doorn
et al. (2020): The ranks r x

i
and

r x
j

are ranks produced by the
non-observed latent variables
Z x

i
and Z

y
j
, each following a

normal distribution with σ = 1
and shifted means − 1

2 δ and 1
2 δ.

The effect size δ is generated as
N (0, g), where g gets assigned

a hyperprior I G( 1
2 ,

γ 2

2 ) itself

where N(ax
i ,bx

i ) denotes the truncation of the normal distribution.

2. For each i in (1, . . . , ny), sample Z
y
j analogue to step 1 as

(Z
y
i |zy

i ′ , zx
i ) ∼ N(a

y
i ,b

y
i )(0.5δ, 1) (21)

3. Sample δ as

(δ|zx , zy, g) ∼ N (µδ, σδ) (22)

where

µδ =
2g(ny z̄y − nx z̄x )

g(nx + ny) + 4
σδ =

4g

g(nx + ny) + 4
(23)

4. Sample g from

(G|δ) ∼ I G(1,
δ2 + γ 2

2
) (24)

where I G(.) denotes the inverse Gamma density, and γ controls the scale of the
inverse Gamma density.

The posterior density of Z x , Z y and δ can be produced via this Gibbs sampler.
The resulting posterior density in turn can be utilised to produce a Bayes factor via
the Savage–Dickey density ratio (compare Wagenmakers et al. 2010; Verdinelli and
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Wasserman 1995; Dickey and Lientz 1970) as follows:

B F10 =
p(δ0|H1)

p(δ0|data, H1)

Here, δ0 is the value specified by the null hypothesis H0 : δ = δ0 which is set to
δ0 = 0 to test for differences (a location shift) between the distributions of the rank
generating latent random variables Z x and Z y . The nonparametric Bayesian two-
sample test developed by van Doorn et al. (2020) is visualized in Fig. 2.

4 Illustrations and examples

To demonstrate the differences between frequentist and Bayesian parametric and non-
parametric two-sample tests detailed in the previous section, this section analyses a
real data set from the cognitive sciences and contrasts both approaches.

4.1 Episodic memory performance and lateral eyemovement

The example uses the recall1 data set of Matzke et al. (2015), which provides the
number of recalled words by two groups of participants. Participants were presented
with a list of neutral study words for a subsequent free recall test. Prior to the recall,
participants were requested to perform—depending on the experimental condition—
either horizontal, vertical, or no eye movements (i.e., looking at a central fixation
point). The type of eye movement was thus manipulated between subjects. As the
effect of eye movement on episodic memory has been reported to be influenced by
handedness, Matzke et al. (2015) tested only strong right-handed individuals. The
dependent variable of interest was the number of correctly recalled words (Matzke et al.
2015, p. 3). For illustration purposes, the recall data set used contains only data from
participants assigned to the horizontal and no eye movements condition. Researchers
were interested if lateral (horizontal) eye movements improve the recall ability so that
the mean in the lateral eye movement group is larger than in the fixation group. As
a consequence, the null hypothesis H0 : µ1 ≥ µ2 is tested against H1 : µ1 < µ2

(group one is the fixation group, group two the lateral eye movement group), or termed
differently: The null hypothesis H0 : δ ≥ 0 is tested against H1 : δ < 0.

4.1.1 Frequentist analysis

Tables 1 and 2 show the assumption checks for normality and homogeneity of variance
for the recall data set of Matzke et al. (2015). As can be seen from Table 2, the results
of Levene’s test show that the hypothesis of homogeneity of variance across groups
can be rejected, so that Student’s t-test cannot be applied safely. Switching to Welch’s
t-test is therefore necessary, and although the results of the Shapiro–Wilk test are not

1 The dataset is also available in the built-in data library of the open-source statistical software JASP at
www.jasp-stats.org.
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Table 1 Normality assumption check for frequentist parametric and nonparametric two-sample tests for
the recall data set of Matzke et al. (2015)

Test for normality (Shapiro–Wilk) Variable W p value

Fixation 0.926 0.079

Horizontal 0.959 0.396

Significant results suggest a deviation from normality; the test was conducted with test level α = .05

Table 2 Homogeneity of variance assumption check for frequentist parametric and nonparametric two-
sample tests for the recall dataset of Matzke et al. (2015)

Test for homogeneity of variance (Levene’s test) F Degrees of freedom p value

7.459 1 0.009

Significant results suggest a deviation from homogeneity of variance; test was conducted with test level
α = .05

Table 3 Results of frequentist parametric and nonparametric two-sample tests for the recall dataset of
Matzke et al. (2015)

Test t-statistic (U-statistic) Degrees of freedom p value Effect size

Welch’s t-test 2.823 40.269 0.996 0.810

Mann–Whitney’s U test 419.500 0.992 0.398

All tests were performed for H0 : µ1 ≥ µ2 against H1 : µ1 < µ2 (F �= G for Mann–Whitney’s U ) with
test level α = .05; For the Mann–Whitney U test the effect size is given as the rank biserial correlation, for
all other test as Cohen’s d

significant, the Mann–Whitney U test is also conducted for comparison, as data in the
fixation group barely miss the significance threshold of p < .05.

The results are shown in Table 3, and indicate that the neither Welch’s t-test nor the
Mann–Whitney U test rejects the null hypothesis H0 : δ ≥ 0 of mean recalled words
in the fixation group being equal to or greater than the mean number of recalled words
in the lateral condition group. Still, it is not allowed to infer at this stage, that therefore
the null hypothesis H0 : δ ≥ 0 is true.

4.1.2 Bayesian analysis

The Bayes factor B F01 for H0 : δ ≥ 0 against H1 : δ < 0 (participants in the
lateral eye movement condition recall more words in mean than participants with in
the fixation condition) obtained from the parametric two-sample Bayesian t-test is
B F01 = 11.711, as shown in Fig. 3 (labeled B F0− there, where 0 stands for the
null hypothesis H0 : δ ≥ 0, and the minus stands for δ < 0 in the alternative).
As a comparison, the result of the nonparametric Bayesian Mann–Whitney U test is
B F01 = 10.028 (not displayed here), based on 1000 Gibbs draws with 5 Markov
chains used. Note that when testing one-sided hypotheses, the Cauchy prior C(0,

√
2)

changes to a half-Cauchy prior, which concentrates the prior probability mass on one
side of the real axis.
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Fig. 3 Top: Prior and posterior plot of the effect size δ for the parametric Bayesian two-sample test of
Gronau et al. (2019) when using a half C(0,

√
2) prior on δ in the recall data set of Matzke et al. (2015);

Bottom left: Robustness check for B F01 for varying prior width; Bottom right: Sequential analysis of how
B F10 changes when each observation is gradually incorporated into the analysis

The 95% CI ranges from −0.13 to −0.006, and the bottom left plot shows that for
increasing Cauchy prior width – that is, for increasing noninformative prior selection
– the evidence for H0 : δ ≥ 0 accumulates more and more, leading eventually to
strong evidence for H0. Even for a wide prior, the resulting Bayes factor is B F01 =
16.28 (B F0− in the plot), indicating strong evidence for H0 : δ ≥ 0. The lower
right plot shows a sequential analysis of the Bayes factor, and indicates that when
gradually incorporating one observation at each timestep into the analysis, strong
evidence for H0 : δ ≥ 0 is obtained, no matter if a medium C(0, 1/

√
2), wide C(0, 1)

or ultrawide C(0,
√

2) prior is selected. Therefore, the hypothesis H0 can be interpreted
as confirmed (or H1 as rejected), and there is strong evidence that the mean word recall
count in the fixation group is at least as large as in the lateral eye movement group, that
is δ ≥ 0. Based on the upper plot in Fig. 3, the researchers can infer that the effect size
ranges from −0.13 to −0.006 with a posterior median of −0.073. Therefore, while
B F01 confirms H0 : δ ≥ 0, the size of the effect is quite small.
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4.2 Discussion

The example above highlighted the differences between both approaches: While
frequentist tests can only reject a null hypothesis H0 if data display sufficient incom-
patibility with the test statistics distribution as detailed in Sect. 2, a clear limitation is
that no quantification of the evidence for H0 is provided at all. Therefore, in practice
often null hypotheses H0 are put up, where the goal is to reject them in favour of
an alternative H1 to prove. This is problematic, especially when the alternatives are
imprecise, such as H1 : δ < 0. Here, a Bayesian analysis also provides the posterior
distribution of δ instead of simple point estimates for δ, making it much easier to
quantify which values of δ are reasonable to assume (the posterior mean, median, or
values inside the posterior credible interval for example) when the BF indicates strong
evidence for H1 : δ < 0. Next to this, the assumptions of frequentist tests need to be
clear, as violations of distributional assumptions, optional stopping or multiple testing
can cause a severe problem when using frequentist tests (Rochon et al. 2012; Berger
and Wolpert 1988; Colquhoun 2017; Ioannidis 2005). On the other hand, frequentist
tests enjoy very desirable properties like a (theoretically) guaranteed type I error con-
trol, ease of computation and objectivity. In contrast, a Bayesian analysis needs to
provide information about prior selection, the robustness of the results regarding this
choice, the model used for statistical inference, and which posterior index (the Bayes
factor, for example) is used, as well as how it is constructed (Savage–Dickey density
ratio, analytic derivation). While frequentist two-sample tests also incorporate such
specific assumptions, these are masked much more by the p value usually reported in
traditional analysis.

5 Simulation study

An important difference between Bayesian and frequentist two-sample tests is that
frequentist two-sample tests were historically designed with the goal of a theoretically
guaranteed type I error control (that is, not rejecting a true null hypothesis H0), while
the Bayesian tests are not. Frequentist tests are rooted inside the Neyman-Pearson
theory of hypothesis testing, introduced by Neyman and Pearson (1933). Thus, these
tests explicitly control the type I error rate while minimizing the type II error rate
simultaneously, leading to the construct of uniformly most powerful (UMP) tests, see
Casella and Berger (2002). Bayesian tests have no explicit theoretical guarantees or
upper bounds on type I (or II) errors, which may be regarded as troubling because espe-
cially type I errors are deemed one of the most important factors in slowing down the
progress of science (McElreath and Smaldino 2015). Therefore, this section provides
a simulation study which investigates the type I and II error rates of both paramet-
ric and nonparametric Bayesian and frequentist tests under different distributions and
preliminary assessment of normality.

In the conducted simulation study, equally sized samples of size n = m =
10, 20, 30, 40 for two groups were drawn from the (1) standard normal distribution
N (0, 1), (2) exponential distribution exp(λ) with λ = 1, and (3) uniform distribution
U[0, 1]. In each setting, 5000 pairs of samples were simulated and subsequently, the
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Shapiro-Wilk test was run at level α = 0.05 to check the assumption of normality in
both groups. The two-sample t-test and the Bayesian counterpart based on the B F10

of Gronau et al. (2019) with hyperparameters κ = 1, µδ = 0—thereby recovering
the BF of Rouder et al. (2009)—were calculated for the samples for which the pre-
liminary Shapiro-Wilk test did not detect a significant deviation from normality. Else,
for samples for which the preliminary Shapiro-Wilk test for normality was signifi-
cant, the Mann–Whitney U test and the nonparametric Bayesian Mann–Whitney U
test of van Doorn et al. (2020) with 2500 posterior Gibbs samples were conducted.
The Shapiro–Wilk test was termed significant if at least one of the two group samples
yielded a significant result, and then the nonparametric versions were applied. The
recommended medium-width Cauchy prior C(0, 1) was used on the effect size δ for
both Bayesian tests, see Rouder et al. (2009). This prior is a well-balanced option
recommended by Rouder et al. (2009), if no other information is available, which
is presumed here. The whole procedure was repeated for pretest significance levels
αpre = .100, .050, .010 and no pretest at all. The type I error rates were then estimated
by the number of significant tests divided by 5000. For the t-test and Mann–Whitney
U test, α = .05 was chosen. For the Bayesian counterparts, the resulting B F10 was
required to be ≥ 3, as this indicates moderate evidence for the alternative hypothesis of
an effect size discernible from zero, H1 : δ �= 0 according to van Doorn et al. (2019).
This is a quite liberate threshold, and more conservative thresholds with B F10 ≥ 10
could also be applied, indicating strong evidence according to van Doorn et al. (2019),
see also Kelter (2020a).

To estimate the type II error rate in the two-stage procedure, three settings were
selected for each distribution under consideration. For the normal distribution, another
5000 pairs of samples were generated for each of the following three settings, which
resemble increasing effect sizes or increasing differences between both groups:

1. Data are simulated from the N (0, 1.5) distribution in the first group and from the
N (0.35, 1.7) distribution in the second group, resulting in a small effect size of
δ = 0.308 according to Cohen (1988).

2. Data are simulated from the N (0, 1) distribution in the first group and from the
N (0.65, 1) distribution in the second group, resulting in a medium effect size of
δ = 0.65 according to Cohen (1988).

3. Data are simulated from the N (0, 1.6) distribution in the first group and from the
N (1.1, 1.3) distribution in the second group, resulting in a large effect size of
δ = 1.0678 according to Cohen (1988).

For the exponential distribution also another 5000 pairs of samples were simulated
for each of the following three settings: (1) λ = 1 and λ = 1.5 in the first and second
group; (2) λ = 1 and λ = 2 in the first and second group, and (3) λ = 1 and λ = 2.5
in the first and second group, resembling increasing differences between both groups.

For the uniform distribution also another 5000 pairs of samples were simulated
for each of the following three settings: (1) U(0, 1) and U(0.5, 1.5) in the first and
second group; (2) U(0, 1) and U(0.75, 1.75) and (3) U(0, 1) and U(1, 2) in the first
and second group were selected, again modelling increasing differences between the
first and second group.
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Thus, the three scenarios selected for the normal, exponential and uniform distri-
bution resemble increasing differences between groups, and the tests should state
a difference between both groups to avoid making a type II error (not rejecting
H0 : δ = 0 although H1 : δ �= 0 is true). By simulating the data with different
parameter settings under the alternative hypotheses, the power of the studied tests and
its dependence on the existing differences between both groups can be analysed.

The two-stage procedures were applied, where for the frequentist two-stage pro-
cedure a two-sample t-test was conducted if the preliminary Shapiro–Wilk test was
not-significant, and else the Mann–Whitney U test was carried out. For the Bayesian
two-stage procedure, in the case the preliminary Shapiro-Wilk test was significant at
the αpre level, the Bayesian Mann–Whitney U t-test was carried out in the main anal-
ysis, and else the parametric Bayesian t-test. The unconditional type II error rate was
then estimated as the number of nonsignificant tests with p ≥ .05 divided by 5000 in
the frequentist two-stage procedure, and as the number of tests yielding a Bayes factor
B F10 ≤ 3 divided by 5000 for the Bayesian two-stage procedure. The former means
that the null hypothesis H0 could not be rejected by the frequentist two-sample test,
and the latter means that not even moderate evidence for the alternative hypothesis
H1 : δ �= 0 was stated by the corresponding Bayesian two-sample test.

The statistical programming language R (R Core Team 2020) was used for the
simulations, and the R code for replication of all results can be found at https://osf.io/
mcx9j/.

5.1 Type I error rates

Figure 4 shows the results for the type I error rates of Bayesian and frequentist two-
sample tests: Student’s t and Mann–Whitney U attain the nominal significance level
α in the combined procedure. The Bayesian counterparts achieve better type I error
control, the largest estimate being 0.023 for n = 10 with pretest level αp = .01. The
situation is also shown in the left plot of Fig. 4. If no pretest is conducted, the parametric
Bayesian two-sample test and Student’s two-sample t-test are always run, no matter
which distribution the data in both groups have. As data were indeed simulated as
normally distributed in the left plot, it is clear that Student’s t-test (solid red line)
attains the nominal test level α = .05. The parametric Bayesian two-sample t-test
(dashed red line) achieves a smaller error rate of about 0.02.

Under exponential data (middle plot), Student’s t-test and Mann–Whitney’s U again
achieve the nominal significance level. Omitting pretests yields the solid red line,
which shows that when running only Student’s t-test (although data are exponential),
the type I error rate is neither improved nor strongly inflated. This may be attributed
to the robustness of Student’s t-test to violations of distributional assumptions, but
also the modest sample sizes used in the simulations. The Bayesian counterparts here
achieve error rates about half as large again. Given uniform data, Student’s t and
Mann–Whitney U also attain the nominal significance level α = .05 in the two-stage
procedure. As previously, the Bayesian parametric and nonparametric two-sample
tests yield type I error rates about half as large. In summary, in all simulation settings,
the Bayesian two-sample tests show better type I error control.
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Fig. 4 Type I error rates for Bayesian and frequentist two-sample tests under normal, exponential and
uniform data

Fig. 5 Type II error rates for Bayesian and frequentist two-sample tests of normally distributed data for
increasing differences between both groups and varying sample size

5.2 Type II error rates

The plots in Fig. 5 visualize the results for normally distributed data. The left plot
shows the type II error rates for a true effect size δ = 0.308, the middle plot for a
true effect size δ = 0.65, and the right plot for a true effect size δ = 1.0678 (compare
settings one to three above).
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Fig. 6 Type II error rates for Bayesian and frequentist two-sample tests of exponentially distributed data
for increasing differences between both groups and varying sample size

The first thing to note is a strong difference in type II error rate behaviour between
small effect sizes and medium to large effect sizes. While type II errors of the t-test
and Mann–Whitney’s U, in general, decrease more quickly for increasing sample size
n, this behaviour depends on the magnitude of the true effect size. Also, Bayesian two-
sample tests, in general, need more samples to achieve the same type II error rate as their
frequentist counterparts. However, from the left plot in Fig. 5 one sees that for small
effect sizes the difference in type II error rate between the Bayesian and frequentist
two-stage procedure is most pronounced: Even for increasing sample size, the type II
error rate of the Bayesian two-stage procedure decreases only very slowly, while the
frequentist two-stage procedure achieves better results. However, this phenomenon is
mitigated when medium to large effect sizes are observed. While the type II error rates
of the Bayesian two-stage procedure are still higher, for increasing sample size the
differences become less severe. Also, for increasing differences between both groups,
the difference in type II error rate becomes smaller, compare the difference in type II
error rate for n = 80 in the middle and right plot of Fig. 5.

In summary, the situation is reverse to the type I error rates: While for the type I error,
frequentist two-sample tests over-readily rejected a true null hypothesis (as shown in
Fig. 4), thereby driving up the type I error rate, Bayesian tests were more reluctant. The
price paid for the smaller type I error rates of the Bayesian tests is depicted in Fig. 5,
which visualizes that the Bayesian tests require more data to successfully reject a false
null hypothesis. Also, if no preliminary tests are used (red (dashed) lines), the type II
error rate decreases more quickly, so preliminary assessment of normality seems not
to help at all in controlling the type II error rate. If used at all, then smaller pretest
levels αp seem to yield the best results as indicated by the yellow dashed lines.
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Fig. 7 Type II error rates for Bayesian and frequentist two-sample tests of uniformly distributed data for
increasing differences between both groups and varying sample size

The middle plot in Fig. 6 shows the results for exponentially distributed data. The
left plot corresponds to a difference in means of 0.5, the middle plot to a difference
in means of 1, and the right plot to a difference in means of 1.5 (compare the three
settings above).

Again, Bayesian two-sample tests yield increased type II error rates compared to the
frequentist two-sample tests. However, the differences between the simulation settings
are more pronounced now. The smallest type II error rates are achieved when only the
two-sample t-test without pretest is used, or the Bayesian parametric two-sample t-
test without pretest is employed. Again, preliminary testing does not improve the type
II error rates (neither in the frequentist or Bayesian two-stage procedure) as already
observed previously. While for small differences, the frequentist two-stage procedures
outperform the Bayesian ones in every setting, for medium to large differences between
both groups the Bayesian parametric two-sample t-test without pretest attains the type
II error rates of the frequentist two-stage procedures which include a preliminary
assessment of normality. This is shown in the middle plot, where the red dashed line
meets the solid lines for sample sizes of about n = 70, and in the right plot, where the
red dashed line meets the solid lines for sample sizes of about n = 40.

The situation for the uniform data is visualized in Fig. 7. The left, middle and
right plot correspond to the three settings selected above, which resemble increasing
differences between both groups. Here, both frequentist and Bayesian tests quickly
minimize the type II error rate for even modest sample sizes of n = 20, although for
sample sizes below n = 20, the frequentist two-stage procedures attain smaller type
II error rates than the Bayesian two-stage procedures.

In summary, the difference in type II error rates between the frequentist and
Bayesian two-stage procedure depends on the magnitude of the underlying effect for
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all three distributional settings: If a medium to large effect is apparent, the differences
will become smaller, if a small effect is apparent, these will become larger.

6 Conclusion

Testing for differences between two groups is one of the scenarios most often carried
out by scientists (Nuijten et al. 2016). This paper reviewed some recently developed
Bayesian parametric and nonparametric two-sample tests as possible alternatives to
null hypothesis significance tests which are usually applied. However, the traditional
frequentist solutions make use of null hypothesis significance testing, which suffers
from several well-known problems. This paper showed that in practice, Bayesian
two-sample tests come with benefits and drawbacks: While they allow for richer infor-
mation to conclude, the model assumptions, the prior selection and robustness of the
Bayesian analysis need to be taken care of. Also, the variety of Bayes factors proposed
in the literature makes it difficult to decide which one to use in practice. However,
robustness and model assumption checks as well as effect size estimation are eas-
ily achieved in practice, for example, via open-source software packages like JASP
(www.jasp-stats.org), making the Bayesian tests an attractive alternative. This paper
showed that the recently proposed Bayesian two-sample tests yield better type I error
control at the cost of slightly increased type II error control compared to their fre-
quentist counterparts. As Figs. 5, 6 and 7 showed, for increasing sample size n both
the Bayesian and frequentist tests will eventually reduce the number of type II errors
to zero. However, the Bayesian tests need a larger sample size to achieve the same
type II error rate (the same power) as the frequentist two-sample tests. The higher
type II error rates of Bayesian tests can, therefore, be overcome by increasing sample
size. However, the price to overcome this limitation can be substantial: As highlighted
in Figs. 5, 6 and 7, the differences in type II error rates between the frequentist and
Bayesian two-stage procedures depend on the magnitude of the effect size (or dif-
ference, in general) between both groups. Thus, for small differences between both
groups, the Bayesian tests may need a very large sample size to achieve the same
type II error rates than their frequentist counterparts. For medium to large effect sizes
this situation is less problematic. For small sample sizes, more research is required
to investigate the reliability of the Bayesian tests and their ability to detect existing
differences between both groups.

On the other hand, as indicated by Fig. 4, the frequentist tests are inferior for all sam-
ples sizes n when the goal is to minimize the type I error rate, which is highly important
to improve the reproducibility of empirical research (McElreath and Smaldino 2015,?).
Of course, one could use smaller test levels α < .05 in the frequentist tests to achieve
the same type I error rates, but this would, in turn, increase the type II error rates and
decrease the power of the frequentist tests to the same level of the Bayesian tests. While
this is outside the scope of this paper, investigating different α and β settings for the
frequentist tests and different Cauchy prior settings and Bayes factor thresholds and
their resulting type I and II error rates should be considered by future studies. Based
on the results presented in this paper, Bayesian tests are less over-ready in rejecting a
true null hypothesis when using the recommended medium Cauchy prior C(0, 1/

√
2),
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at the cost of slightly increased type II errors (which can be overcome by increasing
sample size n). Also, the simulation results are quite conservative as the Bayesian tests
used a threshold of 3 for the Bayes factor in all simulations. Requiring B F10 ≥ 10
would be a more realistic threshold, indicating not only moderate, but strong evidence
according to van Doorn et al. (2019), compare also Kelter (2020b). Applying such a
threshold would reduce the number of false-positives displayed in Fig. 5 even further.
Another important advantage of the Bayesian tests is that they allow for robustness
analyses and sequential analyses. Sequential analysis and optional stopping are violat-
ing the likelihood principle when used in combination with the frequentist tests (Berger
and Sellke 1987), so this property of the Bayesian tests should be highly appealing
for practitioners (Kelter 2020c). Optional stopping is, as a consequence, no problem
for the Bayesian two-sample tests, while it is for the frequentist ones (Rouder 2014).
Another important point is that stating evidence for a hypothesis is possible with the
Bayesian tests. This is a strong advantage in practice (Kelter 2020b). Also, based on
the results, preliminary testing seems not to improve the type I or II error rates nei-
ther for Bayesian nor frequentist tests. What is more, the parametric two-sample tests
yield the best type I and type II error rates, which makes not only preliminary testing
for normality superfluous but questions the usefulness of the nonparametric versions
even when data are not approximately normally distributed. However, as only three
distributions were studied in this paper, more research is required to generalise these
results.

In summary, it is hoped that the results of this paper foster critical reflection about
the type I and II error rates and the relationship between Bayesian and frequentist
hypothesis tests, and that the results derived in this paper highlight that Bayesian two-
sample tests may be an attractive alternative to NHST and p values to improve the
reproducibility of research.
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