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Abstract 

In engineering practice, widely used methods for the analysis and design of 

underground projects are deterministic approaches, which overlook the stochastic 

nature of rock mass properties and in situ stress conditions. Probabilistic analysis is 

more reasonable since the uncertainties can be considered explicitly. Therefore, the 

main purpose of this thesis is to investigate the reliability analysis of underground 

excavation problems. 

A simple closed-form solution (the Duncan-Fama solution) for circular tunnels in 

Mohr-Coulomb grounds is used to illustrate various reliability methods, including the 

first-order reliability method (FORM), direct Monte Carlo simulation (MCS), Latin 

Hypercube Sampling (LHS), MCS with importance sampling and polynomial 

response surface method (RSM), which provides the basis for the content in later 

chapters. For a special case where the design point is far away from the mean value 

point, a numerical error problem is encountered for the linear RSM. The problem is 

caused by sampling in the unrealistic domain of the input parameters. A multiple-step 

response surface method (RSM) is proposed to solve this numerical error problem.  

The reliability analysis of single limit state is then extended to the system reliability 

evaluation which considers the interaction among different limit states. The iterative 

solution for a circular tunnel reinforced by end-anchored rockbolts is used to illustrate 

the system reliability analysis, in which the tensile force of the rockbolt, tunnel 

convergence and plastic zone size are considered as three performance functions. The 

bimodal bounds method and the multivariate normal cumulative distribution function 

(mvncdf) method are compared. It is shown that the second-order reliability method 

(SORM) can be used to refine the reliability indices from FORM and to improve the 

accuracy of the estimated system probability of failure. The optimal rockbolt 

installation position corresponds to the smallest system probability of failure. For 

problems where closed-form solutions are not available, a modified hybrid approach 

using the linear RSM to locate the design point and artificial neural network (ANN) 

to approximate the actual limit state surface (LSS) is proposed. Comparison with the 
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second-order RSM shows that the proposed approach is efficient, accurate and robust 

for the system reliability evaluation. 

How reliability-based design (RBD) can provide insights to the partial factor design 

approach, such as the Eurocode 7 (EC7), is discussed and illustrated using various 

tunnelling problems. The first-order second-moment method (FOSM) and the point 

estimate method (PEM) may produce non-unique reliability indices for different but 

mathematically equivalent limit state functions. FORM is more consistent than 

FOSM and PEM and is suggested to be used in RBD. The intuitive expanding 

ellipsoid perspective and the efficient constrained optimization method for FORM 

help overcome the conceptual and computational barriers for practitioners. The 

structurally-controlled failure mechanism including the case of a symmetrical roof 

wedge and the stress-controlled failure mechanism including the cases of a lined 

circular tunnel and a rockbolt-reinforced tunnel are used to show the insights from 

RBD. RBD via FORM can determine the role (resistance or load factor) of input 

parameters on a case-by-case basis in ways that prescribed partial factors cannot. 

Besides, different case studies show that RBD can play a complementary role to the 

partial factor design approach when the correlation of the input parameters should be 

considered, when uncertainties of geometrical parameters are involved, when the 

rock parameters that are not covered in the design code are involved and when the 

same parameter has opposite effects on different performance functions. 

A real-life underground excavation project, Jurong Rock Cavern (JRC) in Singapore, 

is presented to show how reliability analysis is conducted for a real case study. The 

statistics of rock engineering properties are characterized using the site investigation 

and laboratory test results. The deterministic analysis using the finite difference 

software FLAC3D shows that the estimate of the rock mass Young’s modulus has a 

great influence on the cavern displacement. It is shown that the simplified 2D analysis 

using the stress reduction method can simulate the 3D excavation and support 

installation process. The longitudinal deformation profile (LDP) from 3D analysis 

using FLAC3D can be used to determine the stress reduction coefficient for the 

simplified 2D analysis. For JRC, the support system including fully-grouted rockbolts 

and shotcrete has limited effect on the cavern displacement because of the late 
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installation of the support and the good quality of the rock mass. FORM and second-

order RSM with cross terms are used to calculate the reliability index and design 

point for JRC project. 

The uniaxial compressive strength (UCS) and elastic modulus (EM) data summarized 

for JRC sedimentary rocks and some data collected for the igneous rocks are used to 

characterize the spatial variability of rock properties. The autocorrelation structures 

are selected using a Bayesian model class selection approach and the scales of 

fluctuation for these two parameters are estimated using a Bayesian updating method. 

The results show that the autocorrelation structures for UCS and EM could be 

described by a single exponential autocorrelation function. The scales of fluctuation 

for UCS and EM range from 0.3 m to 8.0 m and from 0.3 m to 8.4 m, respectively. 

These results serve as guidelines for selecting proper autocorrelation functions and 

autocorrelation distances for rock properties in the reliability analysis and could also 

be used as prior information for quantifying the spatial variability of rock properties 

in a Bayesian framework. 
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Chapter 1 Introduction 

1.1 Background 

The rapid urbanization and increasing demand for the aboveground space accelerate the 

development of underground excavations, which makes it possible to enlarge the space 

humans can use for different purposes. In the past, it was only possible to excavate 

small tunnels in relatively strong rocks. With the development of construction 

technologies and support systems, various excavations with gradually increasing sizes 

have been constructed not only in strong rocks but also in weak grounds.  

The factors that contribute to the fast development of underground excavations can be 

briefly summarized as: 

(1) Successfully applied empirical design methods such as the Rock Mass Rating 

(RMR) and Q system. Since proposed, these empirical methods have been 

successfully applied to various underground projects around the world. Besides, 

the evolutionary nature of these empirical methods with the accumulation of 

experience makes them powerful tools which can be updated along with the 

development of new techniques. 

(2) Relatively mature numerical methods and powerful computational capabilities 

of computers. Various numerical methods have been proposed and improved 

since the 1970s, including the Finite Element Method (FEM), Finite Difference 

Method (FDM), etc. They have become the common practice for the analysis of 

excavation problems and can play a complementary role to the empirical 

methods especially when no similar projects have been constructed. Numerical 

methods make it possible to analyze excavation problems with complex ground-

support interactions and various geometries. In addition, parametric studies can 

be carried out easily using numerical methods to investigate the effects of 

important parameters on the structural behavior. 

(3) Developing construction methods and support systems. The New Austrian 

Tunnelling Method (NATM) widely enlarged the scope of grounds in which 

excavation can be constructed. Recently developed Tunnel Boring Machine 



Chapter 1 Introduction 

2 

(TBM) makes the excavation and support installation an automatic process and 

greatly reduces the construction time. Along with the development of these 

excavation techniques is the fast progress in support systems. Rockbolts or 

cables, shotcrete and liners are commonly used as rock support and 

reinforcement methods. The high capacity cables and various fibre reinforced 

shotcrete as well as other support systems further improve the versatility of the 

support selection. All these developments make excavations possible even in 

the weak ground. 

All these methods are based on the deterministic analysis, in which the uncertainties in 

the input parameters are considered implicitly. The traditional analysis uses the factor 

of safety (FS) for the ultimate limit state (ULS) analysis. For serviceability limit state 

(SLS), the tunnel wall displacement and plastic zone size are compared with critical 

values to indicate whether the behavior of the rock mass is satisfactory or not. However, 

uncertainties exist in the field investigation, parameter interpretation, and models used 

to calculate the output, etc. Not modelling the inherent uncertainty in the analysis may 

cause failure of the project or uneconomical design. Moreover, it is well recognized 

that FS is inconsistent to reflect the safety level of a geotechnical structure. The same 

structure with different definitions of FS will have different FS values. Therefore, these 

require a more reasonable analysis approach which takes into account of the 

uncertainties and a more consistent indicator of the safety level. 

Probabilistic or reliability analysis explicitly considers the underlying uncertainties in 

parameters. Instead of calculating FS in the deterministic analysis, the probabilistic 

analysis uses the reliability index or probability of failure as the indicator of the stability 

of a structure. The reliability index is a more realistic and consistent indicator of safety 

than FS. In calculating the probability of failure, the sensitivities of different input 

parameters are a byproduct whereas, in the deterministic analysis, a series of parametric 

studies should be conducted in order to study the sensitivity.  

Direct evaluation of the probability of failure is not practical due to the difficulty in 

calculating the joint probability distribution function (PDF) and the multiple integral 

over the failure domain. Thus, simplified approximate approaches, such as the first-

order reliability method (FORM), second-order reliability method (SORM) and Monte 

Carlo Simulation (MCS), have been proposed to estimate the probability of failure. 
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These approaches can be applied to problems with explicit closed-form solutions easily. 

However, for problems in which the solution can only be obtained from the numerical 

simulation using stand-alone packages, some “bridges” are necessary to link the results 

from the numerical simulation to probability assessment methods. The “bridges” are 

called surrogate models or bridging methods, among which stand the Response Surface 

Method (RSM) and Artificial Neural Network (ANN). 

The partial factor design approach has been suggested to replace FS design in 

geotechnical engineering, for example, the Eurocode 7 (EC7) for the Europe and the 

Load and resistance factor design (LRFD) for the North America. Singapore has also 

adopted Eurocode for structural and geotechnical designs. However, these partial factor 

design codes cover little about the rock engineering principles. Reliability-based design 

(RBD) can play a useful complementary role to the partial factor design as pointed out 

by Low and Phoon (2015). In RBD, the partial factors do not need to be specified but 

are automatically obtained and can reflect the sensitivities, standard deviations, 

correlation structures and probability distributions in a way that prescribed partial 

factors cannot. This is desirable, particularly for rock engineering in which some partial 

factors are not suggested by the design code. It is of great practical importance to show 

the insights from RBD compared with the partial factor design and to illustrate how 

RBD can help the evolution of design codes (e.g. EC7) for tunnelling problems. 

Reliability analysis can consider the uncertainties explicitly and RBD provides 

additional insights compared with traditional design approaches. The application of 

reliability analysis methods to underground rock excavations has not been sufficiently 

examined. The focus of this thesis is to investigate the reliability analysis of 

underground excavation problems and to illustrate the insights from RBD for tunnelling 

problems. 

1.2 Objectives and scope of research 

The detailed objectives of this thesis are as follows: 

(1) To illustrate and compare different reliability analysis methods applied to a 

benchmark tunnelling problem. 
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(2) To investigate the system reliability analysis considering the interaction among 

different limit states, to compare different surrogate models in terms of accuracy, 

efficiency and robustness, and to propose an efficient and accurate surrogate 

model for system reliability analysis. 

(3) To show the insights from the reliability-based design compared with the partial 

factor design and to present how reliability-based design can complement EC7 

and help the evolution of EC7 for tunnelling problems. 

(4) To illustrate how to characterize the statistics of the rock engineering properties 

from site investigation and laboratory tests and to show how these input 

parameters can be used to the reliability analysis of a real-life underground 

project in Singapore. 

(5) To characterize the spatial variability of the uniaxial compressive strength and 

elastic modulus of rocks and to select the most probable autocorrelation 

functions and to estimate the autocorrelation distances using the Bayesian 

model class selection method and the Bayesian updating method. 

1.3 Outline of the thesis 

This thesis consists of eight chapters. 

Chapter 1 briefly introduces the background of underground excavations and the merits 

of the reliability analysis over deterministic approaches. A quick view of the objectives 

and the general outline of this thesis are also provided. 

Chapter 2 presents the literature review which can be divided into three parts. The first 

part reviews the existing deterministic analysis and design tools for underground 

excavation problems, including the empirical method, analytical method, numerical 

method and observational method. The second part is about the basic reliability analysis 

concepts and commonly used methods, including the methods to estimate the 

probability of failure, such as FORM, SORM and MCS, and the surrogate models, such 

as RSM and ANN. The reliability analyses of underground excavation problems are 

reviewed in the third part. 
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Chapter 3 illustrates the application of various reliability methods to a benchmark 

problem in tunnelling engineering, which is the basis for later chapters. For a special 

case, a numerical error problem occurs and several strategies are proposed to deal with 

this error problem. 

Chapter 4 focuses on the system reliability analysis of tunnelling problems. Different 

system reliability methods are compared using a circular tunnel reinforced by end-

anchored rockbolts. The influence of the rockbolt installation position on the system 

probability of failure is discussed. A hybrid approach combining the linear polynomial 

RSM with ANN is proposed to efficiently locate the design point and to approximate 

the limit state surface (LSS). 

Chapter 5 concentrates on the insights from RBD compared with the partial factor 

design for tunnelling problems. The intuitive expanding ellipsoid perspective and the 

efficient constrained optimization method for FORM help reduce the conceptual and 

computational barriers for practitioners. The insights are discussed using various 

tunnelling problems including structurally-controlled and stress-controlled failure 

mechanisms. 

Chapter 6 contains the analysis of a real-life underground rock excavation project in 

Singapore. The statistical information of the rock engineering properties is 

characterized using the site investigation and laboratory test results. FORM and RSM 

are used to calculate the reliability index for this project. 

Chapter 7 characterizes the spatial variability of the uniaxial compressive strength and 

elastic modulus of sedimentary and igneous rocks. The most probable autocorrelation 

functions are selected by the Bayesian model class selection method and the 

autocorrelation distances are estimated by the Bayesian updating method. 

Chapter 8 summarizes this thesis with recommendations for future research. 
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Chapter 2 Literature review 

2.1 Introduction 

This chapter presents a comprehensive review of research work which is relevant to the 

deterministic and probabilistic analysis of underground excavations. Deterministic 

tools and design methods for tunnelling problems are reviewed first in section 2.2. Then, 

the basic concepts and commonly used reliability analysis methods are revisited in 

section 2.3. Next, an up-to-date review of the probabilistic analysis of underground 

excavation problems is provided in section 2.4. Finally, a brief summary of this chapter 

is presented in section 2.5. 

2.2 Review of deterministic analysis methods for underground 

excavations 

2.2.1 Empirical method  

Empirical methods are based on engineering judgments and developed with the 

accumulation of the first-hand experience of engineering practice. Some rules of thumb 

are generalized for the stability analysis and support system selection. These methods 

are widely used in engineering practice due to the simplicity for application. The rock 

mass is a complex material which contains the intact rock and the discontinuities (e.g. 

joints, faults and bedding planes). The properties of both the intact rock and the 

discontinuity vary from case to case. Therefore, it is difficult, if not impossible, to 

describe the quality of rock masses. To quantify the rock mass quality, engineers 

proposed different classification systems to assign a value to the rock mass based on 

the site observation. In the field of underground excavation, Rock Mass Rating (RMR) 

and Q systems are popular empirical methods because they can be used not only to 

assess the rock mass quality but also to give guidelines about rock support selection. 

The following paragraphs review these two classification systems. 
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RMR 

The RMR system was first proposed by Bieniawski (1973) and developed through 

several revisions until the latest 1989 version (Bieniawski, 1989). Five classification 

parameters listed below are included in the RMR scheme.  

(1) Strength of intact rock or uniaxial compressive strength of intact rock (UCS) 

(2) Rock Quality Designation (RQD) 

(3) Spacing of discontinuities 

(4) Condition of discontinuities 

(5) Groundwater conditions 

For each parameter, a rating value is assigned. The overall RMR value ranging from 0 

to 100 is obtained by adding all these five rating values. The influence of the orientation 

of discontinuities can be accounted for by applying an adjusting value to the overall 

RMR. All the tables guiding the selection of rating values are given in Bieniawski 

(1989). The applications of RMR in underground excavations can be summarized as: 

(1) Rock mass classification (see Table 2.1) 

(2) Estimate of rock mass strength properties  

(3) Estimate the stand-up time and the maximum unsupported rock span (see Fig. 

2.1) 

(4) Preliminary selection of rock supports (see Table 2.1) 

Some advantages and disadvantages of the RMR system are: 

(1) RMR system takes into account of the rock strength. 

(2) The recommendation for tunnel supports is constrained to 10 m span only, 

which is out of date. 

(3) The RQD has limitations in characterizing joints (Milne et al., 1998). 
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Table 2.1 Rock mass classification and guidelines for supports of 10 m span rock 

tunnels with RMR system (after Bieniawski, 1989) 

 

 

Fig. 2.1. Relation between the stand-up time and roof span according to RMR 
(after Bieniawski, 1989) 
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Q system 

The Q system was first developed by Barton et al. (1974) initially intended for the 

support design for tunnels in hard rock. Similar to RMR system, site observations are 

used to assigned values to different parameters based on which the overall Q value for 

the rock mass is obtained. Six parameters, which are listed below, can be determined 

according to the tables provided by Barton (2002). 

(1) RQD (Rock Quality Designation)  

(2) 
nJ  (Joint Set Number)  

(3) rJ  (Joint Roughness Number) 

(4) aJ  (Joint Alteration Number) 

(5) wJ  (Joint Water Reduction Factor) 

(6) SRF (Stress Reduction Factor) 

The overall Q value is obtained by  

 
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  (2.1)  

The three quotients in Eq. (2.1) represent the block size, joint condition and active stress, 

respectively. Applications of the Q system can be summarized as: 

(1) Rock mass classification (see Fig. 2.2) 

(2) Estimate of rock mass strength properties  

(3) Selection of underground excavation support (see Fig. 2.2) 

Rock mass is divided into seven categories ranging from exceptionally good to 

exceptionally poor according to Fig. 2.2 and the preliminary design of support can be 

selected from Fig. 2.2. Some advantages and disadvantages of the Q-system are pointed 

out by Palmstrom and Stille (2007): 

(1) The Q-system works best in ground conditions where block falls are likely. 

(2) The application of SRF is unclear for buckling, rock burst and squeezing 

conditions. 

(3) RQD has several limitations in characterising the degree of jointing. 
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The more detailed comments about uses and misuses of the Q system can be found in 

Palmstrom and Broch (2006). 

 

Fig. 2.2. Support design chart using Q system (after Grimstand and Barton, 
1993) 

Various formulae are proposed to relate RMR to Q system, some of which are given in 

Table 2.2. 

Table 2.2 Correlation equations between RMR and Q (after Zhang, 2013) 
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Milne et al. (1998) suggested that RMR and Q should be estimated separately. The 

application of these two systems for estimating rock mass Young’s modulus is listed in 

Table 2.3. 

Table 2.3 Empirical equations for estimating Young’s modulus for rock mass 
(after Aksoy et al., 2010) 

 

 

Besides these two widely used rock mass classification systems, there exist other 

methods which play equally important role in rock engineering. Palmstrom and Stille 

(2007) summarized other rock engineering systems, two of which are briefly reviewed. 

Other systems 

The Geological Strength Index (GSI), proposed by Hoek (1994), estimates the rock 

mass quality based on the field observation. The rock mass structure type and the 

surface condition are two descriptive indices for the selection of GSI values, as shown 

in Fig. 2.3. Although GSI can be used as a classification method, the main application 

of GSI lies in its role as an important parameter in the Hoek-Brown (H-B) failure 

criterion (Hoek et al., 2002). A case study to estimate GSI based on the geological 

observation and its application in H-B failure criterion is shown in Chapter 6. 
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Fig. 2.3. General chart for GSI estimation (after Marinos and Hoek, 2000) 

The RMi (Rock Mass index), first developed by Palmstrom (1995), is used to 

characterize the ground of both massive and jointed rock condition. In addition, it 

considers the ratio between the block size and tunnel size, adjusted for the joint 

orientation and the number of joints. One advantage of this method is that it covers rock 

falls as well as overstressed ground since it provides rock support estimation for the 
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continuous and discontinuous ground. This method uses more parameters than RMR 

and Q system and thus is more complicated to use (Palmstrom and Stille, 2007). 

In summary, empirical methods or rock mass classification methods have been widely 

used in rock engineering due to the discontinuous, heterogeneous and anisotropic nature 

of the rock mass. The merits and demerits are obvious for these methods. They are 

simple to apply and usually provide safe designs of excavation problems, which have 

been tested by numerous case studies around the world. However, the support selection 

relies on a limited number of parameters which cannot entirely characterize the rock 

mass properties. Moreover, neither the RMR nor the Q system gives any information 

about how the ground behaviour and failure mechanism are considered in making 

recommendations for the rock support. Furthermore, structural resistance, 

serviceability and durability should be considered in the rock engineering design while 

only the first is addressed in the classification systems. 

2.2.2 Analytical methods 

Closed-form solutions are derived based on the elastoplasticity theory and various 

solutions have been proposed for stress and displacement calculations in underground 

excavation engineering. In this thesis, analytical methods refer to closed-form solutions 

which can be explicitly expressed and semi-analytical solutions in which some simple 

iterations may be required. Analytical methods for tunnelling problems date back to a 

solution for the stress redistribution in a stressed elastic plate containing a circular hole, 

proposed by Kirsch (1898). Since then, many researchers had proposed analytical 

solutions for excavations of different shapes and under anisotropic in situ stresses in 

the elastic ground. A detailed review of these methods can be found in Brown and Bray 

(1987). 

The above-mentioned solutions are for elastic grounds. For elastic-perfectly-plastic 

grounds, the stress and displacement solutions for a circular excavation in a ground 

with Mohr-Coulomb (M-C) failure criterion subjected to the hydrostatic in situ stress 

were given by Duncan Fama (1993). The same problem but for Hoek-Brown failure 

criterion can be solved using the formulae by Carranza-Torres and Fairhurst (1999) and 

Carranza-Torres (2004). 
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Apart from the solutions for tunnels without support, other analytical solutions 

considering the support are also available. Carranza-Torres (2009) presented stress and 

displacement solutions for circular excavations reinforced by grouted or anchored 

rockbolts in the elastic ground. Bobet and Einstein (2011) proposed solutions for 

continuous and discontinuous coupled rockbolts uniformly distributed around a circular 

excavation in the elastoplastic ground with M-C criterion subjected to hydrostatic in 

situ stress. The Duncan-Fama solution and Bobet and Einstein solution are given in 

later chapters. 

The disadvantages of analytical methods are obvious. Analytical solutions only exist in 

simple problems in which the excavation shape or ground properties or in situ stresses 

are idealized. Another significant demerit is that many assumptions used in the 

derivation of these solutions render the problem different from the actual situation in 

the field. For example, the solutions for rockbolts reinforced circular tunnels proposed 

by Bobet and Einstein (2011) assume that the rockbolts are uniformly distributed all 

around a circular tunnel in a homogeneous and isotropic ground subjected to hydrostatic 

in situ stress, which is seldom the case encountered in an actual excavation project. 

However, analytical solutions possess advantages with which other methods cannot 

compare. 

(1) They are simple to use, especially when tabulated in the spreadsheet. 

(2) They help understand and analyze the response and behavior of the rock mass 

and the support. 

(3) They can be used as verification and calibration case studies for other methods, 

e.g. the numerical method. 

2.2.3 Numerical methods 

Most underground excavations have irregular shapes and the in situ stresses as well as 

the rock properties are more complicated than the case considered in analytical 

solutions. Consequently, a number of computer-based numerical methods have been 

developed to deal with complex excavations. Different numerical methods, which can 

be categorized into three groups, are listed below. 

1. Continuum modelling 



Chapter 2 Literature review 

15 

 Boundary Element Method (BEM) 

 Finite Element Method (FEM) 

 Finite Difference Method (FDM) 

2. Discontinuum modelling 

 Distinct Element Method (DEM) 

 Discontinuous Displacement Analysis (DDA) 

3. Coupled modelling 

 Numerical Manifold Method (NMM) 

 BEM+FEM, BEM+DEM, etc. 

As the name suggests, the difference between the first two categories lies in the 

treatment of the problem domain. The continuum modelling treats the whole domain as 

a continuum and discretizes the domain into numbers of small elements (mesh) for 

iterative calculations. The widely used continuum methods in rock engineering are the 

FEM (Zienkiewicz and Morice, 1971) and FDM (Otter et al., 1966). These two methods 

both discretize the whole domain into small elements but have different methods of 

calculation. FEM utilizes the stiffness matrix to calculate strains from stresses whereas 

FDM uses the partial differential equations, in which no stiffness matrix is formed. 

Joints can be considered explicitly by the joint element or interface in these two 

methods, but too many joints in a model may be computational time-costly or cause the 

numerical non-convergence problem. Software used in tunnelling problems includes 

Phase2 (www.rocscience.com) using FEM and FLAC or FLAC3D (www.itascacg.com) 

using FDM. 

Unlike the continuum methods, discontinuum modelling treats the problem domain as 

discrete blocks or particles. Discontinuum modelling is suitable when independent rock 

block movement must be recognized. Translation and rotation of the rock block can be 

modelled in this method. Commonly used discontinuum methods are the DEM (Cundall, 

1971) and DDA (Shi and Goodman, 1985). Software includes UDEC or 3DEC 

(www.itascacg.com) using DEM and DDA software. 

There are no quantitative guidelines to decide which method should be used (Bobet et 

al., 2009). However, a general suggestion is shown in Fig. 2.4. 
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Fig. 2.4. Sketches for rock masses with different numbers of joints (after Bobet et 
al., 2009)  

In Fig. 2.4, (a) represents the rock mass without joints; (b) represents the rock mass 

with several joints; (c) represents the rock mass with a few joint sets; (d) represents 

heavily jointed rock mass. Continuous modelling is typically applied to the case (a) and 

(d) with suitable input parameters for the rock mass. Discontinuous modelling can be 

applied to the case (b) and (c), although case (b) can also be analyzed using continuum 

method. Correspondingly, there are two failure mechanisms in tunnelling problems, the 

stress-controlled and structurally-controlled failure. Stress-controlled failure means the 

stress exerted on the rock mass exceeds the strength of the rock mass. The rock mass 

experiences the plastic deformation and the plastic zone develops around the excavation. 

This may lead to unacceptable large displacements or plastic zone sizes. Structurally-

controlled failure means the instability of rock blocks formed by intersecting 

discontinuities. 

The third type of the numerical method is the coupled modelling or hybrid modelling, 

which combines the other two categories. The coupled modelling can take advantage 

(a) Continuum

(d) Pseudo-continuum(c) Discontinuum

(b) Discontinuum-continuum
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of two or more methods. Frequently used coupled modelling includes BEM/FEM 

(Zienkiewicz et al., 1977), DEM/FEM (Pan and Reed, 1991), etc. The numerical 

manifold method (NMM) (Shi, 1996) is another combined continuum-discontinuum 

method, integrating FEM and DDA. The application of NMM to simulate the rock 

fracture can refer to Wu and Wong (2012) and Wong and Wu (2014). 

A detailed review of numerical methods and their applications in geotechnical 

engineering can refer to Jing and Hudson (2002), Jing (2003) and Bobet et al. (2009), 

while Bobet et al. (2009) focused on the review of discontinuum modelling. 

2.2.4 Observational method 

The fast development of numerical methods makes it possible to analyze the behavior 

of rock masses with excavations of various shapes under complex in situ stress 

conditions. However, it is well recognized that the actual behavior of the rock mass 

frequently differs from the prediction of numerical calculations. Field measurements 

are carried out during and after the construction of engineering projects. The parameters 

used in the original design can be evaluated against the results of the field measurement, 

and, if necessary, the original design can be revised. This design method is called the 

“observational method”, which dates back to the “learn-as-you-go” method by Terzaghi 

and Peck (1948). Unlike the above-mentioned design methods, which predict field 

behavior in advance, the observational method measures the actual behavior, e.g. the 

displacement, stress, strain, etc. If the monitored value exceeds the acceptable limit 

during construction, the construction should be stopped and the pre-defined 

contingency plans will be triggered (Palmstrom and Stille, 2007). This method provides 

the most straightforward assessment of the stability of a project. Therefore, the 

observational method has become a compulsory part of the construction process.  

From field measurement data, original design parameters obtained from site 

investigation can be reassessed. This procedure is the reverse of the traditional design 

process and thus is called “back analysis”, which is an essential tool in the observational 

method. Sakurai and Takeuchi (1983) used the measured displacement around a tunnel 

to analyze the stability and to assess the input parameters. The radial and tangential 

strains from extensometer measurements were checked against the hazard warning 

levels to determine the stability of a tunnel by Sakurai (1997). As pointed out by Sakurai 
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et al. (2003), observational methods have evolved from basic visual procedures, 

constructed on site, to sets of sophisticated procedures using modernized measuring 

instruments and computer-based back analysis techniques. 

2.3 Review of commonly used reliability methods 

Due to complex geotechnical processes and in situ stresses, the properties of soils and 

rocks have great variability. The strength and deformation characteristics of rocks are 

determined from field or laboratory tests. In field tests, engineering experience and 

subjective judgment play an important role, while in laboratory tests, samples from the 

field are more or less disturbed and errors are introduced in measuring and estimating 

the properties. All these are uncertainties in analyzing geotechnical problems and more 

detailed summaries were presented by Einstein and Baecher (1983), Baecher and 

Christian (2003), for example. 

Considering the uncertainties in geotechnical engineering, it is necessary to extend the 

deterministic analysis to probabilistic evaluation. This section first introduces the basic 

concepts in the probabilistic analysis, followed by the review of the commonly used 

reliability methods. Then, several surrogate models are presented to deal with problems 

without explicit performance functions. 

2.3.1 Fundamentals of probabilistic analysis 

The basic concepts of probabilistic analysis can be easily appreciated through the 

illustration of the case with two random variables, load (Q) and resistance (R). Unlike 

the deterministic analysis in which the parameters are deterministic values, the load and 

resistance are considered as random variables with their probabilistic density functions 

(PDF) shown in Fig. 2.5. 
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Fig. 2.5. PDF of load, resistance and safety margin (after Nowak and Collins, 
2012) 

The performance function, which links the input load and resistance parameters to the 

desired output, can be defined in this case as: 

 QRQRg ),(   (2.2) 

The limit state, corresponding to the boundary separating the safe domain from the 

unsafe domain, refers to the situation when g(R, Q)=0. If g>0, the performance is 

satisfactory (desired performance) and the area is characterized as a safe domain; if g<0, 

the performance is unsatisfactory (undesired performance) and the area is characterized 

as an unsafe domain.  

In geotechnical engineering, two types of limit states are considered—ultimate limit 

states (ULS) and serviceability limit states (SLS). ULS is related to the situation when 

loads exceed the capacity and thus the load-carrying capacity is lost. SLS refers to the 

situation when excess deformations render the structure unable to fulfil its function. 

The probability of failure (Pf), shown by the shaded zone in Fig. 2.5, is defined as the 

probability that undesired performance or structural failure occurs. 

 )0()0(  gPQRPPf   (2.3) 

The above equation can be rewritten as: 

 



0

, ),(
g

QRf dqdrqrfP   (2.4) 

where ),(, qrf QR  is the joint PDF of the load and resistance. 
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In general, the probability of failure can be calculated by integrating the joint PDF of 

R and Q over the failure domain, i.e. g(R, Q)<0. These basic concepts, including the 

joint PDF, safe domain, failure domain, limit state surface (LSS) and probability of 

failure Pf, are graphically shown in Fig. 2.6. 

Reliability index β is a widely used parameter to characterize the safety of a structure. 

Here, the definition of reliability index is introduced as the shortest distance from the 

origin to LSS in the uncorrelated standard normal variable space, given by Hasofer and 

Lind (1974). The nearest point on LSS to the origin is called the design point. 

 

Fig. 2.6. Three-dimensional representation of basic probabilistic concepts 

(adapted from Haldar and Mahadevan, 2000)  

(Note: in this figure, S is in lieu of Q to represent the load effect) 

The purpose of the probabilistic analysis is to assess the reliability or the probability of 

failure of the structure. In geotechnical engineering, performance functions may have 

complex forms or even cannot be explicitly expressed. Besides, the joint PDF of 

random variables with various distributions cannot be obtained analytically and the 

direct integration of joint PDF over the failure domain is impossible for complex 

problems. All these factors make it difficult to evaluate the probability of failure 

through Eq. (2.4). However, researchers have proposed various approaches to deal with 

this problem. Some of the simplified or approximate methods are introduced in the 

following section. 
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2.3.2 Probabilistic assessment methods 

In this section, three approximate methods and one simulation method, namely, first-

order second-moment method (FOSM), first-order reliability method (FORM), second-

order reliability method (SORM) and Monte Carlo Simulation (MCS) method, to 

estimate the probability of failure are introduced. 

2.3.2.1 First-order second-moment (FOSM) 

First-order second-moment (FOSM) method uses the first-order Taylor expansion of 

the performance function at the mean value point and the first two moments (i.e. mean 

value and standard deviation) of the random variables to calculate the reliability index. 

This method is also named as the mean value first-order second-moment (MVFOSM) 

method. The detailed formulation and application examples of FOSM can refer to 

Haldar and Mahadevan (2000) and Baecher and Christian (2003), for example.  

FOSM assumes that the performance function is normally distributed such that the 

reliability index is the distance from the mean value to zero in units of the standard 

deviation, shown by  

 
g

g

FOSM 


    (2.5) 

where μg and σg are the mean and the standard deviation of the performance function, 

respectively. The performance function can be approximated by the first-order Taylor 

expansion at the mean value point as  

 
i

X

n

i

iXXXn
x

g
xgxxxg

in 


 


)(),...,,(),...,,(
1

21 21
   (2.6) 

where ),...,,( 21 nxxxg  is the performance function; ix  is the value of the i-th random 

variable; 
iX is the mean value for the i-th random variable. The mean and standard 

deviation of the performance function can be estimated by (e.g. Haldar and Mahadevan, 

2000; Baecher and Christian, 2003) 

 ),...,,(
21 nXXXg g    (2.7) 
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where 
iX is the standard deviation of iX ; 

ji XX is the correlation coefficient between 

two random variables. The mean of the performance function can be approximated by 

the performance function value calculated with the mean values of input random 

variables. The estimate of the standard deviation of the performance function can be 

implemented by the central difference method if the partial derivatives cannot be 

obtained analytically. 
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 (2.9) 

where i is a small increment applied to the random variable. FOSM is easy to 

implement. However, this method suffers from some deficiencies (Haldar and 

Mahadevan, 2000). FOSM uses the means, standard deviations and correlation 

coefficients but overlooks the distributions of input random variables. Because the 

mean and standard deviation of the performance function depend on the formulation, 

different forms of performance functions would yield different FOSM reliability 

indices. A similar method called Point Estimate Method (PEM) uses the same definition 

of the reliability index as FOSM, but estimates the mean and standard deviation of the 

performance function by using sampling points values around the mean value. The 

application of FOSM and PEM on tunnelling problems will be illustrated in Chapter 5. 

2.3.2.2 First-order reliability method (FORM) 

To overcome these deficiencies, the Hasofer-Lind reliability index (Hasofer and Lind, 

1974) was proposed and the design point was used instead of the mean value point as 

the location where the Taylor series expansion was conducted. Unlike the reliability 

index defined in the FOSM, which is the ratio of the mean over the standard deviation 

of the performance function, the Hasofer-Lind reliability index is defined in the reduced 

variable space as the shortest distance from the origin to the nearest point on LSS. This 

definition overcomes the lack of invariance encountered in FOSM. The matrix 

formulation of the Hasofer-Lind index is  

 )()(min 1 μxCμx
x
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or 
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where x is a vector of the random variable xi; μ is the vector of the mean value μi and 

σi is the standard deviation; C is the covariance matrix and R is the correlation matrix; 

F is the failure domain. Eq. (2.11) is suggested to be used instead of Eq. (2.10) since 

the correlation matrix is easier to set up and conveys the correlation structure more 

explicitly (Low and Tang, 1997). The search for the design point and corresponding 

reliability index is through an iterative process by first assuming the tentative design 

point (usually the mean value point), then obtaining the corresponding direction cosine 

of the performance function and tentative reliability index, from which new tentative 

design point can be calculated. This iterative process continues until the reliability index 

converges. Detailed formulation and procedure of the calculation can be found in 

Melchers (1999), Haldar and Mahadevan (2000), for example. The final design point 

and reliability index remain the same no matter how the performance function is 

formulated. The iterative process to calculate the reliability index and design point is 

noted as the traditional or classical procedure in this thesis. Practitioners may think this 

procedure is cumbersome and is not straightforward. 

Low and Tang (1997) proposed an expanding ellipsoid perspective to interpret and an 

efficient method using the Excel Solver to calculate the Hasofer-Line index, as shown 

in Fig. 2.7. 

In Fig. 2.7, the one-sigma-ellipse (1-σ ellipse) and the β-ellipse, tilted for correlated 

variables or untilted for uncorrelated variables, represent the probability contours of the 

input variables. With the expanding of the ellipse, the probability decreases. Once the 

ellipse touches LSS separating the safe domain from the unsafe domain, the point of 

tangency is the design point or the most probable point of failure. The reliability index 

β is the distance from the mean value point to the design point in units of the directional 

standard deviation (R/r in Fig. 2.7). To find the design point is graphically equivalent 

to finding the smallest ellipsoid tangent to LSS. This procedure can be implemented 

using the Excel optimization tool Solver. 
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Fig. 2.7. Illustration of the reliability index in the plane when c and ϕ are 
negatively correlated (after Low, 2014) 

 

The Hasofer-Lind index was originally proposed for normal distributions. It can be 

extended to nonnormal distributions, which is the FORM analysis. When non-normal 

distributions are involved, equivalent normal mean and standard deviation may be used 

instead. These equivalent values can be estimated based on the two-parameter 

equivalent transformation (Rackwitz and Fiessler, 1978) or more complicated three-

parameter equivalent transformation (Chen and Lind, 1983; Wu and Wirsching, 1987). 

The reliability index for FORM is  
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where N

i  and N

i  are the mean and standard deviation of the equivalent normal 

random variable. For non-normal variables, Fig. 2.7 still applies except that the mean 

and standard deviations are replaced by those for the equivalent normal distributions. 

Eq. (2.12) and the Rackwitz and Fiessler transformation were used in the constrained 

optimization approach of FORM in Low and Tang (2004).  
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An alternative procedure to the Low and Tang (2004) approach was presented by Low 

and Tang (2007) using the following equation for the reliability index: 

 nRn
x

1min 


 T

F
   (2.13) 

Low and Tang (2004) procedure varies x (variable values in the original x-space) 

whereas Low and Tang (2007) varies n (variable values in the correlated standard 

normal variable space, n-space). Low and Tang (2007) showed that changing the 

variable values in the n-space had the advantages such as: 

(1) Faster, more efficient, robust and succinct 

(2) Obviating the need for computations of equivalent normal means and standard 

deviations 

(3) Easy of initialization prior to the constrained optimization 

Details of the FORM 2004 and 2007 procedures together with various geotechnical 

case studies can refer to Low (2008), Low (2014) and Low (2015). The constrained 

optimization can be easily implemented in the ubiquitous spreadsheet environment 

using Solver tool. Meanwhile, the constrained optimization toolbox in MATLAB and 

other software can also be used to conduct this intuitive and transparent method. 

Through the transformation from non-normal variables to equivalent normal variables, 

the correlation structure may be changed, which can be considered in the Nataf 

transformation as shown in Der Kiureghian and Liu (1986) and Melchers (1999). 

However, for most geotechnical engineering problems, the modified correlation matrix 

differs insignificantly from the original matrix. Therefore, for the case studies in this 

thesis, the change of the correlation matrix is ignored for simplicity. 

The probability of failure can be estimated through  

 )()(1  fP   (2.14) 

where Φ(.) is the cumulative distribution function (CDF) of the standard normal 

variable. The equation is exact only when LSS is planar and the variables follow normal 

distributions. Inaccuracies may arise when LSS is significantly nonlinear. Thus, more 

refined alternatives have been proposed, for example SORM. 
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2.3.2.3 Second order reliability method (SORM) 

Instead of using first-order Taylor series expansion at the design point in FORM, 

second-order approximations are adopted in SORM. SORM can capture the 

nonlinearity of LSS around the design point. It is based on the FORM results (reliability 

index β and design point) which are the inputs for SORM. Therefore, SORM is an 

extension of FORM. Widely used SORM approaches attempt to evaluate the curvature 

of LSS at the design point in the dimensionless and rotated u-space (uncorrelated 

standard normal random variable space). The probability of failure is estimated as a 

function of the FORM reliability index and the main curvatures κ using established 

SORM equations of the following form: 

 ),()( κFORMf fSORMP    (2.15) 

Several formulae in the form of the above equation are attributed to Breitung (1984), 

Hohenbichler and Rackwitz (1988), Tvedt (1989), Tvedt (1990), Köylüoǧlu and 

Nielsen (1994), Hong (1999) and Zhao and Ono (1999). These formulae are 

summarized in Chan and Low (2012a). 

There are two widely used methods to calculate the principal curvatures of LSS at the 

design point. One is through the eigenvalues of the reduced and transformed Hessian 

matrix Hred calculated from the second-order derivatives of LSS at the design point. 

The detailed formulation and procedure of this method can be found in Haldar and 

Mahadevan (2000), Choi et al. (2007), Lü and Low (2011), for example. The advantage 

of this method lies in the fact that the calculated principal curvatures are accurate 

provided that LSS is exact. However, the disadvantage is the cumbersome and error-

prone transformation and calculation procedure. 

The other method is the point fitting strategy proposed by Der Kiureghian et al. (1987). 

This method intends to approximate the actual LSS by a paraboloid which is obtained 

by fitting 2(n-1) points around the design point for an n random variable case. Since the 

curvature of a parabola is readily available, these curvatures of the approximate 

paraboloid are used as the estimate of the curvatures of LSS. This method is 

comparatively easy to use.  Chan and Low (2012a) developed the Excel implementation 

of this method, in which the complex mathematical operations are relegated to simple 



Chapter 2 Literature review 

27 

function codes in the Excel platform. The only inaccuracy exists in the approximate 

nature of the paraboloid to the actual LLS. 

It should be emphasized that, though SORM gives a better estimate of the probability 

of failure for highly nonlinear problems, FORM is the basis of SORM and thus SORM 

results are useful only when the reliability index and design point from FORM are 

accurate. 

2.3.2.4 Monte Carlo simulation (MCS) method 

Instead of approximating the limit state by the first-order or second-order Taylor 

expansions, Monte Carlo simulation (MCS) involves large numbers of random 

samplings to artificially simulate experiments to estimate the probability of failure. 

Typically, MCS is implemented through sampling random variables according to their 

distributions to obtain samples. Then, each set of samples is treated as the input to 

calculate the performance function g(x). If g(x)<0, it is considered as a failure point. 

After numbers of such experiments are conducted, the probability of failure can be 

estimated by 
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where N is the total number of experiments and  0)( xgn  represents the number of 

failed experiments. The estimate of the probability of failure can be mathematically 

demonstrated by rewriting Eq. (2.16) as (Melchers, 1999) 
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where )(xI g  is an indicator function with regard to g(x) and is defined as 
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It is clear that the estimate of the probability of failure can be straightforwardly 

interpreted as the ratio of the number of realizations of x which render 0)( ixg  over 

the total number of realizations. If the maximum error of the probability of failure is e 
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at confidence 1-α, then the required number of realizations is estimated by (Rubinstein 

and Kroese, 2011) 

 
2

2/)ˆ1(ˆ 







e

z
PPN ff

   (2.19) 

where fP̂  is the estimated value of fP  and 2/z  is the point of the standard normal 

distribution satisfying 2/)( 2/   zZP . 

The coefficient of variation of fP̂  can be estimated by  
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MCS is considered robust and accurate, especially when the number of experiments is 

large and thus is typically chosen as the verification method for other probabilistic 

approaches. The advantages lie in its straightforwardness and robustness. However, the 

computational cost is prohibitive when the performance function is implicit and the 

probability of failure is small. To overcome such limitations, some more advanced 

MCS methods have been proposed. 

Contrast to the traditional (or crude, or direct) MCS, Latin Hypercube Sampling (LHS) 

method adopts more efficient sampling tactic to generate random samples, thus 

reducing the error. LHS first divides the sampling range into N intervals for each 

random variable. The probability of x locating in each interval is 1/N. Then, in each 

interval, a sample is selected randomly and thus N samples for each random variable 

are prepared. Finally, arrange all these sampling values randomly into N combinations 

of all random variables. Some examples show that LHS reduced the coefficient of 

variation (McKay, 1992). LHS now is widely adopted, for example, the MCS software 

@RISK (www.palisade.com). 

Another widely used advanced MCS is the importance sampling technique. Unlike the 

LHS to adopt an efficient sampling strategy, importance sampling technique introduces 

a new sampling function, the PDF of which is noted as )(v . For importance sampling, 

Eq. (2.17) can be modified as (Melchers, 1999) 
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where )(v  is termed as the importance sampling PDF at value ν; )(v  is the value of 

PDF of the standard normal distribution at ν. Through this transformation, a new 

sampling PDF can be used instead. Therefore, the problem lies in how to choose the 

importance sampling function. Harbitz (1986) proposed an importance sampling 

method based on the design point which contributes most to the probability of failure. 

This technique samples a larger proportion of points located in the failure domain than 

the direct MCS and, therefore, requires less sampling points. The importance sampling 

technique has been used in various geotechnical problems, e.g. Ching et al. (2009) for 

the slope stability analysis. 

A recently popular method of MCS is the subset simulation (Au and Beck, 2001; Au et 

al., 2007; Au et al., 2010). It uses the idea that an event with a small probability of 

failure can be expressed as a product of some intermediate events with larger 

conditional probabilities of failure. Subset simulation converts a problem of a small 

failure probability to a sequence of more likely events. Therefore, it is most efficient 

for problems with small probabilities of failure. The first level of sampling is the direct 

MCS. The following levels of sampling points are selected from the failure domain of 

previous levels through the Markov Chain Monte Carlo technique. Au et al. (2010) 

developed the spreadsheet implementation of the subset simulation. This method has 

been used in the slope stability analysis (Wang et al., 2010b; Wang et al., 2011). 

Besides these three advanced MCS stated above, there are other techniques to reduce 

the variance of MCS, such as the directional simulation method (Bjerager, 1988) and 

the linear sampling method (Koutsourelakis et al., 2004). 

MCS is also widely used in the reliability analysis of underground excavations and 

typically as a verification method for other approaches, e.g. FORM and SORM. 

Relevant research can be found in Oreste (2005), Lü and Low (2011), among others. 

FOSM, FORM, SORM and MCS reviewed in this section can only be effectively 

implemented when the explicit expression of the performance function is readily 

available. However, this requirement can seldom be satisfied in geotechnical 
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engineering. The difficulty caused by the implicit nature of the performance function 

can be overcome by using the surrogate models. 

2.3.3 Review of approximate approaches for implicit performance functions 

When the performance function values cannot be obtained explicitly, the numerical 

methods, such as FEM and FDM, are used to calculate the response of a model. Under 

such circumstances, surrogate models or bridging methods are needed to approximate 

the implicit performance functions. Sampling points together with the corresponding 

output values from numerical simulations are necessary to construct surrogate models. 

In this section, various sampling strategies typically used in the literature are reviewed 

first. Then, the surrogate models or bridging methods, including the polynomial 

response surface method (RSM) and artificial neural network (ANN), are revisited and 

a summary of other methods is provided. 

2.3.3.1 Sampling Strategy 

Axial-point Design 

One central point and two sampling points on each random variable axis are included 

in the axial-point design method. If there are n random variables, the total number of 

sampling points is 2n+1. This method can be graphically illustrated by a two-variable 

case shown in Fig. 2.8. 

 

Fig. 2.8. Sampling points shown for axial-point design and two-level factorial 
design 
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The axial sampling points can be expressed as 
ici kxx  , where xc is the value for 

the central point; k is the sampling factor controlling the sampling range; σi is the 

standard deviation. The axial-point design method is widely used in the polynomial 

response surface method, e.g. Tandjiria et al. (2000), Xu and Low (2006). 

Two-level Factorial Design 

In this design, two values are selected for each random variable, typically one value 

(+k) above the central point value and the other value (-k) below the central point value. 

All combinations of these values for all random variables are chosen as the sampling 

points (Myers, 1971). This can be illustrated using a two-variable case in Fig. 2.8. If n 

random variables are concerned, the two-level factorial design generates 2n sampling 

points. Unlike the axial-point design, which generates points on the axes, the two-level 

factorial design uses sampling points at corners. This design approach is typically used 

in the point estimate method but seldom used in the surrogate models. 

Central Composite Design 

The central composite design (Box and Wilson, 1951), made up of the central point, 

the axial points and points at all corners, is a combination of the sampling points in the 

axial-point design and the two-level factorial design. Thus, the total number of 

sampling points is 2n+2n+1 for an n random variable case. This method is shown in 

Fig. 2.9 for a three-variable example. 

 

Fig. 2.9. Sampling points shown for central composite design 
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Uniform Design (UD) 

Different from the above sampling methods which focus on the surrounding of the 

central point, UD tries to distribute the sampling points over the domain of interest 

uniformly. First proposed by Fang (1980), UD is able to randomly select the sampling 

points in a uniform manner. For example, in Fig. 2.10, 25 sampling points selected by 

UD in the range of [-1,1] for two random variables are uniformly distributed in a 5-by-

5 lattice with each sampling point located in one sub-lattice. For comparison, the 

sampling points by random selection are also shown in the same figure. Random 

selection cannot guarantee that the sampling points are uniformly distributed. Thus, 

some parts of the domain may be crowded with more sampling points while other parts 

may contain few points. 

The merit of UD lies in that it can produce samples with high representativeness of the 

whole domain and thus it is suitable when the accuracy of the approximation in the 

entire domain is of concern. Another point should be pointed out is that there is no 

restriction on the number of sampling points in UD. In principle, the number of 

sampling points required to accurately approximate LLS should be determined on a 

case-by-case basis. It is influenced by the number of random variables and the 

nonlinearity of the problem considered. 

 

Fig. 2.10. Comparison of UD with random sampling (after Lü et al., 2012) 
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Other sampling methods for global sampling includes the Latin Hypercube Sampling 

widely used in the MCS. The collocation-based sampling used for the stochastic 

response surface method (Tatang et al., 1997). 

2.3.3.2 Response surface method  

One of the widely used surrogate models is the RSM. In the general meaning, RSM 

refers to any method that uses prescribed expressions, such as polynomials and 

exponential functions, to approximate LSS. In this thesis, only the polynomial RSM is 

considered. Although the forms of the expression are prescribed, the coefficients are 

unknown. To approximate LSS is to determine the unknown coefficients using the 

sampling points. Previous research about RSM can be summarized in the following 

four aspects. 

1. Selection of the forms of response function 

Linear and quadratic polynomial response functions are typically adopted because 

of their simplicity. Higher orders of polynomial functions may lead to ill-

conditioned systems of equations and erratic system behaviour (Melchers, 1999) 

and thus are not widely used. Other forms of response functions are rare in the 

literature, such as the inverse polynomials (Nelder, 1966) and reciprocal functions 

(Tandjiria et al., 2000). 

2. Determination of the unknown coefficients 

If the number of sampling points equals that of the unknown coefficients, the 

coefficients can be determined by solving a series of linear equations. For example, 

the second-order polynomial RSM uses the following expression 

 
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where )(xg  is the response function; a, bi and ci are unknown coefficients that 

should be determined; xi is the random variable value; n is the number of random 

variables. Bucher and Bourgund (1990) suggested the axial-point design scheme 

could be used to obtain 2n+1 sampling points by  
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ici kxx    (2.23) 

where xi is the sampling point value; xc is the value of centre sampling point; σi is 

the standard deviation; k is a user defined sampling factor. This sampling strategy 

effectively uses the probabilistic characteristics (mean value and standard deviation) 

of the random variables. 

If the number of sampling points exceeds the number of unknown coefficients, the 

least square method has to be used to determine the coefficients. For example, in 

the two-level factorial design, the total number of experiments increases 

exponentially with the number of the random variables. The number of sampling 

points is greater than the unknown coefficients and the least square method should 

be used (Wong et al., 2005). RSM determined by the least square method cannot 

guarantee that the response surface passes through every sampling point but is a 

best-fit to all the sampling points. 

3. Iteration strategy 

Bucher and Bourgund (1990) introduced an efficient iterative strategy to make the 

response function gradually approach the actual LSS around the design point. After 

the construction of the first tentative response surface, the estimate of the design 

point is obtained as Dx . Then the new center point Mx  is calculated by the linear 

interpolation between Dx  and the previous center point x  by 
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This iteration strategy requires that one more evaluation of the performance 

function at the tentative design point. Later, a more general expression for the 

iteration strategy was given by Muzeau and Lemaire (1997) as  

 DM xxx   )1(   (2.25) 

where ζ is the arbitrary controlling factor. ζ=1 represents that the tentative design 

point is chosen as the sampling central point for the next iteration. This iteration 

strategy does not require one more evaluation of the performance function and has 

been widely applied to reliability analyses of various geotechnical problems, e.g. 
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Mollon et al. (2009b), Lü and Low (2011), Chan and Low (2012b) and Ji and Low 

(2012). 

4. Convergence criterion 

The widely used convergence criterion is to compare the reliability index in current 

iteration i and that in the previous iteration i-1 (Muzeau and Lemaire, 1997), as 

given below. 

 tolii   1    (2.26) 

Typically, the tolerance tol  is selected between 10-4 and 10-2. 

Several research papers focused on the improvement of the RSM. Rajashekhar and 

Ellingwood (1993) pointed out that reducing the sampling factor k during the iteration 

would increase the accuracy. However, if the process was repeated infinitely with 

progressively smaller k values, at some stage, one would get an ill-conditioned system 

of equations. Guan and Melchers (2001) used some assumed performance functions to 

study the effect of the sampling factor on the probability of failure. The results showed 

that the accuracy of the reliability index depended on the sampling factor. However, 

there were no guidelines for selecting the sampling factor. Wong et al. (2005) 

encountered a numerical error problem in which the reliability index could not converge 

using RSM. In their study, the non-smoothness of the performance function was 

considered to cause the non-convergence problem. 

The research mentioned above is concerned with the polynomial RSM. Recently, more 

sophisticated RSM, with similar concepts but different expressions, have been 

developed and applied to geotechnical engineering problems. One of such method is 

the Stochastic Response Surface Method (SRSM). SRSM adopted a similar expression 

as the third-order polynomial RSM. The purpose of the SRSM is to yield a relatively 

accurate representation of the performance function in a larger random variable space, 

whereas RSM only approximates the performance function in the neighbourhood of the 

design point. The cost of the global approximation is that a large number of sampling 

points should be experimented. The application of this method can be found in Li et al. 

(2011) for a slope stability analysis and Mollon et al. (2013) for a tunnel face stability 
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problem. Another recently developed method is called Kriging-based Response Surface 

Method (KRSM), which is similar in the idea with the SRSM. KSRM, like SRSM, does 

not need the iteration procedure but requires a huge number of sampling points to 

approximate the performance function in the whole random variable space. Zhang et al. 

(2013a) used this method to analyze a layered soil slope and to estimate the probability 

of failure. 

2.3.3.3 Artificial Neural Network (ANN) 

Artificial neural network (ANN), which simulates the human brain structure, is a 

universally used regression and prediction model due to its powerful learning ability. 

ANN is an information processing technique based on the biological nerve systems. 

This technique has the ability to respond to input stimuli and to adapt to the changing 

environment by learning from experience (Hykin, 1999). Fig. 2.11 is an illustration of 

a typical three-layer ANN, which is used to explain the basic structure. 

 

Fig. 2.11. Basic structure of ANN (after Anderson, 2005) 

In Fig. 2.11, there are three layers, namely, the input layer, the hidden layer and the 

output layer. Each element represented by a circle in the hidden layer is named as a 

neuron (four neurons in the figure). Although there is no restriction on the number of 

hidden layers, it has been demonstrated that ANN with a typical three-layer structure 

(i.e. single hidden layer) can approximate any function, provided that sufficient hidden 
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neurons are available (Hornik et al., 1989). Thus, this three-layer structure is widely 

adopted in ANN analysis. The connection between the input layer and the hidden layer 

and that between the hidden layer and output layer are through weights (w1)ji, (w2)kj and 

transfer functions. The output from the hidden layer opj is to apply a transfer function 

to the weighted sum of the outputs from the input layer opi: 
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where (w1)ji is the weight between the input node i and the hidden node j; (w1)bias is the 

bias between input and hidden layers; ftransfer is the transfer function. 

The output from the output layer opk is the outcome of applying a transfer function to 

the weighted sum of the outputs from the hidden layer opj: 
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where (w2)kj is the weight between hidden node j and output node k ; (w2)bias is the bias 

between hidden and output layers; ftransfer is the transfer function. 

Typically used transfer functions for the hidden layer are the log-sigmoid function and 

tan-sigmoid function because of their simple, continuous and differentiable nature 

whereas the pure linear transfer function is preferred for the output layer. 

The most widely used ANN is the feed-forward back propagation neural network 

(BPNN), which consists of two passes of data transfer, namely, the forward pass and 

the backward pass. The input data propagates forward through the network while the 

error between the network output and the target value is propagated backwards to adjust 

the weights and biases within the network, which is a self-learning process. Due to this 

robust error-correction capability, BPNN gains its popularity in solving curve-fitting, 

prediction and classification problems. The adjustment of the weights within the 

network is called the training process, during which the error is progressively reduced. 

There are various error reduction methods ranging from simple to complex such as the 

gradient descent, gradient descent with momentum, Levenberg-Marquardt, Bayesian 

regularization, etc. Detailed of these learning algorithms can refer to Hagan et al. (1996). 

The advantages of ANN or BPNN are 
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(1) There is no constraint on the number of the sampling points to train ANN but, 

in theory, more sampling points yield better results. 

(2) Powerful learning ability makes ANN can approximate almost any kind of 

performance functions. 

(3) The main structure of ANN can be applied to different problems without much 

modification. 

The disadvantages are  

(1) There are no general guidelines for choosing the number of hidden neurons and 

some parameters needed in the training algorithms. The best selection of these 

values depends on the problem considered. 

(2) It is well recognized that ANN is better at interpolation than extrapolation, 

which requires that the sampling points should cover the whole domain of 

interest.  

(3) The over-fitting problem, which means ANN performs poorly outside the 

sampling domain, is a common obstacle encountered. Different strategies, such 

as the cross-validation, can be used to obviate this problem. 

ANN has been extensively applied to geotechnical engineering problems. Shahin et al. 

(2001) reviewed the application of ANN, including foundation, slope, liquefaction, 

tunnels and underground opening, etc. Later, Shahin et al. (2008) extended their review 

with special focus on the modelling procedures about ANN. Some of the representative 

papers are reviewed here. Goh (1994) and Goh (2002) assessed the liquefaction 

potential using ANN. Juang and Chen (1999) and Juang et al. (1999) analyzed the 

liquefaction resistance based on the cone penetration test using ANN. ANN was used 

together with FORM to calculate the probability of failure for a beam case and a shallow 

tunnel case by Goh and Kulhawy (2003) and for a braced retaining wall problem by 

Goh and Kulhawy (2005). Chan and Low (2012b) used ANN to approximate LLS for 

a laterally loaded pile. 

For underground excavations, ANN is also widely adopted to approximate performance 

functions. Soroosh et al. (2006) used 170 tunnel convergence results obtained from 

FEM analyses to train ANN and the network was used to predict the convergence before 

the support was installed. Goh and Zhang (2012) related the factor of safety to geometry 



Chapter 2 Literature review 

39 

parameters and rock mass Q values through ANN and drew some design charts for 

preliminary design. Lü et al. (2012) studied the ground-support interaction for a deep 

rock tunnel through the convergence-confinement method (CCM) using ANN and 

uniform design. In their study, SORM was also conducted to obtain a more accurate 

probability of failure based on the first-order and second-order derivatives of ANN 

proposed by Deng (2006). 

2.3.3.4 Other surrogate models 

All the approximate methods are called surrogate models in reliability analysis to 

substitute the implicit performance functions. Generally speaking, any kind of model, 

which has the ability to map the relation between inputs and outputs, can be used as the 

bridging method. Besides RSM and ANN, researchers also applied other methods to 

geotechnical engineering problems. 

One category is the regression method including polynomial regression (PR) and 

logarithmic regression (LR). Zhu et al. (2008) studied the displacements of sidewalls 

for an underground hydropower project and proposed a polynomial regression formula 

based on numerical simulation results. Multiple regression models were conducted to 

assess the relationship between the support pressure, depth and tunnel deformation for 

rock masses with different strength properties by Basarir (2008). Zhang and Goh (2012) 

related the global factor of safety and percent strain of a horseshoe-shaped tunnel to the 

deformation modulus, strength parameters and in situ stress conditions using the 

polynomial regression model, based on which FORM was conducted to calculate the 

probability of failure. 

Unlike the regression method, which presumes the form of the expression, multivariate 

adaptive regression splines (MARS) use a series of piecewise linear segments with 

different gradients to model the nonlinear response. The detailed explanation and 

procedure of the MARS can be found in Friedman (1991). Zhang and Goh (2013) 

illustrated the applicability of MARS to various geotechnical problems including 

seismic liquefaction, surface settlement induced by tunnelling and collapse potential of 

the compacted soil. Zhang and Goh (2014) approximated the serviceability limit state 

of a twin-cavern using MARS. 
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Due to the development of computers, artificial intelligence algorithms, among which 

stands ANN, have been through fast development. These algorithms endow the 

computer the capability of learning by itself from numerous data sets. Thus, using such 

algorithms for data mining is also called machine learning. Besides ANN, another 

machine learning method used as the surrogate model in geotechnical engineering is 

the support vector machine (SVM) (Vapnik et al., 1997), which was first proposed as a 

method for classification. Some of the applications of SVM in geotechnical engineering 

can refer to Goh and Goh (2007) for a seismic liquefaction problem, Zhao (2008) for a 

slope stability problem and Samui (2008) for a shallow foundation problem. SVM has 

also successfully been applied to underground excavation analysis. A set of data of 

monitored displacements of a tunnel was used to train SVM and to estimate the 

nonlinear relationship between soil parameters and the tunnel convergence (Mahdevari 

et al., 2013). Zhao et al. (2014) used FORM and least square SVM, which is a modified 

SVM model proposed by Suykens and Vandewalle (1999), to calculate the probability 

of failure for circular and horseshoe-shaped tunnels. 

It is impossible to review all the available surrogate models. Instead of listing all these 

methods, two or three methods will be focused on and used in this thesis. 

2.4 Review of probabilistic analyses of underground excavation 

problems 

The above sections review the general deterministic analysis methods for underground 

excavation problems and the commonly used reliability methods. The literature review 

of the probabilistic analysis of underground excavation problems is presented in this 

section. The reliability analysis of geotechnical problems is abundant such as the pile 

and foundation problems (e.g. Zhang et al., 2001; Zhang et al., 2005) or the slope 

stability problem (e.g. Li et al., 2011; Ji and Low, 2012). However, the reliability 

analysis of underground rock excavation problems is limited in the literature. A detailed 

list of the journal papers regarding the probabilistic analyses of underground excavation 

problems is shown in Appendix A. Some observations of the literature can be 

summarized as follows. 

The closed-form solution was commonly used to verify different probabilistic methods 

or surrogate models. For closed-form solutions, MCS can be directly applied without 
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much computational effort and the MCS results are regarded as the benchmark for 

comparison of other methods. For example, the Duncan-Fama solution, first extended 

to the probabilistic analysis by Hoek (1998), has been used by various researchers. Li 

and Low (2010) applied FORM to this solution and discussed the influence of the 

distribution on the reliability index. Lü and Low (2011) applied FORM, SORM and 

polynomial RSM to the Duncan-Fama solution for M-C grounds and the Carranza-

Torres solution for H-B grounds. The Duncan-Fama solution has been used to illustrate 

other surrogate models, e.g. Zhao et al. (2014) used the least square SVM, Wang et al. 

(2016a) adopted the augmented radial basis function and Li et al. (2016) illustrated 

SVM combined with uniform design. From the literature, it can be seen that the 

Duncan-Fama solution has become a benchmark tunnelling problem for the 

probabilistic analysis. It can be used as a good starting point of this thesis to illustrate 

the reliability analysis of tunnelling problems (Chapter 3). Practitioners may not be 

familiar with the probabilistic analysis concepts and detailed procedures. In Chapter 3, 

widely used probabilistic methods are illustrated using the benchmark problem to help 

overcome the conceptual and computational barriers for practitioners. 

The convergence-confinement method (CCM), which combines the longitudinal 

deformation profile (LDP), the ground reaction curve (GRC) and the support 

characteristic curve (SCC), can be considered as a simplified method to analyze the 

ground-support interaction for circular tunnels. This method has been used to illustrate 

FOSM and PEM (Laso et al., 1995), to illustrate FORM and RSM (Lü et al., 2011), to 

show ANN with uniform design (Lü et al., 2012), to investigate the system reliability 

analysis by Lü et al. (2013), Zeng and Jimenez (2014) and to elucidate the moving least 

square RSM (Lü et al., 2017). 

Most reliability analyses of tunnelling problems concern the estimate of the probability 

of failure and the surrogate models are used to approximate the limit state surface 

locally around the design point, e.g. Mollon et al. (2009b). However, some researchers 

intended to approximate the performance function globally, meaning not in the vicinity 

of the design point but in a larger domain. Mollon et al. (2011) used SRSM to analyze 

the tunnel face stability problem. A global response surface method (GRSM), which is 

similar to SRSM, was used to approximate the damage depth and displacement of a 
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tunnel by Langford and Diederichs (2015). SRMS was also used by Wang and Li (2017) 

to approximate the distribution of the tunnel displacement. 

There are two limit states, including ULS and SLS, in tunnelling problems. Most of the 

previous research focuses on the analysis of one limit state or two limit states separately, 

e.g. Zhang and Goh (2012) and Zhang and Goh (2014). The system reliability analysis, 

which considers the interaction among all limit states, should be further investigated. A 

more detailed review of the system reliability analysis will be given in Chapter 4. 

Although some literature discussed RBD of tunnels, e.g. Low and Einstein (2013) and 

Langford and Diederichs (2013). Detailed discussions about the similarities and 

differences between RBD and the traditional design approach (FS design and the partial 

factor design) should be investigated. The insights from RBD compared with the partial 

factor design approach for tunnelling problems will be illustrated in Chapter 5. 

Apart from the research in which closed-form solutions were used to illustrate different 

methods, some papers presented reliability analyses of real-life underground excavation 

problems, e.g. Su et al. (2011), Cai (2011) and Su et al. (2017). However, the 

characterization of the statistical input parameters from the site investigation or 

laboratory test results were seldom covered. Thus, there is a need to show how the 

statistical information can be characterized from in situ and laboratory test results and 

how the characterized parameters can be used in the reliability analysis of a real-life 

project, which will be shown in Chapter 6. 

The spatial variability is a major source of uncertainties associated with rock properties. 

In the literature, there rarely exist any studies quantifying the scale of fluctuation and 

autocorrelation structure of rock properties. As commented by Hsu and Nelson (2006), 

very little work had been done on characterizing the spatial variability of rock properties. 

One of the possible reasons is that the extraction of rock samples is difficult and costly, 

resulting in limited rock data (Aladejare and Wang 2017). Therefore, the rock 

properties collected in Chapter 6 can be used to characterize the spatial variability of 

rocks. The Bayesian method is able to select the most plausible model with a high fitting 

capacity as well as robustness (Cao and Wang 2013; Wang and Aladejare 2015). The 

Bayesian model selection method is used to determine the most probable 
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autocorrelation functions and to estimate the autocorrelation distances of the rock 

properties in Chapter 7. 

2.5 Summary 

In this chapter, a literature review was presented mainly in three parts: deterministic 

analysis approaches, basic probabilistic analysis methods and the reliability analysis of 

underground excavations. For the deterministic analysis, commonly used design and 

analysis tools, namely, the empirical method using rock mass classifications, analytical 

method using closed-form solutions, numerical modelling using FEM, FDM, DEM, etc., 

and observational method using field measuring data, are reviewed. In later chapters, 

the analytical solution and numerical modelling will be used. 

In the review of basic reliability methods, several critical concepts concerning the 

reliability analysis are reviewed first. FOSM, FORM, SORM and MCS, which are 

common methods for estimating the probability of failure, are reviewed next. For 

problems without explicit performance functions, surrogate models are needed to 

connect FORM and SORM with the results from stand-alone numerical software. Thus, 

the bridging methods or surrogate models are revisited. Through the combination of 

FORM, SORM, MCS, surrogate models and numerical simulations, the reliability 

index and probability of failure of complex problems can be obtained. The reviewed 

methods and their relations are shown in Fig. 2.12. 

 

 

Fig. 2.12. Reviewed methods and their relations 
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A detailed list of the reliability evaluation of underground excavation problems is 

provided in Appendix A. Some observations of the literature include: the Duncan-Fama 

solution is a benchmark problem and can be used as a good starting point to show and 

compare different reliability methods, which will be presented in Chapter 3; the system 

reliability analysis considering the interaction among different limit states needs further 

investigation, which will be shown in Chapter 4; the insights from reliability-based 

design and how it can complement the partial factor design approach should be 

discussed and illustrated for tunnelling problems, which will be displayed in Chapter 5; 

the statistical characterization of the rock engineering properties and how the statistical 

inputs can be used in the reliability analysis can be best explained by an actual 

underground excavation project, which will be illustrated in Chapter 6. The spatial 

variabilities of the uniaxial compressive strength and elastic modulus are characterized 

using the Bayesian method in Chapter 7. 
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Chapter 3 Probabilistic analysis of a circular tunnel using 

various reliability methods 

Analytical solutions are valuable in understanding the rock mass behavior and in testing 

numerical models. Therefore, analytical solutions are a good starting point for the 

underground excavation analysis. Since the surrounding rock mass seldom remains 

elastic after the tunnel is excavated, the elastic solutions for the stress and displacement 

calculation, such as the Kirsch solution (Kirsch, 1898), will not be studied here. As 

pointed out in Chapter 2, the Duncan-Fama solution (Duncan Fama, 1993) for circular 

tunnels in elastic-perfectly-plastic Mohr-Coulomb grounds under hydrostatic in situ 

stresses has been widely used by different researchers to verify various probabilistic 

analysis approaches and surrogate models. The Duncan-Fama solution has become a 

benchmark problem for the reliability analysis of tunnelling problems. Therefore, this 

starting chapter is intended to show and compare different reliability methods and 

surrogate models using the Duncan-Fama solution. The content in this chapter is the 

basis for later chapters. 

In this chapter, the first-order reliability method (FORM) is first applied to the Duncan-

Fama solution. Then, the results are compared with those from the first-order second-

moment method (FOSM), Monte Carlo simulation (MCS) with and without importance 

sampling and subset simulation. Next, surrogate models or bridging methods, including 

the first- and second-order polynomial response surface methods (RSM), are illustrated. 

A numerical error problem is encountered in the application of the linear RSM to 

problems in which the reliability index β is large. This numerical error problem is 

investigated in detail and a multiple-step solution is proposed to solve this problem. In 

the next section, the Duncan-Fama solution is presented. 

3.1 Analytical solutions for circular tunnels in Mohr-Coulomb 

grounds under hydrostatic in situ stresses 

The Duncan-Fama solution describes the displacement and stress distribution around a 

circular tunnel in a homogeneous and isotropic ground, which obeys the Mohr-
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Coulomb failure criterion, under the hydrostatic in situ stress condition. The problem 

is illustrated in Fig. 3.1. 

 

Fig. 3.1. Illustration of a circular tunnel under hydrostatic in situ stress (after 
Hoek, 2007) 

In Fig. 3.1, σ0 is the hydrostatic in situ stress; pi is the internal support pressure; r0 is 

the tunnel radius; rp is the plastic zone radius. The critical support pressure cr

i
p , below 

which the plastic zone starts to develop around the tunnel, is calculated from: 
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where   is the friction angle and c  is the cohesion of the rock mass. If the internal 

support pressure is greater than cr

i
p , no plastic zone appears and the inward radial 

displacement of the tunnel wall is  
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where G and E are the shear modulus and Young’s modulus of the rock mass and   is 

the Poisson’s ratio. If ip  is less than cr
ip , plastic yielding occurs and the radius of the 

plastic zone is given by 
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Deterministic parameters:

Tunnel radius: r0 = 2.5 m
Poisson’s ratio: ν = 0.3

Probabilistic parameters:

Young’s modulus E (MPa): Normal μ = 373 σ = 48
Cohesion c (MPa): Normal μ = 0.23 σ = 0.068
Friction angle ϕ (): Normal μ = 22.85 σ = 1.31
In situ stress σ0 (MPa): Normal μ = 2.5 σ = 0.25
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The inward radial displacement of the excavation boundary is calculated from: 
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Above equations are applicable for non-associated flow rules (dilation angle=0). 

3.2 Direct first-order reliability method applied to closed-form 

solutions  

The input parameters for the analysis, shown in Fig. 3.1, are adopted from Hoek (1998) 

and Li and Low (2010). Based on the equations given above, the Duncan-Fama solution 

calculates the plastic zone radius and tunnel wall convergence. The acceptability of the 

tunnel behavior can be assessed through the following two performance functions. 
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where u  is the tunnel wall convergence and calculated by Eq. (3.5) for the case with 

plastic zones; 
limiting

  and 
limiting

  are the limiting ratios with respect to 
0

/ rr
p

 and 0/ ru  

respectively. 

The first performance function concerns the plastic zone size developed around the 

excavation whereas the second considers the maximum inward displacement of the 

tunnel. The selection of the limiting ratios is based on the experience of engineers. In 

this case, 
limiting

  is chosen to be 3 while 
limiting

  is 0.01. In the analysis by Li and Low 

(2010), c,  , E are regarded as random variables. However, it is well known that the in 

situ stress can be hardly measured precisely and has a significant influence on the tunnel 

behavior. Thus, four parameters including σ0 are treated as random variables while 

other input parameters are deterministic values for this case. The statistical inputs are 

shown in Fig. 3.1. The four random variables are assumed to be normally distributed. 

Typically, the cohesion and friction angle are likely to be negatively correlated, i.e. the 
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cohesive strength usually drops as the friction angle increases and vice versa. Therefore, 

-0.5 is used as the correlation coefficient between the cohesion and friction angle. 

The expression for the FORM reliability index is (Low and Tang, 2007): 
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where n represents the random variable values in the correlated standard normal space. 

Fig. 3.2 shows the FORM results with respect to the first performance function based 

on the Duncan-Fama solution. 

 

Fig. 3.2. FORM results for the plastic zone size performance function 

In Fig. 3.2, cell B2 is the indicator whether performance function 1 or performance 

function 2 is concerned; cell E2 is the performance function value which is based on 

the indicator value; cells C2:D2 are limiting values for the two performance functions. 

For the Low and Tang (2007) method, the ni column (cells G4:G7) is initially set to 

zero and the corresponding performance function value is 0.37, showing that the mean 

value point is in the safe domain and the reliability index is positive. The Solver is used 

to minimize the reliability index (cell F2), by changing the ni column (cells G4:G7), 

subject to the constraint that the performance function (cell E2) equals zero. The design 

point in the n-space is automatically located and shown in the ni column (cells G4:G7). 

The corresponding design point values in the original random variable space are shown 

in the xi
* column (cells B4:B7). For this case where the internal support pressure is zero, 

the reliability index is 0.6655, corresponding to a probability of failure Pf of 25.3%. Pf 

is estimated by  
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where Φ(.) is the cumulative distribution function (CDF) of standard normal 

distribution. 

3.2.1 Sensitivities of input parameters 

The sensitivity is a by-product of the FORM analysis and is reflected by the absolute 

values in the ni column. This is an advantage since repeated parametric studies required 

in the deterministic analysis are obviated. The n-value for E is zero, meaning that the 

performance function is not influenced by this parameter. This is expected as the plastic 

zone radius is not a function of Young’s modulus. Among the four parameters, the 

cohesion is the most influential factor while the result is less sensitive to the friction 

angle. The increase of the in situ stress and the decrease of the cohesion will lead to the 

enlargement of the plastic zone. Thus, it is reasonable that the design point value of the 

in situ stress is higher than the mean value whereas for the cohesion the design point 

value is lower than the mean value. However, the friction angle is slightly increased 

from 22.85 to 23.00. This is due to the negative correlation between the cohesion and 

the friction angle. When the cohesion drops, the friction angle is more likely to increase. 

Because the result is more sensitive to the cohesion, the design point value for the 

friction angle is slightly greater than the mean value. 

3.2.2 The effect of negatively correlated random variables 

The cohesion and friction angle are negatively correlated since cohesion and friction 

are not mobilized simultaneously: cohesion decreases as friction increases. This is 

because the peak strength is produced due to interlocking and friction among particles 

and not due to the chemistry of the bonds. The interlocking resistance can be mobilized 

at low normal stresses and then lost, while the frictional strength component is 

proportional to the normal confining stress (e.g. Martin, 1997; Kaiser et al., 2000; 

Hajiabdolmajid et al., 2002). 

In the above case study, the correlation coefficient between the cohesion and friction 

angle ρϕc is assumed to be -0.5. To further investigate the influence of the negative 

correlation on the reliability index and probability of failure, several values of ρϕc 
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ranging from -1 to 0 are used to conduct the parametric study for pi = 0 MPa. The results 

are shown in Fig. 3.3. It is clear from the plot that the reliability index decreases while 

the probability of failure increases as ρϕc changes from -1 to 0. 

(a) (b)  

Fig. 3.3. The influence of correlation coefficient between c and ϕ on β and Pf 

The negative correlation means that smaller cohesion values tend to appear with larger 

values of the friction angle. The chance of having smaller values for both parameters is 

smaller than the case where the correlation is ignored. Therefore, the reliability 

decreases and the probability of failure increases with the negative correlation 

coefficient changing from -1 to 0. 

The influence of the negative correlation on the design point and the reliability index 

can also be explained by the expanding ellipsoid perspective. Although the expanding 

hyper-ellipsoid plot for four random variables can only be conceived in the mind’s eyes, 

the expanding ellipse plot (Fig. 3.4) for two random variables can be used to illustrate 

the influence of the negative correlation on the design point and the reliability index.  

In Fig. 3.4, the ellipse represents the contour of the joint probability distribution. For 

uncorrelated random variables, e.g. Fig. 3.4 (a), the ellipse is untilted. When the 

expanding ellipse touches the limit state, the design point values for both parameters 

are below their mean values. However, for negatively correlated random variables, the 

ellipse is tilted towards the negatively inclined direction. The negatively correlated c-ϕ 

dispersion ellipse will expand more (larger reliability index) than the uncorrelated c-ϕ 

dispersion ellipse to touch LSS. As an example shown in Fig. 3.4 (b), the design point 

value for the friction angle may be greater than the mean value. Note that Fig. 3.4 is a 

qualitative explanation in the original space (x-space). The effects of the negative 
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correlation between the cohesion and friction angle were also discussed in Low (2007), 

Li and Low (2010), Lü and Low (2011), among others. 

(a)  (b)  

Fig. 3.4. The expanding ellipse plot for the case of two random variables (a) no 
correlation (b) negative correlation 

 

3.2.3 Reliability-based design 

As shown in Fig. 3.2, the probability of failure 25.3% for the first performance function, 

when the internal support pressure is zero, is unacceptably high. For design purposes, 

the engineers should find proper internal support pressure to reduce the probability of 

failure to an acceptable level. A reliability index of 2.5, which corresponds to a Pf of 

0.62%, is used in this case study. Since this problem only involves one design parameter, 

i.e. the internal support pressure, the value can be determined through trial and error 

and it is found to be 0.228 MPa to yield a reliability index 2.5. 

For the second performance function, the ratio of the tunnel wall displacement over the 

tunnel radius is 0.036 at the mean value point when pi = 0. The ratio exceeds the limiting 

value 0.01, which means that the mean value point already lies in the failure domain 

and the reliability index should be regarded as negative, as discussed in Low (2008). 

Calculation results show that pi is 1.073 MPa to achieve a target reliability index of 2.5 

for the second performance function. If both performance functions are concerned, 

1.073 MPa is the design value since the second criterion is more critical than the first 

one. 
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3.2.4 Comparison of different FORM algorithms and FOSM 

FORM using the constrained optimization method is easily applicable and robust. This 

method can be cross-validated using the classical iterative procedure in the uncorrelated 

standard normal random variable space (u-space) as shown in many textbooks (e.g. Ang 

and Tang, 1984; Melchers, 1999; Haldar and Mahadevan, 2000). For this case, the 

orthogonal transformation (shown in Ang and Tang, 1984) is used to transform the 

correlated variables to uncorrelated variables. The MATLAB implementation for this 

case is shown in Appendix B. Another approach is to use the constrained optimization 

function fmincon in MATLAB, which is also shown in Appendix B. Three FORM 

algorithms, namely, FORM using Solver in Excel, FORM using the classical iterative 

procedure and FORM using MATLAB optimization toolbox, obtain the same results, 

reliability index β=0.666 and design point (23.00, 0.19MPa, 373 MPa and 2.55MPa) 

for this case. Comparison shows that the classical iterative procedure is the most 

cumbersome. The transformation or rotation of the axes of the correlated random 

variables may be conceptually difficult for practitioners. The optimization method 

obviates the transformation process. The optimization function in MATLAB may be 

difficult for engineers to use since the objective function and the linear or nonlinear 

constraints should be coded using separate user-defined functions. Excel presents the 

data straightforwardly and the Solver can be easily set up. Therefore, FORM using 

Excel Solver is the most user-friendly approach. The advantage of MATLAB lies in its 

capabilities of conducting complex matrix calculations for more advanced probabilistic 

analyses. 

Apart from FORM, another widely used approach to calculate the reliability index is 

FOSM as shown in Chapter 2. FOSM assumed that the performance function is 

normally distributed and the reliability index is ggFOSM  / , where g  and g  are 

the mean and standard deviation of the performance function. FOSM has been widely 

used because of its simplicity, such as Orr and Breysse (2008) for the reliability-based 

design of a foundation and Laso et al. (1995) and Chen (2012) for tunnelling problems. 

When pi=0, the mean and standard deviation of the first performance function are 0.216 

and 0.840 from MCS with 10,000 runs. The corresponding FOSM reliability index is 

0.257, which is different from 0.666 from FORM. The PDF of the performance function 
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is shown in Fig. 3.5. MCS yields a probability of failure of 25.7% for this case, verifying 

that the FORM reliability index is accurate. The inaccuracy of FOSM reliability index 

is caused by the fact the performance function is not normally distributed. For the 

FOSM reliability index 0.257, the corresponding probability of failure is 39.9% from 

Eq. (3.9). If FOSM is used for this case, the probability of failure will be greatly 

overestimated. 

 

Fig. 3.5. PDF of the performance function (pi=0) 

 

When pi=0.228 MPa, the mean and standard deviation are 0.961 and 0.281 from MCS 

with 100,000 runs and the FOSM reliability index is 3.42 (corresponding Pf=0.03%). 

For comparison, the FORM reliability index is 2.5 and corresponding Pf=0.62%. MCS 

yields a probability of failure of 0.66% for this case, verifying that the FORM reliability 

index is accurate.  

The above comparison shows that FOSM reliability index may be erroneous for 

performance functions which are not normally distributed. Moreover, for problems 

without closed-form solutions, the estimate of the mean and standard deviation of the 

performance function cannot be readily obtained from MCS and the estimate from the 

numerical method (such as the central difference method shown in Chapter 2) may 
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deviate from the true values. Another drawback of FOSM is the dependency of the 

FOSM reliability index on the formulation of the performance function, which will be 

illustrated in Chapter 5. 

3.3 Monte Carlo simulation applied to the Duncan-Fama solution 

3.3.1 Direct Monte Carlo simulation 

MCS has been ubiquitously adopted as the verification method for other reliability 

analysis methods including FORM due to the robustness. Six simulations, each of 

which consists of 20,000 and 100,000 runs, are performed using the software @RISK 

(www.palisade.com) to verify Pf obtained from FORM. The results shown in Table 3.1 

are based on the case when the support pressure is zero and the first performance 

function is concerned. 

Table 3.1 Results for direct MCS (pi=0) 

No. of Simulations 1 2 3 4 5 6 

Pf  (20,000 runs) 25.64% 25.43% 25.77% 25.54% 26.19% 25.28% 

Pf (100,000 runs) 25.53% 25.70% 25.82% 25.69% 25.77% 25.87% 

 

For the case where each simulation consists of 20,000 runs, the average value is 25.64% 

and the standard deviation is 0.0032. For the case where each simulation consists of 

100,000 runs, the average value of Pf is 25.73% and the standard deviation is 0.0012. 

The mean value compares well with the probability of failure 25.3% obtained from 

FORM. The coefficient of variation (COV) of MCS results can be estimated by 

)/()1( ff NPP (e.g. Haldar and Mahadevan, 2000), where N is the number of runs in 

each simulation. The corresponding COV is 0.0120 and 0.0054 for 20,000 and 100,000 

runs, respectively. Six simulations show that the COV is 0.0124 and 0.0046 

respectively, which agree well with the COV estimated from )/()1( ff NPP . 

Comparison of these two MCS results shows that increasing the number of runs can 

reduce the variation of the result but at the cost of more time consumed. 
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Since the probability of failure is high for this case, the results of the six simulations 

vary within a narrow range around the mean value. However, if the probability of 

failure is low, more runs of MCS are needed to obtain more accurate results and to 

reduce the variance. When the design support pressure 0.228 MPa is applied, the 

reliability index is 2.5 with a probability of failure of 0.62% for the first performance 

function. The results from the direct (or crude) MCS are shown in Table 3.2. 

Table 3.2 Results for direct MCS (pi=0.228 MPa) 

No. of Simulations 1 2 3 4 5 6 

Pf  (20,000 runs) 0.690% 0.745% 0.565% 0.680% 0.620% 0.610% 

Pf (100,000 runs) 0.652% 0.652% 0.689% 0.604% 0.623% 0.641% 

 

As can be seen from the results, the variance of the six simulations greatly increases 

compared with Table 3.1. For the case where each simulation consists of 20,000 runs, 

the average value is 0.652% and the standard deviation is 0.0007. For the case where 

each simulation consists of 100,000 runs, the average value is 0.644% and the standard 

deviation is 0.0003. The COV is 0.1 and 0.045 for 20,000 and 100,000 runs respectively, 

compared with 0.087 and 0.039 from the COV estimated using )/()1( ff NPP . 

Clearly, the COV increases for problems with small Pf. Although MCS with more runs 

reduces the COV, the efficiency of direct MCS is not satisfactory. Direct MCS is not 

efficient for problems with low probabilities of failure. Therefore, several advanced 

methods have been proposed in the literature. Latin Hypercube Sampling (LHS), MCS 

with importance sampling and subset simulation are the most widely used approaches. 

3.3.2 Latin hypercube sampling and Monte Carlo simulation with importance 

sampling 

As pointed out in Chapter 2, Latin hypercube sampling (LHS) adopted a more efficient 

sampling strategy to reduce the variance of the results and is the default choice in 

@RISK to conduct MCS. The results of LHS for this case are shown in Table 3.3. 
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Table 3.3 Results for LHS (pi=0.228 MPa) 

No. of Simulations 1 2 3 4 5 6 

Pf  (20,000 runs) 0.735% 0.630% 0.705% 0.700% 0.660% 0.710% 

Pf (100,000 runs) 0.661% 0.665% 0.654% 0.654% 0.677% 0.656% 

 

The COV of LHS results is 0.055 and 0.013 for 20,000 and 100,000 runs respectively, 

which are smaller than those for the direct MCS. The ranges of the six simulation results 

are also smaller for LHS, indicating that LHS can improve the efficiency and reduce 

the variation compared with the direct MCS.  

For the direct MCS, few sampling points will fall into the failure domain when the 

probability of failure is low. The main idea of importance sampling is to sample around 

the design point instead of the mean value point. Therefore, the importance sampling 

method can guarantee sufficient sampling points in the failure domain. The procedure 

for the importance sampling is explained below. 

The formula for the importance sampling is (Melchers, 1989) 
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The meaning of the symbols is given in Chapter 2. Fig. 3.6 shows the spreadsheet set-

up for the implementation of MCS with importance sampling based on Chan (2012). 

The design point values in the uncorrelated standard normal space (u-space) u* are 

calculated from u*=L-1n*, where L is the lower Cholesky matrix and L-1 is the inverse 

matrix of L. The lower Cholesky matrix is obtained from the correlation matrix R. The 

column vector u contains random variables following the standard normal distribution. 

Column v is obtained by v=u+u* and column n is from n=Lu. The column ϕ (v) 

computes the value of the probability density distribution (PDF) of the standard normal 

distribution N(0,1) at vi. The column ψ(v) computes the value of the PDF of the 

standard normal distribution N(ui*,1) at vi. The cell g(x) is the performance function 

value for x and I(g(x)<0) is an indicator function defined such that I(.)=1 if g(x)<0 and 

I(.)=0 if otherwise. A(x,v) contains the formula I(g(x)<0)[Πϕ(v)/Πψ(v)]. The column u 
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is generated according to the uncorrelated standard normal distribution and the average 

value of A(x,v) is the estimate of the probability of failure. 

 

 

Fig. 3.6. Spreadsheet for the MCS with importance sampling 

The results for MCS with importance sampling are shown in Table 3.4. For the case 

where each simulation consists of 20,000 runs, the average value is 0.648% and the 

standard deviation is 4×10-5. For the case where each simulation consists of 100,000 

runs, the average value of is 0.645% and the standard deviation is 3×10-5. The COV is 

0.0068 and 0.0044 for 20,000 and 100,000 runs respectively. Obviously, the variance 

in MCS results is significantly reduced if importance sampling is used. Even with 

20,000 runs in each simulation, the results from importance sampling are more 

consistent than those obtained from MCS without importance sampling using 100,000 

runs in each simulation. Comparisons among direct MCS, LHS and MCS with 

importance sampling show that the importance sampling is the most efficient method 

but it requires the design point known in advance. 

Table 3.4 Results for MCS with importance sampling (pi=0.228 MPa) 

 

No. of Simulations 1 2 3 4 5 6 

Pf (20,000 runs) 0.644% 0.645% 0.650% 0.654% 0.644% 0.652% 

Pf (100,000 runs) 0.644% 0.645% 0.646% 0.640% 0.647% 0.648% 

 

I(g(x)<0)

1 0 0 0 1 0 0 0 1

-0.5 0.866 0 0 0.577 1.155 0 0 g(x)

0 0 1 0 0 0 1 0 -0.288

0 0 0 1 0 0 0 1 A(x,v)

0.015

Variable n* u* u v n x ϕ(v) ψ(v)
ϕ () 0.221 0.221 1.016 1.237 1.237 24.470 0.186 0.238

c (MPa) -2.170 -2.378 0.039 -2.339 -2.644 0.050 0.026 0.399

E (MPa) 0.000 0.000 0.100 0.100 0.100 377.801 0.397 0.397

σ0 (MPa) 0.740 0.740 1.271 2.011 2.011 3.003 0.053 0.178

Lower Cholesky Matrix L L-1
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3.3.3 Subset simulation 

The subset simulation was proposed for problems with small probabilities of failure 

and to effectively approximate the tail PDF of the performance function (Au and Beck, 

2001). The subset simulation uses the conditional probability to express an event with 

a small probability as a sequence of intermediate events with larger probabilities as: 

 
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11 )|()()(   (3.11) 

where )( mFP  is the probability of the target event; )( iFP  is the probability of 

intermediate events; )|( 1ii FFP  is the probability of the event i conditioned on the event 

i-1. A specified value of the conditional probability p0 is selected (p0=0.1 is found to be 

a good choice, e.g. Au and Beck, 2007). For example, for a problem with the probability 

of failure 10-4, only 4 levels are needed to accurately estimate the probability of failure. 

With the decrease of the probability, the advantage of the subset simulation over the 

direct MCS becomes more obvious. The first level of the subset simulation is the direct 

MCS in which N samples are generated. Among these samples, p0N samples are the 

starting samples to generate other (1-p0)N samples in the next level using the Markov 

Chain Monte Carlo (MCMC) simulation (e.g. Au and Beck, 2001). Altogether, a m-

level subset simulation will generate N+(m-1)(1-p0)N samples. More details can refer 

to Au et al. (2010) and Wang et al. (2011).  

For the case when pi=0.228 MPa, the conditional probability p0 is selected to be 0.1 and 

4 levels of subset simulation each of which has 5000 runs are selected. Six simulations 

yield the probability of failure as 0.667%, 0.608%, 0.642%, 0.618%, 0.728% and 

0.592%. The average value is 0.643% with a COV of 0.077. Subset simulation selects 

more samples from the failure domain than the direct MCS and therefore is more 

efficient than the direct MCS. With the increase of levels, more sampling points will 

locate in the failure domain. For comparison, the importance sampling directly samples 

around the design point. The variation of the subset simulation results is greater than 

that of importance sampling for this case. However, subset simulation does not require 

the location of the design point, which is needed in the importance sampling. The 

advantage of the subset simulation lies in that a problem with a small probability of 

failure can be estimated with a small number of sampling points. For example, 3 levels 
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of the subset simulation each of which consists of 1000 runs give a probability of failure 

of 0.699% for this case. 

From the above calculations, a comparison of the FORM, FOSM and MCS can be made 

as follows. FOSM is simple in concept. However, the assumption that the performance 

function is normally distributed may not be true for all problems, as shown in Fig. 3.5. 

For the Duncan-Fama solution when there is no support, the FOSM reliability index is 

0.257 and corresponding Pf is 39.9%, which are erroneous.  Furthermore, the FOSM 

reliability index is dependent on the formulation of the performance function. FOSM 

may yield different reliability indices and probabilities of failure for different but 

mathematically equivalent limit state functions, as will be illustrated in Chapter 5. With 

the constrained optimization method and the expanding ellipsoid perspective, FORM 

is easy to implement and to understand. FORM is more robust and accurate than FOSM. 

For this case, the FORM reliability index is 0.666 with a Pf of 25.3% which agrees with 

the MCS result (Pf =25.7%). However, FORM may not be accurate for problems with 

obvious curvatures of the limit state surface at the design point. The result from MCS 

is accurate if the solution is in closed-form. Therefore, the MCS result is widely used 

as the benchmark to verify and compare the results from other methods. However, MCS 

is not efficient since the performance function should be evaluated by a large number 

of sampling points. The efficiency of direct MCS can be improved by importance 

sampling and subset simulation. 

3.4 Polynomial response surface methods (RSM) 

3.4.1 Linear and second-order polynomial RSM applied to the Duncan-Fama 

solution 

FORM can be conducted directly if the closed-form solution is available. However, for 

underground excavation problems where the ground is seldom homogeneous and 

isotropic and the excavation shape is hardly regular, no analytical solution exists. Under 

such circumstances, reliability methods can only be applied via some bridging methods 

or surrogate models. Linear and second-order RSM are widely used in geotechnical 

engineering, e.g. Tandjiria et al. (2000), Xu and Low (2006), Mollon et al. (2009b).  
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The case study presented in the above sections is used here to illustrate the 

implementation of RSM and to compare the FORM results based on the linear and 

second-order RSM. Linear and second-order RSM without cross terms use the 

following two expressions respectively. 
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where )(xg  is the response function; a, bi and ci are unknown coefficients that should 

be determined; xi is the random variable value; n is the number of random variables. 

If the number of variables is n, the numbers of unknown coefficients for the linear and 

second-order RSM without cross terms are n+1 and 2n+1, respectively. The same 

number of sampling points and corresponding performance function values are needed 

to determine the unknown coefficients. The procedure for conducting the iterative RSM 

can be summarized as follows. 

(1) Prepare the sampling points and evaluate the performance function at these 

sampling points. For the first trial, the sampling central points is chosen at the 

mean value point μi and other sampling points are determined by iii kx    

for the linear RSM and iii kx    for the second-order RSM. For this case, 

n=4 and there are 5 sampling points for the linear RSM and 9 for the second-

order RSM in each iteration. k is the sampling factor controlling the sampling 

range and equal to one in this case. σi is the standard deviation. 

(2) Calculate the unknown coefficients. From the sampling points and 

corresponding performance function values, the unknown coefficients can be 

calculated by solving a set of linear equations. This step yields a tentative 

response surface )(xg . 

(3) Perform FORM on the tentative response surface using Low and Tang (2007) 

algorithm to obtain a tentative design point and a tentative reliability index. 

(4) Repeat steps (1) -(3) until the tentative reliability index converges. In this case, 

the difference between two successive reliability indices smaller than 0.005 is 

considered as convergence. From the second iteration, the new sampling central 
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point is chosen as the last tentative design point. 

(5) Once the results converge, the final reliability index and design point can be 

determined. 

The final converged results for the Duncan-Fama solution are shown in Table 3.5. Four 

cases are presented, i.e. pi =0, pi =0.228 MPa for performance function 1 and pi=0, 

pi=1.073 MPa for performance function 2. Although the second-order RSM requires 

more sampling points in each iteration, the number of iterations needed to reach 

convergence is smaller. Through the comparison with the results obtained from direct 

FORM, the reliability index and the design point values are more accurate for the 

second-order RSM than the linear RSM. Therefore, the second-order RSM is preferred 

for the case at hand since it is more accurate. Because the mean value point for 

performance function 2 when pi =0 lies in the failure domain, the reliability index 

obtained should be regarded as negative. 

Table 3.5 Results for linear and second-order RSM 

Performance Function 1 

pi=0 Iteration β ϕ (°) c (MPa) E (MPa) σ0 (MPa) 

Direct FORM   0.666 22.998 0.189 373.000 2.549 

 Linear RSM 7 0.672 23.093 0.186 373.000 2.533 

Second-order RSM 4 0.666 23.034 0.188 373.000 2.544 
       

pi=0.228 MPa Iteration β ϕ (°) c (MPa) E (MPa) σ0 (MPa) 

Direct FORM   2.500 23.140 0.082 373.000 2.685 

 Linear RSM 11 2.541 23.646 0.067 373.000 2.614 

Second-order RSM 5 2.498 23.435 0.075 373.000 2.653 
       

Performance Function 2 

pi=0 Iteration β ϕ (°) c (MPa) E (MPa) σ0 (MPa) 

Direct FORM   -3.643 22.303 0.346 430.161 1.762 

 Linear RSM 8 -3.686 22.075 0.374 437.691 1.837 

Second-order RSM 4 -3.644 22.264 0.350 431.022 1.774 
       

pi=1.073 MPa Iteration β ϕ (°) c (MPa) E (MPa) σ0 (MPa) 

Direct FORM   2.501 22.631 0.207 300.834 2.983 

 Linear RSM 7 2.523 22.652 0.205 287.987 2.929 

Second-order RSM 6 2.500 22.641 0.207 298.630 2.974 
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3.4.2 Comparison with the response surface method using interpolation 

algorithm 

The procedure for conducting RSM summarized in the previous section uses the 

tentative design point as the sampling central point in the next iteration. This procedure 

is widely adopted, e.g. Mollon et al. (2009b) and Lü and Low (2011). In Chapter 2, it 

was mentioned that Bucher and Bourgund (1990) proposed an interpolation algorithm 

to find the next sampling central point using  
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The new tentative design point is Dx and its performance function value is )( Dxg . Then, 

the new center point M
x  is obtained from the linear interpolation between Dx  and the 

previous center point x . Other steps are the same as stated in the previous section. This 

method is noted as RSM using interpolation (shown in Table 3.6) and the results of the 

reliability analysis are compared with those using RSM without interpolation. 

Table 3.6 Results for linear and second-order RSM using interpolation  

Performance Function 2 

pi=0 Iteration β ϕ (°) c (MPa) E (MPa) σ0 (MPa) 

Direct FORM   -3.643 22.303 0.346 430.161 1.762 

 Linear RSM 7 -3.686 22.074 0.374 437.676 1.837 

Second-order RSM 4 -3.644 22.260 0.350 431.612 1.773 

       

pi=1.073 MPa Iteration β ϕ (°) c (MPa) E (MPa) σ0 (MPa) 

Direct FORM   2.501 22.631 0.207 300.834 2.983 

 Linear RSM 6 2.523 22.652 0.205 288.000 2.929 

Second-order RSM 4 2.500 22.649 0.207 298.328 2.972 

 

Comparison of Table 3.6 with Table 3.5 shows that the numbers of iterations are 

slightly reduced except for the case using the second-order RSM when pi =0. The 

accuracies of the reliability index and the design point are almost the same. However, 

note that the RSM with interpolation needs one more evaluation of the performance 

function in each iteration. Therefore, for this case, RSM with interpolation does not 
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show any advantage over RSM without interpolation in terms of accuracy and 

efficiency. A detailed check of the iteration procedure shows that the interpolation 

algorithm is most efficient in the first few iterations when the sampling points are far 

away from the design point. With the response surface approaching the limit state 

surface, the difference between RSM with and without interpolation is negligible. 

3.5 Multiple steps for response surface method 

The case study in the above section illustrates the combination of RSM and FORM to 

calculate the reliability index and the design point.  Simple and easy to understand, 

RSM has been widely used in the reliability analysis of geotechnical engineering. 

However, the polynomial RSM may encounter some non-convergence problems as 

presented in Mollon et al. (2009b) and Lü and Low (2011). Besides, the numerical error 

problems may occur for some special case studies. One such case is elaborated as 

follows. 

This case study again uses the Duncan-Fama solution for a circular tunnel with uniform 

internal pressure, subjected to hydrostatic in situ stress. All input parameters for this 

case are listed in Table 3.7. The parameters are similar to those for the quasi-circular 

tunnel case in Lü and Low (2011). 

Table 3.7 Input parameters for the numerical error problem 

c (MPa) ϕ (°) σ0 (MPa) pi (MPa) r0 (m) 

0.287 21 16 7 5 

 

Parameter Distribution Mean Standard Deviation 

E (GPa) Lognormal 2.095 0.419 

ν Lognormal 0.25 0.02 

 

Two parameters are regarded as uncorrelated random variables, Young’s modulus of 

the rock mass E and Poisson’s ratio ν, with lognormal distributions. Here, only two 

parameters are regarded as random variables because the problem can be graphically 

explained using two-dimensional plots. 
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The performance function is  

 uxg  1.0)(   (3.15) 

where 0.1 m is the maximum allowable displacement which is 2% of the tunnel radius; 

u  is the tunnel convergence. The reliability index β is 5.224 obtained from FORM 

applied directly to the Duncan-Fama solution using Low and Tang (2004) algorithm. 

Then the linear RSM is used to testify its feasibility and accuracy for this case. Unlike 

the case in above sections where sampling points and RSM are in n-space in accordance 

with the Low and Tang (2007) method, the response surface is constructed in the 

original space (x-space) for this case study corresponding to the Low and Tang (2004) 

approach. The sampling factor k is selected to be 1. The first construction of the 

tentative LSS, based on the three sampling points at and around the mean value, is  

 005.00215.00325.0  E   (3.16) 

When the Excel Solver is invoked to obtain the tentative design point based on the 

above trial LSS, a problem is encountered during the search process. Based on Eq. 

(3.16), E is negative when ν is in the range of 0 to 0.5. In the analytical solution of the 

displacement, E appears in the denominator, which means E=0 is a point of 

discontinuity for the displacement expression and the first-order derivative of the 

displacement with respect to E does not exist at this point. Obviously, this situation will 

cause the error during the search process when E goes from positive to negative values 

as the Solver uses the Newton-Raphson method to search for the solution. 

Since the analytical solution for the displacement is available, the exact LSS, i.e. g(x)=0, 

and several performance function contours (g(x)=0.01 m, 0.02 m, 0.03 m, 0.04 m, 0.05 

m) are plotted in Fig. 3.7. 
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Fig. 3.7. Performance function contours 

It is clear that the contours become denser near the limit state line, meaning that the 

slope of the performance function is comparatively gentle around the mean value point 

but becomes steeper around the design point. Since Poisson’s ratio has little effect on 

the performance function as illustrated in Fig. 3.7, the performance function is plotted 

against E while keeping ν=0.25 to show the variation of the performance function with 

E, as displayed in Fig. 3.8. 

 

Fig. 3.8. Linear response surface for k=1 
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When constructed using sampling points around the mean value (k=1), the linear 

response surface will intersect the horizontal axis at E = -930 MPa. When E goes into 

the negative domain, the Solver will encounter a numerical problem. Next, the sampling 

range is enlarged to check whether a larger k value can resolve this problem. The results 

are plotted in Fig. 3.9. 

Strategy 1 

 

Fig. 3.9. Linear response surface for different k values 

When k=3, the linear response surface intersects the horizontal axis at 524 MPa, which 

means that a greater value for the sampling factor k can solve the numerical problem. 

The Solver finds the first tentative design point and the reliability index converges after 

9 iterations at 5.209. compared with 5.224 from the direct FORM.  

Strategy 2 

An alternative strategy to deal with the Solver error problem in this case is to construct 

the tentative LSS based on cxg )( instead of based on 0)( xg directly. c is a 

constant between 0 and )(
x

g  . In this case, )(
x

g  is the performance function value 

0.065 m at the mean value point. The main idea of this strategy is to target at multiple 

intermediate performance function values instead of targeting at the limit state function 

in one step. The reason why this method can overcome the numerical problem is that 
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the intersection point of the trial response surface and cxg )(  ( c is assumed as 0.0325 

m, half of 0.065 m for this case) locates in the positive domain as illustrated in Fig. 3.10. 

 

Fig. 3.10. Linear response surface based on g(x)=0.0325 m (k=1) 

After the first construction of the trial response surface, the tentative design point based 

on g(x)=0.0325 m is obtained as E=692 MPa and ν=0.3. Note that the tentative design 

point value is slightly different from the intersection point shown in Fig. 3.10 because 

the plot shows the change of the performance function with E while v=0.25, and is not 

in the E-ν space. Then, iterations can be conducted until the design point based on 

g(x)=0.0325 m is determined. Next, in the second step, g(x)=0.0325 m is replaced by 

0)( xg and the converged reliability index is found to be 5.222 after seven iterations. 

A more efficient approach is that, instead of conducting iterations based on the 

intermediate step g(x)=0.0325 m until β converges, the tentative design point can be 

chosen as the sampling central point and 0)( xg  replaces g(x)=0.0325 m from the 

second iteration. 

This strategy to overcome the numerical error problem is called the multiple-step 

method which is to approximate limit state surfaces in several steps instead of in one 

step. cxg )( , where c is a constant between 0 and )(
x

g  , is used in lieu of 0)( xg  

in the first step. Then cxg )(  is set back to 0)( xg  in the second step.  
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Strategy 3 

For this case, the value of the performance function is positive at the mean value point 

and is approaching zero with the random variables getting closer to the design point. 

This forms a downward performance function curve. The Solver error problem exists 

only when the performance function curve is convexly downward. Conversely, if the 

performance function curve is concavely downward, this problem will disappear, which 

is illustrated in Fig. 3.11. 

 

Fig. 3.11. Convex and concave performance function curves 

If the performance function curve is concave, all the tentative design points fall in the 

valid range of the variables (positive range for E). This suggests that the form of the 

performance function will influence the location of the tentative design point. Another 

different but mathematically equivalent expression is tested. 

 10
1

)( 
u

xg   (3.17) 

Eq. (3.17) is equivalent to Eq. (3.15) in terms of the limit state, i.e. 0)( xg . LSS is 

identical so the reliability index obtained from the direct FORM is the same. RSM is 

conducted based on this performance function and β converges at 5.211 after only four 

iterations for k=1. The performance function curve is shown in Fig. 3.12. 
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Fig. 3.12. Performance function curve using Eq. (3.17) 

When Eq. (3.17) is used, the performance function curve is a linear function of E. 

Therefore, it is reasonable that the reliability index converges rapidly using the linear 

RSM. 

To sum up, three different strategies are tried to solve the numerical error problem 

encountered in a special case. The comparison of these three strategies is shown in 

Table 3.8. 

Table 3.8 Comparison of three strategies 

 Accuracy Efficiency Versatility 

Strategy 1 Good Fair Fair 
Strategy 2 Good Fair Good 
Strategy 3 Good Good Poor 

 

All these methods are feasible to obtain a relatively accurate reliability index. However, 

trial-and-error is necessary for all these three strategies for different case studies. In the 

first method by enlarging the sampling range, the k value should be determined. In the 

second method by multiple steps to approach the limit state surface, the number of steps 

and the constant c values in cxg )(  should be tried. In the last method, alternative 

expressions for the performance function should be tested to check whether they are 

feasible or not. When the design point is far away from the mean value point, even a 

larger sampling range may not work. For situations when many random variables are 
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involved and the relation between the performance function and the random variables 

is not explicit, to choose a proper expression for the performance function may be 

difficult. However, the second strategy, i.e. the multiple steps towards the limit state 

surface method, is more versatile and flexible for different problems. Therefore, the 

multiple-step approach for the response surface method is recommended to deal with 

the numerical error problem. 

3.6 Summary 

Analytical solutions are important to understand the rock mass behavior around an 

excavation. The Duncan-Fama solution for circular tunnels in Mohr-Coulomb grounds 

has become a benchmark problem to verify and compare different reliability methods 

and surrogate models. In this chapter, different approaches have been applied to this 

closed-form solution, including the direct FORM, FOSM, MCS with and without 

importance sampling, subset simulation and polynomial response surface methods. In 

a special case where the tentative response surface may lead to invalid values for the 

random variables, a numerical error occurs. Three different strategies are proposed to 

solve the error problem. It is found that the multiple-step approach is versatile and can 

be used to problems where the design point is far away from the mean value or many 

iterations are needed to obtain a converged reliability index. This chapter illustrates the 

fundamental approaches of reliability analysis and may serve as the basis for following 

chapters. 
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Chapter 4  System reliability analysis of tunnels reinforced 

by rockbolts 

4.1 Introduction 

As pointed out in Chapter 2, from literature, most of the reliability analysis of 

underground rock excavations considers one limit state or two limit states separately. 

However, for tunnelling problem, both the ultimate limit state (ULS) including the 

structural failure and the serviceability limit state (SLS) including the displacement are 

not independent but are correlated to each other. The design based on one limit state 

may not satisfy the requirement of other limit states. Therefore, it requires system 

reliability analysis which can consider each limit state and the interaction among 

various limit states. In the literature, rare are system reliability evaluations of tunnelling 

problems (e.g. Lü et al., 2013; Zeng and Jimenez, 2014). Lü et al. (2013) evaluated the 

ground-support interaction of a circular tunnel using the convergence-confinement 

method (CCM) and estimated the system Pf by giving the lower and upper bounds. 

Zeng and Jimenez (2014) used the same case study as in Lü et al. (2013) but with a 

linearization approach. The probabilities of failure estimated in these two papers are 

close to each other. 

In order to investigate the application of the system reliability analysis on tunnelling 

problems, this chapter first reviews the commonly used methods for the system 

reliability assessment. Next, the bimodal bounds method and the multivariate normal 

cumulative distribution function (mvncdf) method are applied to an iterative closed-

form solution for a circular tunnel reinforced by rockbolts, which was proposed by 

Bobet and Einstein (2011). It is shown that SORM can be used to refine the reliability 

indices and to improve the accuracy of the estimated system Pf. The influence of the 

correlation coefficient between the cohesion and the friction angle of the rock mass, 

and that of the rockbolt installation position on the system Pf are discussed. Then, a 

modified hybrid approach is proposed to approximate LSS for problems without 

explicit performance functions. The proposed method is compared in detail with 

traditional second-order RSM without and with cross terms. In the next section, 

commonly used approaches for the system reliability analysis are examined. 
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4.2 System reliability analysis methods 

A system can be categorized into series or parallel systems. There are many parallel 

and mixed systems in geotechnical engineering. But in this chapter, series systems are 

of concern since any failure mode will cause the unsatisfactory performance of the 

system. Commonly used methods for the system reliability analysis are summarized 

below. 

4.2.1 Lower and upper bounds method 

The unimodal bounds method (Cornell, 1967) estimates the bounds for the system Pf 

using the Pf of the individual limit state while overlooking the correlation among 

different limit states. Since the bounds are often too wide for practical uses, they are 

seldom used in the system reliability analysis. The bimodal bounds method (Ditlevsen, 

1979) considers the correlation structure among different limit states and gives a 

narrower bound range than the unimodal bounds method. Besides, the results from 

FORM (reliability index and design point) can be directly used as inputs in this method. 

Therefore, the bimodal bounds method is widely applied to geotechnical engineering 

problems. Low et al. (2011) applied this method to the system reliability analysis of a 

retaining wall and a layered soil slope and discussed the contribution of different slip 

surfaces to the system Pf. Lü et al. (2013) estimated the system Pf of a circular tunnel 

using the bimodal bounds method and investigated the influence of the support 

installation position on the system Pf. For problems where LSS is highly nonlinear, the 

results from FORM may not be accurate. For this situation, SORM can be used to 

improve the accuracy of estimating the lower and upper bounds.  

For the bimodal bounds method, the system Pf can be estimated by  
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where )( iEP  is the failure probability of the i-th failure mode; sysFP ,  is the system Pf; 

)( jiEEP is the probability that the i-th and j-th limit state functions are violated 
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simultaneously; m is the number of limit states. )( iEP  can be assessed by FORM, 

SORM and others. )( jiEEP  can be estimated by  

 baEEPba ji  )(],max[ , for 0ij  (4.2a) 

 ],min[)(0 baEEP ji  , for 0ij  (4.2b) 

where a and b are defined as  
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where i
  and 

j
  are the reliability indices for limit state i and j respectively; 

ij
  is the 

correlation coefficient between limit state i and j; Φ(.) is the cumulative distribution 

function of the standard normal distribution. Substituting the bounds of )(
ji

EEP  into 

Eq. (4.1), the upper and lower bounds of 
sysF

P
,

 can be estimated. Note that different 

permutations of all limit states may yield slightly different bounds. The limit state with 

the highest probability of failure is typically regarded as the first limit state in Eq. (4.1) 

(Ang and Tang, 1984). 

4.2.2 Multivariate normal cumulative distribution function (mvncdf) method 

The Hasofer-Lind index and FORM uses the first-order Taylor series approximation of 

the performance function linearized at the design point to replace the actual nonlinear 

LSS. Hasofer and Lind (1974) defined the reliability index β as the shortest distance 

from the origin to LSS in the uncorrelated standard normal random variable space as 

shown in Fig. 4.1.  

The Pf can be estimated by  

 )(1 fP   (4.4) 

In Fig. 4.1, u1 and u2 are two uncorrelated random variables with standard normal 

distributions; the solid line is the actual LSS; the dashed line is the linearized LSS at 
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the design point. )(1   estimates the Pf based on the shaded area in Fig. 4.1. Note 

that the shaded area is just an approximation of the actual failure domain, which is 

represented by the area above LSS. 

 

Fig. 4.1. Illustration of the Hasofer-Lind β for single limit state 

 

This linearization can be extended to the system reliability analysis. Hohenbichler and 

Rackwitz (1982) showed that LSS could be linearized at design points and the system 

Pf could be estimated through the complementary of the intersection of safe domains, 

which is graphically shown in Fig. 4.2. 
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where )(Xig  is the i-th performance function in the original space; n is the number of 

limit states; )(UiI  is the linearized performance function in the uncorrelated standard 

normal space; α is the vector of direction cosines; β is the vector of reliability indices; 

ρ is the correlation matrix of the limit states; (.)n  represents the standard multinormal 

cumulative distribution function. 
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Fig. 4.2. Illustration of system reliability analysis for three limit states 

Through Eq. (4.5), the estimate of the system Pf relegates to the calculation of the 

standard multinormal cumulative distribution function. Comparison between Eq. (4.4) 

and Eq. (4.5) shows that the reliability analysis of a single limit state problem can be 

easily extended to the system reliability analysis by replacing )(  with )( ρβ;n . The 

calculation of )( ρβ;n  can be conducted by multiple integrals as shown in Eq. (4.6), 

which can be implemented in platforms such as Excel. 
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Besides, )( ρβ;n  can be simply implemented by the mvncdf function in MATLAB. 

Since the mvncdf function in MATLAB is the simplest approach to calculate )( ρβ;n , 

the estimate of the system Pf by Eq. (4.5) is referred to as mvncdf method in this chapter. 

Zeng and Jimenez (2014) also used this method but named it as the linearization 

approach. SORM can be used to refine the reliability indices, which are the inputs for 

estimating the system Pf. 
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4.2.3 Monte Carlo simulation (MCS) based on various surrogate models 

When closed-form solutions are available, the above two methods, namely the bimodal 

bounds method and the mvncdf method, can be used directly. However, for problems 

with implicit performance functions, surrogate models have to be used first to 

approximate limit state functions. Surrogate models include polynomial RSM, machine 

learning methods (e.g. ANN, support vector machines) and others. Once response 

surfaces for different limit states are obtained, MCS can be conducted easily based on 

the closed-form response surfaces. The details regarding the construction of RSM and 

ANN are given in Chapter 2. What should be mentioned here is that once the response 

surfaces are obtained, the bimodal bounds method and the mvncdf method can also be 

used based on these approximate LSS. However, direct MCS based on the response 

surface is the most straightforward method for problems without closed-form solutions. 

Zhang et al. (2011) and Zhang et al. (2013b) used the second-order RSM to replace the 

actual LSS for representative slip surfaces selected among thousands of potential ones 

and obtained the system Pf by MCS. Li and Chu (2015) also used the second-order 

RSM and similar methods as in Zhang et al. (2011) to choose representative slip 

surfaces but considered the spatial variability of soil properties. Zhang et al. (2013a) 

adopted the kriging-based RSM as the surrogate model and compared the results for 

two slope case studies with previous literature. The same case studies were used and 

compared by Jiang et al. (2014) using collocation-based stochastic RSM and by Kang 

et al. (2015) using Gaussian process regression.  

For problems without explicit performance functions, the surrogate models are 

necessary and the third method (MCS based on surrogate models) has the advantage 

that direct MCS can be applied without using FORM or SORM. The accuracy of 

estimating the system Pf depends on the accuracy of the surrogate model. In this study, 

a modified hybrid approach is proposed and compared in detail with the widely used 

second-order RSM for a circular tunnel case.  
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4.3 Deterministic analysis of rockbolt-reinforced tunnels based on 

Bobet and Einstein (2011) formulations 

Bobet and Einstein (2011) proposed an iterative closed-form formulation for a circular 

tunnel reinforced by end-anchored rockbolts in homogeneous and isotropic 

elastoplastic ground with the Coulomb failure criterion as shown in Fig. 4.3 in which 

σ0 is the in situ stress, σi is the internal support pressure, r0 is the tunnel radius, and Sθ 

is the circumferential distance between two adjacent rockbolts. This 2D formulation 

also considers the 3D supporting effect of the tunnel face by the stress reduction method 

where it is assumed that the unreinforced opening prior to rockbolt installation is 

subjected to an internal support pressure 0 . The detailed formulae regarding this 

solution are given in Appendices A and B1 in Bobet and Einstein (2011) and 

summarized in Appendix C in this thesis. 

 

Fig. 4.3. A circular tunnel with end-anchored rockbolts (after Bobet and Einstein, 
2011) 

During the construction of a tunnel, the support such as the rockbolts and shotcrete is 

not installed immediately after the excavation but at some distance from the tunnel 

excavation face. Thus, when the support is installed, there is already some deformation 

of the rock mass. With the advance of the tunnel face, the support and the rock mass 

will deform together. The excavation and support installation are a three dimensional 

problem. In order to consider this delayed installation effect in the 2D analysis, various 

Geometry:

Tunnel radius: r0= 3 m
Rockbolt length: L= 3 m

Rockbolt:

Rockbolt spacing in the axial direction: Sz= 1 m
Rockbolt spacing in the circumferential direction: Sθ= 1 m
Diameter of rockbolts: db= 25 mm
Young’s modulus of rockbolts: Eb= 210 GPa
Poisson’s ratio of rockbolts: νb= 0.3

Rock mass properties:

Young’s modulus of ground: E= 500 MPa
Poisson’s ratio of ground: ν= 0.2
Peak and residual internal friction angles: ϕp= ϕr= 30°
Dilation angle: ψ= 0.5 ϕp

Peak and residual cohesion: cp= cr= 0.1 MPa
Stress conditions:

In situ stress: σ0= 1 MPa
3D excavation effect parameter: βσ= 0.3
Post-construction internal support pressure: σi= 0
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simplified approaches have been proposed, as summarized by Möller (2006). Among 

these simplified 2D methods, the stress reduction method is widely used. This method 

is implemented in two stages as shown in Fig. 4.4. In the first stage, the rock mass inside 

the tunnel is removed and a uniform support pressure 0  is applied to the excavation 

boundary. The stress reduction coefficient   should be selected such that, after 

equilibrium, the displacement of the tunnel wall corresponds to the initial displacement 

before the support is installed. In the second stage, the support pressure is removed and 

the support (rockbolts, shotcrete and liner) is installed. 

(a) (b)  

Fig. 4.4. Illustration of the stress reduction method (a) first stage (b) second stage 

 

The Bobet and Einstein (2011) formulation can be verified using numerical software 

such as FLAC3D (www.itascacg.com). The numerical model and mesh used for this 

case are shown in Fig. 4.5. The input parameters are the same as those in Fig. 4.3 except 

that the rockbolt spacing in the circumferential direction S is 1.57 m. This value is used 

because the number of rockbolts will be an integer. The two-stage implementation is 

also used in the numerical simulation. The result for the first stage can be checked by 

the Duncan-Fama solution as shown in Chapter 3. The displacement of the tunnel wall 

is 5.5 mm by FLAC3D, which agrees well with the Duncan-Fama solution result 5.5 

mm. After the second stage, the final displacement is 13.8 mm from FLAC3D, compared 

well with the Bobet and Einstein solution which gives 12.9 mm displacement.  
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(a)  (b)  

Fig. 4.5. (a) Numerical model and (b) finite difference mesh for verifying the 
closed form solution 

 

Low and Einstein (2013) first extended the Bobet and Einstein solution to reliability 

evaluation by FORM and SORM considering one single limit state, i.e. the tensile 

rupture of the rockbolt. In this chapter, three limit states, including an ultimate and two 

serviceability limit states, will be of concern. The performance functions for the system 

are given as: 

 TTxg  limiting1 )(   (4.7) 

 
0

limiting2
)(

r

u
xg     (4.8) 

  
0

limiting3
)(

r

r
xg p    (4.9) 

where limitingT  (170 kN in this case) is the maximum allowable tensile force; T is the 

mobilized tensile force in the rockbolt; limiting  (0.5% in this case) is the limiting ratio of 

0
/ ru ; u is the tunnel wall displacement; limiting  (2.0 in this case) is the limiting ratio of 

0/ rrp ; 
p

r  is the radius of the plastic zone. Three failure modes are graphically shown in 

Fig. 4.6. 

σ0

r0=3m 50m 
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Fig. 4.6. Illustration of the three performance functions 

 

These three performance functions consider the mobilized tensile force in the rockbolt, 

the maximum displacement and the plastic zone size, respectively. Other input 

parameters are the same as those in Low and Einstein (2013) and are shown in Fig. 4.3. 

For the following probabilistic analysis, the random variables and corresponding 

probabilistic characteristics (means and standard deviations) are shown in Table 4.1. 

The friction angle and the cohesion of the rock mass are considered to be negatively 

correlated with a correlation coefficient -0.5. 

Table 4.1 Statistics of random variables for the rockbolt-reinforced circular 

tunnel case 

 Distribution Variables Mean μ StD σ 

Lognormal βσ 0.3 0.05 

Lognormal ϕ (°) 30 4 

Lognormal c (MPa)  0.1 0.01 

Lognormal E (MPa) 500 100 
 

4.4 System reliability analysis of circular tunnels reinforced by 

rockbolts 

This section compares the bimodal bounds method with the mvncdf method and shows 

that the reliability index from SORM can be used to improve the estimate of the system 

rp
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probability of failure. Also discussed are the influence of the correlation coefficient 

between the cohesion and friction angle and the influence of the rockbolt installation 

position on the system probability of failure. 

4.4.1 System reliability analysis using bimodal bounds and mvncdf methods 

System reliability analysis using the bimodal bounds method and the mvncdf method 

involves the calculation of reliability indices for each limit state and the correlation 

matrix of all limit states. Since the closed-form solution is available, the Low and Tang 

(2007) approach can be directly applied to obtain the reliability indices (βi) and 

corresponding design points (ni
*) in the correlated standard normal random variable 

space. The relation between ni
* and xi

* (design point in the original random variable 

space) is shown by Eq. (4.10), where μx and σx are the vectors of mean values and 

standard deviations of the random variable x. 

 
N

x

N

xi
i σ

μx
n




*
*   (4.10) 

where N

xμ  and N

xσ  are the equivalent mean and standard deviation of the random 

variables for non-normal distributions. 

The correlation matrix ρ of a system composed of m limit states can be assembled as 

(e.g. Ang and Tang, 1984): 

 

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

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*

2
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2

1

*

1 ......,
nnn

A   (4.11) 

 ARAρ 1 T   (4.12) 

where R is the correlation coefficient matrix for the input random variables. 

Given the reliability indices and correlation matrix of all limit states, the bimodal 

bounds method can be simply implemented using the user-defined Excel function given 

by Low et al. (2011). Meanwhile, for the mvncdf method, the MATLAB function 

mvncdf is used and the system Pf can be estimated based on Eq. (4.5). The FORM 

results along with the system Pf obtained from these two methods are shown in Fig. 4.7. 
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For comparison, MCS is performed to estimate the system Pf, which is regarded as the 

benchmark for comparison.  

 

Fig. 4.7. System reliability analysis of a circular tunnel with rockbolts 

 

For this case study, the following points are the detailed explanation of the results in 

Fig. 4.7. 

(a) The probabilities of failure from FORM analysis for each limit state are 10.54%, 

9.94% and 0.002%, respectively, indicating that the third limit state is almost 

unlikely. The system failure is mainly contributed by the first two limit states. 

(b) The design points for each limit state show the influence of different random 

variables on the performance functions. The βσ value represents the supporting 

effect of the tunnel excavation face and is related to the distance from the rockbolt 

installation position to the tunnel face. The greater the distance, the less the 

supporting effect from the tunnel face and the smaller βσ values. Therefore, smaller 

βσ values correspond to greater distances, and vice versa. For the rockbolt tensile 

force criterion (limit state 1), the positive dimensionless n* value for βσ indicates 

that a greater βσ value leads to a larger tensile force in the rockbolts. If the rockbolts 

are installed at a closer location from the tunnel excavation face (greater βσ value), 

with the advance of the tunnel face, more stress will be carried by the rockbolt, 

yielding a larger tensile force in the rockbolts. However, for limit state 2 and 3, the 

FORM Results Dimensionless design points n* for each failure mode

β P f βσ φ c E

Tensile force criterion, g1 1.2513 10.54% 0.5018 -0.8985 0.1966 -0.6493

Tunnel convergence criterion, g2 1.2852 9.94% -0.3240 -0.6845 0.1932 -1.0240

Plastic zone size criterion, g3 4.0731 0.002% -1.3130 -3.5983 0.8466 0.8417

n1*/β1 0.4011 -0.7180 0.1571 -0.5189 1 0.72596 0.461

n2*/β2 -0.2521 -0.5326 0.1503 -0.7968 0.72596 1 0.423

n3*/β3 -0.3224 -0.8834 0.2079 0.2066 0.461 0.423 1

Lower 14.20% Pf,sys 15.43% Pf,sys 14.66%

Higher 17.28%

System bounds mvncdf method MCS result

-1Tρ = A R ATA
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n* values for βσ are negative. This is also expected because late installation of the 

support will cause a larger tunnel wall displacement and plastic zone size. 

(c) These three limit states are positively correlated and the correlation matrix is shown 

by ρ. 

(d) For the bimodal bounds method, the lower bound of the system Pf is 14.20% while 

the upper bound is 17.28% with a range of 3.08%. For this system with three limit 

states, all possible permutations of the three limit states give almost identical system 

Pf bounds. 

(e) The mvncdf method gives a system Pf of 15.43%, which lies within the range set 

by the bimodal bounds method. As mentioned in section 4.2.2, the system Pf 

estimated by Eq. (4.5) can also be evaluated through the multiple integral shown by 

Eq. (4.6).  

(f) Three MCS, each of 250,000 runs, are performed based on the closed-form solution 

to obtain the system Pf using the commercial software @risk. The average value is 

14.66% (14.64%, 14.65%, 14.68%), which is smaller than the Pf obtained by the 

mvncdf method. The coefficient of variation (COV) of the MCS can be estimated 

by )/()1( ff NPP , where N is the number of runs in each simulation. For this case, 

the COV of MCS is about 0.48%. 

4.4.2 Improvement of the system reliability evaluation using the reliability 

indices from SORM 

As noted in Fig. 4.7, the system Pf obtained by the mvncdf method is greater than that 

from MCS. This inaccuracy is mainly caused by the use of reliability indices from 

FORM. The FORM is accurate only when the input random variables are normally 

distributed and LSS is planar. However, the first limit state has significant curvatures 

at the design point and thus the Pf estimated from FORM is not precise. SORM is widely 

used to improve the results from FORM by considering the curvatures of LSS at the 

design point. Chan and Low (2012a) developed the spreadsheet implementation of 

SORM based on the approximating paraboloid method proposed by Der Kiureghian et 

al. (1987) and this approach is adopted in this study. Table 4.2 shows the results for the 

system reliability evaluation using the SORM reliability indices. 
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Table 4.2 Use of SORM reliability indices in system reliability evaluation 

  FORM Pf,FORM SORM Pf,SORM Pf,MCS System Pf 

 g1 1.251 10.54% 1.345 8.93% 8.87% Lower bound 13.38% 

 g2 1.285 9.94% 1.271 10.18% 10.23% Upper bound 16.13% 

 g3 4.073 0.0023% 4.089 0.0022% 0.0022% mvncdf 14.50% 
 

For the first limit state, the Pf from SORM (Pf, SORM) is 8.93%, which is close to the Pf 

of 8.87% from the MCS (Pf, MCS). The SORM reliability index βSORM is calculated from 

Eq. (4.13) and is used in lieu of βFORM for the system reliability evaluation. 

 )( ,

1

SORMfSORM P   (4.13) 

The system bounds using the bimodal bounds method and system Pf of 14.50% using 

mvncdf method agree well with the MCS result (14.66% in Fig. 4.7). 

4.4.3 Influence of the correlation coefficient between cohesion and friction 

angle on the system Pf 

Fig. 4.7 shows the results when the correlation coefficient ρϕ,c between the friction angle 

ϕ and the cohesion c of the rock mass is -0.5. When ρϕ,c changes from -0.9 to 0, the 

influence of ρϕ,c on the system Pf is shown in Fig. 4.8, in which the system Pf is 

calculated using FORM reliability indices. It is clear that the system Pf increases as ρϕ,c 

changes from -0.9 to 0 and the range set by the lower and upper bounds slightly 

increases. For comparison, the system Pf obtained from MCS based on the closed-form 

solution is also shown in Fig. 4.8. The MCS results are close to the lower bounds but 

different from the results for the mvncdf method. As mentioned in section 4.4.2, SORM 

reliability indices can be used to refine the system Pf estimated from the bimodal bounds 

method and the mvncdf method. The system Pf results based on the SORM reliability 

indices are shown in Fig. 4.9. If SORM reliability indices are used, the results from the 

mvncdf method agree well with the MCS results. From both Fig. 4.8 and Fig. 4.9, the 

system Pf obtained by the mvncdf method always lies within the lower and upper 

bounds by the bimodal bounds method. 
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Fig. 4.8. Influence of ρϕ,c on the system Pf based on FORM reliability indices 

The reason why the system Pf increases when the ρϕ,c changes from -0.9 to 0 can be 

explained as follows. A negative correlation means that a smaller value of ϕ tends to 

appear with a larger value of c and thus the chance of c and ϕ having both low values 

is smaller compared with the situation where there is no correlation. Therefore, the Pf 

is lower for the case with negative correlations. 

 

Fig. 4.9. Influence of ρϕ,c on the system Pf based on SORM reliability indices 
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4.4.4 Effect of the rockbolt installation position on the system Pf 

As explained in point (b) in section 4.4.1, the βσ value is related to the rockbolt 

installation position. A smaller βσ value corresponds to a greater distance from the 

installation position to the tunnel face, and vice versa. The influence of the mean value 

of βσ on the reliability indices corresponding to the three limit states of Eq. (4.7)-Eq. 

(4.9) is shown in Fig. 4.10. 

 

Fig. 4.10. Influence of rockbolt installation position on the reliability indices 

In this case, the COV of βσ is fixed at 0.05/0.3=0.167. β1 decreases while β2 increases 

as the mean of βσ becomes larger, which can be explained as follows. A larger βσ value 

means the rockbolts are installed at a shorter distance from the advancing tunnel face. 

Therefore, with further advance of the tunnel, a greater portion of the stress is carried 

by the rockbolts (smaller β1) and the tunnel final convergence is smaller (larger β2). A 

smaller βσ value means “delay” in placing the rockbolts and thus leads to smaller tensile 

forces and larger tunnel convergences.  

Single limit state analysis may overlook the influence of input parameters on the system 

probability of failure. Fig. 4.11 shows the change of system Pf obtained from the 

bimodal bounds method and the mvncdf method with the mean value of βσ. The system 

Pf is calculated based on FORM reliability indices. For comparison, MCS results based 

on the closed-form solution are also shown. When the mean βσ is greater than 0.3, there 

is a significant discrepancy between the MCS results and the system Pf from the 
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bimodal bounds method and the mvncdf method. Again, the SORM reliability indices 

are used to improve the accuracy of the estimated system Pf and the results are shown 

in Fig. 4.12. The refined system Pf is in good agreement with MCS results. 

 

Fig. 4.11. Influence of rockbolt installation position on the system Pf based on 
FORM reliability indices 

 

Fig. 4.12. Influence of rockbolt installation position on the system Pf based on 
SORM reliability indices 
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From Fig. 4.12, when the mean value of βσ is about 0.3, the system Pf obtains its 

smallest value which is 14.50% by the mvncdf method. The system Pf first decreases 

and then increases as the mean of βσ increases. This can be explained by the results in 

Fig. 4.10. Before the minimum system Pf value point, the system failure is controlled 

by the second performance function (displacement) and thus the system Pf decreases 

(β2 increases) as the mean of βσ increases. After the minimum system Pf value point, 

the system failure is dominated by the first performance function (tensile force) and 

thus system Pf increases (β1 decreases) as the mean of βσ increases. This phenomenon 

indicates that if the support is too close to the excavation face, rockbolts may fail due 

to the large stress it carries. However, if the support is installed too far away from the 

excavation face, the final convergence of the tunnel may be unacceptably large. The 

system reliability analysis result based on the probabilistic evaluation is in agreement 

with engineers’ knowledge. 

4.4.5 Illustrative system reliability-based design of the rockbolt length and 

spacing 

It has been shown in the above discussions that the mvncdf method with reliability 

indices calculated from SORM can estimate the system Pf accurately. However, the 

system Pf (about 15%) is unacceptably high when the rockbolt length (L) is 3 m and 

the spacing is 1 m in both radial and normal directions ( zS and S ). One can design the 

length and spacing of the rockbolts so as to achieve a more adequate reliability index, 

for example β = 2.5 corresponding to a Pf of 0.62%. For projects of which the failure 

consequence is severe, higher reliability index values can be specified (e.g. β = 3.0). In 

this section, the length (L) and spacing (Sz = S) of the rockbolts are designed to achieve 

a target system reliability index (β = 2.5). Since the third limit state has little influence 

on the system failure, only the first two performance functions are considered in this 

system reliability-based design problem.  

The procedure for the system reliability-based design can be summarized as follows. 

First, choose a design value for the rockbolt length (e.g. 3 m) and a trial value for the 

spacing. Next, FORM is conducted based on the two performance functions and FORM,1 , 

FORM,2 as well as the correlation matrix for the limit states are obtained. Then, SORM 
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is conducted in order to refine the reliability indices to SORM,1  and SORM,2 . The SORM 

reliability indices and the correlation matrix for the limit states are used as inputs for 

the mvncdf method to estimate the system Pf and the reliability index system . At the first 

trial, system  may not be equal to the target reliability index. Thus, different values for 

the spacing are tried until 5.2system . 

Three rockbolt length values are selected (the first column in Table 4.3) and the required 

spacing values shown in column 2 of Table 4.3 are found through trial and error to 

achieve a target system reliability index 2.5. The system Pf (column 3 of Table 4.3) is 

estimated by the mvncdf method and the corresponding reliability indices are close to 

2.5. In order to check the accuracy of the mvncdf method, three MCS each of which 

consists of 200,000 runs are conducted and the results are shown in the last four 

columns of Table 4.3. Comparison between column 3 and 8 shows that the mvncdf 

method results agree well with the MCS results and the design solution for the rockbolt 

length and spacing can achieve a target system Pf and a target reliability index. For the 

design values of the rockbolt length and spacing in this case study, the system failure 

is controlled by the second limit state (the maximum displacement) while the reliability 

indices for the first limit state are in the range of 6 to 7. With the increase of the length 

from 2 m to 4 m, the tensile force in the rockbolt actually decreases and thus the 

displacement increases. Therefore, in order to achieve the same reliability index 2.5, 

the design value for the spacing decreases with longer rockbolts. The fact that longer 

rockbolts yield larger displacements for this case can be illustrated by the deterministic 

analysis. The input parameters are shown in Fig. 4.3 except that the in-plane spacing of 

the rockbolts is 1.57 m. The results from the closed-form solution and from FLAC3D 

are shown in Table 4.4. The results show that indeed the tensile force becomes smaller 

and the tunnel wall displacement becomes larger with longer rockbolts. The change of 

the displacement is insignificant for this case. In engineering practice, the design of the 

end-anchored rockbolts should consider the plastic zone radius or the excavation 

damage zone for the stress-controlled failure. The anchored end point should be located 

in the stable rock mass. For the structurally-controlled failure, the rockbolt should be 

long enough to anchor the largest unstable rock block. 
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Table 4.3 Required length and spacing for a target reliability index 2.5 

Length 
(m) 

Required 
spacing 

for β=2.5 
(m) 

System 
Pf (%) 

βsystem 
System Pf three MCSs 

(%) 
Average MCS 

Pf (%) 

2 0.58 0.617 2.502 0.614 0.618 0.619 0.617 

3 0.52 0.617 2.502 0.637 0.603 0.629 0.623 

4 0.48 0.613 2.505 0.629 0.615 0.637 0.627 

 

Table 4.4 Deterministic analysis results for different rockbolt lengths  

  Closed-form solution FLAC3D 

Rockbolts 
length (m) 

Tensile 
force (kN) 

Tunnel wall 
displacement (mm) 

Tensile 
force (kN) 

Tunnel wall 
displacement (mm) 

2 209 12 198 13.1 

3 177 12.9 178 13.8 

4 156 13.6 162 14.5 

6 129 14.8 137 15.7 

 

4.5 System reliability analysis using RSM and ANN 

The above system reliability analysis is based on the situation where the closed-form 

solution exists. However, for problems with implicit performance functions, which are 

often the case for tunnelling problems, various surrogate models should be used to 

approximate the actual LSS as pointed out in section 4.2.3. Among all the available 

surrogate models, polynomial RSM is widely adopted due to its efficiency in locating 

the design point via the iterative strategy. The basic idea of the iterative RSM is to 

gradually approximate the actual LSS using polynomial functions ( )g x  as shown in 

Chapter 2 and 3. The unknown coefficients of the polynomial function are determined 

by solving a linear equation set using a small number of sampling points. The iterative 

procedure is shown in Fig. 4.13 and can be described as follows. First, the mean value 

point is chosen as the sampling central point and the first tentative response surface is 

determined. Next, FORM is conducted based on the tentative response surface and the 

tentative design point and reliability index are calculated. Then, the tentative design 

point is selected as the next sampling central point and a new tentative response surface 
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and reliability index are obtained. The iteration continues until the difference between 

two consecutive reliability indices is acceptably small. This iterative polynomial RSM 

has been successfully applied to various geotechnical problems (e.g. Xu and Low, 2006; 

Lü et al., 2011). Since fewer sampling points are required for the linear RSM, it will be 

used to gradually approach the actual LSS. 

 

Fig. 4.13. Steps for the iterative response surface method 

Start

For ith limit state function

Prepare sampling points:
 around mean value point in the first trial 
 around tentative design points in later iterations

Evaluate performance functions 
at sampling points

Construct trial response surfaces

Compute tentative design point and 
reliability index using FORM

Convergence check:
∆β<0.0001

All limit state functions 
computed?

i=i+1
Choose 

sampling 
range

End

No

Yes

Yes

No



Chapter 4 System reliability analysis of tunnels reinforced by rockbolts 

92 

Although the linear RSM is efficient in locating the design point, it suffers from the fact 

that nonlinearity of the actual LSS cannot be approximated. In order to consider the 

curvature of the actual LSS around the design point, Chan and Low (2012b) suggested 

that a new set of sampling points around the design point can be used to construct ANN 

whereas Lü et al. (2013) used the second-order polynomial function to approximate the 

LSS around the design point. However, all these methods require additional sampling 

points around the design point. A modified method is used in this study. Instead of 

building ANN based on a set of new sampling points, all the sampling points during the 

iteration when the linear response surface is gradually approaching the actual LSS are 

used to train the neural network. Therefore, there is no “waste” of the sampling points 

which contribute to locating the design point. Besides, compared with other methods, 

this approach can approximate the performance function not only around the design 

point but in a larger domain from the mean value point to the design point. Once ANN 

is constructed, direct MCS can be used based on the response of ANN without much 

computational efforts. The accuracy and efficiency of this proposed approach can be 

illustrated through the same case study of a circular tunnel reinforced by rockbolts as 

mentioned in the above sections but assuming that the performance functions are not 

known in closed-form. 

First, the iterative linear RSM with the expression shown by Eq. (4.14) is applied to 

obtain the design point.  

 



n

i

ii xbaxg
1

)(   (4.14) 

where )(xg  is the response function; a and bi are unknown coefficients that should be 

determined; xi is the random variable value. 

There are n+1 sampling points in each iteration. Therefore, one central point u and n 

sampling points ( ku  ) around the central point are selected (k is the sampling range 

factor and σ is the standard deviation). Constant sampling factor k=0.5 is used 

throughout the iteration. The sampling points are prepared in the correlated standard 

normal space (n-space) corresponding to the Low and Tang (2007) algorithm. The 

converged results are shown in Table 4.5. For performance function 1 and 2, where 

reliability indices are between 1.2 and 1.3, only five iterations are needed to get the 

converged reliability index. For performance function 3, where the reliability index is 
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large, 7 iterations are needed. The numbers of total sampling points are calculated via 

multiplying the number of iterations by five (five sampling points in each iteration). 

The reliability indices obtained from the linear RSM agree with those from direct 

FORM shown in Fig. 4.7, verifying that the linear RSM is accurate in locating the 

design point. 

Table 4.5 FORM results for linear RSM 

  Number of iterations Total sampling points LinearRSM 
g1 5 25 1.2515 

g2 5 25 1.2852 

g3 7 35 4.0735 

 

Next, all the sampling points obtained during the iterations are used to train ANN, i.e. 

25, 25 and 35 points are used for the three limit states respectively. Hornik et al. (1989) 

demonstrated that ANN with a typical three-layer structure can approximate any 

function provided that sufficient hidden neurons are available. Thus, a 4-10-1 network 

(four input random variables, 10 hidden neurons and one output) is adopted in this study. 

The basic structure of ANN is shown in Fig. 2.11 (Chapter 2). The transfer function 

between the input layer and the hidden layer is the tangential sigmoid function, which 

is shown by Eq. (4.15), and the transfer function between the hidden layer and output 

layer is the pure linear function. 

 1
)1(

2
)(

2



  xe

xf   (4.15) 

Before training ANN, sampling points are normalized to the range of [-1, 1] as shown 

by Eq. (4.16) in order to eliminate the influence of magnitudes of different variables. 
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uu

uu
u iN

i
  (4.16) 

where N

iu   is the normalized value; iu   is the original value; maxu   and minu   are the 
maximum and minimum values. 

When samples are ready, the training process is implemented by adjusting the weights 

between adjacent layers. The Bayesian regularization algorithm minimizes a linear 

combination of square errors of the sampling points and is shown to have good 

generalization qualities (e.g. McKay, 1992; Cheng and Li, 2009). Therefore, this 
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algorithm is used to find the optimum values for the weights and biases in ANN. After 

the training process, the optimum weights and biases can be used to calculate the output 

of ANN through Eq. (4.17). The detailed formulation and calculation of ANN can be 

found in textbooks, e.g. Anderson (2005). 
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in which b0 is the bias at the output layer; wk is the weight between hidden layer neuron 

k and output layer single neuron; bhk is the bias at neuron k in the hidden layer; wik is 

the weight between input neuron i and hidden layer neuron k; Xi is the random variable; 

linearf  is the pure linear transfer function and sigf tan  is the tangential sigmoid transfer 

function. 

Eq. (4.17) can be regarded as a closed-form expression for ANN and MCS can be 

conducted based on this expression. Results for the individual limit state and the system 

failure are compared with those from MCS based on the closed-form solution, which 

are shown in Table 4.6. 

Table 4.6 MCS results for ANN and closed-form solution 

  Pf (Closed-form) Pf (ANN) 

    Simulation 1 Simulation 2 Simulation 3 Average 

Pf (g1) 8.87% 8.97% 9.01% 8.91% 8.96% 

Pf (g2) 10.23% 10.22% 10.25% 10.14% 10.20% 

Pf (system) 14.66% 14.48% 14.53% 14.48% 14.50% 

 

 

To obtain the Pf for limit state 1, 2 and the system Pf, three MCS each of which consists 

of 200,000 runs are conducted. The average values of MCS on ANN agree well with 

MCS results based on the closed-form solution, demonstrating that the proposed 

method is accurate in approximating the actual LSS. For the third limit state, since the 

Pf is relatively low ( 52 10 from FORM analysis), it has almost no effect on the system 

Pf. 
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4.5.1 Comparison of linear RSM with the second-order RSM without cross 

terms 

The above analysis uses the linear RSM. In the literature, second-order polynomial 

RSM without cross terms is widely used to approximate the LSS. In this section, 

second-order polynomial RSM without cross terms is used and the results are compared 

with those from linear RSM. The expression of the second-order RSM without cross 

terms is shown by Eq. (4.18). 

 
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where )(xg  is the response function; a, bi and ci are unknown coefficients that should 

be determined; xi is the random variable value. 

Since there are 2n+1 unknown coefficients, the axial-point design (shown in Chapter 

2) using one central point u and 2n points ( ku  ) can be used. For comparison, the 

sampling factor is still kept at 0.5 during the iteration. The iteration procedure is the 

same as that used in the linear RSM and the results for second-order RSM without cross 

terms are shown in Table 4.7 and Table 4.8. Table 4.8 displays the coefficients for the 

final second-order RSM without cross terms. The coefficients together with Eq. (4.18) 

can be used to establish the closed-form response surface. In this case, since the 

sampling points are prepared in the correlated standard normal random variable space, 

ni values instead of xi values in Eq. (4.18) are used to obtain the response surface. 

Table 4.7 FORM results for second-order RSM without cross terms 

  Number of iterations Total sampling points SecOrd 
g1 4 36 1.2513 

g2 4 36 1.2852 

g3 8 72 4.0731 

 

The total number of sampling points is calculated by multiplying the number of 

iterations by 9 (9 sampling points in each iteration). For all three limit states, the 

numbers of sampling points are larger compared with the linear RSM although the 

numbers of iterations are almost the same. For all three limit states, the reliability 
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indices obtained from the second-order RSM without cross terms (SecOrd in Table 4.7) 

agree with the results from direct FORM based on the closed-form solution. 

Table 4.8 Coefficients of second-order RSM without cross terms 

  g1 g2 g3 

a 31.4230 1.12E-03 0.6068 

b1 -10.8756 2.19E-04 0.0537 

b2 21.6344 5.02E-04 0.1029 

b3 6.5746 1.44E-04 0.0602 

b4 12.7372 6.24E-04 -0.0380 

c1 0.9604 -2.61E-05 -0.0035 

c2 0.2900 -5.10E-05 -0.0138 

c3 0.2328 1.94E-06 0.0003 

c4 -0.0820 -6.05E-05 -0.0014 

 

4.5.2 Comparison with the second-order RSM with cross terms and the 

importance sampling technique 

The second-order RSM with cross terms uses the expression shown by Eq. (4.19). 
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where dk is the unknown coefficient for the cross terms, 2/)1(1  nnk . 

In each iteration, (n2+3n+2)/2 (15 in this case) sampling points are needed. For 

comparison, the sampling factor is kept at 0.5 during the iteration. The iteration 

procedure is the same and the results for the second-order RSM with cross terms are 

shown in Table 4.9 and Table 4.10. 

Table 4.9 FORM results for second-order RSM with cross terms 

  Number of iterations Total sampling points SecOrdCross 
g1 3 45 1.2513 

g2 3 45 1.2852 

g3 4 60 4.0731 
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Table 4.10 Coefficients for second-order RSM with cross terms 

  g1 g2 g3 

a 29.6681 1.03E-03 0.5667 

b1 -7.6848 9.00E-05 -0.0095 

b2 20.1550 3.99E-04 0.0871 

b3 5.7816 8.80E-05 -0.0205 

b4 11.5956 5.54E-04 -0.0264 

c1 0.9607 -2.61E-05 -0.0034 

c2 0.2900 -5.10E-05 -0.0138 

c3 0.2328 1.94E-06 0.0003 

c4 -0.0821 -6.05E-05 -0.0014 

d1 2.6203 -1.04E-04 -0.0208 

d2 0.4632 -2.99E-05 -0.0095 

d3 1.4244 -6.28E-05 -0.0044 

d4 -0.6654 -4.73E-05 -0.0185 

d5 -0.4650 -7.68E-05 0.0052 

d6 0.0571 -1.37E-05 0.0019 

 

 

Compared with the linear RSM, the numbers of iterations for all three limit states are 

smaller and the reliability indices agree better with those from direct FORM. However, 

the total numbers of sampling points are greater due to the fact that 15 points are needed 

in each iteration. MCS is applied to the converged second-order RSM with and without 

cross terms. The probabilities of failure are displayed in Table 4.11. 

Table 4.11 MCS results for second-order RSM without and with cross terms 

Second-order RSM without cross terms 
Second-order RSM with cross 

terms 

 g1 g2 
System Pf 

(g1,g2) 
g1 g2 

System Pf 

(g1,g2) 
1 9.76% 11.67% 16.05% 8.81% 10.07% 14.54% 

2 9.70% 11.62% 16.03% 8.83% 10.12% 14.56% 

3 9.81% 11.62% 16.06% 8.90% 10.07% 14.67% 

Average 9.76% 11.64% 16.05% 8.88% 10.09% 14.59% 

 

Three MCS each comprising 200,000 runs are conducted based on the response surfaces 

for the first two limit states. The system Pf is based on the first and second limit states 
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and thus is noted as System Pf (g1, g2) in Table 4.11. MCS results based on the closed-

form solution are shown in Table 4.6 and regarded as the benchmark for comparison. 

For the third limit state, since Pf is relatively low, MCS with 107 runs based on ANN, 

second-order RSM with and without cross terms gives a Pf of almost zero, verifying 

that the third limit state has no influence on the system Pf. 

For the Pf of the first and the second limit state, the results for the second-order RSM 

with cross terms are more accurate than those for RSM without cross terms. So are the 

results for the system Pf (g1, g2). This comparison shows that the second-order RSM 

with cross terms is more accurate in approximating the LSS than the RSM without cross 

terms. The proposed method using linear RSM and ANN has similar accuracy as the 

second-order RSM with cross terms but costs fewer sampling points.  

However, for some cases, direct MCS based on the second-order RSM with cross terms 

may yield erroneous results. If the limiting ratio (εlimiting) of the tunnel displacement 

over the tunnel radius increases from 0.5% to 1%, the results from the direct FORM 

based on the closed-form solution and from MCS based on the second-order RSM with 

cross terms are shown in Table 4.12. For limiting ratios from 0.5% to 0.7%, the FORM 

results and the MCS results are in the same order of magnitude. However, for ratios 

from 0.8% to 1%, the MCS results are erroneous since the Pf should decrease with 

increasing limiting ratios. Next, the case when limiting ratio is 0.8% is used to illustrate 

this problem. 

Table 4.12 Results of FORM and MCS for different values of the limiting ratio 

Limiting ratio εlimiting 0.5% 0.6% 0.7% 0.8% 0.9% 1.0% 

β 1.285 2.239 3.010 3.648 4.187 4.651 

Pf (FORM) 9.94% 1.26% 0.13% 0.013% 0.0014% 0.0002% 

Pf  (MCS based on RSM) 10.08% 1.24% 0.13% 0.18% 1.30% 5.00% 

 

The false MCS result based on the second-order RSM with cross terms is caused by the 

special characteristics of the second-order polynomials. A graphical apprehension of 

the discrepancy is presented in Fig. 4.14, which shows the actual LSS and the second-

order response surface in the correlated standard normal space of E and ϕ while the 

other two random variables (βσ and c) are kept at their design point values. 
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Fig. 4.14. Actual LSS and response surfaces for g2 when εlimiting=0.8%  

It can be seen from Fig. 4.14 that the second-order response surface with cross terms 

has two branches, represented by the dashed lines. One branch is close to the actual 

LSS obtained from the analytical solution whereas the other branch lies on the opposite 

side. The branch close to the actual LSS is useful in delimitating the boundary between 

the safe and unsafe domains and thus is called the “true branch”. The other branch is 

named as the “false branch” since sampling points outside the false branch will be 

wrongly classified into the unsafe domain. This false branch causes the error in 

estimating the Pf by MCS. Note that Fig. 4.14 is an illustrative plot showing LLS and 

RSM in the two-random-variable space. For the problem, the true LSS and RSM are in 

the four-random-variable space. To further verify that the erroneous result is caused by 

the false branch problem, 200,000 runs of MCS based on RSM is conducted. Among 

these 200,000 sampling points, 350 points are failure points based on RSM. The 

corresponding Pf is 0.175% which agrees with 0.18% from Table 4.12. If these 350 

points are evaluated by the closed-form solution, only 28 points are true failure points, 

meaning that other 322 points are wrongly classified as failure points by RSM. The true 

Pf is 28/200000=0.014% which agrees with 0.013% from FORM in Table 4.12. The 

erroneous MCS result based on the second-order RSM was also observed and explained 
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by Chan and Low (2012b) and Lü et al. (2012) but solutions for such problems were 

not provided. 

In direct MCS, samples are taken around the origin shown in Fig. 4.14. Thus, a number 

of the sampling points will lie outside the false branch resulting in the erroneous result. 

Importance sampling can alter the sampling probability density function. Harbitz (1986) 

suggested shifting the sampling center from the origin to the design point which 

contributes most to the probability of failure. This technique samples a large portion of 

the points located in the failure domain and hence the number of wrongly classified 

sampling points could be greatly reduced. The importance sampling implementation in 

the spreadsheet environment, which was used in Chan (2012), is adopted in this study. 

Three importance sampling simulations each comprising 5,000 runs are conducted 

based on the second-order RSM with cross terms and the closed-form solution for the 

second limit state g2 when εlimiting=0.8%. The results are shown in Table 4.13.  

Table 4.13 Importance sampling and MCS results based on RSM, closed-form 

solution and ANN for g2 (εlimiting=0.8%)  

Pf (%) 1 2 3 Average 

Importance sampling based on second-order RSM 0.0119 0.0124 0.0125 0.0123 

Importance sampling based on closed-form solution 0.0128 0.0127 0.0123 0.0126 

Importance sampling based on ANN 0.0128 0.0124 0.0124 0.0126 

Direct MCS based on ANN 0.0125 0.0123 0.0126 0.0125 

 

The average Pf from RSM is close to that from the closed-form solution, indicating that 

the importance sampling technique can indeed reduce the error caused by the false 

branch of the second-order RSM with cross terms. In order to show the advantage of 

the proposed approach, direct MCS and MCS with importance sampling are applied to 

ANN and the results are shown in Table 4.13. For the direct MCS based on ANN, each 

MCS comprises 6102  runs. The results of direct MCS based on ANN are almost the 

same as those based on closed-form solution. The above comparison shows that direct 

MCS can be applied to ANN but the false branch problem may render the second-order 

RSM with cross terms less robust for the direct MCS. Table 4.13 shows the results 

when the limiting ratio is 0.8%, the importance sampling can also solve the false branch 

problem for the case when the limiting ratio is 0.9% and 1%. When εlimiting=0.9%, 5000 
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runs of importance sampling gives a probability of failure of 0.0013% based on RSM 

compared well with the direct FORM result (0.0014% in Table 4.12) based on the 

closed-form solution. When εlimiting=1%, 5000 runs of importance sampling gives a 

probability of failure of 1.53×10-6 based on RSM, compared well with the direct FORM 

result (2×10-6 in Table 4.12) based on the closed-form solution. 

In this section, detailed comparisons among the proposed method using linear RSM and 

ANN, the second-order RSM without and with cross terms have been presented for the 

case of a circular tunnel reinforced by rockbolts. The comparison is shown in Table 

4.14. 

Table 4.14 Comparison of the hybrid approach and RSM 

 Accuracy Efficiency Robustness 
Hybrid approach Good  Good Good 
RSM without cross terms Fair Fair Fair 
RSM with cross terms Good  Fair Fair 

 

The MCS results based on the second-order RSM without cross terms are less accurate. 

Therefore, the second-order RSM without cross terms is not suggested for this case 

study. Although the second-order RSM with cross terms can accurately locate the 

design points, it suffers from the low efficiency and the false branch problem which 

may render the direct MCS result erroneous for some cases. It is shown in this study 

that the importance sampling technique can replace the direct MCS to reduce the error 

caused by the false branch. The proposed method which uses the linear RSM to locate 

the design point and ANN to approximate the LLS is shown to be robust, accurate and 

efficient and thus is preferable to be adopted for the system reliability analysis. 

4.6 Summary and conclusion 

This chapter begins by reviewing the commonly used system reliability methods 

including the bimodal bounds method, the mvncdf method using the multivariate 

normal cumulative distribution function and the MCS based on the approximate LSS. 

The first two methods can be directly applied if closed-form solutions exist. For 
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problems with implicit performance functions, direct MCS based on approximate 

response surfaces is straightforward for the system reliability analysis.  

The first two methods are applied to the iterative closed-form solution for a circular 

tunnel with rockbolts proposed by Bobet and Einstein (2011). The system Pf estimated 

from the mvncdf method always lies within the lower and upper bounds set by the 

bimodal bounds method for the same input reliability indices and correlation matrix of 

the limit states. Also discussed are the influence of the correlation coefficient between 

the cohesion and the friction angle and the influence of the rockbolt installation position 

on the system Pf. It is also presented that the SORM can be used to refine reliability 

indices and to improve the accuracy of the estimated system Pf.  

A modified hybrid approach is proposed in this study. First, the linear RSM is used to 

locate the design point through the iterative algorithm. Then, ANN is adopted to 

approximate the LSS using the sampling points obtained during the iteration. Finally, 

the MCS is conducted based on ANN to estimate the system Pf. The proposed method 

is compared in detail with second-order RSM without and with cross terms regarding 

the robustness, efficiency and accuracy. The second-order RSM without cross terms 

may be inaccurate and inefficient whereas the false branch problem may render the 

direct MCS result erroneous for the second-order RSM with cross terms. It is also 

shown in this chapter that the importance sampling technique can reduce the error 

caused by the false branch problem. Comparison shows that the proposed hybrid 

method of linear RSM followed by ANN requires fewer sampling points and the MCS 

results based on this method are satisfactory. Therefore, it is suggested that the hybrid 

approach be used in the system reliability analysis. 

This chapter may help to have a better understanding of different approaches for the 

system reliability analysis and of the advantages and potential problems associated with 

these methods.  

  



Chapter 5 Reliability-based design of tunnelling problems and insights for Eurocode 7 

103 

Chapter 5  Reliability-based design of tunnelling problems 

and insights for Eurocode 7 

Chapter 3 and 4 focus on the reliability analysis which is used to estimate the probability 

of failure of a given problem or system. For practical engineers, what is more important 

is how the probabilistic approach could be used in the design process. From April 2015, 

Singapore started to use the partial factor design standard Eurocode as the only 

prescribed design code. Eurocode 7 is related to geotechnical engineering, but with little 

coverage of the rock engineering design. This chapter presents how reliability-based 

design (RBD) can provide insights which can help the evolution of the partial factor 

design approach for rock tunnelling problems. 

5.1 Introduction 

The factor of safety design approach had long been dominating the geotechnical 

engineering although it cannot reflect how safe a geotechnical structure really is. This 

approach attempts to ensure that the loadings on a structure do not exceed the allowable 

limit and is, in some textbooks, called the allowable stress design (ASD), e.g. Baecher 

and Christian (2003). The uncertainties associated with material properties and in situ 

conditions are considered implicitly by a single factor of safety. A better alternative to 

ASD is the limit state design (LSD) which is based on predictions about how the design 

performs near failure. For example, the Eurocode 7 (EC7) (EN1997-1, 2004) for the 

European countries and the load and resistance factor design (LRFD) (AASHTO, 2012) 

for the North America. Both codes use the characteristic values factored by partial 

factors to check the limit states. With the development of the probabilistic analysis, 

RBD has become popular recently due to the fact that it is robust and the uncertainties 

are treated explicitly. Most commonly used reliability analysis methods include the 

first-order second-moment method (FOSM), point estimate method (PEM), first-order 

reliability method (FORM), second-order reliability method (SORM) and Monte Carlo 

simulation (MCS). 

The partial factor design has been successfully applied to various geotechnical 

problems. However, these design codes cover little about the rock engineering 
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principles and rock engineers struggle with the application of the partial factor design 

to rock engineering problems. All the specifications in such design codes are pertaining 

to and calibrated by soil engineering problems. Rock engineering principles seem to be 

neglected in EC7 as pointed out by Harrison (2014). This may be due to historical 

reasons that less emphasis has been placed on the rock engineering during the 

preparation of the EC7 draft and due to the fact that the discontinuous, heterogeneous 

and anisotropic nature of the rock mass requires a great deal of empiricism be involved 

(Lamas et al., 2014). A committee on the evolution of EC7 has been formed to develop 

EC7 with regard to rock engineering design. On the other hand, Low and Phoon (2015) 

and Low (2017a) illustrated that RBD can play a complementary role to the partial 

factor design using some soil engineering problems. In this chapter, some tunnelling 

problems are used to show that RBD, more specifically FORM based design, is helpful 

in the evolution of EC7 for rock engineering. First, the difference between the partial 

factor design approach and the RBD is illustrated by a circular tunnel in a Mohr-

Coulomb ground. Then, different reliability analysis approaches (FOSM, PEM, FORM 

and SORM) are compared using a symmetrical roof wedge problem. Next, three case 

studies are employed to show the insights from RBD compared with the partial factor 

design. Finally, how RBD can complement the partial factor design for tunnelling 

problems is summarized. 

5.2 Eurocode 7 design and FORM-based design 

5.2.1 Eurocode 7 design 

For the partial factor design, the design should satisfy the following condition (EN1997-
1, 2004): 

   jCjS
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  (5.1) 

where ψR is the resistance factor; RC is the characteristic value of the resistance; ψS is 

the load factor; SC is the characteristic value of the load.  

The characteristic value of the resistance and load should be selected, based on Clause 

2.4.5.2(2)P in EC7, as ‘a cautious estimate of the value affecting the occurrence of the 
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limit state’ and can be selected by the statistical method if the distribution of this 

parameter is known based on Clause 2.4.5.2(10). The characteristic value for the 

resistance is lower than its mean value and, for the load, the characteristic value is 

higher than the mean value.  

All partial factors specified by EC7 are greater than one and therefore, through factoring, 

the resistance is diminished and the action amplified. Three sets of partial factors are 

specified for actions, material properties, and resistances. These three sets of partial 

factors are not applied simultaneously but there are three design approaches combining 

different sets of partial factors (Bond and Harris, 2008). 

 Design approach 1 (DA1): (Combination 1) factoring actions only; 

(Combination 2) factoring materials only  

 Design approach 2 (DA2): factoring actions and resistance but not materials  

 Design approach 3 (DA3): factoring structural actions and materials 

(geotechnical actions from the soil are unfactored) 

According to Eq.(5.1), the factored resistance (design value of resistance) is required to 

be greater than or equal to the factored load (design value of load).  

5.2.2 FORM and intuitive dispersion ellipsoid perspective 

Although elaborated in previous chapters, the FORM analysis is reiterated here 

focusing on the intuitive expanding ellipsoid perspective to reduce the conceptual 

barriers for the practitioners. The matrix formulation of the Hasofer-Lind reliability 

index (Hasofer and Lind, 1974) is  

 )()(min 1 μxCμx
x

 



T

F
   (5.2) 

where x is a vector of the input random variables; μ is a vector of the mean values of x; 

C is the covariance matrix; F represents the failure domain. The Hasofer-Lind 

reliability index was originally proposed for correlated normal random variables. For 

non-normal distributions, the formulation for FORM β is shown by (Low and Tang, 

2004): 
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where R is the correlation matrix; N

iμ and N

i are the mean and standard deviation of 

the equivalent normal distribution of the random variable ix  and can be calculated 

through the transformation by Rackwitz and Fiessler (1978). The classical approach to 

calculate the FORM reliability index involves the rotation of the axes of the original 

random variables and an iterative scheme to approximate the design point. Low and 

Tang (2004) proposed an intuitive dispersion ellipsoid perspective for FORM analysis 

as shown in Fig. 5.1. 

 

Fig. 5.1. Illustration of the intuitive expanding ellipsoid perspective (after Low 

and Tang, 2004) 

 

The FORM analysis can be described as follows. An ellipse (for the two-random-

variable case), tilted for correlated random variables or untilted for uncorrelated random 

variables, represents the contour line of the joint distribution of two random variables. 

Finding the design point is equivalent to expanding the ellipse until it touches the limit 

state surface (LSS) separating the safe domain from the unsafe domain. This tangent 

point is the design point which is the most probable combination of values of input 
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random variables on LSS. The reliability index β is calculated by R/r, where R is the 

directional distance from the mean value point to the β-ellipse and r is the distance to 

the 1σ-ellipse as shown in Fig. 5.1. To obtain the reliability index means maximizing 

the value of the multivariate normal probability density function and is graphically 

equivalent to finding the smallest ellipse tangent to LSS. This optimization procedure 

can be implemented in the ubiquitous Excel platform or other software such as 

MATLAB as shown in Chapter 3. An alternative to Eq. (5.3) is given in Low and Tang 

(2007) as  

 nRn
x

1min 


 T

F
   (5.4) 

where n represents the dimensionless vector of N

i

N

ii μx /)(  . The constrained 

optimization method by varying random variables in n-space (correlated standard 

normal space) is used to calculate the reliability index β and the probability of failure 

Pf can be estimated from 

 )(1 fP   (5.5) 

where (.)  is the cumulative distribution function (CDF) of the standard normal 

distribution. For more details of the Low and Tang (2007) procedure, readers may refer 

to Low (2008) and Low (2015). Next, the Duncan-Fama solution for a circular tunnel 

excavated in the Mohr-Coulomb elastic-perfectly-plastic ground is used to illustrate the 

RBD via FORM, the partial factor design based on EC7 and the difference between 

RBD and the partial factor design. 

5.2.3 FORM analysis of a circular tunnel in Mohr-Coulomb material 

The analytical solution of the plastic zone size and displacement of the tunnel can be 

found in Hoek (2007) and is presented in Chapter 3. Four input parameters, namely, 

friction angle ϕ, cohesion c, Young’s modulus E and the hydrostatic in situ stress p0 are 

treated as random variables while the radius of the tunnel is a deterministic value r0=2.5 

m, Poisson’s ratio ν =0.3 and the dilation angle 0 for the rock mass in this case. Normal 

distributions with mean values denoted by Mean and standard deviations denoted by 

StD in Fig. 5.2 are assigned to the four parameters as suggested by Hoek (1998). The 

four input random variables are assumed to be independent first (scenario 1) with the 
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correlation matrix being the identity matrix. The uniform internal support pressure pi is 

the target design parameter and the performance function denoted by PerFunc in Fig. 

5.2 is  

 
0

limiting)(
r

u
g  X    (5.6) 

where limiting  is the maximum allowable ratio ( limiting = 2% in this case) of the tunnel 

convergence u over the radius r0. 

 

Fig. 5.2. FORM results for the circular tunnel in Mohr-Coulomb ground 

 

An initial value (0 < pi < p0) for the support pressure pi is selected and then the Solver 

in Excel is invoked to obtain the minimum value of β by varying the values in ni
* 

column under the constraint that )(Xg =0. Through trial and error, a support pressure 

yielding a target reliability index (β = 3.0 in this case) will be found as shown in Fig. 

5.2. The values in the 
ix  column represent the design point which is the most probable 

point of failure on LSS separating the safe domain from the unsafe domain. The ni
* 

r0 (m) 2.5 Distribution Parameter Mean StD

ν 0.3 Normal ϕ (°) 22.85 1.31

PerFunc Normal c (MPa) 0.23 0.068

0.000 β P f Normal E (MPa) 373 48

3.000 0.13% Normal p 0 (MPa) 2.5 0.25

Scenario 1

x i* n i * Design parameter

21.59 1 0 0 0 -0.965 pi (MPa)

0.129 0 1 0 0 -1.488 0.725

306 0 0 1 0 -1.393

3.00 0 0 0 1 1.980

Scenario 2

x i* n i *

22.56 1 -0.5 0 0 -0.225 pi (MPa)

0.162 -0.5 1 0 0 -1.002 0.683

293 0 0 1 0 -1.674

3.03 0 0 0 1 2.123

FORM results

Probabilistic input parametersDeterministic input parameters

MCS results

Design parameter

MCS results

P f =0.15%

P f =0.16%

Correlation Matrix [R]

Correlation Matrix [R]



Chapter 5 Reliability-based design of tunnelling problems and insights for Eurocode 7 

109 

value for each random variable reflects the sensitivity of the input variables. For this 

case, the in situ stress is the most influential factor to the tunnel convergence. The 

sensitivity information is a by-product of FORM analysis and cannot be reflected by 

the EC7 approach using fixed partial factors. 

The strength parameters c and ϕ are usually negatively correlated, meaning lower 

values of c tend to appear with higher values of ϕ, and vice versa. The correlation 

structure among input parameters can be readily incorporated into the FORM analysis 

and the results are shown as scenario 2 in Fig. 5.2 with the correlation coefficient 

between c and ϕ being -0.5. Because of the negative correlation between these two 

resistance factors, the chance of having both lower values for c and ϕ becomes smaller 

and therefore, the tunnel is safer. Thus, the required support pressure to achieve the 

same β of 3.0 is slightly smaller. The influence of c and ϕ on the tunnel convergence 

significantly decreases due to the negative correlation (refer to the ni
* values for c and 

ϕ). MCS with 200,000 runs gives similar Pf as those estimated by FORM for both 

scenarios. 

5.2.4 Tentative design based on Eurocode 7 

As Harrison (2014) noted, it seemed that the development of EC7 had no explicit input 

from the rock engineering community and the application of EC7 to rock engineering 

problems is still under discussion and development. The general philosophy of EC7 for 

soil engineering will be tentatively applied to rock engineering problems and partial 

factors not covered in EC7 will be assumed and discussed in the light of the RBD 

approach. 

Clause 2.4.8.(2) in EC7 (EN1997-1, 2004) states that “Values of partial factors for 

serviceability limit states (SLS) should normally be taken equal to 1.0”, which is due 

to the fact that the ultimate limit states (ULS) are more critical than SLS in soil 

engineering such as the failure of a foundation or a retaining wall. However, for 

tunnelling problems, SLS is of great concern such as the tunnel convergence. 

First, the partial factors are taken as 1.0 as suggested in EC7 and only the conservative 

characteristic values for the input parameters are considered. There are no 

specifications for choosing the characteristic values but the statistical methods may be 
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used, for example, the 5/95 percentile for resistance and load parameters. The design 

values are calculated by factoring the selected characteristic values. The value of the 

design parameter is chosen such that Eq. (5.1) has an equal sign. The results of the 

design based on EC7 design approach 1 (DA1) are shown in Table 5.1. 

Table 5.1 Design of support pressure based on EC7 (5/95 Percentile) 

EC7 DA1 5/95 Percentile Partial Factor Design value Design parameter 
tan ϕ  0.378 1.00 0.378 pi (MPa) 

c (MPa) 0.118 1.00 0.118 1.17 

E (MPa) 294 1.00 294  

p0 (MPa) 2.91 1.00 2.91  

 

The tanϕ instead of ϕ is factored in line with EC 7 specifications. Since the partial 

factors are ones, there is no difference between DA 1 combination 1 (factoring actions 

only) and combination 2 (factoring materials only). For this case, design values are fully 

dependent on the selection of the percentile values. For comparison, the reliability index 

from FORM is 5.169 for uncorrelated random variables. The results for the case if 30/70 

percentile is selected are shown in Table 5.2. 

Table 5.2 Design of support pressure based on EC7 (30/70 Percentile) 

EC7 DA1 30/70 Percentile Partial Factor Design value Design parameter 

tan ϕ 0.408 1.00 0.408 pi (MPa) 

c (MPa) 0.194 1.00 0.194 0.76 

E (MPa) 347.7 1.00 347.7  

p0 (MPa) 2.63 1.00 2.63  

 

For the 30/70 percentile case, the reliability index from FORM is 3.194 which is 

different from 5.169 for the 5/95 percentile case. Comparison shows that the selection 

of the characteristic values will significantly influence the design parameter values 

(1.17 MPa vs 0.76 MPa). This is a potential drawback of EC7 since there is no specific 

guidance on characteristic values and designers may have different preferences for 

selecting these values. 

Because the SLS is critical for most underground excavation problems, the statement 

that partial factors should be taken as ones is debatable in rock engineering. If the partial 

factors (not equal to one) are used, the design results are shown in Table 5.3. Note that 
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the partial factors are tentatively used with the same values given in EC7 for soils. For 

the evolution of EC7, those partial factors should be carefully calibrated for rock 

engineering problems. 

Table 5.3 Design of support pressure (5/95 Percentile) considering partial factors 

EC 7 DA1 C1 5/95 Percentile Partial Factor Design value Design parameter 

tan ϕ 0.378 1.00 0.378 pi (MPa) 

c (MPa) 0.118 1.00 0.118 1.92 

E (MPa) 294 1.00 294  

p0 (MPa) 2.91 1.35 3.93  
     

EC 7 DA1 C2 5/95 Percentile Partial Factor Design value Design parameter 

tan ϕ 0.378 1.25 0.302 pi (MPa) 

c (MPa) 0.118 1.25 0.094 1.35 

E (MPa) 294 1.00 294  

p0 (MPa) 2.91 1.00 2.91  

 

Since the partial factor for Young’s modulus is not specified in EC7, in this case, 1.0 is 

used for illustrative purposes. For DA1 C1, the reliability index is 6.510 whereas for 

DA1 C2, the reliability index is 5.739. Comparison of Table 5.1 and Table 5.3 indicates 

that the design values for pi are larger if the partial factors (not equal to one) are used. 

Besides, more support pressure is required for DA1 C1 than for DA1 C2 by virtue of 

the larger partial factor for the load p0 and the fact that the displacement is more 

sensitive to the in situ stress than the strength parameters in this case. 

5.2.5 Comparison between RBD and EC7 

The same β value for different problems indicates the same safety level and therefore, 

the design based on the reliability index or probability of failure is consistent across 

various problems. In contrast, for the design based on EC7 or other partial factor design 

codes, different designers may select different characteristic values for the inputs and 

different sets of partial factors (DA1, 2 and 3) may be used. Thus, the design may result 

in inconsistent safety levels with different reliability indices. 



Chapter 5 Reliability-based design of tunnelling problems and insights for Eurocode 7 

112 

As shown in Fig. 5.2, the correlation structure among the input random variables can 

be directly considered in RBD. However, the design remains the same by EC7 whether 

the correlation is involved or not.  

The design point values (xi* column) and the design point indices (ni
* column) reflect 

the most probable point of failure together with the sensitivity automatically and vary 

from case to case in a way that fixed partial factors cannot. Even in the same design 

problem where different reliability levels are targeted, the influence of the input 

parameters will be different, which can be clearly indicated by RBD. 

RBD is helpful for parameters that are not covered in EC7 (e.g. Young’s modulus and 

in situ stress) or parameters specified in EC7 for soil engineering but not calibrated for 

rock engineering (e.g. cohesion and friction angle). Note that the back-calculated partial 

factors from RBD strongly depend on the chosen characteristic values and vary for 

different problems. 

5.3 FOSM, PEM, FORM and SORM 

There are various reliability analysis approaches including FOSM, PEM, FORM, 

SORM and MCS. Some methods are inconsistent and some may be computational time 

costly for practitioners. This section discusses advantages and drawbacks of different 

reliability methods and suggests which method is the most applicable to complement 

the partial factor design approach. 

Unlike the FORM reliability index, FOSM assumes that the performance function is 

normally distributed such that the reliability index is the distance from the mean value 

to zero in units of the standard deviation, shown by  

 
g

g

FOSM 


    (5.7) 

where μg and σg are the mean and the standard deviation of the performance function, 

respectively. The mean and standard deviation of the performance function can be 

estimated by (e.g. Haldar and Mahadevan, 2000; Baecher and Christian, 2003): 

 ),...,,(
21 nXXXg g    (5.8) 
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where ),...,,( 21 nxxxg  is the performance function; ix  is the value of the i-th random 

variable; 
iX is the mean value for the i-th random variable;

iX is the standard deviation 

of iX ; 
ji XX is the correlation coefficient between two random variables. The mean of 

the performance function can be approximated by the performance function value 

calculated with the mean values of input random variables. The estimate of the standard 

deviation of the performance function can be implemented by the central difference 

method if the partial derivatives cannot be obtained analytically. 
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where i is a small increment applied to the random variable. FOSM uses the means, 

standard deviations and correlation coefficients but overlooks the distributions of input 

random variables. Because the mean and standard deviation of the performance 

function depend on the formulation, different forms of performance functions would 

yield different FOSM reliability indices.  

Another approach to estimate the mean and standard deviation of the performance 

function is the point estimate method (PEM) (Rosenblueth, 1975). PEM uses 

symmetrical sampling points around the mean value point to estimate the moments of 

the performance function. Fig. 5.3 shows the sampling points for the case with three 

random variables. If the number of random variables is N, the total number of sampling 

points in PEM is 2N. P in Fig. 5.3 represents the weight for each sampling point. If all 

sampling points have the same distance from the mean value point and the random 

variables are uncorrelated, P=1/2N. If the input random variables are correlated, the 

weight can be calculated by (e.g. Baecher and Christian, 2003): 
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where si and sj represent the indicator whether the value of the i-th or j-th variable is 

above (+1) or below (-1) the mean value; ρij is the correlation coefficient between two 

random variables. PEM uses the same definition of the reliability index as Eq. (5.7). 
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Fig. 5.3. Location of the sampling points in PEM for three random variables 
(after Baecher and Christian, 2003)  

 

To illustrate the differences among these reliability methods, the stability of a 

symmetrical roof wedge above a circular tunnel is analyzed. The tunnel together with 

the roof wedge is shown in Fig. 5.4. 

 

Fig. 5.4. Illustration of a symmetrical roof wedge above a circular tunnel (after 
Low and Einstein, 2013)  

This problem was analyzed deterministically in Sofianos et al. (1999), Brady and 

Brown (2006) and extended to the probabilistic analysis by Low and Einstein (2013). 
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In Fig. 5.4, a circular tunnel with a radius R and a symmetrical roof wedge with central 

height h and apical angle 2α are subject to a vertical in situ stress p and a horizontal 

stress K0p. The confining lateral force H0 acting on the discontinuities can be calculated 

by the two-stage relaxation method presented in Brady and Brown (2006) as: 
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and the weight of the roof wedge is  

     2/cottancos22RW   (5.14) 
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where γ is the unit weight of the rock and  is the angle from the horizontal direction to 

the point where the discontinuity cuts through into the tunnel as shown in Fig. 5.4. The 

normal (N) and shear (S) forces on the two discontinuities are  
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 tanNS    (5.18) 

where ϕ is the friction angle of the discontinuity; kn and ks are the normal and shear 

stiffness of the discontinuity. It is obvious that the normal and shear forces are 

dependent on the ratio of kn and ks. Sofianos et al. (1999) defined the factor of safety as 

the ratio of pull-out resistance over the actual weight of the wedge. However, 

Asadollahi and Tonon (2010) used the factor of safety as the ratio of the upward 

resistant force over the downward driving force. These two definitions would result in 

significantly different factors of safety for the same case and this inconsistency can be 

reconciled by using the FORM analysis as explained by Low and Einstein (2013). 

The performance function of this problem is shown by Eq. (5.19), which is the upward 

resistant force deducted by the downward driving force. 
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 WNTNg   sin2costan2)(1 X   (5.19) 

where T is the upward supporting force and is the design parameter. Apart from this 

definition, other mathematically equivalent formulations of the limit state (when the 

performance function is equal to zero) can be defined using the factor of safety as: 
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The first performance function is defined as the safety margin which is the difference 

between the resistance and the load. The other two performance functions use two 

different definitions of the factor of safety. For g1, the FOSM reliability index is 

calculated by Eq. (5.7) while, for g2 and g3, the FOSM reliability index can be 

calculated by 

 
FS
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where μFS and σFS are the mean and standard deviation of the factor of safety. Note that 

the following kinematic condition should be satisfied to form a symmetrical roof wedge: 
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However, in the process of searching for the design point using the constrained 

optimization or MCS, a few points may not satisfy this condition. Under such 

circumstances, no wedge could be formed and the performance function should be set 

to positive values, indicating the wedge is stable. This is important since otherwise, a 

calculation error may occur. 

Three parameters are treated as deterministic values: R = 6 m; h/R = 0.85; γ = 0.027 

MN/m3. The other parameters are normally distributed random variables with their 

mean values and standard deviations shown in Table 5.4. No correlation is included in 

the five random variables. These values follow those used by Low and Einstein (2013) 

for illustrative purposes.  
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Table 5.4 Characteristic values for the input random variables 

Distribution Parameter Mean STD 

Normal α (°) 25 2 

Normal ϕ (°) 35 3 

Normal ks/kn 0.1 0.025 

Normal p (MPa) 0.5 0.05 

Normal K0 0.5 0.125 

 

Through trial and error, a design value for the upward supporting force T is found to be 

0.479 MN to achieve a target reliability index 3.0 by FORM analysis. If this design 

value is used and other reliability approaches (FOSM and PEM) are evaluated for 

different definitions of the performance function, the results are shown in Table 5.5. 

Table 5.5 FOSM and PEM results for three definitions of the performance 

function 

T=0.48 MN FOSM g1 FOSM FS1 FOSM FS2 PEM g1 PEM FS1 PEM FS2 

Mean 0.607 2.723 1.464 0.595 2.737 1.472 

STD 0.236 0.777 0.185 0.240 0.799 0.184 

β 2.571 2.216 2.511 2.480 2.173 2.566 

Pf 0.51% 1.33% 0.60% 0.66% 1.49% 0.51% 

 

It is clear that the reliability indices for both FOSM and PEM methods depend on the 

formulation of the performance function. The reliability indices are different even 

though the formulations of the limit state are mathematically equivalent, which means 

that β obtained from FOSM or PEM is not unique but depends on the formulation of 

the limit state function. For comparison, FORM yields the same reliability index no 

matter which formulation of the performance function is evaluated. FOSM and PEM 

gain popularity for geotechnical practitioners because of their simplicity in concept. For 

example, Orr and Breysse (2008) used the FOSM to design a foundation and compared 

with the EC7 design. For tunnelling problems, different researchers adopted PEM to 

conduct reliability analysis or reliability-based design (e.g. Park et al., 2012; Langford 

and Diederichs, 2013; Napa-García et al., 2017). However, from the case study shown 

above, FORM is superior to FOSM and PEM in terms of consistency for different 

formulations of the limit state function. 
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FORM estimates Pf based on the assumption that the limit state surface is linearized at 

the design point. More complicated methods that take into account of the curvatures of 

the limit state surface at the design point include SORM (Der Kiureghian et al., 1987). 

For geotechnical problems, the limit state surfaces are usually planar or with small 

curvatures, as shown by numerous FORM analyses (e.g. Li and Low, 2010; Low and 

Phoon, 2015). Moreover, the target reliability index for a design scenario is typically 

equal to or greater than 3.0 which corresponds to a Pf smaller than 0.13%. Even with a 

relative error of 30% for FORM compared with MCS or SORM, the true probability of 

failure is within 0.1% to 0.18%. The purpose of RBD is not to estimate the probability 

of failure as accurate as possible, but to ensure that the geotechnical structure is safe 

with a sufficiently small probability of failure (Low, 2017b). In this regard, FORM can 

be used in designs to indicate unacceptable high probabilities of failure. Besides, the 

expanding ellipsoid perspective with the constrained optimization method in the 

ubiquitous Excel platform makes it easy to implement for practitioners. Therefore, 

FORM is suggested to be used in geotechnical design problems as a complementary 

tool to the partial factor design approach. 

Next, three case studies analyzed by FORM are discussed to show the insights from 

RBD compared with the partial factor design, including the same roof wedge problem 

as shown above, a lined circular tunnel with different lateral stress conditions and a 

circular tunnel reinforced by end-anchored rockbolts considering multiple failure 

modes. 

5.4 A symmetrical roof wedge above a circular tunnel 

The same case study shown in Fig. 5.4 is analyzed with two scenarios, first without the 

supporting force and then with a designed supporting force (T=0.479 MN) to achieve a 

target reliability index (β=3.0). The results are shown in Fig. 5.5, in which the column 

xi* represents the vector of design point values in the original random variable space 

and ni* represents the vector of design point values in the correlated standard normal 

random variable space. 
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Fig. 5.5. Reliability analysis results for the tunnel roof wedge problem 

For the first scenario when the supporting force is zero, FORM yields a reliability index 

0.572 corresponding to a Pf of 28.4%. From the ni
* column, the most influential factor 

is the lateral stress coefficient K0, followed by the apical angle α and friction angle ϕ. 

MCS with 100,000 realizations gives a Pf of 33.7%. There is an approximate 16% 

relative error for FORM, which arises because of the curvatures of the limit state surface 

at the design point. The accuracy of FORM can be improved by using the second-order 

reliability method (SORM) which is an extension of FORM. For this case, the fitting 

paraboloid method proposed by Der Kiureghian et al. (1987) and implemented in Excel 

platform (Chan and Low, 2012a) is used to improve the accuracy of the estimate of Pf 

(shown by the Pf,SORM in Fig. 5.5) which agrees well with the MCS result. 

For the second scenario, the supporting force (0.479 MN) is found through trial and 

error to achieve a target reliability index 3.0. The Pf estimated from FORM, SORM and 

MCS are close to each other. For the design scenario, the difference between FORM 

and SORM is insignificant. The most influential factor is α, followed by ϕ. The 

sensitivity of the random variable is different from the first scenario. 

An interesting observation is that, for scenario 1, the design point values for p and K0 

are below their mean values, indicating that these two parameters are similar to 

“resistance factors”, while, for scenario 2, the design point values are above the mean 

Parameter xi* ni* β 0.572

α (°) 25.59 0.295 P f, FORM 28.4%

ϕ (°) 34.12 -0.294 P f, SORM 33.7%

k s /k n 0.100 -0.001 P f, MCS 33.6%

p (MPa) 0.495 -0.100

K 0 0.453 -0.379

Parameter xi* ni* β 3.000

α (°) 29.04 2.019 P f, FORM 0.13%

ϕ (°) 28.36 -2.213 P f, SORM 0.14%

k s /k n 0.100 -0.001 P f, MCS 0.14%

p (MPa) 0.502 0.049

K 0 0.520 0.157

Scenario 1 T =0 MN

Scenario 2 T =0.479 MN
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values meaning that they are “load factors”. This phenomenon can be explained as 

follows. For scenario 1, α is smaller than ϕ at the design point and the resultant force of 

N and S in the vertical direction is upward (see Eq. (5.16) and Eq. (5.17)). The larger 

the p and K0, the greater the resultant upward resistance force. Therefore, these two 

parameters are “resistance factors”. However, for scenario 2, α > ϕ at the design point. 

The resultant force of N and S is downward. With the increase of p and K0, the roof 

wedge becomes more unstable and thus these two parameters are “load factors”. It is 

evident from the above discussions that the in situ stress may play opposite roles 

(resistance or action) depending on the roof geometry. RBD via FORM can detect and 

reflect the opposite effects of the input parameters under different circumstances 

automatically, which is a desired feature that prescribed partial factors do not possess. 

5.5 A lined circular tunnel under different lateral stress conditions 

The second case study is based on the closed-form solution proposed by Einstein and 

Schwartz (1979) for a lined circular tunnel in an elastic ground with anisotropic stresses. 

The purpose of the reliability analysis of this case is to investigate the effect of the 

lateral stress coefficient on the probability of failure and the insights from RBD 

compared with the partial factor design method. 

A circular tunnel with a radius R is excavated in an elastic ground under a vertical stress 

p and lateral stress K0p as shown in Fig. 5.6. The tunnel is lined with shotcrete and the 

interaction between the rock mass and the shotcrete is represented by σR (normal stress) 

and τR (shear stress). The elastic ground and shotcrete are characterized by Young’s 

modulus (E for the ground and Es for the shotcrete) and Poisson’s ratio (ν for the ground 

and νs for the shotcrete). The thickness of the shotcrete is t. The support is assumed to 

be installed immediately after excavation. The displacement of the tunnel wall is 

calculated by the following equations assuming that there is no slip between the rock 

mass and the shotcrete (Einstein and Schwartz, 1979). 
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where us and vs are the radial and tangential displacements;  is shown in Fig. 5.6; As is 

the average cross-sectional area of the shotcrete per unit length of the tunnel; Is is the 

moment of inertia of the shotcrete per unit length of the tunnel; B1 and B2 are the 

compressibility and flexibility ratios respectively. 

The input parameters for this case study are shown in Fig. 5.6. The parameters p, K0 

and E are treated as random variables since the properties of the support (Es and νs) 

show less variability than the in situ stress (p, K0) and the properties of the rock mass 

(E). p, K0 and E are assumed to be uncorrelated lognormal random variables. 

 

Fig. 5.6. A lined circular tunnel in an elastic ground 

Deterministic input parameters:

R = 5 m

Es = 25000 MPa

νs = 0.15

ν = 0.34

Probabilistic input random variables:

p (MPa) Lognormal  μ = 0.6  σ = 0.06

K0 Lognormal  μ = 0.5 σ = 0.1

E (MPa) Lognormal  μ = 48  σ = 4.8

p

K0p
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The performance function is  

 
R

u
xg max

limiting)(     (5.28) 

where εlimiting (1% in this case) is the maximum allowable ratio of the maximum tunnel 

wall convergence (umax) over the tunnel radius R. The thickness of the shotcrete t is the 

design parameter and is found through trial and error to achieve a target reliability index 

3.0. The FORM analysis results are shown in Fig. 5.7.  

 

 

Fig. 5.7. FORM analysis results for a lined circular tunnel  

 

When the lateral stress coefficient K0 is smaller than 1 (scenario 1), the maximum tunnel 

convergence occurs at the tunnel crown and if K increases towards 1, the downward 

displacement at the tunnel crown decreases. Therefore, the lateral stress coefficient is a 

resistance parameter for this case, as indicated by the negative value (-1.807) in the n* 

column in Fig. 5.7. However, if the mean value of K0 is greater than 1.0, for example 

1.5, and the COV is kept as 0.2, t is found to be 0.66 m to achieve a target reliability 

index 3.0. The FORM results are shown as scenario 2 in Fig. 5.7. MCS with 200,000 

runs is conducted for both scenarios and Pf agrees with the target reliability index. When 

the lateral stress coefficient K0 is greater than 1, the maximum tunnel convergence 

occurs at the tunnel sidewall and if K0 increases, the horizontal displacement at the 

tunnel sidewall increases. Therefore, the lateral stress coefficient is a load parameter 

for this case, as indicated by the positive value (2.85) in the n* column. For this circular 

tunnel under anisotropic stress conditions, the role of the lateral stress coefficient 

(whether it is a resistant or loading parameter) in the tunnel convergence will change 

from case to case and cannot be reflected by the partial factor design approach.  

μ K 0.5 Parameter xi* ni* μ K 1.5 Parameter xi* ni*

σK 0.1 p (MPa) 0.716 1.828 σK 0.3 p (MPa) 0.653 0.898

t (m) 0.3 K0 0.343 -1.807 t (m) 0.66 K0 2.586 2.850

Pf (MCS) 0.120% E (MPa) 40.84 -1.569 Pf (MCS) 0.124% E (MPa) 45.93 -0.391

Scenario 1 Scenario 2
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The tunnel roof wedge problem shows that whether the vertical stress and the lateral 

stress coefficient are resistance or load factors is dependent on the relative magnitude 

of the friction angle of discontinuities and the apical angles. The lined circular tunnel 

problem shows that the role of the lateral stress coefficient for the same circular 

geometry will change for different stress coefficient values. From these two case studies, 

it is clear that the role of the vertical stress and the lateral stress coefficient should be 

determined on a case-by-case basis.  

5.6 Reliability analysis of a circular tunnel reinforced by end-

anchored rockbolts 

The case study shown in Chapter 4 is used to illustrate the opposite roles of the same 

parameter for different limit states. Bobet and Einstein (2011) proposed an iterative 

closed-form formulation for a circular tunnel reinforced by end-anchored rockbolts in 

homogeneous and isotropic elastoplastic ground with the Coulomb failure criterion as 

shown in Fig. 5.8 in which σ0 is the in situ stress, σi is the internal support pressure, r0 

is the tunnel radius, and Sθ is the circumferential distance between two adjacent 

rockbolts. This 2D formulation also considers the 3D supporting effect of the tunnel 

face by the stress reduction method using a reduction coefficient βσ. It is assumed that 

the unreinforced opening prior to rockbolt installation is subjected to an internal support 

pressure 0 , as shown in Fig. 5.9. Umax represents the final displacement of the tunnel 

section which is far away from the excavation face. D is the distance from the rockbolt 

installation position to the excavation face.  

In this chapter, two limit states, including an ultimate and a serviceability limit state, 

will be of concern. The performance functions for the system are given as: 

 TTxg  limiting1 )(   (5.29) 

 
0

limiting2 )(
r

u
xg     (5.30) 

where Tlimiting (170 kN in this case) is the maximum allowable tensile force; T is the 

mobilized tensile force in the rockbolt; εlimiting (0.5% in this case) is the limiting ratio of 

u/r0; u is the tunnel wall displacement. Note that the limiting ratio value used in this 
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case is different from the values used in Eq. (5.6) (εlimiting = 2%) and (5.28) (εlimiting =1%). 

Different values are selected to show that the limiting value is not a fixed value but 

should be carefully selected based on the requirement of different tunnels. If the tunnel 

has a stringent requirement on the convergence or the consequence of the tunnel failure 

is severe, smaller limiting values should be used. The insights provided by the reliability 

analysis are not dependent on the selection of the limiting values. 

 

Fig. 5.8. A circular tunnel with end-anchored rockbolts (after Bobet and Einstein, 
2011) 

 

Fig. 5.9. Illustration of the stress reduction method using coefficient βσ 

These two performance functions consider the mobilized tensile force in the rockbolt 

and the maximum displacement, respectively. Other input parameters are the same as 

Geometry:

Tunnel radius: r0= 3 m
Tunnel radius plus rockbolt length: ρ= 6 m

Rockbolt:

Rockbolt spacing in the axial direction: Sz= 1 m
Rockbolt spacing in the circumferential direction: Sθ= 1 m
Diameter of rockbolts: db= 25 mm
Young’s modulus of rockbolts: Eb= 210 GPa
Poisson’s ratio of rockbolts: νb= 0.3

Rock mass properties:

Young’s modulus of ground: E= 500 MPa
Poisson’s ratio of ground: ν= 0.2
Peak and residual internal friction angles: ϕp= ϕ r= 30°
Dilation angle: ψ= 0.5 ϕp

Peak and residual cohesion: cp= cr= 0.1 MPa
Stress conditions:

In situ stress: σ0= 1 MPa
3D excavation effect parameter: βσ= 0.3
Post-construction internal support pressure: σi= 0

D

Rockbolts

Excavation face

Longitudinal 
deformation profile

Umax

βσσ0

0<βσ<1

σ0
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those in Low and Einstein (2013) and are shown in Fig. 5.8. For probabilistic analysis, 

the random variables and corresponding probabilistic characteristics (means and 

standard deviations) are shown in Table 5.6. The friction angle and the cohesion of the 

rock mass are considered to be negatively correlated with a correlation coefficient -0.5. 

Table 5.6 Statistics of random variables and FORM results for the circular 

tunnel reinforced by rockbolts 

Distribution Variables Mean μ StD σ n* (g1) x* (g1) n* (g2) x* (g2) 

Lognormal βσ 0.3 0.05 0.502 0.32 -0.324 0.28 

Lognormal ϕ (°) 30 4 -0.898 26.39 -0.684 27.15 

Lognormal c (MPa) 0.1 0.01 0.197 0.101 0.193 0.101 

Lognormal E (MPa) 500 100 -0.649 431 -1.024 400 

 

FORM is conducted for these two performance functions and the results are shown in 

Table 5.6. The reliability index for the first performance function (β1) is 1.25 

corresponding to a Pf of 10.54%, whereas the reliability index for the second 

performance function (β2) is 1.29 with a Pf of 9.94%. MCS with 100,000 runs gives Pf 

of 8.87% and 10.23% for these two performance functions. Again, the design point 

values in the n-space (labelled n* in Table 5.6) reflect the sensitivity information of the 

input random variables. For the first performance function (g1), the design point value 

(labelled x*) for βσ is greater than the mean value, meaning βσ is a load factor. However, 

for g2, the design point value is smaller than the mean value, meaning βσ is resistance 

factor. The influence of βσ on the two performance functions can be explained by Fig. 

5.9. βσ represents the supporting effect from the tunnel excavation face and is related to 

the distance D from the excavation face to the rockbolt installation position. If the 

rockbolts are installed at closer locations from the face (smaller D), the effect of the 

excavation face is more significant (greater βσ). Therefore, after equilibrium, more 

loads will be carried by the rockbolts, resulting in greater tensile forces in the rockbolt 

and smaller final displacements of the tunnel. Thus, increasing βσ will decrease β1 but 

increase β2. This explains why βσ plays opposite roles for the two performance functions.  

Similar situations exist for other parameters, for example Young’s modulus of the 

rockbolts (Eb). If stiffer steels (greater Eb) for the rockbolts are used, after equilibrium, 

the mobilized tensile force becomes larger and the final displacement smaller. Eb also 

exhibits opposite effects on different performance functions. This phenomenon may 
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appear for other geotechnical problems and it is difficult for the design code to specify 

that one parameter should be factored up for one performance function and factored 

down for the other performance function. RBD via FORM can determine the role of 

the input parameter automatically and on a case-by-case basis. In this regard, RBD can 

complement partial factor design codes for a better understanding of the effects of the 

input parameters. Furthermore, RBD through the system reliability analysis can 

investigate not only the individual limit state but also the interaction among all limit 

states (see Chapter 4). 

5.7 Summary and conclusion 

In this chapter, the differences between RBD via FORM and the partial factor design 

approach are presented first. Then, different reliability analysis methods including 

FOSM, PEM and FORM are compared using a roof wedge stability problem with three 

definitions of the limit state. Results show that FORM is consistent and, with the 

intuitive expanding ellipsoid perspective, it is easy to understand and implement for 

practitioners. Next, three different tunnelling problems including stress-controlled and 

structurally-controlled failure mechanisms are presented to show that RBD via FORM 

can play a complementary role to the partial factor design approach and help the 

evolution of EC7 for rock engineering problems. 

To sum up, RBD via FORM can complement partial factor design approaches for rock 

engineering problems when  

 rock parameters which are not covered in the design code are involved; 

 the correlation and spatial correlation of the input parameters should be 

considered; 

 the parameter sensitivities vary from case to case; 

 the uncertainties of geometrical parameters are involved; 

 the role of the same parameter as a resistance or load factor may change from 

case to case; 

 the same parameter has opposite effects on different performance functions. 



Chapter 5 Reliability-based design of tunnelling problems and insights for Eurocode 7 

127 

In rock engineering, the role of the input parameter whether it is resistance or load factor 

may be case-specific. For example, the in situ stress, seemingly a load parameter, may 

exhibit resistant behavior for different problems. The change of roles from case to case 

cannot be specified by the prescribed partial factors. Therefore, RBD via FORM can 

provide insights which may be overlooked by the partial factor design approach and, 

thus, can complement EC7 and help the evolution of EC7 for rock engineering. 

In the above case studies, analytical solutions or iterative closed-form solutions are used 

so that readers can readily replicate these examples. In geotechnical practice, problems 

are complex and require numerical methods such as the finite element method or finite 

difference method. For this situation, RBD via FORM can still be applied with the help 

of surrogate models as a bridge connecting FORM and numerical software (see Chapter 

3 and 4). Although RBD can play a complementary role to the partial factor design 

approach as shown by different case studies, it is not intended to suggest replacing the 

partial factor design approach with RBD. Practitioners are used to design a structure 

based on the specifications of design codes and may not be familiar with the concept in 

RBD. The sensitivities of the input parameters vary from case to case and the back-

calculated partial factors from RBD are not fixed but may change significantly. 

Therefore, calibration of rock parameters using RBD may not be practical. 

Previous chapters illustrate the reliability analysis and reliability-based design using 

closed-form or iterative closed-form solutions. Next, a real-life rock excavation project 

in Singapore is analyzed in Chapter 6. 
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Chapter 6 Case study: Jurong Rock Cavern (JRC) in 

Singapore 

Previous chapters concern the reliability analysis method and reliability-based design. 

Closed-form or iterative closed-form solutions are used to illustrate the approach and 

simple case studies are used to show the insights from the reliability-based design 

compared with the partial factor design approach. This chapter focuses on how to 

characterize the statistical information of rock engineering properties from in situ and 

laboratory tests and how to conduct the reliability analysis of a complex problem 

without closed-form solutions, illustrated by a real-life underground rock excavation 

project. 

6.1 Background 

Jurong Rock Cavern (JRC) is Southeast Asian’s first underground facility for oil 

products storage and is Singapore’s first large-scale commercial underground project. 

It is located at about 130 m below the Banyan Basin on Jurong Island, a partially 

reclaimed island to the southwest of Singapore mainland (refer to Fig. 6.1). 

 

Fig. 6.1. Location of JRC project (after TriTech, 2007) 

Jurong Island

Banyan Basin

JRC Project

Singapore



Chapter 6 Case study: Jurong Rock Cavern (JRC) in Singapore 

129 

The ground-breaking ceremony of JRC was in February 2007 and the opening 

ceremony in September 2014. During this period, Phase 1 of JRC project was excavated 

with a total excavation volume about 3 million m3 and a storage capacity of 1.5 million 

m3. The 3D view of the JRC project is given in Fig. 6.2. 

 

Fig. 6.2. Layout of the caverns (after JTC, 2010) 

 

Fig. 6.3. Generalized vertical geological profile (after Kar Winn, 2016) 
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There are two vertical shafts (AS1 and AS3) connecting the underground facilities to 

the above-ground. Phase 1 of JRC consists of 9 storage caverns, each of which is 340 

m long, and associated access tunnels and operation tunnels which are 8 km in length. 

The 9 caverns can be divided into one single cavern (CS1-1) and four twin caverns 

(CS1-2, CS1-3, CS1-4 and CS1-5). Phase 2 remains unexcavated and is used for future 

extension of Phase 1. The water gallery is located at level 1 and 9 caverns are located 

at level 0, as shown in Fig. 6.3. The 9 caverns have the same excavation geometry with 

a height of 27 m and a span of 20 m. 

6.2 Preconstruction investigation  

Before the construction started, extensive site investigations and laboratory tests had 

been conducted to investigate the underground conditions. The exploration work can 

be divided into three stages including the Soil Investigation (SI, 2001-2002), 

Geological and Rock Investigation (GRI, 2003-2004) and Complementary Site 

Investigation (CSI, 2006-2007). The first stage was not directly related to JRC project 

and the information collected is limited. Therefore, only the data from GRI and CSI is 

focused on and summarized in the next section. All the information regarding the 

preconstruction stage of JRC project is obtained from the reports listed below. 

 TriTech (2004), Geological and Rock Investigation at Jurong Island. Factual 

results, Volumes I, II, III and IV. (Tritech, 2004) 

 TriTech (2007), Final Report of Complementary Site Investigation at Banyan 

Basin, Jurong Island, Volumes I, II and III. (Tritech, 2007) 

 Jurong Town Corp. (2007), Geotechnical Baseline Report. (JTC, 2007) 

 Jurong Town Corp. (2008), Geotechnical Data Report. (JTC, 2008) 

 Jurong Town Corp. (2010), Geotechnical Design Report. (JTC, 2010) 

Nanyang Technological University (NTU) conducted research about JRC project from 

2007 to 2012. Some more rock samples retrieved during excavation were tested by the 

NTU research team. The test results are included in the following research report. Some 

research test results were published by Li et al. (2012), Li and Wong (2013) and Wong 

et al. (2013). 
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 NTU (2013), Final report of the 2007-2012 Jurong Rock Cavern research. (NTU, 

2013) 

During the site investigation, boreholes were used to carry out in situ tests and the rock 

core samples from boreholes were used for laboratory tests. The investigation work is 

summarized in Table 6.1. During CSI, the geophysical survey using refraction seismic 

method was conducted to clarify the geological conditions under Banyan Basin. 

Physical properties, such as the temperature and electrical resistivity, were surveyed by 

the geophysical wireline logging. For all three stages of site investigations, 32 boreholes 

were drilled and used for different site investigation purposes. The locations of these 

boreholes and their relative positions with the JRC project are shown in Fig. 6.4. The 

straight lines associated with some of the inclined boreholes indicate the borehole 

direction. 

Table 6.1 Summary of the site investigation  

Investigation Methodology  Purpose or outcome 

In situ 
tests 

Geophysical 
survey 

Refraction seismic 
survey 

Geological conditions 
under Banyan Basin 

Hydrogeological  
in situ test 

Single and multiple 
well test 

Hydraulic conductivity 
and transmissivity 

Geophysical 
wireline logging 

Borehole televiewer 
(BHTV) 

Orientation and spacing of 
discontinuities 

In situ stress test 
Hydraulic fracturing 
method 

In situ stresses 

Lab 
tests 

Thin section test   Rock type and mineralogy 

Rock test 

Point Load Test, 
Uniaxial Compression 
Test,  
Triaxial Test,  
Brazilian Tensile Test 

Engineering properties 

Compatibility test   
Interaction among rock, 
water and the product 

 

The rocks under the Banyan Basin belong to the Jurong Formation, sedimentary rocks 

widely distributed on the western part of Singapore. The sedimentary rocks extracted 

from exploring boreholes include mudstone, siltstone and sandstone. The differences 

among these three rock types lie in the grain size and colour. The grain size gradually 
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increases and the colour becomes lighter for the mudstone, siltstone and sandstone. 

These rocks always appear interbedded. The main rock type is the sandstone. 

Igneous rocks are only found in dykes and sills, which are composed mainly of quartz 

and feldspar. As a result, localized contact metamorphism exists in the vicinities of the 

dykes. Another metamorphism is the regional metamorphism which hardens the 

sedimentary rocks. These metamorphisms make the sedimentary rock stronger and an 

ideal material for cavern construction. 

 

Fig. 6.4. Location of all boreholes (after JTC, 2010) 

 

6.3 Deterministic and statistical characterization of engineering 

properties of the rock 

Uniaxial compression test is an important laboratory experiment to determine the 

uniaxial compressive strength (UCS) as well as the elastic properties including the 
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Young’s modulus for the intact rock. Therefore, a large number of UCS tests were 

conducted on the rock core samples retrieved from boreholes during the site 

investigation, including 103 tests for GRI 2004 and 49 tests for CSI 2007. In addition, 

during construction, 80 samples from the excavated rock in the operation tunnel were 

used by the NTU research team. The details of rock samples are listed in Table 6.2. 

Table 6.2 List of boreholes and numbers of samples for UCS test 

Site 
Investigation 

Total Number of 
tests 

Borehole 
Number of 

tests  
Depth range 

(m) 

GRI 2004 103 

VBH 1-1 10 53-99 

VBH 1-3 10 52-100 

VBH 2-1 10 86-135 

VBH 2-2 2 73-77 

VBH 2-3 5 31-94 

VBH 3-1 8 22-98 

HDD 1-1 10 92-398 

HDD 1-2 8 116-400 

HDD 1-3 9 99-398 

HDD 2-1 7 137-393 

HDD 2-2 3 132-186 

HDD 3-1 9 120-396 

IBH 1-1 3 41-93 

IBH 1-2 3 154-199 

IBH 3-1 6 99-197 

CSI 2007 49 

VBH 4-1 15 69-181 

VBH 4-2 11 93-194 

VBH 4-3 21 51-193 

MBH 4-12 1 29 

MBH 4-13 1 48 

NTU 2013 80 

Sandstone 56 100 
Conglomerated 

sandstone 
4 100 

Conglomerate 12 100 

Limestone 8 100 

 

The location of each borehole can refer to Fig. 6.4. Rock samples from 15 boreholes 

were used for the UCS test during GRI 2004. These boreholes were widely distributed 

around the Banyan Basin and intended to give a general description of the rock 

properties in this area. On the other hand, although only three boreholes were used 

during the CSI 2007, these boreholes were closer to JRC, especially VBH 4-1 and 4-3, 
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which are directly located at two vertical shafts. The depth of the retrieved rock cores 

(CSI 2007) was in accordance with the depth of JRC which was about 100-150 m below 

the ground. NTU research team conducted 80 tests for different types of rocks. These 

samples were retrieved from the blocky rocks from the excavation adjacent to AS3 on 

Level 1. The statistical characterization of UCS values is conducted and a summary of 

the results is shown in Table 6.3. 

Table 6.3 Statistical information of UCS  

Site 
Investigation 

Statistical 
Information 

Borehole Mean (MPa) STD (MPa) COV 

SI 2004 

Mean=100.9 
Min=14.9 

Max=258.6 
STD=58.6 
COV=0.58 

VBH 1-1* 71.03 37.12 0.52 

VBH 1-3* 122.23 70.81 0.58 

VBH 2-1* 86.15 38.96 0.45 

VBH 2-2 33.59   

VBH 2-3 97.33   

VBH 3-1 42.18 25.05 0.59 

HDD 1-1* 109.13 80.98 0.74 

HDD 1-2 101.52 44.40 0.44 

HDD 1-3 144.09 63.62 0.44 

HDD 2-1 145.27 48.43 0.33 

HDD 2-2 70.60   

HDD 3-1 117.50 65.42 0.56 

IBH 1-1 92.59   

IBH 1-2 131.53   

IBH 3-1 91.37 40.29 0.44 

CSI 2007 

Mean=95.8 
Min=27.2 

Max=221.2 
STD=41.3 
COV=0.43 

VBH 4-1* 82.20 35.95 0.44 

VBH 4-2* 104.02 40.39 0.39 

VBH 4-3* 103.85 45.25 0.44 

MBH 4-12 58.07   

MBH 4-13 79.42   

NTU 2013 

Mean=199.1 
Min=86.2 

Max=381.9 
STD=65.8 
COV=0.33 

Sandstone* 209.92 68.60 0.33 

Conglomerated 
sandstone 

192.93   

Conglomerate* 191.55 58.03 0.30 

Limestone 137.59 27.11 0.20 

Note: * means more than ten rock cores were tested in this borehole 

 

The mean, standard deviation (STD) and coefficient of variation (COV) values for each 

borehole and for all samples from different site investigations are provided in Table 6.3. 
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Note that only a few boreholes labelled by * in the table have more than 10 samples 

retrieved and the average COV for these boreholes is 0.50. This value may help 

engineers have a general idea about the variation of UCS in one borehole. For other 

boreholes, the STD and COV values may be meaningless due to not enough data points. 

The STD and COV values for boreholes with less than 5 samples are ignored. The 

average UCS values (about 100 MPa) are similar for GRI 2004 and CSI 2007. The 

variation of the UCS values is significant since boreholes cover a large area and 

different depths. Various sedimentary rock samples, ranging from fresh to slightly 

weathered and from uniform to interbedded, were tested and the results are expected to 

display great variation. Compared with GRI 2004 and CSI 2007, the UCS values are 

greater and the variation is smaller for rock samples tested by the NTU research team. 

This may be caused by several reasons. 

 Disturbance to the rock samples. For the site investigation, the rock cores were 

retrieved from long boreholes under high in situ stress conditions whereas, for 

NTU research, the rock samples were obtained from blocky rocks excavated 

during construction. The damage caused by the borehole drilling may yield the 

lower strength values. 

 Selection of rock samples. The rock cores from boreholes were tested regardless 

of the weathering and interbedded conditions for the site investigation. However, 

the samples for NTU research were highly selective to represent different rock 

types such as the fresh homogeneous sandstone. Therefore, the variation of UCS 

values obtained for the site investigation is more significant. 

 Carefulness and proficiency of the staff. Different groups of staffs might be 

assigned to conduct the UCS test during the site investigation and the 

proficiencies are different. NTU research team, however, conducted the test 

more cautiously and the entire procedure was well recorded. 

 

A lognormal distribution is found to best describe the UCS data obtained from the site 

investigation and during construction as shown in Fig. 6.5 and Fig. 6.6.  



Chapter 6 Case study: Jurong Rock Cavern (JRC) in Singapore 

136 

 

Fig. 6.5. Lognormal distribution fitted to the UCS data (Site Investigation 2004 
and GRI 2007) 

 

Fig. 6.6. Lognormal distribution fitted to the UCS data (NTU 2013) 

Similarly, the mean, STD and COV of the Young’s modulus Ei for the intact rock can 

be obtained and are shown in Table 6.4. For borehole MBH 4-12 and 4-13, the Young’s 

modulus was not recorded in the report. The COV ranges from 0.14 to 0.78. For 

boreholes with more than ten tests, the average COV is around 0.4. Apart from the 

statistical information of Ei, the correlation coefficient between UCS and Ei can be 

calculated as shown in the last column in Table 6.4. If all the test values for UCS and 

Ei are calculated, the correlation coefficient is 0.53, as shown in Fig. 6.7.  
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Table 6.4 Statistical information of Young’ modulus of the intact rock 

Site 
Investigation 

Statistical 
Information 

Borehole 
Mean 
(GPa) 

STD 
(GPa) 

COV 
Correlation 
Coefficient 

GRI 2004 

Mean=49 
Min=1.4 
Max=138 
STD=23.1 
COV=0.47 

VBH 1-1* 33.53 13.38 0.40 0.60 

VBH 1-3* 42.50 16.37 0.39 0.92 

VBH 2-1* 53.42 23.80 0.45 0.60 

VBH 2-2 22.55   1.00 

VBH 2-3 41.18   0.35 

VBH 3-1 39.23 30.53 0.78 0.45 

HDD 1-1* 42.78 22.12 0.52 0.70 

HDD 1-2 61.53 20.12 0.33 0.45 

HDD 1-3 66.79 30.88 0.46 0.60 

HDD 2-1 68.20 18.32 0.27 0.25 

HDD 2-2 31.81   0.95 

HDD 3-1 54.49 10.65 0.20 0.59 

IBH 1-1 30.21   0.99 

IBH 1-2 45.27   -0.59 

IBH 3-1 63.04 8.85 0.14 -0.54 

CSI 2007 

Mean=57.4 
Min=26.6 
Max=90 

STD=16.6 
COV=0.29 

VBH 4-1* 63.97 17.61 0.28 0.57 

VBH 4-2* 53.77 18.41 0.34 0.58 

VBH 4-3* 54.54 14.22 0.26 0.61 

MBH 4-12    
 

MBH 4-13         

Note: * means more than ten rock cores were tested in this borehole 

 

Fig. 6.7. Correlation between UCS and Ei  
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The positive correlation is expected since stiffer rock cores tend to have higher 

compressive strengths. Poisson’ ratio ν can be obtained together with the Young’s 

modulus in the UCS test. Because ν shows less variation and it has little effect on the 

tunnel displacement, it is regarded as a deterministic value with the mean value 0.25. 

Apart from the uniaxial compression test in which UCS and Ei are obtained, other 

laboratory tests were conducted during site investigation and construction. The 

numbers of various tests are summarized in Table 6.5. For the triaxial tests, four to six 

rock core samples are compressed at different confining pressures. The strength 

parameters cohesion c and friction angle ϕ are determined based on the best-fit failure 

envelope. During the test, some samples failed along the existing discontinuities with 

unpredictable low strength values. These test results were abandoned. Therefore, 

although 109 triaxial tests were conducted for GRI 2004, only 16 (shown in the 

parenthesis in Table 6.5) pairs of c and ϕ values were obtained. For the triaxial 

compression test and the Brazilian tensile test, the NTU research group focused on the 

influence of the water on the sedimentary rock strength not on estimating the rock 

strength for JRC project. The rock core samples were dried or saturated before the test. 

This action rendered the rock cores different from the original ones. Therefore, the test 

results were not analyzed in this chapter.  

Table 6.5 Numbers of different laboratory tests 

  
Uniaxial 

compression test 
Triaxial 

compression test 
Brazilian 

Tensile Test 
Density 

GRI 2004 103 109 (16) 102 105 

CSI 2007 49 193 (39) 48 47 

NTU 2013 80 70 88 - 

 

The statistical information of c and ϕ from the triaxial test, the tensile strength σt from 

the Brazilian tensile test and the bulk density ρB from the density test is presented in 

Table 6.6. As expected, the bulk density shows less variation and typically is not 

modelled as a random variable. While the COV of the cohesion and tensile strength is 

around 0.4 to 0.5, the variation of the friction angle of the intact rock is less significant. 

For all the cohesion and friction angle values obtained, the correlation coefficient is -
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0.37, as shown in Fig. 6.8. Similar to the soil properties, the cohesion and friction angle 

of intact rocks show a negative correlation. 

Table 6.6 Statistical information for other engineering properties of intact rocks 

    
Cohesion c 

(MPa) 
Friction 

angle ϕ (°) 

Tensile 
strength 
(MPa) 

Bulk 
density 
(g/cm3) 

GRI 2004 

Mean 19.6 51.0 10.9 2.6 

Min 8.3 41.1 0.8 2.2 

Max 30.7 62.8 25.0 2.8 

STD 6.9 5.9 5.6 0.12 

COV 35.1% 11.6% 51.9% 4.6% 

CSI 2007 

Mean 27.8 48.2 11.8 2.7 

Min 6.6 32.8 1.9 2.5 

Max 54 62.0 24.2 2.8 

STD 12.5 7.3 5.0 0.05 

COV 44.8% 15.1% 42.2% 1.8% 

Random 
variable 

Distribution Lognormal  Normal Lognormal  

Mean 25.6 49.0 11.5  

STD 13.3 7.0 7.6   

 

 

Fig. 6.8. Correlation between cohesion and friction angle 

Aladejare and Wang (2017) summarized the variation range of the engineering 

properties for igneous, sedimentary and metamorphic rocks. Here, the ranges for the 

30

35

40

45

50

55

60

65

0 10 20 30 40 50 60

F
ri

ct
io

n 
an

gl
e 

(
)

Cohesion (MPa)

GRI 2004

CSI 2007

ρϕc = -0.37



Chapter 6 Case study: Jurong Rock Cavern (JRC) in Singapore 

140 

sedimentary rocks (shown in Table 6.7) are used to compare the results from JRC 

project. The mean values of the properties for the JRC sandstone lie within the range 

of the mean values (third row in Table 6.7). The COV values for the JRC sandstone 

agree well with the mean COV from the global database, verifying that the COV values 

calculated for the JRC sandstone represent the typical variations of engineering 

properties of the sedimentary rock. 

Table 6.7 Global database for sedimentary intact rocks 

  
Bulk 

density 
(g/cm3) 

UCS 
(MPa) 

Ei (GPa) 
Cohesion 
c (MPa) 

Friction 
angle ϕ (°) 

Tensile 
strength 
(MPa) 

1. Mean 
value 

2.7 62.8 23.7 21.23 41.71 7.9 

2. Range 
of mean 

1.73-3.00 4.4-264 0.6-73.2 2.6-31.8 24.9-58.3 1.2-17 

3. Mean 
COV(%) 

1.2 42.8 43 42.8 14.1 31.5 

4. COV 
range(%) 

0.4-13.0 0.4-109.6 7-128 15.7-79.0 3.9-30.6 1.6-59.3 

 

In engineering practice, the rock mass classification systems, such as the RMR, Q and 

GSI, are of great importance since the support design is mainly based on the empirical 

charts for different systems as shown in Chapter 2. These systems require a value 

estimated based on the face mapping to indicate the quality of the rock mass. For 

example, one of the face mapping logged during the excavation of JRC is shown in Fig. 

6.9 and the corresponding photo of the excavation face shown in Fig. 6.10. Altogether, 

more than 300 face mappings were conducted during the construction of CS1-1. Q and 

RMR values were estimated independently based on the mappings. The results are 

shown in Fig. 6.11. The correlation function is in agreement with those presented in 

Table 2.2 (Chapter 2). The RMR values can be described by a normal distribution with 

mean 69 and standard deviation 5.6. The Q values can be described by a lognormal 

distribution with mean 21 and standard deviation 14.  
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Fig. 6.9. An example of geological mapping of excavation face (after Kar Winn, 2016) 
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Fig. 6.10. Picture of the excavation face corresponding to the geological map (after Kar Winn, 2016)
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Fig. 6.11. Correlation between RMR and Q 

 

The GSI values were not estimated during excavation but it is the most important 

parameter for the Hoek-Brown failure criterion which is widely used in the numerical 

simulation. Hoek and Brown (1997) used the following equation to convert RMR to 

GSI values for RMR>23 

 5 RMRGSI  (6.1) 

Based on this equation, GSI would have the same STD as RMR. The mean value of 

GSI would be 64. However, Kar Winn (2016) pointed out that GSI values should be 

lower than 64 based on the chart to estimate GSI. The chart is shown in Fig. 2.3 in 

Chapter 2. Based on the geological mapping, the rock mass is very blocky and the 

surface condition is fair to good. Therefore, the average value of GSI should be 40 to 

60. In this chapter, the GSI is modelled as a normal random variable with a mean of 

50 and a STD of 5.6 (same STD with RMR). 

In the numerical simulation, rock mass properties instead of intact rock properties are 

required. Hoek and Brown proposed a nonlinear failure criterion (Hoek et al., 2002) 

for the rock mass together with a series of equations to estimate the rock mass 

properties. 
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where σ1 and σ3 are the maximum and minimum principal stresses at failure; mi is the 

Hoek-Brown material constant for the intact rock; mb is a reduced value of mi for the 

rock mass; s and a are constants for the rock mass; σci is the UCS of the intact rock; 

D is factor depending on disturbance to the rock mass by blast damage and stress 

relaxation. It varies from 0 for undisturbed rock mass to 1 for very disturbed rock 

mass. For intact rocks, s =1 and a =0.5. Therefore, the Hoek-Brown failure criterion 

for intact rocks becomes 
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Based on Eq. (6.7), the mi values can be determined based on the triaxial test results. 

50 values for mi are calculated using the software RocData (www.rocscience.com). 

The mean value is 21 and STD is 13 with a COV of 0.6. Aladejare and Wang (2017) 

collected two groups of mi data (6 test values) and gave a mean of 18.83 and COV of 

0.23. Because the data collected from literature is limited, the COV is smaller 

compared to that calculated based on JRC triaxial test data. The mi can be modelled 

by a lognormal distribution with mean 21 and STD 14. 

The deformation modulus of the rock mass can be estimated with GSI, Ei (for intact 

rock) and D as (Hoek and Diederichs, 2006): 
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The disturbance factor D is regarded as 0 for the JRC project. With the statistical 

information calculated for GSI and Ei, the distribution of Erm can be readily 

determined by Monte Carlo simulation. The results are shown in Table 6.8. 

Table 6.8 Statistical information for GSI, Ei and Erm 

  GSI Ei (GPa) Erm (GPa) 

Distribution Normal Normal Lognormal 

Mean 50 51.6 16.36 

STD 5.6 21.5 8.8 

 

In the in situ test report, there is no mention about the variation of the measured in 

situ stresses. Only the equation for estimating the in situ stress is provided. The 

vertical stress can be estimated by  

  85028.004.2)(  ZMPav  (6.9) 

where Z (m) is the depth below the ground. The lateral stress ratio is suggested to be 

σH : σh : σv = 2.2 : 1.8 :1 at the depth of 100 m below the ground.  σH and σh are the 

maximum and minimum horizontal stresses. The lateral stress ratio is in accordance 

with the typical value displayed by the world stress map for Southeast Asia, as shown 

in Kar Winn (2016). 

6.4 Deterministic analysis of JRC project  

FLAC3D (www.itasca.com), which is a finite difference method software, is used to 

model the excavation of the cavern and to estimate the displacement. The 2D 

excavation geometry and the finite difference mesh are shown in Fig. 6.12. For the 

numerical simulation model, all four boundaries are roller boundaries preventing 

movement in the normal directions of the boundaries. 

The top heading was excavated first from one end to the other, followed by bench 1 

and bench 2 excavation. First, the support is not added in the 2D analysis. All the 
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input parameters follow the mean values, as shown in Table 6.9. K0 is the lateral stress 

coefficient. 

 

Fig. 6.12. Excavation geometry of the cavern and the finite difference mesh 

Table 6.9 Input parameters for the deterministic 2D analysis 

GSI Erm (GPa) mi σc (MPa) K0 σv (MPa) ν ρB (g/cm3) 

50 16.36 21 102 2.2 3.3 0.25 2.8 
 

After the excavation, the maximum vertical displacement is around 3 mm at the 

crown of the cavern while the maximum horizontal displacement is 11 mm at the 

sidewall. The displacement contours are shown in Fig. 6.13. 

The most influential factor of the displacement is the deformation modulus of the 

rock mass, which is a function of GSI and Ei. The selection of GSI is subjective based 

on the Hoek’s table. For this case, the mean value is selected to be 50. Others with 

the same face mapping may select 40 or 60. Furthermore, the empirical equation to 

estimate Erm is not unique. For example, Hoek et al. (2002) used another equation 
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The Erm values calculated with different GSI values and empirical equations are 

presented in Table 6.10. If GSI=40 and Hoek 2002 equation is used, the estimated 

Erm is 5.6 GPa. The corresponding displacement at the crown is 8 mm and at the 

sidewall is 30 mm. Obviously, the estimate of Erm has a significant influence on the 

cavern displacement. 

 

Fig. 6.13. Displacement contours for 2D deterministic analysis 

 

Table 6.10 Different deformation modulus values of rock mass 

GSI Equation  Ei (GPa) Erm (GPa) 

40 
Hoek 2002 51.6 5.6 

Hoek 2006 51.6 8.2 

50 
Hoek 2002 51.6 10.0 

Hoek 2006 51.6 15.9 

60 
Hoek 2002 51.6 17.8 

Hoek 2006 51.6 26.8 

 

For JRC, the shotcrete and the rockbolts were installed as the rock support. The 

support cannot be installed immediately after excavation. After mucking out of rock 

debris, the shotcrete was applied first, followed by the installation of rockbolts. The 

support was installed about 5 to 10 m behind the excavation face. In reality, the cavern 
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excavation is a three-dimensional problem. The delayed installation of support can 

be modelled in the simplified 2D analysis by the stress reduction method as 

mentioned in Chapter 4 and 5. In order to determine the displacement which has 

occurred before the installation of support, the longitudinal deformation profile (LDP) 

is required from the 3D analysis.  

The 2D model shown in Fig. 6.12 is extended to 3D with a length of 200 m in the 

normal direction. The length is long enough to cover the range of the influence of the 

excavation face. The mean values shown in Table 6.9 are used. The LDP for the 

cavern crown after the excavation of the top heading is displayed in Fig. 6.14. The 

negative displacement value means the crown deforms downward. 

 

Fig. 6.14. Longitudinal deformation profile for the cavern crown 

At 5 m and 10 m behind the tunnel face, the displacement is about 70% and 85% of 

the final displacement. This shows that the support will have limited effect on 

reducing the displacement compared with the case without support for the cavern roof. 

The influence of the excavation face covers from about 15 m ahead of the tunnel face 

to 30 m behind the face. 

For the horizontal sidewall displacement, the LDP is shown in Fig. 6.15. The negative 

sidewall displacement means that the rock mass deforms towards the inside of the 
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cavern. Unlike the LDP for the crown which converges to zero displacement ahead 

of the tunnel, the LDP for the sidewall converges to about 1 mm displacement. This 

is because the sidewall of the unexcavated part has already moved due to the top 

heading excavation. At 5 m and 10 m behind the tunnel face, the displacement is 75% 

and 88% of the final displacement which is about 8 mm after bench 1 excavation. 

With the excavation of bench 2, the sidewall displacement will increase to 11 mm as 

shown in Fig. 6.13.  

 

Fig. 6.15. Longitudinal deformation profile for the cavern sidewall 

The stress reduction method used in the numerical simulation can be conducted in 

two steps. First, apply a support pressure to the excavation boundary and run the 

program until equilibrium. Second, remove the pressure, install the rock support and 

run the program until equilibrium. Based on the result from LDP, the stress reduction 

coefficient βσ can be determined through trial and error to match the displacement 

before support installation. The input parameters for the rock support are shown in 

Table 6.11. The rockbolt is the fully grouted glass fibre reinforced polymer bolts. The 

first three parameters are the Young’s modulus, Poisson’s ratio and the thickness of 

the elastic shotcrete. The other parameters are for the rockbolts, including the length 

(Lbolt), in plane spacing (S), out of plane spacing (Sz), Young’s modulus (Ebolt), tensile 

strength (Tlimiting), the circular grouting area and others. The support is only slightly 
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stiffer than the rock mass. The effect of the support on reducing the displacement is 

limited. 

Table 6.11 Input parameters for the rockbolt and shotcrete 

Es (GPa) vs t (m) Lbolt (m) S (m) Sz (m) 

20 0.15 0.08 5 2.2 2.2 

Ebolt (GPa) 
Tlimiting 
(MN) 

Area (mm2) 
Bond strength 

(MN/m) 
Bond shear stiffness 

(MN/m/m) 

50 0.35 380 0.188 100   
 

The stress reduction method is implemented by using the built-in programming 

language in FLAC3D, shown in Appendix D. For the top heading excavation, the 

stress reduction coefficient βσ =0.2 is found to achieve a displacement of 2 mm while 

the final displacement is the same as that in Fig. 6.14, verifying that the support has 

limited effect on the roof displacement. For the sidewall displacement, the same value 

0.2 for the stress reduction coefficient is found and the corresponding horizontal 

displacement is 6 mm. 

With the reduction coefficient determined and the statistical information summarized, 

the reliability analysis of the cavern can be conducted, which will be shown in the 

probabilistic analysis section.  

6.5 Monitoring displacement results 

The above section discussed the displacement calculated from the numerical 

simulation. For an actual project, it is important to use the monitoring data to verify 

the simulation result and to calibrate the input parameters. However, for the JRC 

project, the monitoring data cannot be used for such purposes. In this section, the 

monitoring data is presented and the reason why the data cannot be used is explained. 

After excavation, monitoring devices using glass prisms were installed at selected 

cross sections along each cavern to record the displacements of the cavern boundary. 

The total station was used to record the coordinates of the glass prisms. The readings 

for each glass prism from the total station represent the 3D coordinates of each 

monitoring point. When the prisms were first installed, the initial readings were 
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recorded as the original location. Later, the coordinates of each monitoring point were 

logged regularly. The difference between later readings of the coordinate and the 

initial reading is taken as the displacement for each point. 

For each cavern, there is a benchmark point in the connection tunnel for calculating 

the global coordinates of the monitoring points. Although most total stations are 

capable of measuring distances longer than 1 kilometre, several temporary relay 

points were set in the cavern to connect the benchmark point to the monitoring points 

which are far away, due to the poor light conditions and the duct in the cavern. 

There are three cross sections selected for the CS 1-1 cavern. At each cross section, 

9 monitoring points, covering the roof arch and two sidewalls, distribute 

symmetrically as shown in Fig. 6.16. The positive displacement means the rock 

moves upward or to the right. 

 

Fig. 6.16. Distribution of the monitoring points and the estimated distance 
from monitoring device to excavation face 

The original data only contains the date when each monitoring device was installed 

and the recorded displacement with time. What is missing of the data is the distance 

from the device installation point to the excavation face. In order to estimate the 

distance indirectly, the time of installing the monitoring device and the excavation 

progress at this time should be known, as shown in Fig. 6.16. The former is available 

from the monitoring data and the latter can be acquired from the construction 

schedule. The estimated distances for CS 1-1 are shown in Table 6.12. First two 
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columns contain the information from the monitoring data (the location of each cross 

section and the date when the monitoring device was installed). The location of the 

excavation face in the third column is obtained based on the date shown in the second 

column together with the construction schedule. As a result, the distance from the 

excavation face to the monitoring device is the difference between the first and third 

column. 

Table 6.12 Locations of monitoring device and the estimated distances  

Monitoring 
device location 
(m) 

Date of 
instrument 
installation 

Excavation face 
location (m) on the 
date of starting 
monitoring 

Distance from 
excavation face to 
monitoring location 
(m) 

30 05-04-2011 70 40 

60 23-04-2011 120 60 

200  11-06-2011 240 40 

 

As seen from Table 6.12, the monitoring device was installed far away from the 

excavation face. From LDP, the monitoring device installed more than 30 m away 

from the excavation face will record almost zero displacement. The roof 

displacements with time for the second cross section of CS 1-1 are shown in Fig. 6.17. 

 

Fig. 6.17. Roof point 3 settlements with time (CS 1-1 60 m) 
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Most readings are within 2mm but show an obvious undulating pattern. The same 

phenomenon exists for other monitoring data. The monitoring device is far away from 

the excavation face and cannot capture the immediate displacement due to excavation. 

That’s why almost zero displacement is recorded. The up-and-down change of the 

monitoring displacement is odd and may attribute to the errors listed below. 

 The measurement error caused by the total station can be expressed by 

 )( Dppmbmmaet   (6.11) 

where a is the constant error; b is the proportional error with distance D; ppm 

means part per million. For example, if )12( Dppmmmet  and D < 1 

km, the error caused by the total station is within 3 mm.  

 The benchmark location in the connection tunnel and the relay points in the 

cavern are assumed to be fixed. However, the location may slightly move due 

to the excavation. 

 The drill-and-blast may cause the relative movement and rotation of the glass 

prism with respect to the rock and thus may render the measurement 

erroneous. 

 Human factors may also cause the error.  

As shown above, the monitoring data for JRC cannot be used directly to compare 

with numerical analysis and to calibrate or back-calculate the input parameters. This 

does not impair the importance of the monitoring device in the safe construction. For 

an actual project like JRC, the monitoring device is only used to make in time 

warnings about unpleasant or unfavorable behavior that may cause serious 

consequences. This observation technique used during construction is a core principle 

of the New Austrian Tunnelling Method. 

Apart from the observational technique using total stations and glass prisms, the 

instrument technique using borehole extensometers is also widely used in monitoring 

the tunnel displacement. The borehole extensometer is more accurate (resolution 0.01 

mm) but with the limitation that the measuring range is smaller compared with the 

observational method. More detailed descriptions of the methods for monitoring 
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displacements can be found in Brady and Brown (2006). Recently developed 

technique for monitoring displacement is the fiber optic sensor which was used in a 

trial test in the operation tunnel of JRC by the NTU research team. The resolution for 

this technique is as high as 1 μ strain (NTU, 2013). The trial test result shows that the 

monitoring displacement by the fiber optic sensor is stable without the undulating 

behavior shown by the observational method. 

6.6 Reliability analysis of JRC  

The purpose of the reliability analysis of JRC is to show that FORM can be applied 

to problems without closed-form solutions via surrogate models. In this section, the 

second-order polynomial response surface method (RSM) with cross terms is used. 

The iterative procedure is similar to that presented in Fig. 4.10 for the system 

reliability analysis except that only one performance function is considered in this 

case for illustrative purposes. The reliability index is considered to reach convergence 

when the difference between two successive reliability indices is smaller than 0.01. 

The probabilistic input parameters are shown in Table 6.13, which are based on the 

calculation in previous sections. These random variables are assumed to be 

independent. A COV of 30% is assumed for the lateral stress coefficient for this case. 

Other deterministic input values are presented in previous sections such as the support 

properties and the stress reduction coefficient. 

Table 6.13 Statistical inputs for the reliability analysis of JRC 

Distribution Parameter Mean  STD 

Normal GSI 50 5.6 

Lognormal mi 21 14 

Lognormal σci (MPa) 102 67.8 

Lognormal Erm (MPa) 16360 8800 

Normal K0 2.2 0.66 

 

The performance function concerns the maximum sidewall displacement, shown by 

 
S

u
xg

5.0
)( max

limiting    (6.12) 
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in which εlimiting is the maximum allowable ratio (0.5% in this case); umax is the 

maximum sidewall displacement; S is the span of the cavern (S=20m). 

The second-order polynomial response surface with cross terms uses the following 

expression to approximate the performance function. 

 j

n

i nji

ikii

n

i

ii
xxdxcxbaxg  

 


1 1

2

1

)(  (6.13) 

where a, bi, ci and dk are the unknown coefficients; xi and xj are sampling values for 

the random variables; n is the number of random variables. In each iteration, 

(n2+3n+2)/2 sampling points (21 points in this case) are needed. The sampling point 

values in the correlated standard normal random variable space (n-space) are used in 

accordance with the Low and Tang (2007) method. The iterative results are displayed 

in Table 6.14, in which k is the sampling factor controlling the sampling range. First, 

k=2 is used to cover a large random variable space. Then, k=1 is selected until 

convergence. The values shown are the design point values in the n-space. After 

convergence, the coefficients of the second-order polynomial RSM are shown in 

Table 6.15. Other surrogate models can also be used. However, for this case, the 

second-order polynomial RSM without cross terms cannot converge. The same 

situation was presented in Lü and Low (2011). 

Table 6.14 Reliability analysis results for JRC 

Iteration k β GSI mi σci (MPa) Erm (MPa) K0 

1 2 2.49 -0.077 -0.143 -0.267 -2.070 1.343 

2 1 2.48 -0.040 -0.120 -0.137 -2.192 1.141 

3 1 2.47 -0.022 -0.128 -0.141 -2.208 1.107 
 

The results show that the rock mass Young’s modulus is the most influential factor, 

followed by the lateral stress coefficient. This is in agreement with engineers’ 

experience that Young’ modulus has a significant effect on the displacement. GSI has 

negligible influence on the reliability index because the variation of GSI for this case 

is small.  
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Table 6.15 Coefficients for the second-order response surface with cross terms 

a1 b1 b2 b3 b4 b5 c1 

0.016402 -0.00269 -0.00378 -0.00471 -0.01329 0.008714 -0.00033 

c2 c3 c4 c5 d1 d2 d3 

-0.00053 -0.00099 -0.00658 -0.00044 -0.0009 -0.00119 -0.00039 

d4 d5 d6 d7 d8 d9 d10 

0.001631 -0.00154 -0.00118 0.00209 -0.00133 0.002673 0.009156 
 

Note that the reliability analysis presented in this section is to demonstrate the 

applicability of FORM via iterative RSM on a complex problem without closed-form 

solutions. The purpose is not to estimate the reliability index or probability of failure 

accurately. Clearly, the reliability of this problem depends on the selection of the 

limiting ratio. If a loose criterion is used, e.g. εlimiting=2%, the reliability index will be 

much higher. For this case, all the data collected from the site investigation are used 

to estimate the variation of the properties. However, as shown in Fig. 6.4, the 

boreholes cover a much larger space than JRC. Therefore, the variation estimated 

may be greater than the variation of the rock mass surrounding the excavation. 

Moreover, there lacks a reliable way to estimate the Young’s modulus of the rock 

mass, which is the most influential factor to the displacement. Selection of another 

empirical formula to estimate Erm will result in different reliability indices. 

6.7 Summary 

In this Chapter, an actual underground rock excavation project is presented to show 

how the statistical information can be estimated from the site investigation. The mean 

values and the standard deviations of the rock properties for JRC are compared with 

the global database summarized by Aladejare and Wang (2017). The variations of 

properties agree well with the global database. Next, the deterministic analysis of one 

cavern is presented and it shows that the support has little effect on limiting the 

displacement because of the good rock quality and the late installation of the support. 

The stress reduction coefficient for the simplified 2D analysis is determined based on 

the longitudinal deformation profile obtained from the 3D analysis. Unfortunately, 

the monitored displacement data cannot be used to verify the deterministic analysis 

results and to calibrate the input parameters. Finally, the reliability analysis using 
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FORM and second-order polynomial response surface method with cross terms is 

conducted for the single cavern problem. 

For JRC project, because a large number of in situ and laboratory tests were 

conducted, there is a sufficient number of data to characterize the variability of the 

rock properties. Therefore, the frequentist approach is used. However, this may not 

be the case for other geotechnical problems, for which the data is usually limited. 

Under such circumstances, the Bayesian approach can be used to integrate the prior 

knowledge and the observation data in a systematic manner. The Bayesian method 

has been proven to be useful in geotechnical characterization including the soil 

properties (Wang et al., 2010a; Wang and Cao, 2013; Cao and Wang, 2014; Wang et 

al., 2016b) and the rock properties (Wang and Aladejare, 2015; Wang and Aladejare, 

2016a; Wang and Aladejare, 2016b). 

This chapter mainly focuses on the uncertainty associated with the rock properties. It 

is shown that the selection of the Young’s modulus of the rock mass has a significant 

effect on the displacement. However, there is no reliable method to choose a proper 

value for Erm. The uncertainty associated with the process from a field parameter to 

a design parameter is called the transformation uncertainty (Ching et al., 2015). The 

uncertainties associated with the predictions from empirical correlations can be 

reduced as shown in Zhang et al. (2004). This transformation uncertainty, although 

beyond the scope of this thesis, can be a future research direction. 
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Chapter 7 Characterization of the spatial variability of 

intact rock properties using the Bayesian approach 

7.1 Introduction 

Rocks undergo complex geological processes such as sedimentation, metamorphism, 

weathering, and tectogenesis. The properties of the rock may vary from a location to 

another, which is called the spatial variability. The spatial variability is a major source 

of uncertainties associated with rock properties (e.g. Dasaka and Zhang, 2012; Zhu 

and Zhang, 2013; Aladejare and Wang, 2017). In previous chapters, reliability 

evaluations treated the rock properties as random variables, which may mask the 

spatial information. It is more realistic to model the rock property as a random field 

rather than a random variable to consider the spatial variability. The rock property at 

each point can be regarded as a random variable and these random variables in space 

form the random field. These random variables are not independent but correlated, 

which is referred to as the spatial correlation or autocorrelation (e.g. Baecher and 

Christian, 2003). The autocorrelation function describes how the autocorrelation 

coefficient of a geotechnical property varies with the separation distance between two 

points (e.g. Phoon et al., 2003). In geotechnical practice, more than one 

autocorrelation function is commonly used to characterize the autocorrelation 

structure of geotechnical properties. Li et al. (2015) showed that different 

autocorrelation structures of geotechnical properties may lead to different reliabilities 

of geotechnical structures. The most important input parameter for the 

autocorrelation function is the scale of fluctuation or autocorrelation distance, which 

provides an indication of the distance within which the properties show relatively 

strong autocorrelation (Phoon and Kulhawy, 1999). However, most of the existing 

studies conducted the reliability analysis based on assumed autocorrelation functions 

and scales of fluctuation of rock properties rather than values inferred from real data 

(e.g. Gravanis, 2014). As commented by Hsu and Nelson (2006), little work had been 

done on characterizing the spatial variability of rock properties. One of the possible 

reasons is that the extraction of rock samples is difficult and costly, resulting in 



Chapter 7 Characterization of the spatial variability of intact rock properties using the 
Bayesian approach 

159 

 

limited rock data (Aladejare and Wang, 2017). In Chapter 6, the rock data from JRC 

is collected and summarized. A large number of uniaxial compression tests were 

conducted and the data can be used to characterize the spatial variability of the 

uniaxial compressive strength (UCS) and elastic modulus (EM) of the intact 

sedimentary rock. In view of the limited studies on the spatial variability 

characterization of rock properties, this chapter evaluates the most probable 

autocorrelation structures and quantifies the scales of fluctuation for UCS and EM. 

A Bayesian model class selection approach is used to select the most suitable 

autocorrelation function because the approach is able to select the most plausible 

model with a high fitting capacity as well as robustness (Cao and Wang 2013; Wang 

and Aladejare, 2015). The scales of fluctuation for UCS and EM are subsequently 

quantified using a Bayesian updating method. The results provide a guideline on 

selecting reasonable autocorrelation functions and scales of fluctuation for UCS and 

EM of intact rocks.  

7.2 Random field modelling of spatial variability for UCS and EM 

of intact rocks 

The spatial variabilities of UCS and EM of rocks are modeled by random fields. 

Lognormal distributions are selected to describe the probabilistic distribution of the 

two parameters to avoid negative values. A lognormally distributed random field 

)(zY  (z is the depth below ground surface) is used with the mean given by a linear 

trend function in Eq. (7.1) and a constant standard deviation,  . 

 bazzt )(   (7.1) 

where )(zt  is the mean trend; a and b are two regression coefficients. It can be easily 

deduced that the logarithm of )(zY , ))(ln( zY , is a normally distributed random field 

with the mean )(zN  and standard deviation )(zN  given by Eq. (7.2) (e.g. Phoon 

et al., 2003).  
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The autocorrelation structure of a random field is usually represented by an 

autocorrelation function. Five autocorrelation functions commonly used in 

geotechnical practice (see Eq. 7.3) are considered in this study, i.e. single exponential 

autocorrelation function (SEACF), Gaussian autocorrelation function (GACF), 

binary noise autocorrelation function (BNACF), second-order Markov 

autocorrelation function (SMACF) and cosine exponential autocorrelation function 

(CEACF) (Phoon et al. 2003). These five autocorrelation functions are represented 

by ,,, 21 MM and 
5M . 

 SEACF ( 1M ): )
||2

exp()(


 z
z


   (7.3a) 
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 SMACF ( 4M ): )
||4

exp()
||

41()(


 zz
z





  (7.3d) 

 CEACF ( 5M ): )cos()
||

exp()(


 zz
z


  (7.3e) 

where )()( ji zzz    is the autocorrelation coefficient between two standard 

normal random variables )(/)]())([ln( iii zzzY   and )(/)]())([ln( jjj zzzY  ; iz  

and jz  are vertical coordinates of the two points associated with )( izY  and )( jzY ; 

  is the scale of fluctuation (SoF) in the vertical direction. The autocorrelation 

coefficients for the five autocorrelation functions are plotted in Fig. 7.1.  
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Fig. 7.1. Five autocorrelation functions commonly used in geotechnical practice 

 

With Eq. (7.3), it is easy to evaluate the autocorrelation matrix, iMR , for a random 

vector [ )(,),(),( 21 nzzz   ], where )( kz )(/)]())([ln( kkk zzzY  . The (k, l)-th 

entry of iMR , iM
klR  represents the autocorrelation coefficient between )( kz  and 

)( lz  and for the autocorrelation model iM . iM
klR  is equal to )( lk zz   evaluated 

from the corresponding autocorrelation function in Eq. (7.3). Furthermore, the 

covariance matrix, iMC , for the random vector [ ))(ln(,)),(ln()),(ln( 21 nzYzYzY  ] 

can be obtained based on the relation between the covariance and correlation 

coefficient. The (k, l)-th entry of iMC , iM
klC  represents the covariance between 

))(ln( kzY  and ))(ln( lzY , and is given by Eq. (7.4).  

 )()( lNkN
M
kl

M
kl zzRC ii     (7.4) 

where )( kN z  and )( lN z  are the standard deviations of ))(ln( kzY  and ))(ln( lzY  

respectively, and are evaluated by Eq. (7.2).  
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Let T

nzYzYzYY )](ˆ,),(ˆ),(ˆ[ˆ
21   be a set of observations of Y at depth T

nzzz ],,,[ 21  . 

Based on the definition of multivariate normal distribution, the likelihood of the 

observations conditional on the random field parameters a, b,  ,  , and 

autocorrelation function 
iM  is given by Eq. (7.5). 
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where || iMC  is the determinant of iMC , and nN ,  is the mean of the random vector 

T

nzYzYzY ))](ln(,)),(ln()),([ln( 21  , which is calculated Eq. (7.2). 

7.3 Bayesian model class selection and Bayesian updating approach 

7.3.1 Selection of the most plausible autocorrelation function using Bayesian 

model class selection method 

Since more than one autocorrelation function could be used to represent the 

autocorrelation structure of UCS and EM, it is of interest to evaluate which function 

is the most suitable one. The Bayesian model class selection approach is a well-

known model selection method which is capable of determining the optimal model 

with a high fitting capacity as well as robustness. The robustness means that the 

model has a low prediction error in the presence of model error and measurement 

noise. The approach is widely used to select models in geotechnical engineering (e.g. 

Cao and Wang, 2013; Wang and Aladejare, 2015). This Bayesian model selection 

approach is also used in this study to select the autocorrelation functions of UCS and 

EM. 

In the framework of Bayesian model class selection, the plausibility of a given model 

is measured by the probability of the model conditioned on given data. For this case, 

there are ACFN ( ACFN = 5 in this study) autocorrelation models, 
ACFNMMM ,,, 21  . 
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Based on the Bayesian theorem, the probability of each model conditional on the 

measured data Ŷ  is given by Eq. (7.6). 

 
)ˆ(

)()|ˆ(
)ˆ|(

YP

MPMYP
YMP ii

i    (7.6) 

where )ˆ(YP  is the probability of the occurrence of Ŷ  and it is a normalizing constant 

independent of iM ; )|ˆ( iMYP  is the evidence for the model class iM  provided by 

the data Ŷ , which expresses the likelihood of the data if the model class iM  is used, 

and )( iMP  is the prior plausibility of the model class iM , which reflects the user’s 

judgement on the initial plausibility of the model iM . The sum of the prior 

plausibility should be equal to 1 (Yuen 2010). In the case where the users have no 

clear information of the prior plausibility, the )( iMP  is commonly set to be 1/ ACFN , 

i.e. the prior plausibility for various candidate models being equal. For this case, the 

plausibilities of the models are determined by the evidence. The model class with the 

maximum evidence is regarded as the most suitable model. 

Evaluation of the evidence 

Based on the law of total probability, the evidence for iM  provided by the data Ŷ  

could be expressed by Eq. (7.7).  

  ddadbdMbapMbaYpMYP
i

iii  )|,,,();,,,|ˆ()|ˆ(   (7.7) 

where 
i  is the parameter space of the parameter vector ],,,[ ba , and 

)|,,,( iMbap   is the prior probability density function (PDF) of the parameter 

vector ],,,[ ba . )|,,,( iMbap   reflects the user’s prior knowledge of the 

random field parameters in the absent of site-specific data. In this study, the four 

random field parameters, ,,, ba  and   are assumed to be independent and 

uniformly distributed. The joint prior PDF of the random vector ],,,[ ba  is given 

by Eq. (7.8). 



Chapter 7 Characterization of the spatial variability of intact rock properties using the 
Bayesian approach 

164 

 

 
))()()((

1
)|,,,(

minmaxminmaxminmaxminmax 





bbaa
Mbap i   (7.8) 

The above equation is valid when a, b, σ and  are within the bounds, i.e. 

],[],,[],,[],,[ maxminmaxminmaxminmaxmin   bbbaaa  and )|,,,( iMbap 

= 0 if otherwise. mina , minb , min , and min  are the minimum values of ,,, ba  and   

respectively. maxa , maxb , max , and max  are the maximum values of ,,, ba  and   

respectively. The values for the lower and upper bounds of the four random field 

parameters could be determined based on the physical meaning of the parameters and 

users’ experience. For example, the standard deviation and scale of fluctuation can 

only take positive values and their lower bounds could be set to small positive values 

such as 0.01. The evaluation of the evidence in Eq. (7.7) involves an integration of 

the product of the likelihood and prior PDF of random field parameters. When only 

a few random variables are involved, direct integration could be conducted through 

some numerical integration techniques. For cases with a number of random variables, 

direct numerical integration of the evident is computationally prohibitive and 

advanced techniques such as Markov Chain Monte Carlo simulation can be used 

(Wang and Cao 2013). In this study, the direct numerical integration method is used 

because only four parameters are involved. The range of each parameter is partitioned 

into a number of intervals and the evidence is the sum of the product of the integrand 

and the interval widths for each parameter as shown by Eq. (7.9).  

  
mlkj mlkjimlkjmlkji baMbapbaYpMYP

,,,
)|,,,(),,,|ˆ()|ˆ(    (7.9) 

where ),,,|ˆ( mlkj baYp   and )|,,,( imlkj Mbap   are the values of the likelihood 

function and prior PDF for ],,,[ mlkj ba  ; ,,, lkj ba   and m  are the median values 

of the j-th interval of a, k-th interval of b, l-th interval of , and m-th interval of . 

,,, lkj ba  and m  respectively are the width of j-th interval of a, k-th interval 

of b, l-th interval of , and m-th interval of . Note that a sufficient number of 

intervals is required for an accurate evaluation of the integration. The number of 

intervals could be determined by parametric studies, i.e. by gradually increasing the 

number of intervals until a steady integration result is obtained. 
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7.3.2 Evaluation of posterior statistics of the random field model parameters 

using Bayesian updating method 

The Bayesian updating method is well known to be able to consider the prior 

knowledge of geotechnical parameters and is widely used in geotechnical engineering 

(Wang and Cao, 2013; Wang and Aladejare, 2016b). In this study, the posterior 

knowledge (posterior mean and posterior standard deviation) of the random field 

model for UCS and EM is also determined using the Bayesian updating method. For 

this method, the posterior statistics can be obtained by the approximate solutions. The 

approximation method enables a fast evaluation of the posterior knowledge of 

random field parameters and is used in this study. The basic idea of the method is to 

approximate the posterior PDF with a Gaussian PDF with a mean vector equal to the 

most probable value (MPV) of the posterior PDF, [a*, b*,σ*,θ*] and covariance given 

by the inverse of a Hessian matrix, H(a*, b*,σ*,θ*). The Hessian matrix is defined by 

the second-order derivation of an object function, ),,,( baJ  (Yuen, 2010): 

 )]|,,,();,,,|ˆ(ln[),,,( optopt MbapMbaYpbaJ     (7.10) 

where optM  is the selected optimal model. The (i, j) component of the Hessian matrix 

is given by Eq. (7.11).  

 *|)(
2



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

 JH
ji

ij   (7.11) 

where ],,,[],,,[ 4321  ba  and ],,,[ *****  ba . The most probable 

random field parameters could be obtained using an optimization method, such as 

fminsearch function in the MATLAB platform while the Hessian matrix could be 

evaluated using a finite difference method. Details of the evaluation could be found 

in Wang et al. (2010a) and Yuen (2010). 
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7.4 Database of uniaxial compressive strength and elastic modulus 

for intact rocks 

In this study, the UCS and EM data in Chapter 6 for JRC project is used to represent 

the sedimentary rock properties. Boreholes with more than ten tested rock cores 

(labelled in Table 6.3) are used to characterize the spatial variability. For comparison, 

some data for the igneous rocks are collected from the boreholes on the southeast of 

the Forsmark nuclear power plant, Sweden and the associated rock type is granite. 

The UCS and EM values from four boreholes are available in the laboratory test 

reports (downloaded from www.skb.com/publications/). Details of the UCS and EM 

data are plotted in Fig. 7.2 and Fig. 7.3. 

The data in each set in Fig. 7.2 and Fig. 7.3 are from the same borehole and belong 

to the same rock type. As shown in Fig. 7.2 and Fig. 7.3, 11 sets of data are available 

for both UCS and EM and the number of data points in each data set ranges from 10 

to 21. As noted in the introduction section, the rock data in practice are limited 

because of the high cost of core drilling. However, the Bayesian model class selection 

method is capable of dealing with limited data. As shown by Cao and Wang (2014), 

the Bayesian model class selection method could determine the right model even 

though the data are sparsely located. In the next section, it is shown that the most 

probable autocorrelation model selected by the Bayesian method is strikingly 

consistent for different rock types and data sets. 

 

(a)         set 1 (sedimentary rock VBH4-3)                 (b) set 2 (sedimentary rock VBH4-1) 
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(c)          set 3 (sedimentary rock VBH4-2)                 (d) set 4 (sedimentary rock VBH1-1) 

 

(e)         set 5 (sedimentary rock VBH1-3)                  (f) set 6 (sedimentary rock VBH2-1) 

 

(g)          set 7 (sedimentary rock HDD1-1)                   (h) set 8 (igneous rock KLX16A) 
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(i)          set 9 (igneous rock KLX12A-113)                (j) set 10 (igneous rock KLX10-113) 

 

(k)         set 11 (igneous rock KLX05-113) 

Fig. 7.2. Collected uniaxial compressive strength data 
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(c)          set 3 (sedimentary rock VBH4-2)                 (d) set 4 (sedimentary rock VBH1-1) 

 

(e)         set 5 (sedimentary rock VBH1-3)                  (f) set 6 (sedimentary rock VBH2-1) 

 

(g)          set 7 (sedimentary rock HDD1-1)                   (h) set 8 (igneous rock KLX16A) 
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(i)          set 9 (igneous rock KLX12A-113)                (j) set 10 (igneous rock KLX10-113) 

 

(k)         set 11 (igneous rock KLX05-113) 

Fig. 7.3. Collected elastic modulus data 
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000,000,1  nnnn ba , where nnn ba ,, , and n  respectively are the numbers of 

intervals for a, b,  and . This number ensures the convergence of the evidence. For 

example, the logarithms of the evidence for the SEACF model, )]|ˆ(ln[ 1MYP , for 

1,000, 000 and 7,000,000 intervals respectively are -22.61 and -22.60, the difference 

between which is insignificant. For evaluating )|ˆ( iMYP , the prior ranges for the 

four parameters ],,,[ ba  of UCS are respectively set as a

]MPa/m5.2MPa/m，5.2[ **  ii aa , ]MPa250MPa,250[ **  ii bbb ，   [0.01 

MPa, 150 MPa], and  [0.01 m, 50 m], where *
ia  and *

ib  are the most probable 

values of a and b respectively when the autocorrelation model 
iM  is used. These 

bounds are wide enough to produce a consistent solution of the most plausible model 

because the evidence does not change if wider prior ranges of ],,,[ ba  are used, 

e.g. ]MPa/m5，MPa/m5[ **  ii aa , ]MPa500MPa,500[ **  ii bbb ,  [0.01 MPa, 

200 MPa], and  [0.01 m, 100 m]. In addition, these ranges cover the 95% credible 

interval defined by the posterior statistics of the random field parameters, indicating 

that the selected prior ranges are wide enough to consider all the possible values of 

the random field parameters. Details of the credible interval are illustrated in section 

7.5.2. Likewise, the prior ranges for the four parameters ],,,[ ba  of EM are set as 

a ]GPa/m5.0，GPa/m5.0[ **  ii aa , b GPa,50[ * ib ]GPa50* ib ,  [0.01 GPa, 

50 GPa], and  [0.01m, 100m]. 

7.5.1 Most plausible autocorrelation models for UCS and elastic modulus 

The evidence for different autocorrelation models and different sets of UCS data is 

summarized in Table 7.1. As shown in Table 7.1, the single exponential 

autocorrelation function has the maximum values of evidence for the two types of 

rock and all data sets, indicating that the single exponential autocorrelation function 

is the most plausible model to describe the autocorrelation structure of the UCS of 

sedimentary and igneous rocks. Table 7.2 summarizes the evidence for different 

autocorrelation models and different sets of elastic modulus data. 
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Table 7.1 Logarithms of the evidence for different autocorrelation functions 

and different sets of UCS data 

  
M1： 
Single 
exponential 

M2: 
Gaussian 

M3: Binary 
Noise 

M4: Second-
order Markov 

M5: Cosine 
exponential 

Sedimentary 
rock 

Set 1 -22.61 a -23.59 -23.36 -23.21 -23.24 

Set 2 -14.40 a -15.12 -14.50 -14.72 -14.65 

Set 3 -8.34 a -9.48 -8.68 -9.05 -8.61 

Set 4 -13.09 a -13.99 -13.72 -13.76 -13.74 

Set 5 -12.83 a -13.31 -13.28 -13.19 -13.38 

Set 6 -10.70 a -12.00 -11.43 -11.70 -11.39 

Set 7 -18.16 a -18.36 -18.39 -18.31 -18.53 

Igneous rock Set 8 -1.57 a -3.44 -2.09 -3.02 -2.09 

Set 9 -0.66 a -2.52 -1.26 -1.98 -1.26 

Set 10 -1.85 a -6.73 -2.45 -4.83 -2.46 

Set 11 -7.32 a -9.19 -8.40 -8.82 -8.23 

Note: a denotes the maximum value of the )]|ˆ(ln[ iMYP  for a set of UCS data 

 

Table 7.2 Logarithms of the evidence for different autocorrelation functions 

and different sets of EM data 

  
M1： 
Single 
exponential 

M2: 
Gaussian 

M3: Binary 
Noise 

M4: Second-
order Markov 

M5: Cosine 
exponential 

Sedimentary 
rock 

Set 1 -11.03 a -11.82 -11.78 -11.67 -11.81  
Set 2 -10.78 a -11.59 -11.46 -11.43 -11.50  
Set 3 -8.25 a -9.75 -9.02 -9.44 -9.02  
Set 4 -8.76 a -10.97 -9.49 -10.53 -9.46  
Set 5 -8.42 a -9.27 -9.05 -9.10 -9.09  
Set 6 1.92 a 0.14 1.75 0.44 1.76  
Set 7 -9.37  -10.54 -9.32 -9.79 -9.24 a 

Igneous rock Set 8 5.28 a 3.47 4.85 3.91 4.89  
Set 9 5.72 a 2.68 5.28 3.38 5.33  
Set 10 5.16 a 1.49 4.53 2.04 4.54  
Set 11 17.94 a 14.38 17.30 15.23 17.34  

Note: a denotes the maximum value of the )]|ˆ(ln[ iMYP  for a set of EM data 
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As shown in Table 7.2, the exponential autocorrelation model also has the maximum 

evidence for most EM data sets (except for data set 7). As shown by Cao and Wang 

(2014), the Bayesian model class selection model could identify the most plausible 

model even when the sampling spacing is large. Since all or most of the data sets have 

the same optimal autocorrelation function, the single exponential autocorrelation is 

the most suitable autocorrelation function for the UCS and EM of igneous and 

sedimentation rocks based on the data sets collected. 

7.5.2 Posterior statistics of random field parameters 

The posterior means ( *
a , *

b , *
  and *

 ) and standard deviations ( po
a , po

b , po


and po
 ) for the random field parameters of UCS are summarized in Table 7.3. When 

calculating the posterior standard deviations, some abnormal values such as 

extremely large values or infinity are obtained and denoted by “—” in Table 7.3. 

These abnormal values occur because the diagonal component of the Hessian matrix 

is equal to or close to 0, resulting in a singular or nearly singular Hessian matrix. To 

further explore the reason, Fig. 7.4 plots the variation of the likelihood with the scale 

of fluctuation for set 3 and set 7 of the UCS data. 

Table 7.3 Posterior statistics for the random field parameters of UCS 

Rock type 
Set 
Number 

Posterior MPV (or mean)  Posterior standard deviation 

*
a / 

MPa/m 

*
b / 

MPa 

*
 / 

MPa 

*
 / 

m 

 po
a / 

MPa/m 

po
b / 

MPa 

po
 / 

MPa 

po
 / 
m 

Sedimentary 
rock 

Set 1 
-0.12 119.34 56.31 3.40 

 
0.17 24.41 13.95 4.77 

Set 2 
0.09 75.28 39.85 8.02 

 
0.24 30.89 11.83 9.18 

Set 3 
0.86 -27.23 30.83 5.73 

 
0.23 34.14 8.48 5.98 

Set 4 
0.89 3.97 31.21 0.29 

 
0.44 32.48 9.77 5.52 

Set 5 
1.28 26.22 67.76 1.16 

 
1.14 84.13 23.90 9.83 

Set 6 
1.18 -39.92 32.42 0.13 

 
0.48 50.59 9.45 — a 

Set 7 
0.30 36.75 85.44 0.22 

 
0.13 29.27 36.58 — a 

Igneous rock Set 8 
-0.28 264.38 25.73 2.86 

 
0.11 35.39 5.89 2.86 

Set 9 
0.24 93.03 22.22 0.84 

 
0.08 36.37 4.70 1.36 

Set 10 
-0.07 268.74 50.39 4.14 

 
0.13 78.20 15.81 3.36 

Set 11 
0.03 214.20 54.24 0.52 

 
0.16 113.77 12.38 0.50 

Note: — a means abnormal values are obtained in Bayesian updating, such as extremely large values or infinity 
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(a) set 3 of UCS data                        (b) set 7 of UCS data 

Fig. 7.4. Variation of the likelihood with scale of fluctuation 

 

The likelihoods in Fig. 7.4 are calculated by setting the values of a, b and  

parameters to their MPVs, i.e. ,, ** ba  and * , and altering the values of  . As shown 

in Fig. 7.4, the likelihood may display different trends with the scale of fluctuation 

for different data sets. For example, there is a peak of the likelihood around the MPV 

of the scale of fluctuation, * , for UCS data set 3. For this case, the second-order 

derivative of the objective function, ),,,( baJ  is positive. However, for the set 7 

of UCS data in Fig. 7.4 (b), the likelihood is constant around the *  and the second-

order derivative of the objective function is 0 or nearly 0, resulting in infinite posterior 

standard deviation of  . For this case, the results for the posterior PDF of the random 

field parameters are abandoned. 

It can be seen that the scale of fluctuation of UCS ranges from 0.3 m to 8 m and there 

is no apparent difference between the SoFs for sedimentary rocks and for igneous 

rocks. Other useful information could also be deduced based on the posterior means 

and standard deviations of the random field parameters. For example, the posterior 

coefficient of variation (COV) of UCS at various depths are calculated by 

)/(/)( **
UCS ba

popopo zzCOV    , where po
  is the posterior standard 

deviation of  , and po
UCS , *

a  and *
b  are the posterior mean of UCS, a and b. Using 

this equation, it can be readily calculated that the COVs for various sets of UCS data 
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ranges from 9% to 75%. The interval falls within the ranges summarized by Aladejare 

and Wang (2017). Apart from COV, the credible interval is another useful 

information in Bayesian statistics. The 95% credible interval of a parameter is a range 

within which the parameter falls with a probability of 95%. For a normally distributed 

random variable, the 95% mean-value-centered credible interval is given by 

[ popo  96.1,96.1 **  ], where *  and po  respectively are the posterior mean 

and standard deviation of the parameter. For a lognormally distributed random 

variable, the 95% mean-value-centered credible interval is given by 

[ )96.1exp(),96.1exp(/ ** po
N

po
N  ], where ))/(1ln( 2* popo

N   is the 

posterior standard deviation for the logarithm of the parameter. Assuming the 

parameters a and b are normally distributed and   and   are lognormally distributed, 

it can be easily calculated that the 95% credible intervals of a, b,  and   for the set 

1 of UCS data respectively are [-0.45 MPa/m, 0.21 MPa/m] and [71.50 MPa, 167.18 

MPa], [34.9 MPa, 90.9 MPa] and [0.44 m, 26.26 m]. These intervals fall within the 

prior range of a, b,  and  , i.e. a ]MPa/m5.2MPa/m，5.2[ **  ii aa = [-2.62 

MPa/m, 2.38MPa/m], ]MPa250MPa,250[ **  ii bbb = [-130.66 MPa, 369.34 

MPa]，  [0.01 MPa, 150 MPa], and  [0.01 m, 50 m]. The prior ranges of a, b, 

 and   are large enough to consider all the possible values of these parameters. The 

credible intervals of random field parameters for other sets of UCS data also fall 

within the corresponding prior ranges. 

The posterior statistics of random field parameters for the elastic modulus are 

summarized in Table 7.4. As shown in Table 7.4, the scale of fluctuation for elastic 

modulus ranges from 0.3 m to 8.4 m. Using the same method as the UCS, it can be 

easily calculated that the COV for the elastic modulus ranges from 4% to 88%. This 

range also agrees with the results given by Aladejare and Wang (2017). The credible 

intervals for random field parameters of EM also fall within the corresponding prior 

ranges. 

 

Table 7.4 Posterior statistics for the random field parameters of EM 
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Rock type 
Set 
Number 

Posterior MPV (or mean)  Posterior standard deviation 

*
a / 

GPa/m 

*
b / 

GPa 

*
 / 

GPa 

*
 / 

m 

 po
a / 

GPa/m 

po
b / 

GPa 

po
 / 

GPa 

po
 / 
m 

Sedimentary 
rock 

Set 1 0.00 55.05 15.17 0.08 
 — a — a — a — a 

Set 2 0.05 58.62 19.91 0.08 
 0.11 13.70 4.43 — a 

Set 3 0.31 7.40 16.58 0.85 
 0.15 23.06 4.65 6.92 

Set 4 0.64 -15.02 10.65 0.28 
 0.15 11.13 2.98 13.44 

Set 5 0.54 0.37 12.33 0.13 
 0.04 1.69 3.37 — a 

Set 6 1.40 -96.58 4.34 0.15 
 0.09 9.18 1.00 — a 

Set 7 0.16 1.51 14.29 1.50 
 0.03 6.43 4.34 2.14 

Igneous 
rock 

Set 8 -0.11 103.17 6.82 6.80 
 0.03 9.97 1.53 5.80 

Set 9 0.02 67.05 6.80 8.35 
 0.02 11.26 1.68 9.54 

Set 10 0.01 66.86 3.18 0.41 
 0.01 3.82 0.77 0.50 

Set 11 0.00 71.62 2.77 0.70 
 0.01 7.77 0.57 0.58 

Note: — a means abnormal values are obtained in Bayesian updating, such as extremely large values or infinity.  

7.6 Summary 

Although recognized as an important factor controlling the safety of geotechnical 

structures, the spatial variability of rock properties is rarely quantified in the literature. 

This chapter characterizes the autocorrelation structures and scales of fluctuation of 

two important parameters of intact rocks, i.e. uniaxial compressive strength (UCS) 

and elastic modulus (EM). UCS and EM data for sedimentary and igneous rocks are 

used. The autocorrelation structures are selected using a Bayesian model class 

selection approach and the scales of fluctuation for these two parameters are 

estimated using a Bayesian updating method. The results show that the 

autocorrelation structures for UCS and EM could be best described by a single 

exponential autocorrelation function. The scales of fluctuation for UCS and EM range 

from 0.3 m to 8.0 m and from 0.3 m to 8.4 m, respectively. These results may serve 

as guidelines for selecting proper autocorrelation functions and autocorrelation 

distances for rock properties in the reliability analysis and could also be used as prior 

information for quantifying the spatial variability of rock properties in a Bayesian 

framework.   
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Chapter 8 Summary and Recommendation 

This chapter summarizes the major investigations and discussions in previous 

chapters and provides some recommendations for future research. 

8.1 Summary 

First, a simple closed-form solution (the Duncan-Fama solution) for circular tunnels 

in Mohr-Coulomb grounds is used to illustrate various reliability methods, including 

FORM, direct MCS, LHS, MCS with importance sampling, subset simulation, FOSM 

and polynomial RSM. This provides the basis for the calculations and discussions in 

later chapters. For a special case where the design point is far away from the mean 

value point, the tentative design point for the linear RSM may locate in the unrealistic 

domain, thus causing a numerical error problem. This problem can be solved by 

increasing the sampling factor, or by changing the formulation of the performance 

function, or by using a multiple-step RSM which approximates the limit states in 

several steps instead of one step. The multiple-step RSM is versatile and suggested 

to be used to deal with similar numerical error problems. 

Next, the reliability analysis of single limit state is extended to system reliability 

analysis which considers the interaction among different limit states. An iterative 

closed-form solution for a circular tunnel reinforced by end-anchored rockbolts is 

used to illustrate the system reliability methods. The bimodal bounds method and the 

mvncdf method are compared for this case study. Results show that the system 

probability of failure estimated from the mvncdf method lies within the lower and 

upper bounds set by the bimodal bounds method. SORM can be used to refine the 

FORM reliability indices and to improve the accuracy of the estimated system 

probability of failure. The influence of the correlation coefficient between the 

cohesion and friction angle and the influence of the rockbolt installation position on 

the system probability of failure are discussed. The optimal installation position 

corresponds to the smallest system probability of failure. A modified hybrid approach 

using the linear RSM to locate the design point and ANN to approximate the actual 



Chapter 8 Summary and Recommendation 

178 

 

limit state surface is suggested to be used in the system reliability analysis for 

problems where closed-form solutions are not available. Traditional second-order 

RSM without cross terms may be inaccurate the suffer from the problem of low 

convergence rate and the second-order RSM with cross terms may encounter the 

“false branch” problem. It is shown that the “false branch” problem can be overcome 

by the importance sampling technique. Comparison with the second-order RSM 

shows that the proposed approach is efficient, accurate and robust for the system 

reliability analysis. 

Then, how reliability-based design can provide insights to the partial factor design 

approach is discussed and illustrated using various tunnelling problems. It is shown 

that FORM is consistent for different but mathematically equivalent limit state 

functions, which is an advantage over FOSM and PEM. The intuitive expanding 

ellipsoid perspective and the efficient constrained optimization method help 

overcome the conceptual and computational barriers for practitioners. Different case 

studies including structurally-controlled and stress-controlled failure mechanisms are 

used to show that reliability-based design via FORM can determine the role 

(resistance or load factor) of input parameters on a case-by-case basis in ways that 

prescribed partial factors cannot.  

An actual underground excavation project, JRC in Singapore, is presented to show 

how reliability analysis is conducted for a real-life case study. The statistics of the 

rock engineering properties can be characterized using the site investigation and 

laboratory test results. The deterministic analysis shows that the estimate of the rock 

mass Young’s modulus has a great influence on the cavern displacement. The 

longitudinal deformation profile from 3D analysis can be used to determine the stress 

reduction coefficient for the simplified 2D analysis. For this case, when the support 

is installed, 70% to 88% of the final displacement has occurred. The monitored 

displacement is almost zero due to the late installation of the monitoring device and 

therefore cannot be used to characterize the input parameters for this case. FORM 

and second-order RSM with cross terms are used to obtain a converged reliability 

index and design point. 
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Finally, the autocorrelation structures and scales of fluctuation of two important 

parameters of intact rocks, i.e. uniaxial compressive strength (UCS) and elastic 

modulus (EM) are characterized. The autocorrelation structures are selected using a 

Bayesian model class selection approach and the scales of fluctuation for these two 

parameters are estimated using a Bayesian updating method. The results show that 

the autocorrelation structures for UCS and EM could be best described by a single 

exponential autocorrelation function. The scales of fluctuation for UCS and EM range 

from 0.3 m to 8.0 m and from 0.3 m to 8.4 m, respectively. These results may serve 

as guidelines for selecting proper autocorrelation functions and autocorrelation 

distances for rock properties in the reliability analysis and could also be used as prior 

information for quantifying the spatial variability of rock properties in a Bayesian 

framework. 

Major academic contributions are summarized as: 

 System reliability analysis of tunnelling problems is investigated in detail. A 

hybrid approach using linear RSM and ANN is proposed to estimate the 

system probability of failure. 

 How reliability-based design (RBD) is linked up with the partial factor design 

approach and the insights from RBD for rock engineering problems are 

investigated and discussed. 

 Reliability analysis of a real-life project is presented to show the 

characterization of the statistical information of rock mass properties. 

 The autocorrelation structure and scales of fluctuation of intact rock 

properties are characterized using a large number of actual data. The results 

show that the autocorrelation structure could be best described by a single 

exponential autocorrelation function. 

8.2 Recommendations for future research 

Based on the literature review and the investigation in this thesis, some suggestions 

for future research are given in this section. 
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8.2.1 Reliability analysis of structurally-controlled failure problems 

There are two instability mechanisms for rock excavations, the stress-controlled and 

the structurally-controlled instability. From the review of reliability analyses of 

underground excavation problems, most research concerns the stress-controlled 

failure in which the rock mass is treated as a continuum. Although the roof wedge 

problem is analyzed in this thesis, the present research focuses on the stress-

controlled failure. For the analysis of rock blocks formed by intersecting 

discontinuities, uncertainties in the distribution of discontinuities and in strength 

properties of the discontinuity should be investigated. Deterministic analysis using 

UDEC and 3DEC and probabilistic analysis of the stability of rock blocks will be 

covered in the future. 

8.2.2 Influence of the spatial variability of rock properties on the stability of 

underground rock excavations 

As shown in Chapter 7, the spatial variability of rock properties can be characterized 

by the Bayesian approach. Next, the influence of the spatial variability of rock 

properties on the stability and reliability of rock excavation projects can be 

investigated. 

8.2.3 Transformation uncertainty and model uncertainty  

The uncertainty associated with the process from a field parameter to a design 

parameter is called the transformation uncertainty. It is shown in Chapter 6 that the 

estimate of the rock mass Young’s modulus has a great effect on the cavern 

displacement. Model uncertainty means the uncertainty of the model output 

compared with the actual behavior. For example, the FEM output can never 

accurately predict the actual behavior of geotechnical structures. The transformation 

and model uncertainties can be discussed for tunnelling problems in the future. 
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Appendix A List of literature on the reliability analysis of 

underground excavation problems 

Table A.1 summarizes the research work relevant to the reliability analysis of 

underground excavation problems. The observations of the literature are given in 

Chapter 2. 
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Table A.1 List of literature on reliability analysis of underground excavation problems 

No Reference Problem description  Performance function 
Surrogate models 
and numerical 
software 

Methods for 
Pf 

1 Laso et al. (1995) 

Ground-support interaction 
analysis of a circular tunnel under 
hydrostatic in situ stress using 
CCM 

Displacement and support 
capacity 

Linear RSM FOSM, PEM 

2 Chen et al. (1997) 
A layered roof beam analysis using 
the beam theory and the stability of 
a triangular roof prism 

Tensile failure of the rock 
and the stability of the 
prism 

- FORM 

3 Hoek (1998) 
Circular tunnel displacement using 
the Duncan-Fama solution 

Displacement - MCS 

4 Yang et al. (2007) 
A closed-form solution is used to 
calculate the load in the liner  

Support capacity  - MCS 

5 Mollon et al (2009b) 
Face stability of a tunnel excavated 
in soils 

Tunnel collapse pressure 
and settlement  

Second-order RSM, 
FLAC3D 

FORM 
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Table A.1 List of literature on reliability analysis of underground excavation problems (continued) 

No Reference Problem description  Performance function 
Surrogate models 
and numerical 
software 

Methods for 
Pf 

6 
Mollon et al 
(2009a) 

Tunnel face stability using an improved 
upper bound limit analysis 

Collapse pressure - FORM 

7 
Li and Low 
(2010) 

Circular tunnel displacement and plastic 
zone size using the Duncan-Fama solution 

Plastic zone size and 
displacement 

- 
FORM, 
MCS 

8 Cai (2011) 

Estimate the mean and standard deviation 
of the plastic zone size and displacement 
of the hydropower station with irregular 
geometries 

Plastic zone size and 
displacement 

Phase2 PEM 

9 Su et al. (2011) Analyze the support pressure using CCM Support capacity  - FORM 

10 
Lü and Low 
(2011) 

Analyze the displacement and plastic zone 
of two circular tunnels in M-C and H-B 
grounds and a horseshoe shaped tunnel 

Plastic zone size and 
displacement 

Second-order RSM, 
FLAC3D 

FORM, 
SORM and 
MCS 
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Table A.1 List of literature on reliability analysis of underground excavation problems (continued) 

No Reference Problem description  Performance function 
Surrogate models 
and numerical 
software 

Methods for 
Pf 

11 Lü et al. (2011) 
Ground-support interaction analysis of a 
circular tunnel using CCM 

Plastic zone size, 
displacement and support 
capacity 

Second-order 
polynomial response 
surface method 

FORM, 
SORM and 
MCS  

12 Lü et al. (2012) 
Ground-support interaction analysis of a 
circular tunnel using CCM 

Plastic zone size, 
displacement and support 
capacity 

ANN 
FORM, 
SORM and 
MCS 

13 
Zhang and Goh 
(2012) 

The global factor of safety calculated 
from shear reduction method and the 
percent strain around a horseshoe-shaped 
tunnel 

Factor of safety and 
limiting percent strain 

Polynomial 
regression model, 
FLAC3D 

FORM 

14 
Goh and Zhang 
(2012) 

The global factor of safety was calculated 
for numerous cases with different 
combinations of the input parameters 

Factor of safety ANN, FLAC3D FORM 

15 Chen (2012) Stability of the key blocks in a shaft Stability of key blocks - FOSM 
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Table A.1 List of literature on reliability analysis of underground excavation problems (continued) 

No Reference Problem description  Performance function 
Surrogate models 
and numerical 
software 

Methods for 
Pf 

16 Lü et al. (2013) 
Bimodal bounds method is used to 
estimate the system Pf of the ground-
support interaction problem 

Plastic zone size, 
displacement and 
support capacity 

- 
FORM, 
SORM and 
MCS  

17 
Langford and 
Diederichs (2013) 

Analyze the performance of liner for a 
circular tunnel 

Support capacity Phase2 PEM 

18 Park et al. (2013) 
Analyze the rock support failure of a 
circular rock cavern 

Support capacity FLAC PEM 

19 Zhao et al. (2014) 
Two problems are used to verify SVM 
including the Duncan-Fama solution and a 
horseshoe shaped tunnel 

Tunnel displacement SVM, Phase2 FORM 

20 
Zhang and Goh 
(2014) 

MARS is used to approximate the 
displacement of a twin cavern case 

Displacement and 
percent strain 

MARS, FLAC3D FORM 
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Table A.1 List of literature on reliability analysis of underground excavation problems (continued) 

No Reference Problem description  Performance function 
Surrogate models 
and numerical 
software 

Methods for 
Pf 

21 
Zeng and 
Jimenez 
(2014) 

A linearization approach is used to estimate the 
system probability of failure for the support-
rock interaction using CCM 

Support capacity and 
tunnel displacement 

- FORM 

22 
Zeng et al. 
(2014) 

Analyze the tunnel face stability problems 
using the upper bound limit analysis 

Collapse pressure Second-order RSM 
FORM, 
MCS 

23 
Langford and 
Diederichs 
(2015) 

Analyze the spalling damage of rock 
excavations and approximate the performance 
function over a large parameter space 

Spalling initiation 
condition 

Global RSM, Phase2 FORM 

24 Oreste (2015) 
Analyze the tunnel-support interaction using 
CCM 

Support capacity - MCS 

25 
Wang et al. 
(2016a) 

Two problems are used to verify the proposed 
meta-modeling technique including the 
Duncan-Fama solution and a lined circular 
tunnel  

Tunnel displacement 
Augmented radial 
basis function, 
ABAQUS 

MCS 
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Table A.1 List of literature on reliability analysis of underground excavation problems (continued) 

No Reference Problem description  Performance function 
Surrogate models 
and numerical 
software 

Methods for 
Pf 

26 Li et al. (2016) 
Uniform design and SVM are combined to 
analyze the tunnel convergence of three 
problems 

Tunnel displacement SVM, FLAC FORM 

27 
Idris et al. 
(2016) 

Review of the commonly used methods in 
reliability analysis of tunnels 

- - - 

28 
Lü et al. 
(2017) 

Two problems are used to verify the proposed 
moving least square RSM including the 
ground-support interaction and a horseshoe 
shaped tunnel 

Support capacity, 
tunnel displacement 
and plastic zone size 

Moving least square 
RSM, FLAC3D 

FORM, 
SORM and 
MCS 

29 Su et al. (2017) 
Two problems including a soil slope and a 
tunnel are used to verify the proposed one-
dimensional integration method 

Tunnel displacement FLAC 

One-
dimensional 
integration 
method 

30 
Wang and Li 
(2017) 

The distribution of the tunnel displacement is 
approximated by SRSM 

Tunnel displacement SRSM - 



 

188 

 

 

Table A.1 List of literature on reliability analysis of underground excavation problems (continued) 

No Reference Problem description  Performance function 
Surrogate models 
and numerical 
software 

Methods for 
Pf 

31 
Napa-Garcia 
(2017) 

Different PEM methods are compared 
using two circular-tunnel problems 

Tunnel displacement - PEM 

32 Lü et al. (2017) 
Design optimization of shotcrete thickness 
and installation point using CCM 

Tunnel displacement 
and support capacity 

Linear RSM FORM 
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Appendix B Cross-validation of FORM using different 

methods in Excel and MATLAB 

In this appendix, three different methods or algorithms of FORM are applied to two 

problems to cross-validate the results using the efficient constrained optimization tool 

in Excel. Method 1 refers to using the constrained optimization tool Solver in the 

Excel platform (Low and Tang, 2004; Low and Tang, 2007). Method 2 refers to the 

traditional or classical iteration approach in the uncorrelated standard random 

variable space, as elaborated by Ang and Tang (1984), Melchers (1999), Haldar and 

Mahadevan (2000), for example. Method 3 refers to the constrained optimization 

approach using the toolbox in MATLAB. The first problem is the Duncan-Fama 

solution shown in Chapter 3. The second problem is a linear performance function of 

three random variables with different distributions. 

 

Fig. B.1. MATLAB code for the Duncan-Fama solution 
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For the Duncan-Fama solution, the FORM results using Excel Solver (method 1) is 

shown in Chapter 3. If method 2 is used, the axes of the four original random variables 

should be rotated to transform the correlated random variables to uncorrelated 

variables. The orthogonal transformation is used (e.g. Ang and Tang,1984). The 

calculation of the design point involves iterations. The MATLAB code for the 

Duncan-Fama solution is shown in Fig. B.1 and the code for the classical iterative 

approach (method 2) is shown in Fig. B.2. MATLAB also provides a function to 

conduct the constrained optimization (fmincon). The code for the constrained 

optimization approach using the toolbox in MATLAB is shown in Fig. B.3. All these 

three methods give the same results (reliability index and design point) as shown in 

Chapter 3. The pros and cons of these three methods are compared in Chapter 3. 

 

Fig. B.2. MATLAB code for the classical iterative approach 
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Fig. B.3. MATLAB code for the optimization toolbox in MATLAB 

 

For the second problem, the performance function is  

 QGRxg )(  (B.1) 

where R is the resistance; G is the permanent load effect; Q is the variable load effect. 

The statistical values of these three random variables, among which there is no 

correlation, are listed in Table B.1. 

Table B.1 Characteristic values for input parameters 

 
R (kN) G (kN) Q (kN) 

Distribution Lognormal Normal Extreme value 1 

Mean Value 22 10 2 

Standard Deviation 2 0.9 0.6 
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The FORM results using Solver in Excel are shown in Fig. B.4. The reliability index 

is 4.713 and corresponding design point is (16.710, 11.596, 5.114) by changing the 

ni column. 

Method 1: 

 

Fig. B.4. FORM results using Solver in Excel 

 

 

Fig. B.5. MATLAB code for FORM using traditional iteration procedure 

Parameter xi* ni*

R (kN) 16.710 1 0 0 -2.986

G  (kN) 11.596 0 1 0 1.773

Q  (kN) 5.114 0 0 1 3.186

g(x) -1E-07 β 4.713 P f 1.2E-06

Correlation matrix [R]
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Method 2: 

The MATLAB code for the FORM analysis using the iterative procedure is shown in 

Fig. B.5. 

The reliability index is 4.713 and corresponding design point is (16.710, 11.595, 

5.115), which are the same as method 1. 

Method 3: 

The code for the FORM analysis using constrained optimization in MATLAB is 

shown in Fig. B.6. The explanation of the code is given after the percent sign. 

 

Fig. B.6. MATLAB code for FORM using constrained optimization 
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The reliability index is 4.713 and corresponding design point is (16.710, 11.595, 

5.115), which are the same as the method 1 and 2. 

Above three methods yield the same results, which further validate the results from 

the constrained optimization using Solver in Excel. The input and output in Excel are 

straightforward and the use of the Solver is relatively simple, obviating lengthy 

programming work as shown by the codes in MATLAB. Therefore, FORM using 

Excel Solver is practical for geotechnical engineers. The advantage of using 

MATLAB lies in the abundant probability functions and convenient matrix 

calculations. More advanced reliability analysis can be conducted easily using 

MATLAB. 
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Appendix C Iterative closed-form solution for circular 

tunnels reinforced by rockbolts 

Main formulations of the iterative closed-form solution are summarized below when 

the residue strength of the rock mass equals the peak strength. Details can refer to the 

Appendix A and B1 in Bobet and Einstein (2011). 

The mobilized tensile force T is obtained by  

     initial

rrr

final

rrr
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final

rr
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AE
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where Eb is the Young’s modulus of the rockbolt; Ab is the cross-section area of the 

rockbolt; ρ is the rockbolt length plus the tunnel radius r0; 
initial

rr

final

rr UU    || calculates 

the relative displacement of the rockbolt end; initial
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final
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00
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displacement of the rockbolt head;    initial
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extension of the rockbolt. 
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rrrU
0

|  can be obtained from the Duncan-Fama solution (Duncan Fama, 

1993) while final

rrU |  and final
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|   are calculated from a series of equations as follows. 
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where rp    (i.e., peak internal friction angle = residual friction angle); dilation 

angle is ψ; rp ccc   (i.e., peak cohesion = residual cohesion); rp is the plastic zone 

radius; ν is the Poisson’s ratio of the rock mass; σ0 is the hydrostatic in situ stress; σi 

is the internal support pressure; p0 is a value that is to be solved iteratively combined 

with following equations. 

For prrr 0  
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The solution must satisfy the following equation. 
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where S andSz are rockbolt spacings in the circumferential direction and the axial 

direction; i
pr is the plastic zone radius prior to reinforcement installation; iA , iB , iC are 

from the solution where no reinforcement is installed. 

The above formulae constitute a system of equations that can be solved by iteration. 

First, assume a value for 0p . Then pr is found and other values can be calculated. The 

new value for 0p is obtained from Eq. (A.8). This procedure continues until 0p
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converges. This iteration process is coded as a function in the Excel that can be used 

to calculate 0p automatically. 
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Appendix D User-defined subroutine of FLAC3D for JRC 

project 

;-----------Create a new file, import the finite difference mesh and read in the 

geometry information for the support------------------------------------------------------- 

new 
impgrid model_2m2.FLAC3D 
table 1 read Heading_start.txt 
table 2 read Heading_end.txt 
table 3 read Bench1_start.txt 
table 4 read Bench1_end.txt 
table 5 read Bench2_start.txt 
table 6 read Bench2_end.txt 
 
;-------------------------Rename the group for the convenience of later excavation------ 
 
group rock range group 1 
group heading range group 4 
group bench1 range group 3 
group bench2 range group 2 
 
;--------------------------------Define the input parameters----------------------------------- 
 
def Parameter_setting 
 _GSI = 50.0          ;(GSI)   
 _mi = 21.0            ;(mi)  
 _sigci = 102.0       ;(sigci)  
 _Erm = 15600.0    ;(Erm) 
 _K0=2.2             ;(K0) 
 _mu = 0.25            ;(Poisson's ratio) 
 _D = 0.0                ;(Disturbance factor D)  
 
 _bulk_modu = _Erm/(3*(1-2*_mu))  ;(bulk modulus) 
 _shear_modu = _Erm/(2*(1+_mu))   ;(shear modulus) 
 
 ;----------calculate the Hoek-Brown paramters------------------------- 
     

_mb = _mi*EXP((_GSI-100)/(28-14*_D)) 
    _s = EXP((_GSI-100)/(9-3*_D)) 
    _a = 0.5+(EXP(-_GSI/15)-EXP(-20.0/3.0))/6.0 
 _szz = -3.3                     ;(vertical in-situ stress in tunnel section plane) 
     _sxx = _szz*_K0            ;(horizontal in-situ stress in plane) 
 _syy = -5.839                 ;(horizontal in-situ stress out of plane)  
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 delzmin=0.75 ;(liner set up)  
 lk_=100*((_bulk_modu +(4.0/3.0)*_shear_modu)/delzmin) 
end 
Parameter_setting 
 
model elastic 
prop bulk _bulk_modu shear _shear_modu 
 
;-----------------------------------Boundary condition------------------------------------- 
 
fix z range z 69.9 70.1 
fix z range z -80.1 -79.9 
fix y 
fix x range x -70.1 -69.9 
fix x range x 69.9 70.1 
;--------------------------------------Initial condition---------------------------------------- 
ini sxx _sxx ;grad 0 0 0.0616 range z -80 70 
ini syy _syy ;grad 0 0 0.0504 range z -80 70  
ini szz _szz ;grad 0 0 0.028 range z -80 70 
 
; -------------------------------------Initial equilibrium ------------------------------------- 
solve 
ini xdisp=0.0 
ini ydisp=0.0 
ini zdisp=0.0 
ini xvel=0.0 
ini yvel=0.0 
ini zvel=0.0 
;-----------------------------------Top heading Excavation---------------------------------- 
 
model hoekbrown 
prop bulk =_bulk_modu shear=_shear_modu hbs=_s hbmb=_mb hba=_a 
hbsigci=_sigci hbs3cv=0.0 
model null range group heading 
step 1 
;----------------------------------------Stress reduction------------------------------------- 
 
range name heading group heading 
range name rock group rock 
def relax_heading 

relax_m=0.2 ; stress relaxation coefficient (0-1) 
   p_gp=gp_head 
  num_of_gp=0 
   loop while p_gp # null 
             if inrange('heading',p_gp) = 1 then   

        if inrange('rock',p_gp) = 1 then  ; (locate the gp which should 
be applied reverse force) 
        xf=-gp_xfunbal(p_gp)*relax_m 
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         yf=-gp_yfunbal(p_gp)*relax_m 
         zf=-gp_zfunbal(p_gp)*relax_m ; (calculate the reversed force) 
         pid=gp_id(p_gp) 
         command 
                     apply xforce xf rang id pid 
                     apply yforce yf rang id pid 
                     apply zforce zf rang id pid    ; (apply the reversed force) 
         endcommand 
 num_of_gp=num_of_gp+1 
        endif 
    endif 
    p_gp=gp_next(p_gp) 
    endloop 
end 
relax_heading 
solve 
;----------------------------Cancel the applied reverse force -------------------------------- 
 
def cancel_relax 
   p_gp=gp_head 
   num_of_gp=0 
   loop while p_gp # null 
   if inrange('heading',p_gp) = 1 then   
        if inrange('rock',p_gp) = 1 then ; (locate the gp to apply reverse force) 
         xf=0.0 
         yf=0.0 
         zf=0.0 
         pid=gp_id(p_gp) 
         command 
            apply xforce xf rang id pid 
            apply yforce yf rang id pid 
            apply zforce zf rang id pid ;(apply reversed force) 
         endcommand 
 num_of_gp=num_of_gp+1 
        endif 
    endif 
    p_gp=gp_next(p_gp) 
    endloop 
end 
cancel_relax 
 
;------------------------------------Install the rockbolts ------------------------------------ 
 
def install_heading_rockbolts  
    total_num_bolts=table_size(1) 
    loop bolt_id (1, total_num_bolts) 
 x_coordinate_start=xtable(1,bolt_id) 
 z_coordinate_start=ytable(1,bolt_id) 
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 x_coordinate_end=xtable(2,bolt_id) 
 z_coordinate_end=ytable(2,bolt_id) 
 command 

sel cable id 1 beg x_coordinate_start 1.1 z_coordinate_start & end               
x_coordinate_end 1.1 z_coordinate_end nseg 5 

 endcommand 
   endloop 
end  
install_heading_rockbolts  
sel cable id 1 prop emod 50.0e3 ytension 0.35 xcarea 380.0e-6 & 
 gr_coh 0.188 gr_per 0.138 gr_k 100.0 
 
;------------------------------------Install shotcrete--------------------------------------------- 
 
sel liner id 1 crossdiag group rock range x -10.1 10.1 y 0.1 2.0 z -0.1 9.1 
 
sel liner id 1 prop isotropic 20.0e3 0.15 thickness 0.08 & 
  cs_nk lk_ cs_sk lk_ cs_scoh 1e20 ;(no slip) 
 
solve  
save Top_heading.sav 

;------------------------------------End------------------------------------------------------- 

 

The above codes only show the top heading excavation. For bench 1 and bench 2 

excavation, similar codes can be generated based on the codes for top heading 

excavation. Therefore, for simplicity, complete codes are not shown here. 
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