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Analysis Of Type-II Progressively Hybrid 
Censored Competing Risks Data 

 
   Debasis Kundu    Avijit Joarder 
      Department of Mathematics         Reserve Bank of India 
    Indian Institute of Technology 
 
 
A Type-II progressively hybrid censoring scheme for competing risks data is introduced, where the 
experiment terminates at a pre-specified time. The likelihood inference of the unknown parameters is 
derived under the assumptions that the lifetime distributions of the different causes are independent and 
exponentially distributed. The maximum likelihood estimators of the unknown parameters are obtained in 
exact forms. Asymptotic confidence intervals and two bootstrap confidence intervals are also proposed. 
Bayes estimates and credible intervals of the unknown parameters are obtained under the assumption of 
gamma priors on the unknown parameters. Different methods have been compared using Monte Carlo 
simulations. One real data set has been analyzed for illustrative purposes. 
 
Key words: Competing risk; maximum likelihood estimator; Type-I and Type-II censoring; Fisher 
information matrix; asymptotic distribution; bayesian inference; exponential distribution; gamma 
distribution; Type-II progressive censoring scheme. 
 
 

Introduction 
 
In medical studies or in reliability analysis, it is 
quite common that more than one cause or risk 
factor may be present at the same time. In 
analyzing the competing risks model, it is 
assumed that data consists of a failure time and 
an indicator denoting the cause of failure. 
Several studies have been carried out under this 
assumption for both the parametric and the non-
parametric set up. For the parametric set up it is 
assumed that different lifetime distributions 
follow some special parametric distribution, 
namely exponential, Weibull or gamma. Several 
authors,  for  example   Berkson   and   Elveback  
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(1960), Cox (1959), David and Moeschberger 
(1978) considered the problem from the 
parametric point of view. In the non-parametric 
set up, no specific lifetime distribution is 
assumed. Kaplan and Meier (1958), Efron 
(1967) and Peterson (1991) analyzed the non-
parametric version of this model. 
 The two most common censoring 
schemes, namely Type-I and Type-II censoring 
schemes, are widely used in practice. Briefly, 
they can be described as follows. Consider n 
items are under observations in a particular 
experiment. In the conventional Type-I 
censoring scheme, the experiment continues up 
to a pre-specified time T. On the other hand, the 
conventional Type-II censoring scheme requires 
the experiment to continue until a pre-specified 
number of failures m ≤  n occurs. In this 
scenario, only the smallest lifetimes are 
observed. The mixture of Type-I and Type-II 
censoring schemes is known as the hybrid 
censoring scheme. This hybrid censoring 
scheme was first introduced by Epstein (1954; 
1960). But, recently it becomes quite popular in 
the reliability and life-testing experiments. See 
for example the work of Chen and Bhattacharya 
(1988), Childs, Chandrasekhar, Balakrishnan, 
and Kundu (2003), Draper and Guttman (1987), 
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Fairbanks, Madasan and Dykstra (1982), Gupta 
and Kundu (1998), and Jeong, Park and Yum 
(1996). 
 One of the drawbacks of the 
conventional Type-I, Type-II, or hybrid 
censoring schemes is that they do not allow for 
removal of units at points other than the terminal 
point of the experiment. When the items are 
highly reliable it might be necessary to know the 
causes for which the items are failed and also 
necessary to remove items in between the 
experiment (at the time of each failure) for 
efficient estimation of the parameters. Because 
of this, one censoring scheme known as 
progressive censoring scheme under competing 
risks becomes very popular for the last few 
years. It can be described as follows: Consider n 
items in a study and assume that there is K 
causes of failure, which are known. Suppose m 
< n is fixed before the experiment. Moreover, m 
other integers, R1, . . . ,Rm are also fixed before 
so that R1 + . . . + Rm + m = n. At the time of the 
first failure X1:m:n, R1 of the remaining units are 
randomly removed. Similarly, at the time of the 
second failure X2:m:n, R2 of the remaining units 
are randomly removed and so on. Finally, at the 
time of the mth failure Xm:m:n, the rest of the Rm 
units are removed. It is also known that the first 
failure takes place due to cause 1δ , similarly the 

second failure takes place due to cause 2δ and so 
on, finally the mth failure takes place due to 
cause mδ . For an exhaustive list of references 

and further details on Type-II progressive 
censoring, the readers may refer to the book by 
Balakrishnan and Aggarwala (2000). 
 In this article, a Type-II progressively 
hybrid censoring scheme under competing risk 
is introduced. As the name suggests, it is a 
mixture of Type-II progressive and hybrid 
censoring schemes under the competing risk 
data. In this new censoring scheme, the 
likelihood inference of the unknown parameters 
is obtained, under the assumptions that the 
lifetime distributions of the different causes are 
independent identically distributed (i.i.d.) 
exponential random variables. It is observed that 
the maximum likelihood estimators of the 
unknown parameters always exist and one 
obtains the explicit form of the maximum 
likelihood estimators (MLEs) of the unknown 

parameters. One also obtains the asymptotic 
confidence intervals and proposed two bootstrap 
confidence intervals. Bayes estimates and 
credible intervals are also obtained under the 
assumption of the gamma priors on the unknown 
parameters. Different methods are compared 
using Monte Carlo simulations and for 
illustrative purposes, one real data set is 
analyzed. 
  
Model Description and Notation 
 Suppose n identical items are put on a 
test and the lifetime distributions of the n items 
are denoted by X1, . . .,Xn. The integer m < n is 
pre-fixed and also R1, . . .,Rm are m pre-fixed 
integers satisfying R1 + . . . + Rm + m = n. T is a 
pre-fixed time point. At the time of first failure 
R1 of the remaining units are randomly removed. 
Similarly at the time of the second failure R2 of 
the remaining units are removed and so on. If 
the mth failure occurs before the time point T, 
the experiment stops at the time point Xm:m:n. On 
the other hand, suppose the mth failure does not 
occur before time point T and only J failures 
occur before the time point T, where 0 ≤  J < m, 
then at the time point T all the remaining RJ

* 

units are removed and the experiment terminates 
at the time point T. Note that RJ

*= n -(R1+. . .+RJ 
) - J. The two cases are denoted as Case I and 
Case II respectively and this censoring scheme is 
referred to as the Type-II progressively hybrid 
censoring scheme under competing risk data. In 
the presence of Type-II progressively hybrid 
censoring scheme under competing risks data, 
the following is a type of observation: 
 
Case I: {(X1:m:n, 1δ , R1), . . . , (Xm:m:n, mδ , Rm)};              

if  Xm:m:n < T, or  Case II: {(X1:m:n, 1δ , R1), . . . , 

(XJ:m:n, Jδ , RJ ), (T, RJ
*)}; if  XJ:m:n < T < 

XJ+1:m:n. 
 
Note that for Case II, XJ:m:n < T < XJ+1:m:n < . . . < 
Xm:m:n  and  XJ+1:m:n < . . . < Xm:m:n  are not 
observed. 
 The conventional Type-I progressive 
censoring scheme needs the pre-specification of 
R1, . . . ,Rm and also T1, . . . , Tm, see Cohen 
(1963; 1966) for details. The choices of T1, . . ., 
Tm are not trivial. For the conventional Type-II 
progressive censoring scheme the experimental 
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time is unbounded. In the proposed censoring 
scheme, the choice of T depends upon how 
much maximum experimental time the 
experimenter can afford to spend. Moreover, the 
experimental time is bounded. 
 Without loss of generality, it is assumed 
that there are only two independent causes of 
failure i.e. K = 2. It may be extended to the case 
of K > 2. Before progressing further, the 
following notations are introduced/ reviewed: 
 
Xji : lifetime of the ith individual under cause j; 
for j = 1, 2 and i = 1, . . . , n 
 
Xi:m:n : i

th observed failure time; i = 1, . . . ,m             
 
f(.) : probability density function (PDF) of Xi            
 
F(.) : cumulative distribution function (CDF) of 
Xi 
 
Fj(.) : cumulative distribution function (CDF) of 
Xji 
 
m1 : the number of failures observed before 
termination due to cause 1 for Case I 
 
m2 : the number of failures observed before 
termination due to cause 2 for Case I 
 
m : total number of failures observed before 
termination for Case I; i.e. m = m1 + m2 
               
J1 : the number of failures observed before 
termination due to cause 1 for Case II 
 
J2 : the number of failures observed before 
termination due to cause 2 for Case II 
 
J : total number of failures observed before 
termination for Case II; i.e. J = J1 + J2 
D1 : the number of failures due to cause 1, i.e. D1 
= m1 for Case I and D1 = J1 for Case II 
                
D2 : the number of failures due to cause 2, i.e. D2 
= m2 for Case I and D2 = J2 for Case II 
                  
D : total number of failures, i.e. D = m = m1 + 
m2 for Case I and D = J = J1 + J2 for Case II 
                  

Ri : the number of units removed at the time of 
ith failure; Ri ≥  0 
 
RJ

* : the number of remaining units left at the 
time point T for Case II 
                  

iδ  : indicator variable denoting the cause of 

failure of the ith individual 
 
e( λ ) : exponential random variable with PDF  

xe λλ −  
 
gamma( ,α λ ) : gamma random variable with 

PDF  xex λα
α

α
λ −−

Γ
1

)(
 

 
 It is assumed that (X1i, X2i); i = 1, . . ., n 
are n i.i.d. exponential random variables. 
Further, X1i and X2i are independent for all i = 1, 
. . ., n and Xi = min(X1i, X2i). Now, the MLEs of 
the unknown parameters are provided when Xji's 
(for I = 1, . . ., n) are i.i.d. exp( jλ ), for j= 1, 2. 

 
Maximum Likelihood Estimator 
 Based on the observations as discussed 
in the previous subsection, the log-likelihood 
function (without the constant term) can be 
written as; 
 
 L( 1λ , 2λ ) = D1 ln 1λ  + D2 ln 2λ  - ( 1λ  + 2λ )W,                     

(1) 
 
where  
 

D1 = m1, D2 = m2, W =  nmi

m

i
i xR ::

1

)1(∑
=

+   

 
for Case I and  
 

D1 = J1, D2 = J2, W =    
*

::
1

)1( Jnmi

J

i
i TRxR ++∑

=
  

 
for Case II. From (1), it is clear that the MLEs of 

1λ  and 2λ  always exists and they are 
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W

D1
1 =

∧
λ             and           .2

2 W

D
=

∧
λ             (2) 

 
It is not possible to obtain the exact distribution 

of 
∧

1λ  and 
∧

2λ  because of the complicated nature 
of the conditional distributions of X1:m:n, . . ., 
Xm:m:n given Xm:m:n < T. Interestingly, the 

distribution of 
∧

1λ  and 
∧

2λ are the mixture of 
discrete and continuous distributions. They have 
positive masses at the point 0 and have the 
bounded supports. Since, the exact distributions 

of 
∧

1λ  and 
∧

2λ are not known, the exact 
confidence intervals also cannot be obtained.  
 
Confidence Intervals 
 In this section, three different 
confidence intervals are proposed. One is based 

on the asymptotic distribution of 
∧

1λ  and 
∧

2λ and 
two different bootstrap confidence intervals. 
 
Asymptotic Confidence Interval 
 In this section, we present the Fisher 
Information matrix of 1λ and 2λ . Let I( 1λ , 2λ ) 

= (Iij( 1λ , 2λ )); i, j =1, 2, denote the Fisher 

Information matrix of the parameters 1λ and 2λ , 
where 
                                       

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂∂
∂

−=
ji

ij

L
EI

λλ
λλλλ ),(

),( 21
2

21                      (3)                                         

 
From (1) it follows that 
 

2
1

1
2111

)(
),(

λ
λλ DE

I = , 

 

0),(),( 21212112 == λλλλ II  
 
and  
 

2
2

2
2122

)(
),(

λ
λλ DE

I = . 

 

Simple calculation shows that 
 

)()(
1

1
::1 TXPDE

m

i
nmi <=∑

=
 

 
and 
 

)()(
2

1
::2 TXPDE

m

i
nmi <=∑

=
. 

 
It is not easy to compute P(Xi:m:n < T) for general 
i, because Xi:m:n is a sum of i independent, but 
not identically distributed exponential random 
variables. Therefore, for D1 > 0 and D2 > 0, the 
following approximate 100(1-α )% confidence 
interval for 1λ and 2λ  are proposed, 
 

2

1

1

2

1 D
z

∧
∧

± λλ α  

 
and  
 

2

2

2

2

2 D
z

∧
∧

± λλ α  

(4) 
 
respectively. 
 
 
Bootstrap Confidence Intervals 
 In this subsection, two confidence 
intervals based on the bootstrapping are 
proposed. The two bootstrap methods that are 
widely used in practice are: 
 
(1) The percentile bootstrap (Boot-p) proposed 
by Efron (1982), and 
 
(2) The bootstrap-t method (Boot-t) proposed by 
Hall (1988). 
 
 It is observed that in this type of 
situations (Kundu, Kannan, & Balakrishnan, 
2004), the non-parametric bootstrap method 
does not work well. Hence, the following two 
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parametric bootstrap confidence intervals for 

1λ and 2λ  are proposed. The procedure is 

illustrated for the parameter 1λ . For the other 

parameter ( 2λ ), a confidence interval may be 
constructed in an analogous manner. 
 
Boot-p Method 

1. Estimate 
∧

1λ  and 
∧

2λ from the sample 
using (2). 

2. Generate a bootstrap 

sample },...,{ ::
*

::1
*

* nmDnm XX , using 
∧

1λ  

and
∧

2λ , R1, . . .,Rm and T. Obtain the 

bootstrap estimate of  1λ  say, 
∧

*
1λ using 

the bootstrap sample. 
3. Repeat Step 2 NBOOT times. 

4. Let )()( *
1 xPxCDF ≤=
∧∧

λ ,  be  the  
cumulative  distribution  function  of  

∧
*

1λ . Define      )()(
1

1 xCDFxpBoot

−∧

−

∧
=λ  

for   a  given  x. The   approximate  
100(1-α )%  confidence interval for 

1λ is given by:   
 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎠

⎞
⎜
⎝

⎛ −⎟
⎠

⎞
⎜
⎝

⎛
−

∧

−

∧

2
1,

2
11

αλαλ pBootpBoot . 

 
Boot-t Method 

1. Estimate 
∧

1λ  and 
∧

2λ from the sample 
using (2) as before. 

2. Generate a bootstrap 

sample },...,{ ::
*

::1
*

* nmDnm XX , using 
∧

1λ  

and
∧

2λ , R1; . . .;Rm and T. Also compute 

*
1

2
*

1
*

1 )(
D

V

∧
∧∧

=
λλ  for D1

* > 0. 

3. Determine the T1
* statistic  

 

)(

)(
*

1

1

*

1*
1

∧∧

∧∧
−

=

λ

λλ

V

T  

 
4. Repeat Steps 2 - 3 NBOOT times. 

5. Let )()( *
1 xTPxCDF ≤=

∧
, be the 

cumulative distribution function of 
*

1T . 
For a given x, define 

)()()(
1*

111 xCDFVxtBoot

−∧∧∧∧

−

∧
+= λλλ . 

The approximate 100(1-α )% 

confidence interval for 1λ is given by  
  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ −⎟
⎠

⎞
⎜
⎝

⎛
−

∧

−

∧

2
1,

2
11

αλαλ tBoottBoot . 

 
Bayesian Analysis 
 In this section, the problem is 
approached from the Bayesian point of view. In 
the context of exponential lifetimes, 1λ and 2λ  
may be reasonably modelled by the gamma 
priors. It is assumed that 1λ and 2λ  are 
independently distributed as gamma (a1, b1) and 
gamma (a2, b2) priors, respectively. The gamma 
parameters a1, b1, a2 and b2 are all assumed to be 
positive. When a1 = b1 = 0 (a2 = b2 = 0), one 
obtains the non-informative priors of 1λ  ( 2λ ). 

The posterior density of 1λ and 2λ  based on the 
gamma priors is given by 
 

l( 1λ , 2λ |data) 
)()(1

2
1

1
22112211 bWbWaDaD ee +−+−−+−+∝ λλλλ  

 
(5) 

 
From (5), it is clear that the posterior density 
functions of 1λ and 2λ , say l( 1λ |data) and 

l( 2λ |data), respectively, are independent. 

Further, l( 1λ |data) is the density function of a 
gamma(D1 + a1, W + b1) random variable, and 
l( 2λ |data) is the density function of a 
gamma(D2 + a2, W + b2) random variable. 
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Therefore, the Bayes estimates of 1λ and 2λ  
under squared error loss functions are 
 

1

11
1

bW

aD
Bayes

+
+=

∧
λ  

 
and 
 

2

22
2

bW

aD
Bayes

+
+=

∧
λ  

(6) 
 
respectively. Interestingly, when the non-
informative priors a1 = b1 = a2 = b2 = 0, the 
Bayes estimators coincide with the 
corresponding MLEs. 
 The credible intervals for 1λ and 2λ  can 
be obtained using the posterior distributions of 

1λ and 2λ . Note that a posteriori Z1 = 2 1λ  (W + 

b1) and Z2 = 2 2λ  (W + b2) follow 2χ  
distributions with 2(D1 +a1) and 2(D2 +a2) 
degrees of freedom respectively, provided both 
2(D1 + a1) and 2(D2 + a2) are positive integers. 
Therefore, 100(1-α )% credible intervals for 

1λ and 2λ  are 
 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

++

+−+

)(2
,

)(2 1

2
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2

1

2
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2
1111

bWbW

aDaD
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and 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++
+−+

)(2
,

)(2 2

2
),(2

2

2

2
1),(2

2
2222

bWbW

aDaD
αα χχ

 

 
(7) 

 
respectively for (D1 + a1) > 0 and (D2 + a2) > 0. 

Here 
2

,
2 αχ k  and 

2
1,

2 αχ −k denote the lower and 

upper 
2

α
-th percentile points of a 2χ  

distribution with k degrees of freedom. Note that 
if 2(D1 + a1) and 2(D2 + a2) are not integer 
values, then gamma distribution can be used to 
construct the credible intervals. If no prior 
information is available, then non-informative 

priors can be used to compute the credible 
intervals for 1λ and 2λ . Alternatively, using the 
suggestion of Congdon (2001), very small 
positive values of a1, b1, a2 and b2 can be used to 
construct the Bayes estimates or the 
corresponding credible intervals. 
 
Numerical Results and Discussions 
 Since the performance of the different 
methods cannot be compared theoretically, 
Monte Carlo simulations are used to compare 
different methods for different parameter values 
and for different sampling schemes. The term 
different sampling schemes means for different 
sets of Ri’s and for different T values. All the 
computations are performed using Pentium IV 
processor and using the random number 
generation algorithm RAN2 of Press, Flannery, 
Teukolsky, & Vetterling.(1991). All the 
programs are written in FORTRAN and they can 
be obtained from the authors on request. 
 Before progressing further, first a 
description of how the Type-II progressively 
hybrid censored competing risk data was 
generated for a given set n, m, R1, . . ., Rm and T. 
The following transformation as suggested in 
Balakrishnan and Aggarwala (2000) is used. 
 
Z1 = nX1:m:n 
Z2 = (n - R1 - 1)(X2:m:n - X1:m:n) 
�  
Zm=(n - R1 - …- Rm-1 – m +1)(Xm:m:n – Xm-1:m:n).    

(8) 
 

It is known that if Xi’s are i.i.d. exp( 1λ + 2λ ), 

then the spacings Zi’s are also i.i.d. exp( 1λ + 2λ ) 
random variables. From (8) it follows that 
 

X1:m:n = 1

1
Z

n
 

X2:m:n = 12
1

1

1

1
Z

n
Z

Rn
+

−−
 

�  

Xm:m:n= 1
11

1
...

1...

1
Z

n
Z

mRRn m
m

++
+−−−− −

.     

 
(9) 
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Using (9), Type-II progressively hybrid 
censored competing risk data can be easily 
generated as follows. For a given n, m, 
R1,…,Rm, X1:m:n,…,Xm:m:n is generated using (9). 
Again using the random number generation 
algorithm RAN2 of Press et al. (1991), a new 
random variable U(i), for i = 1…m is generated. 

Now if U(i) < 
21

1

λλ
λ
+

, then assign iδ  = 1 

otherwise, iδ  = 2. If Xm:m:n < T. Then, one has 

Case I and the corresponding sample is 
( ) ( ){ }mmnmmnm RXRX ,,,...,,, ::11::1 δδ otherwise, 

one has Case II and J, such that XJ:m:n < T < 
XJ+1:m:n is found. The corresponding sample 

is ( ) ( ) ( ){ }Jmmnmmnm RTRXRX *
::11::1 ,,,,,...,,, δδ , 

where R*
J   is same as defined before.

 Different n, m, T, 1λ , 2λ  and Ri’s are 
considered. In all of the simulation experiments, 

1λ  = 1.0 and 2λ  = 0.8 is taken. The following 
are taken n = 15, 25, 50, 100, m = 5, 10, 15, T = 
0.25, 0.50, 1.00, 2.00 and three different 
sampling schemes. Scheme 1: R1 = … = Rm-1 = 0 
and Rm = n - m. Scheme 2: R1 = n - m and R1 = 
… = Rm = 0. Scheme 3: R1 = … = Rm-1 = 1 and 
Rm = n -2m + 1. For each case, the MLEs and 
the 95% confidence intervals of 1λ and 2λ  are 
computed using all three of the proposed 
methods. For comparison purposes, the 95% 
credible intervals are computed using non-
informative prior. The process is replicated 1000 
times in each case and the average bias, mean 
squared errors, and the coverage percentages are 
reported. The results are reported in Tables 1 - 9. 
 Some of the important observations are 
as follows. For fixed n as m increases the biases 
and   MSEs  of  both  1λ  and 2λ  decrease for all 
 
 
 
 
 
 
 
 
 
 

cases as expected. But, interestingly for fixed m 
as n increases the biases increase and the MSEs 
decrease for both 1λ  and 2λ . This phenomenon 
is quite counter intuitive and a proper 
explanation cannot be found for this. Now, 
comparing different confidence intervals in 
terms of their average lengths and coverage 
percentages, it is observed that the MLEs, 
BOOT-T confidence intervals and Bayes 
credible intervals behave quite satisfactory 
unless the T is very small. 
 Otherwise, most of the cases of these 
three confidence intervals maintain the nominal 
coverage probabilities. Since BOOT-T method 
is involved numerically and the confidence 
intervals based on the asymptotic distributions 
are slightly larger than the Bayes credible 
intervals, it is recommended to use the Bayes 
credible intervals for all cases. Among the 
different schemes, it is observed that scheme 1 
produces the smallest confidence intervals, 
followed by scheme 3 and scheme 2. 
 
Data Analysis 
 In this section, one real-life dataset 
originally analyzed by Hoel (1972) is 
considered. The data arose from a laboratory 
experiment in which male mice received a 
radiation dose of 300 roentgens at 5 to 6 weeks 
of age. The cause of death for each mouse was 
determined by autopsy to be thymic lymphoma, 
reticulum cell sarcoma, or other causes. For the 
purpose of analysis, reticulum cell sarcoma is 
considered as cause 1 and the other causes of 
death are combined as cause 2. There were n = 
77 observations in the data. A progressively 
type-II censored sample was generated from the 
original measurements. 
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Table 1: n = 15, m = 5*. 
 

Scheme Methods  T = 0.25 T = 0.50 T = 1.00 T = 2.00 
  

1λ  0.2406 (1.2953)  0.2834 (1.2330) 0.2842 (1.2314) 0.2842 (1.2314) 

  
2λ  0.1422 (0.6589)  0.1754 (0.6266) 0.1759 (0.6258) 0.1759 (0.6258) 

 MLE 
1λ  2.8876 (86.4)  2.9185 (93.3) 2.9192 (93.4) 2.9192 (93.4) 

  
2λ  2.4473 (90.5)  2.4790 (89.6) 2.4801 (89.6) 2.4801 (89.6) 

1 Boot-P 
1λ  4.0095 (88.3)  4.0829 (91.1) 4.0721 (91.6) 4.0717 (91.6) 

  
2λ  3.2510 (87.0)      3.3224 (89.1) 3.3175 (89.4) 3.3172 (89.4) 

 Boot-T 
1λ  2.6389 (87.7)  2.8758 (90.7) 2.9050 (90.6) 2.9055 (90.6) 

  
2λ  2.1035 (89.8)  2.3166 (88.7) 2.3436 (88.7) 2.3438 (88.7) 

 Bayes 
1λ  2.7977 (93.1)  2.8322 (93.8) 2.8331 (93.9) 2.8331 (93.9) 

  
2λ  2.3545 (88.9)  2.3885 (91.6) 2.3895 (91.6) 2.3895 (91.6) 

  
1λ  0.2280 (1.7153)  0.2247 (1.3883) 0.2417 (1.2802) 0.2759 (1.2423) 

  
2λ  0.1689 (1.0298)  0.1461 (0.7663) 0.1475 (0.6577) 0.1706 (0.6320) 

 MLE 
1λ  3.6133 (79.0)  3.1929 (88.3) 2.9571 (90.7) 2.9142 (92.8) 

  
2λ  3.0330 (69.5)  2.6902 (81.5) 2.5017 (87.5) 2.4762 (89.2) 

2 Boot-P 
1λ  4.1914 (77.3)  4.0090 (85.5) 4.0136 (90.7) 4.0654 (89.9) 

  
2λ  3.3645 (67.7)  3.2375 (79.9) 3.2395 (86.2) 3.3093 (88.9) 

 Boot-T 
1λ  3.3581 (78.7)  2.9655 (87.4) 2.8422 (91.3) 2.8636 (90.8) 

  
2λ  2.6215 (69.4)  2.3683 (80.9) 2.2597 (88.1) 2.3070 (89.0) 

 Bayes 
1λ  3.4450 (77.3)  3.0707 (87.1) 2.8612 (92.9) 2.8273 (93.6) 

  
2λ  2.8805 (67.8)  2.5721 (80.6) 2.4046 (88.0) 2.3851 (91.0) 

  
1λ  0.2199 (1.3079)  0.2804 (1.2382) 0.2842 (1.2314) 0.2842 (1.2314) 

  
2λ  0.1269 (0.6734)  0.1725 (0.6300) 0.1759 (0.6258) 0.1759 (0.6258) 

 MLE 
1λ  2.9090 (89.5)  2.9144 (92.6) 2.9192 (93.4) 2.9192 (93.4) 

  
2λ  2.4540 (87.9)  2.4755 (89.3) 2.4801 (89.6) 2.4801 (89.6) 

3 Boot-P 
1λ  3.9577 (89.2)  4.0778 (90.5) 4.0734 (91.6) 4.0717 (91.6) 

  
2λ  3.2041 (85.2)  3.3183 (88.9) 3.3180 (89.4) 3.3172 (89.4) 

 Boot-T 
1λ  2.6347 (91.1)  2.8461 (90.7) 2.9038 (90.6) 2.9055 (90.6) 

  
2λ  2.0913 (88.2)  2.2907 (88.6) 2.3413 (88.7) 2.3438 (88.7) 

 Bayes 
1λ  2.8142 (92.0)  2.8282 (93.7) 2.8331 (93.9) 2.8331 (93.9) 

  
2λ  2.3580 (86.2)  2.3848 (91.1) 2.3895 (91.6) 2.3895 (91.6) 

* In each cell, the first row of 1λ and 2λ represents the average biases and the corresponding mean squared errors are 

reported within brackets for the MLEs. The second, third, fourth and fifth rows of 1λ and 2λ represent the average 95% 
confidence lengths of asymptotic confidence intervals, Boot-p confidence intervals, Boot-t confidence intervals and the 
credible intervals with respect to the non-informative priors respectively. The corresponding coverage percentages are 
reported within brackets. 
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Table 2: n = 25, m = 5*. 
 

Scheme Methods  T = 0.25 T = 0.50 T = 1.00 T = 2.00 
  

1λ  
0.2825 (1.2347)  0.2842 (1.2314) 0.2842 (1.2314) 0.2842 (1.2314) 

  
2λ  

0.1741 (0.6284)  0.1759 (0.6258) 0.1759 (0.6258) 0.1759 (0.6258) 

 MLE 
1λ  

2.9170 (93.1)  2.9192 (93.4) 2.9192 (93.4) 2.9192 (93.4) 

  
2λ  

2.4770 (89.6)  2.4801 (89.6) 2.4801 (89.6) 2.4801 (89.6) 

1 Boot-P 
1λ  

4.0845 (90.8)  4.0726 (91.6) 4.0717 (91.6) 4.0717 (91.6) 

  
2λ  

3.3214 (89.3)  3.3178 (89.4) 3.3172 (89.4) 3.3172 (89.4) 

 Boot-T 
1λ  

2.8529 (90.8)  2.9056 (90.6) 2.9055 (90.6) 2.9055 (90.6) 

  
2λ  

2.2954 (88.9)  2.3428 (88.7) 2.3437 (88.7) 2.3438 (88.7) 

 Bayes 
1λ  

2.8308 (93.6)  2.8331 (93.9) 2.8331 (93.9) 2.8331 (93.9) 

  
2λ  

2.3864 (91.2)  2.3895 (91.6) 2.3895 (91.6) 2.3895 (91.6) 

  
1λ  

0.2370 (1.6967)  0.2279 (1.3813) 0.2414 (1.2803) 0.2759 (1.2423) 

  
2λ  

0.1712 (1.0103)  0.1482 (0.7633) 0.1483 (0.6561) 0.1715 (0.6314) 

 MLE 
1λ  

3.6058 (80.1)  3.1899 (88.8) 2.9538 (90.9) 2.9139 (92.8) 

  
2λ  

3.0232 (70.7)  2.6895 (81.9) 2.5017 (87.7) 2.4777 (89.3) 

2 Boot-P 
1λ  

4.2070 (78.3)  4.0052 (85.3) 4.0114 (90.8) 4.0654 (90.0) 

  
2λ  

3.3690 (68.8)  3.2410 (79.5) 3.2438 (86.4) 3.3097 (88.9) 

 Boot-T 
1λ  

3.4596 (79.9)  2.9826 (87.5) 2.8495 (90.8) 2.8646 (90.7) 

  
2λ  

2.6999 (69.9)  2.3953 (81.5) 2.2670 (88.0) 2.3073 (89.0) 

 Bayes 
1λ  

3.4403 (78.2)  3.0685 (87.7) 2.8583 (93.0) 2.8271 (93.6) 

  
2λ  

2.8724 (69.2)  2.5718 (81.3) 2.4047 (88.2) 2.3866 (91.1) 

  
1λ  

0.2812 (1.2368)  0.2842 (1.2314) 0.2842 (1.2314) 0.2842 (1.2314) 

  
2λ  

0.1718 (0.6308)  0.1759 (0.6258) 0.1759 (0.6258) 0.1759 (0.6258) 

 MLE 
1λ  

2.9159 (92.4)  2.9192 (93.4) 2.9192 (93.4) 2.9192 (93.4) 

  
2λ  

2.4744 (89.3)  2.4801 (89.6) 2.4801 (89.6) 2.4801 (89.6) 

3 Boot-P 
1λ  

4.0860 (90.7)  4.0736 (91.6) 4.0717 (91.6) 4.0717 (91.6) 

  
2λ  

3.3216 (89.1)  3.3181 (89.4) 3.3172 (89.4) 3.3172 (89.4) 

 Boot-T 
1λ  

2.8364 (90.4)  2.9047 (90.6) 2.9055 (90.6) 2.9055 (90.6) 

  
2λ  

2.2802 (88.8)  2.3412 (88.7) 2.3437 (88.7) 2.3438 (88.7) 

 Bayes 
1λ  

2.8297 (94.2)  2.8331 (93.9) 2.8331 (93.9) 2.8331 (93.9) 

  
2λ  

2.3838 (90.8)  2.3895 (91.6) 2.3895 (91.6) 2.3895 (91.6) 

* In each cell, the first row of 1λ and 2λ represents the average biases and the corresponding mean squared errors are 

reported within brackets for the MLEs. The second, third, fourth and fifth rows of 1λ and 2λ  represent the average 95% 
confidence lengths of asymptotic confidence intervals, Boot-p confidence intervals, Boot-t confidence intervals and the 
credible intervals with respect to the non-informative priors respectively. The corresponding coverage percentages are 
reported within brackets. 
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Table 3: n = 25, m = 10*. 
 

Scheme Methods  T = 0.25 T = 0.50 T = 1.00 T = 2.00 
  

1λ  
0.0812 (0.3105)  0.1225 (0.2790) 0.1225 (0.2789) 0.1225 (0.2789) 

  
2λ  

0.0560 (0.2404)  0.0882 (0.2188) 0.0891 (0.2182) 0.0891 (0.2182) 

 MLE 
1λ  

1.8802 (90.8)  1.8411 (94.0) 1.8406 (93.9) 1.8406 (93.9) 

  
2λ  

1.6573 (92.5)  1.6259 (92.7) 1.6261 (92.7) 1.6261 (92.7) 

1 Boot-P 
1λ  

2.1524 (91.4)  2.1440 (94.0) 2.1319 (94.1) 2.1317 (94.1) 

  
2λ  

1.8623 (88.6)  1.8597 (91.8) 1.8537 (91.8) 1.8536 (91.8) 

 Boot-T 
1λ  

1.7514 (92.6)  1.8218 (93.7) 1.8341 (93.7) 1.8340 (93.7) 

  
2λ  

1.5029 (89.7)  1.5810 (90.8) 1.5951 (91.2) 1.5950 (91.2) 

 Bayes 
1λ  

1.8460 (92.8)  1.8120 (94.3) 1.8116 (94.1) 1.8116 (94.1) 

  
2λ  

1.6194 (91.1)  1.5932 (93.6) 1.5935 (93.6) 1.5935 (93.6) 

  
1λ  

0.0753 (0.5199)  0.0778 (0.3620) 0.0984 (0.3136) 0.1181 (0.2821) 

  
2λ  

0.0400 (0.4258)  0.0497 (0.2902) 0.0733 (0.2355) 0.0828 (0.2208) 

 MLE 
1λ  

2.5991 (90.3)  2.1705 (91.5) 1.9260 (92.9) 1.8488 (93.7) 

  
2λ  

2.2059 (85.2)  1.8888 (87.7) 1.7022 (91.6) 1.6304 (92.7) 

2 Boot-P 
1λ  

2.7334 (91.7)  2.3661 (92.2) 2.1893 (93.5) 2.1398 (93.9) 

  
2λ  

2.2943 (85.3)  2.0360 (92.0) 1.8917 (89.8) 1.8541 (91.3) 

 Boot-T 
1λ  

2.4446 (91.5)  2.0895 (91.9) 1.8889 (93.4) 1.8255 (93.8) 

  
2λ  

2.0044 (85.7)  1.7540 (91.0) 1.6192 (89.9) 1.5852 (91.1) 

 Bayes 
1λ  

2.5100 (90.7)  2.1177 (92.9) 1.8908 (93.4) 1.8191 (94.4) 

  
2λ  

2.1189 (83.9)  1.8330 (92.0) 1.6633 (92.9) 1.5971 (93.4) 

  
1λ  

0.0752 (0.3272)  0.1142 (0.2855) 0.1226 (0.2788) 0.1225 (0.2789) 

  
2λ  

0.0445 (0.2500)  0.0823 (0.2222) 0.0890 (0.2182) 0.0891 (0.2182) 

 MLE 
1λ  

1.9918 (90.5)  1.8449 (94.0) 1.8407 (93.9) 1.8406 (93.9) 

  
2λ  

1.7386 (88.3)  1.6301 (92.3) 1.6261 (92.7) 1.6261 (92.7) 

3 Boot-P 
1λ  

2.2036 (92.2)  2.1502 (93.5) 2.1335 (94.1) 2.1317 (94.1) 

  
2λ  

1.9051 (89.8)  1.8606 (91.3) 1.8547 (91.8) 1.8536 (91.8) 

 Boot-T 
1λ  

1.8715 (92.3)  1.8015 (93.6) 1.8326 (93.7) 1.8340 (93.7) 

  
2λ  

1.5931 (89.6)  1.5596 (91.0) 1.5940 (91.2) 1.5950 (91.2) 

 Bayes 
1λ  

1.9504 (92.7)  1.8152 (94.0) 1.8117 (94.1) 1.8116 (94.1) 

  
2λ  

1.6939 (90.7)  1.5968 (93.7) 1.5935 (93.6) 1.5935 (93.6) 

* In each cell, the first row of 1λ and 2λ represents the average biases and the corresponding mean squared errors are 

reported within brackets for the MLEs. The second, third, fourth and fifth rows of 1λ and 2λ represent the average 95% 
confidence lengths of asymptotic confidence intervals, Boot-p confidence intervals, Boot-t confidence intervals and the 
credible intervals with respect to the non-informative priors respectively. The corresponding coverage percentages are 
reported within brackets. 
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Table 4: n = 50, m = 5*. 
 

Scheme Methods  T = 0.25 T = 0.50 T = 1.00 T = 2.00 
  

1λ  
0.2842 (1.2314)  0.2842 (1.2314) 0.2842 (1.2314) 0.2842 (1.2314) 

  
2λ  

0.1759 (0.6258)  0.1759 (0.6258) 0.1759 (0.6258) 0.1759 (0.6258) 

 MLE 
1λ  

2.9192 (93.4)  2.9192 (93.4) 2.9192 (93.4) 2.9192 (93.4) 

  
2λ  

2.4801 (89.6)  2.4801 (89.6) 2.4801 (89.6) 2.4801 (89.6) 

1 Boot-P 
1λ  

4.0723 (91.6)  4.0717 (91.6) 4.0717 (91.6) 4.0717 (91.6) 

  
2λ  

3.3176 (89.4)  3.3172 (89.4) 3.3172 (89.4) 3.3172 (89.4) 

 Boot-T 
1λ  

2.9049 (90.6)  2.9055 (90.6) 2.9055 (90.6) 2.9055 (90.6) 

  
2λ  

2.3430 (88.7)  2.3437 (88.7) 2.3438 (88.7) 2.3438 (88.7) 

 Bayes 
1λ  

2.8331 (93.9)  2.8331 (93.9) 2.8331 (93.9) 2.8331 (93.9) 

  
2λ  

2.3895 (91.6)  2.3895 (91.6) 2.3895 (91.6) 2.3895 (91.6) 

  
1λ  

0.2378 (1.6791)  0.2302 (1.3733) 0.2427 (1.2795) 0.2757 (1.2485) 

  
2λ  

0.1761 (1.0055)  0.1494 (0.7596) 0.1493 (0.6548) 0.1716 (0.6312) 

 MLE 
1λ  

3.5945 (80.7)  3.1875 (89.5) 2.9530 (90.8) 2.9136 (92.8) 

  
2λ  

3.0208 (71.5)  2.6866 (82.2) 2.5029 (87.8) 2.4777 (89.3) 

2 Boot-P 
1λ  

4.2231 (78.9)  4.0181 (85.7) 4.0113 (90.4) 4.0653 (90.1) 

  
2λ  

3.3637 (69.2)  3.2376 (79.8) 3.2436 (86.2) 3.3096 (88.9) 

 Boot-T 
1λ  

3.4955 (80.4)  2.9977 (87.6) 2.8515 (90.9) 2.8656 (90.7) 

  
2λ  

2.7151 (70.4)  2.3951 (81.7) 2.2697 (87.8) 2.3087 (89.0) 

 Bayes 
1λ  

3.4304 (78.9)  3.0669 (88.0) 2.8577 (92.8) 2.8267 (93.6) 

  
2λ  

2.8714 (70.1)  2.5696 (81.4) 2.4060 (88.5) 2.3866 (91.0) 

  
1λ  

0.2842 (1.2314)  0.2842 (1.2314) 0.2842 (1.2314) 0.2842 (1.2314) 

  
2λ  

0.1759 (0.6258)  0.1759 (0.6258) 0.1759 (0.6258) 0.1759 (0.6258) 

 MLE 
1λ  

2.9192 (93.4)  2.9192 (93.4) 2.9192 (93.4) 2.9192 (93.4) 

  
2λ  

2.4801 (89.6)  2.4801 (89.6) 2.4801 (89.6) 2.4801 (89.6) 

3 Boot-P 
1λ  

4.0726 (91.6)  4.0717 (91.6) 4.0717 (91.6) 4.0717 (91.6) 

  
2λ  

3.3178 (89.4)  3.3172 (89.4) 3.3172 (89.4) 3.3172 (89.4) 

 Boot-T 
1λ  

2.9056 (90.6)  2.9055 (90.6) 2.9055 (90.6) 2.9055 (90.6) 

  
2λ  

2.3428 (88.7)  2.3437 (88.7) 2.3438 (88.7) 2.3438 (88.7) 

 Bayes 
1λ  

2.8331 (93.9)  2.8331 (93.9) 2.8331 (93.9) 2.8331 (93.9) 

  
2λ  

2.3895 (91.6)  2.3895 (91.6) 2.3895 (91.6) 2.3895 (91.6) 

* In each cell, the first row of 1λ and 2λ represents the average biases and the corresponding mean squared errors are 

reported within brackets for the MLEs. The second, third, fourth and fifth rows of 1λ and 2λ represent the average 95% 
confidence lengths of asymptotic confidence intervals, Boot-p confidence intervals, Boot-t confidence intervals and the 
credible intervals with respect to the non-informative priors respectively. The corresponding coverage percentages are 
reported within brackets. 
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Table 5: n = 50, m = 10*. 
 

Scheme Methods  T = 0.25 T = 0.50 T = 1.00 T = 2.00 
  

1λ  
0.1226 (0.2789)  0.1225 (0.2789) 0.1225 (0.2789) 0.1225 (0.2789) 

  
2λ  

0.0890 (0.2183)  0.0891 (0.2182) 0.0891 (0.2182) 0.0891 (0.2182) 

 MLE 
1λ  

1.8408 (93.9)  1.8406 (93.9) 1.8406 (93.9) 1.8406 (93.9) 

  
2λ  

1.6261 (92.7)  1.6261 (92.7) 1.6261 (92.7) 1.6261 (92.7) 

1 Boot-P 
1λ  

2.1406 (94.0)  2.1318 (94.1) 2.1317 (94.1) 2.1317 (94.1) 

  
2λ  

1.8576 (91.7)  1.8536 (91.8) 1.8536 (91.8) 1.8536 (91.8) 

 Boot-T 
1λ  

1.8280 (93.7)  1.8340 (93.7) 1.8340 (93.7) 1.8340 (93.7) 

  
2λ  

1.5886 (91.1)  1.5950 (91.2) 1.5950 (91.2) 1.5950 (91.2) 

 Bayes 
1λ  

1.8118 (94.1)  1.8116 (94.1) 1.8116 (94.1) 1.8116 (94.1) 

  
2λ  

1.5935 (93.6)  1.5935 (93.6) 1.5935 (93.6) 1.5935 (93.6) 

  
1λ  

0.0812 (0.5127) 0.0794 (0.3626) 0.1002 (0.3127) 0.1183 (0.2816) 

  
2λ  

0.0405 (0.4190)  0.0510 (0.2876) 0.0733 (0.2343) 0.0831 (0.2204) 

 MLE 
1λ  

2.5875 (90.1)  2.1628 (91.3) 1.9254 (93.4) 1.8488 (93.6) 

  
2λ  

2.1918 (85.7)  1.8825 (87.8) 1.7004 (91.7) 1.6306 (92.9) 

2 Boot-P 
1λ  

2.7158 (92.1)  2.3613 (92.3) 2.1873 (93.3) 2.1396 (93.8) 

  
2λ  

2.3004 (86.0)  2.0385 (91.6) 1.8924 (90.2) 1.8550 (91.3) 

 Boot-T 
1λ  

2.4721 (91.7)  2.0908 (91.5) 1.8900 (93.3) 1.8256 (93.8) 

  
2λ  

2.0481 (86.1)  1.7653 (90.9) 1.6233 (90.3) 1.5857 (91.1) 

 Bayes 
1λ  

2.5003 (91.0)  2.1106 (92.4) 1.8904 (93.5) 1.8191 (94.5) 

  
2λ  

2.1061 (84.8)  1.8274 (91.9) 1.6616 (93.0) 1.5972 (93.6) 

  
1λ  

0.1225 (0.2790)  0.1225 (0.2789) 0.1225 (0.2789) 0.1225 (0.2789) 

  
2λ  

0.0882 (0.2188)  0.0891 (0.2182) 0.0891 (0.2182) 0.0891 (0.2182) 

 MLE 
1λ  

1.8411 (94.0)  1.8406 (93.9) 1.8406 (93.9) 1.8406 (93.9) 

  
2λ  

1.6259 (92.7)  1.6261 (92.7) 1.6261 (92.7) 1.6261 (92.7) 

3 Boot-P 
1λ  

2.1440 (94.0)  2.1319 (94.1) 2.1317 (94.1) 2.1317 (94.1) 

  
2λ  

1.8597 (91.8)  1.8537 (91.8) 1.8536 (91.8) 1.8536 (91.8) 

 Boot-T 
1λ  

1.8218 (93.7)  1.8341 (93.7) 1.8340 (93.7) 1.8340 (93.7) 

  
2λ  

1.5810 (90.8)  1.5951 (91.2) 1.5950 (91.2) 1.5950 (91.2) 

 Bayes 
1λ  

1.8120 (94.3)  1.8116 (94.1) 1.8116 (94.1) 1.8116 (94.1) 

  
2λ  

1.5932 (93.6)  1.5935 (93.6) 1.5935 (93.6) 1.5935 (93.6) 

* In each cell, the first row of 1λ and 2λ represents the average biases and the corresponding mean squared errors are 

reported within brackets for the MLEs. The second, third, fourth and fifth rows of 1λ and 2λ represent the average 95% 
confidence lengths of asymptotic confidence intervals, Boot-p confidence intervals, Boot-t confidence intervals and the 
credible intervals with respect to the non-informative priors respectively. The corresponding coverage percentages are 
reported within brackets. 
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Table 6: n = 50, m = 15*. 
 

Scheme Methods  T = 0.25 T = 0.50 T = 1.00 T = 2.00 
  

1λ  
0.0800 (0.1570)  0.0862 (0.1520) 0.0862 (0.1520) 0.0862 (0.1520) 

  
2λ  

0.0336 (0.1174)  0.0366 (0.1150) 0.0366 (0.1150) 0.0366 (0.1150) 

 MLE 
1λ  

1.4553 (93.5)  1.4530 (94.0) 1.4530 (94.0) 1.4530 (94.0) 

  
2λ  

1.2720 (93.1)  1.2687 (93.7) 1.2687 (93.7) 1.2687 (93.7) 

1 Boot-P 
1λ  

1.6128 (93.6)  1.5828 (94.3) 1.5826 (94.3) 1.5826 (94.3) 

  
2λ  

1.4223 (93.1)  1.4045 (93.5) 1.4043 (93.5) 1.4043 (93.5) 

 Boot-T 
1λ  

1.4274 (94.0)  1.4515 (93.9) 1.4516 (93.9) 1.4516 (93.9) 

  
2λ  

1.2578 (93.0)  1.2819 (93.5) 1.2817 (93.5) 1.2817 (93.5) 

 Bayes 
1λ  

1.4400 (94.0)  1.4379 (94.4) 1.4379 (94.4) 1.4379 (94.4) 

  
2λ  

1.2545 (95.9)  1.2515 (94.8) 1.2515 (94.8) 1.2515 (94.8) 

  
1λ  

0.0746 (0.3559)  0.0651 (0.2411) 0.0682 (0.1739) 0.0819 (0.1545) 

  
2λ  

0.0313 (0.2689)  0.0270 (0.1677) 0.0275 (0.1314) 0.0332 (0.1180) 

 MLE 
1λ  

2.1969 (87.6)  1.7837 (90.7) 1.5448 (93.3) 1.4626 (94.1) 

  
2λ  

1.8902 (90.7)  1.5599 (92.3) 1.3513 (92.6) 1.2771 (92.9) 

2 Boot-P 
1λ  

2.2113 (91.7)  1.8593 (94.5) 1.6663 (94.0) 1.5974 (94.7) 

  
2λ  

1.8917 (91.8)  1.6091 (92.0) 1.4683 (94.4) 1.4134 (93.4) 

 Boot-T 
1λ  

2.0680 (91.0)  1.7434 (94.6) 1.5346 (93.4) 1.4580 (93.9) 

  
2λ  

1.7138 (91.4)  1.4864 (91.5) 1.3445 (93.0) 1.2842 (93.3) 

 Bayes 
1λ  

2.1411 (93.0)  1.7534 (92.2) 1.5258 (93.6) 1.4471 (94.3) 

  
2λ  

1.8314 (92.3)  1.5262 (93.1) 1.3298 (94.4) 1.2594 (95.2) 

  
1λ  

0.0686 (0.1630)  0.0862 (0.1520) 0.0862 (0.1520) 0.0862 (0.1520) 

  
2λ  

0.0241 (0.1216)  0.0365 (0.1151) 0.0366 (0.1150) 0.0366 (0.1150) 

 MLE 
1λ  

1.4702 (93.2)  1.4530 (94.0) 1.4530 (94.0) 1.4530 (94.0) 

  
2λ  

1.2846 (93.1)  1.2687 (93.6) 1.2687 (93.7) 1.2687 (93.7) 

3 Boot-P 
1λ  

1.6215 (93.1)  1.5844 (94.3) 1.5826 (94.3) 1.5826 (94.3) 

  
2λ  

1.4262 (93.3)  1.4056 (93.4) 1.4043 (93.5) 1.4043 (93.5) 

 Boot-T 
1λ  

1.4336 (94.1)  1.4499 (93.9) 1.4516 (93.9) 1.4516 (93.9) 

  
2λ  

1.2587 (93.3)  1.2813 (93.5) 1.2817 (93.5) 1.2817 (93.5) 

 Bayes 
1λ  

1.4539 (93.7)  1.4379 (94.4) 1.4379 (94.4) 1.4379 (94.4) 

  
2λ  

1.2660 (94.9)  1.2515 (94.8) 1.2515 (94.8) 1.2515 (94.8) 

* In each cell, the first row of 1λ and 2λ represents the average biases and the corresponding mean squared errors are 

reported within brackets for the MLEs. The second, third, fourth and fifth rows of 1λ and 2λ represent the average 95% 
confidence lengths of asymptotic confidence intervals, Boot-p confidence intervals, Boot-t confidence intervals and the 
credible intervals with respect to the non-informative priors respectively. The corresponding coverage percentages are 
reported within brackets. 
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Table 7: n = 100, m = 5*. 
 

Scheme Methods  T = 0.25 T = 0.50 T = 1.00 T = 2.00 
  

1λ  
0.2842 (1.2314)  0.2842 (1.2314) 0.2842 (1.2314) 0.2842 (1.2314) 

  
2λ  

0.1759 (0.6258) 0.1759 (0.6258) 0.1759 (0.6258) 0.1759 (0.6258) 

 MLE 
1λ  

2.9192 (93.4) 2.9192 (93.4) 2.9192 (93.4) 2.9192 (93.4) 

  
2λ  

2.4801 (89.6) 2.4801 (89.6) 2.4801 (89.6) 2.4801 (89.6) 

1 Boot-P 
1λ  

4.0717 (91.6) 4.0717 (91.6) 4.0717 (91.6) 4.0717 (91.6) 

  
2λ  

3.3172 (89.4) 3.3172 (89.4) 3.3172 (89.4) 3.3172 (89.4) 

 Boot-T 
1λ  

2.9055 (90.6) 2.9055 (90.6) 2.9055 (90.6) 2.9055 (90.6) 

  
2λ  

2.3438 (88.7) 2.3438 (88.7) 2.3438 (88.7) 2.3438 (88.7) 

 Bayes 
1λ  

2.8331 (93.9) 2.8331 (93.9) 2.8331 (93.9) 2.8331 (93.9) 

  
2λ  

2.3895 (91.6) 2.3895 (91.6) 2.3895 (91.6) 2.3895 (91.6) 

  
1λ  

0.2398 (1.6732)  0.2317 (1.3679) 0.2428 (1.2792) 0.2759 (1.2422) 

  
2λ  

0.1783 (1.0011) 0.1500 (0.7576) 0.1512 (0.6542) 0.1715 (0.6313) 

 MLE 
1λ  

3.5902 (80.8) 3.1872 (89.8) 2.9520 (90.7) 2.9141 (92.7) 

  
2λ  

3.0201 (71.6) 2.6851 (82.3) 2.5047 (87.9) 2.4775 (89.3) 

2 Boot-P 
1λ  

4.2216 (78.9) 4.0150 (85.8) 4.0098 (90.5) 4.0650 (90.1) 

  
2λ  

3.3769 (69.5) 3.2425 (79.8) 3.2461 (86.2) 3.3100 (88.9) 

 Boot-T 
1λ  

3.4957 (80.4) 2.9995 (87.4) 2.8521 (90.9) 2.8666 (90.7) 

  
2λ  

2.7357 (71.0)  2.4007 (81.6) 2.2715 (87.9) 2.3092 (89.0) 

 Bayes 
1λ  

3.4270 (78.9)  3.0669 (88.4) 2.8568 (92.8) 2.8272 (93.6) 

  
2λ  

2.8711 (70.6)  2.5683 (81.5) 2.4079 (88.5) 2.3865 (91.0) 

  
1λ  

0.2842 (1.2314)  0.2842 (1.2314) 0.2842 (1.2314) 0.2842 (1.2314) 

  
2λ  

0.1759 (0.6258) 0.1759 (0.6258) 0.1759 (0.6258) 0.1759 (0.6258) 

 MLE 
1λ  

2.9192 (93.4) 2.9192 (93.4) 2.9192 (93.4) 2.9192 (93.4) 

  
2λ  

2.4801 (89.6) 2.4801 (89.6) 2.4801 (89.6) 2.4801 (89.6) 

3 Boot-P 
1λ  

4.0717 (91.6) 4.0717 (91.6) 4.0717 (91.6) 4.0717 (91.6) 

  
2λ  

3.3172 (89.4) 3.3172 (89.4) 3.3172 (89.4) 3.3172 (89.4) 

 Boot-T 
1λ  

2.9055 (90.6) 2.9055 (90.6) 2.9055 (90.6) 2.9055 (90.6) 

  
2λ  

2.3437 (88.7) 2.3438 (88.7) 2.3438 (88.7) 2.3438 (88.7) 

 Bayes 
1λ  

2.8331 (93.9) 2.8331 (93.9) 2.8331 (93.9) 2.8331 (93.9) 

  
2λ  

2.3895 (91.6) 2.3895 (91.6) 2.3895 (91.6) 2.3895 (91.6) 

* In each cell, the first row of 1λ and 2λ represents the average biases and the corresponding mean squared errors are 

reported within brackets for the MLEs. The second, third, fourth and fifth rows of 1λ and 2λ represent the average 95% 
confidence lengths of asymptotic confidence intervals, Boot-p confidence intervals, Boot-t confidence intervals and the 
credible intervals with respect to the non-informative priors respectively. The corresponding coverage percentages are 
reported within brackets. 
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Table 8: n = 100, m = 10*. 
 

Scheme Methods  T = 0.25 T = 0.50 T = 1.00 T = 2.00 
  

1λ  
0.1225 (0.2789)  0.1225 (0.2789) 0.1225 (0.2789) 0.1225 (0.2789) 

  
2λ  

0.0891 (0.2182) 0.0891 (0.2182) 0.0891 (0.2182) 0.0891 (0.2182) 

 MLE 
1λ  

1.8406 (93.9) 1.8406 (93.9) 1.8406 (93.9) 1.8406 (93.9) 

  
2λ  

1.6261 (92.7) 1.6261 (92.7) 1.6261 (92.7) 1.6261 (92.7) 

1 Boot-P 
1λ  

2.1318 (94.1) 2.1317 (94.1) 2.1317 (94.1) 2.1317 (94.1) 

  
2λ  

1.8536 (91.8) 1.8536 (91.8) 1.8536 (91.8) 1.8536 (91.8) 

 Boot-T 
1λ  

1.8340 (93.7) 1.8340 (93.7) 1.8340 (93.7) 1.8340 (93.7) 

  
2λ  

1.5950 (91.2) 1.5950 (91.2) 1.5950 (91.2) 1.5950 (91.2) 

 Bayes 
1λ  

1.8116 (94.1) 1.8116 (94.1) 1.8116 (94.1) 1.8116 (94.1) 

  
2λ  

1.5935 (93.6) 1.5935 (93.6) 1.5935 (93.6) 1.5935 (93.6) 

  
1λ  

0.0833 (0.5097)  0.0795 (0.3643) 0.1005 (0.3126) 0.1182 (0.2817) 

  
2λ  

0.0418 (0.4155) 0.0512 (0.2890) 0.0729 (0.2342) 0.0830 (0.2204) 

 MLE 
1λ  

2.5789 (90.0) 2.1578 (91.4) 1.9246 (93.5) 1.8485 (93.6) 

  
2λ  

2.1851 (86.0) 1.8791 (87.9) 1.6989 (91.7) 1.6303 (92.9) 

2 Boot-P 
1λ  

2.7055 (91.9) 2.3619 (92.4) 2.1864 (93.3) 2.1397 (93.9) 

  
2λ  

2.3012 (86.6) 2.0384 (91.4) 1.8924 (90.3) 1.8552 (91.3) 

 Boot-T 
1λ  

2.4757 (91.7) 2.0947 (91.7) 1.8898 (93.3) 1.8258 (93.9) 

  
2λ  

2.0653 (86.3) 1.7689 (90.7) 1.6233 (90.5) 1.5857 (91.1) 

 Bayes 
1λ  

2.4928 (91.4) 2.1060 (92.5) 1.8896 (93.7) 1.8189 (94.5) 

  
2λ  

2.1004 (85.2) 1.8243 (91.8) 1.6603 (93.0) 1.5970 (93.6) 

  
1λ  

0.1225 (0.2789)  0.1225 (0.2789) 0.1225 (0.2789) 0.1225 (0.2789) 

  
2λ  

0.0891 (0.2182) 0.0891 (0.2182) 0.0891 (0.2182) 0.0891 (0.2182) 

 MLE 
1λ  

1.8406 (93.9) 1.8406 (93.9) 1.8406 (93.9) 1.8406 (93.9) 

  
2λ  

1.6261 (92.7) 1.6261 (92.7) 1.6261 (92.7) 1.6261 (92.7) 

3 Boot-P 
1λ  

2.1318 (94.1) 2.1317 (94.1) 2.1317 (94.1) 2.1317 (94.1) 

  
2λ  

1.8536 (91.8) 1.8536 (91.8) 1.8536 (91.8) 1.8536 (91.8) 

 Boot-T 
1λ  

1.8340 (93.7) 1.8340 (93.7) 1.8340 (93.7) 1.8340 (93.7) 

  
2λ  

1.5950 (91.2) 1.5950 (91.2) 1.5950 (91.2) 1.5950 (91.2) 

 Bayes 
1λ  

1.8116 (94.1) 1.8116 (94.1) 1.8116 (94.1) 1.8116 (94.1) 

  
2λ  

1.5935 (93.6) 1.5935 (93.6) 1.5935 (93.6) 1.5935 (93.6) 

* In each cell, the first row of 1λ and 2λ represents the average biases and the corresponding mean squared errors are 

reported within brackets for the MLEs. The second, third, fourth and fifth rows of 1λ and 2λ represent the average 95% 
confidence lengths of asymptotic confidence intervals, Boot-p confidence intervals, Boot-t confidence intervals and the 
credible intervals with respect to the non-informative priors respectively. The corresponding coverage percentages are 
reported within brackets. 
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Table 9: n = 100, m = 15*. 
 

Scheme Methods  T = 0.25 T = 0.50 T = 1.00 T = 2.00 
  

1λ  
0.0862 (0.1520)  0.0862 (0.1520) 0.0862 (0.1520) 0.0862 (0.1520) 

  
2λ  

0.0366 (0.1150) 0.0366 (0.1150) 0.0366 (0.1150) 0.0366 (0.1150) 

 MLE 
1λ  

1.4530 (94.0) 1.4530 (94.0) 1.4530 (94.0) 1.4530 (94.0) 

  
2λ  

1.2687 (93.7) 1.2687 (93.7) 1.2687 (93.7) 1.2687 (93.7) 

1 Boot-P 
1λ  

1.5826 (94.3) 1.5826 (94.3) 1.5826 (94.3) 1.5826 (94.3) 

  
2λ  

1.4044 (93.5) 1.4043 (93.5) 1.4043 (93.5) 1.4043 (93.5) 

 Boot-T 
1λ  

1.4516 (93.9) 1.4516 (93.9) 1.4516 (93.9) 1.4516 (93.9) 

  
2λ  

1.2818 (93.5) 1.2817 (93.5) 1.2817 (93.5) 1.2817 (93.5) 

 Bayes 
1λ  

1.4379 (94.4) 1.4379 (94.4) 1.4379 (94.4) 1.4379 (94.4) 

  
2λ  

1.2515 (94.8) 1.2515 (94.8) 1.2515 (94.8) 1.2515 (94.8) 

  
1λ  

0.0739 (0.3503)  0.0675 (0.2395) 0.0678 (0.1735) 0.0819 (0.1545) 

  
2λ  

0.0343 (0.2643) 0.0264 (0.1671) 0.0275 (0.1315) 0.0332 (0.1180) 

 MLE 
1λ  

2.1841 (87.9) 1.7816 (90.9) 1.5434 (93.3) 1.4625 (94.2) 

  
2λ  

1.8860 (90.7) 1.5555 (92.0) 1.3503 (92.4) 1.2770 (92.9) 

2 Boot-P 
1λ  

2.2098 (92.0) 1.8572 (94.6) 1.6646 (94.0) 1.5972 (94.7) 

  
2λ  

1.8977 (91.8) 1.6063 (92.6) 1.4677 (94.4) 1.4136 (93.4) 

 Boot-T 
1λ  

2.0764 (91.3) 1.7421 (94.2) 1.5339 (93.3) 1.4576 (93.9) 

  
2λ  

1.7271 (91.6) 1.4871 (91.7) 1.3446 (93.1) 1.2843 (93.3) 

 Bayes 
1λ  

2.1292 (92.6) 1.7515 (91.8) 1.5245 (93.7) 1.4469 (94.3) 

  
2λ  

1.8280 (92.5) 1.5221 (93.0) 1.3289 (94.4) 1.2593 (95.2) 

  
1λ  

0.0862 (0.1520)  0.0862 (0.1520) 0.0862 (0.1520) 0.0862 (0.1520) 

  
2λ  

0.0366 (0.1150) 0.0366 (0.1150) 0.0366 (0.1150) 0.0366 (0.1150) 

 MLE 
1λ  

1.4530 (94.0) 1.4530 (94.0) 1.4530 (94.0) 1.4530 (94.0) 

  
2λ  

1.2687 (93.7) 1.2687 (93.7) 1.2687 (93.7) 1.2687 (93.7) 

3 Boot-P 
1λ  

1.5828 (94.3) 1.5826 (94.3) 1.5826 (94.3) 1.5826 (94.3) 

  
2λ  

1.4045 (93.5) 1.4043 (93.5) 1.4043 (93.5) 1.4043 (93.5) 

 Boot-T 
1λ  

1.4515 (93.9) 1.4516 (93.9) 1.4516 (93.9) 1.4516 (93.9) 

  
2λ  

1.2819 (93.5) 1.2817 (93.5) 1.2817 (93.5) 1.2817 (93.5) 

 Bayes 
1λ  

1.4379 (94.4) 1.4379 (94.4) 1.4379 (94.4) 1.4379 (94.4) 

  
2λ  

1.2515 (94.8) 1.2515 (94.8) 1.2515 (94.8) 1.2515 (94.8) 

* In each cell, the first row of 1λ and 2λ represents the average biases and the corresponding mean squared errors are 

reported within brackets for the MLEs. The second, third, fourth and fifth rows of 1λ and 2λ represent the average 95% 
confidence lengths of asymptotic confidence intervals, Boot-p confidence intervals, Boot-t confidence intervals and the 
credible intervals with respect to the non-informative priors respectively. The corresponding coverage percentages are 
reported within brackets. 
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Example 1: In this case, n = 77 and m = 25, T = 
700, R1 = R2 = . . . = R24 = 2 and R25 = 4 are 
taken. Thus, the Type II progressively hybrid 
censored sample is: 
 
(40, 2), (42, 2), (62, 2), (163, 2), (179,2), (206, 
2), (222, 2), (228, 2), (252, 2), (259, 2), (318, 1), 
(385, 2), (407, 2), (420, 2), (462, 2), (507, 2), 
(517, 2), (524, 2), (525, 1), (528, 1), (536, 1), 
(605, 1), (612, 1), (620, 2), (621, 1).  
 
In      this      case,      D1 = 7,      D2 = 18      and  

W = ∑
=

+
25

1
::)1(

i
nmii xR  = 28962. Therefore, 

 

4
1 1041696.2

28962

7 −
∧

×==λ  

and        
 

4
2 1021504.6

28962

18 −
∧

×==λ . 

 
The 95% asymptotic, Boot-P, Boot-t confidence 
intervals and also the 95% credible intervals of 

1λ  and 2λ  are reported in Table 10. 
 It is clear that although all of them 
provided almost similar confidence/credible 
intervals, but Bayes credible intervals have the 
smallest lengths. Now, the data using T = 600 
instead of T = 700 is generated, while m and 
R(i)’s are the same as before. 
 
Example 2: In this case the progressively hybrid 
censored sample obtained as:  
 
(40, 2), (42, 2), (62, 2), (163, 2), (179,2), (206, 
2), (222, 2), (228, 2), (252, 2), (259, 2), (318, 1), 
(385, 2), (407, 2), (420, 2), (462, 2), (507, 2), 
(517, 2), (524, 2), (525, 1), (528, 1), (536, 1). 
 
Here            D1 = 4,              D2 = 17               and  

W = ∑
=

+
21

1
::)1(

i
nmii xR  = 20346. Therefore, the 

following is obtained: 
 
 
 

4
1 1039150.1

28746

4 −
∧

×==λ  

 
and        
 

4
2 1023809.20

28746

17 −
∧

×==λ . 

 
In this case, the 95% asymptotic, Boot-P, Boot-t 
confidence intervals and also the 95% credible 
intervals of 1λ  and 2λ  are reported in Table 11. 
 From Table 11, it is observed that T 
plays a major role for the estimation of λ ’s and 
for the construction of the corresponding 
confidence intervals. As T decreases, the lengths 
of the confidence/credible intervals for both the 
parameters are as expected. It is also important 
to note that Boot-p and Boot-t are the most 
affected due to T and the Bayes confidence 
intervals are the least affected. Therefore, Bayes 
confidence intervals are quite robust also with 
respect to T. 
 

Conclusion 
 
In this article, a new censoring scheme is 
discussed, namely the Type II progressively 
hybrid censoring scheme under competing risks 
data. Assuming that the lifetime distributions are 
exponentially distributed, one may obtain the 
maximum likelihood estimators of the unknown 
parameter and propose different confidence 
intervals using asymptotic distributions as well 
as using bootstrap methods. Bayesian estimates 
of the unknown parameters are also proposed 
and it is observed that the Bayes credible 
intervals with respect to non-informative prior 
work quite well in this case and it has several 
desirable properties. Although it is assumed that 
the lifetime distributions are exponential, most 
of the methods may be extended for other 
distributions also, such as the Weibull or gamma 
distribution. 
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