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Analysis of Unsteady Inviscid Diffuser Flow with a Shock Wave 
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A finite difference scheme with a shock-fitting algorithm has been used to investigate unsteady inviscid now 
with a shock in an inlet diffuser. The f10wfield consists of three different regions: the supersonic and the sub­
sonic regions, and a region containing both air and liquid fuel droplets, separated by a normal shock wave and a 
fuel injection system. The analysis is based on a two-phase, quasi-one-dimensional model. The response of a 
shock wave to various disturbances has been studied, including large-amplitude periodic oscillations and pulse 
perturbations. 

Nomenclature 
,,; speed of sound 
= cross-sectional area 
= specific heat of fuel 
= constant pressure specific heat of air 
= diameter of fuel droplet 
= frequency 
= drag force between air and fuel droplets 
= length of diffuser 
= position coordinate of fuel inj~ctor 
= Mach number . 
= pressure 
= defined by Eq. (29), ,Ref. 11 
= amplitudes of rightward and leftward traveling 

pressure waves, respectively 
= heat-transfer rate between air and fuel droplets 
=mass response function, defined by Eq. (11) 
= entropy 
= time 
= temperature 
= acoustic transmission coefficient, defined by 

Eq. (16) 
=ve!ocity 
=defined by Eq. (30), Ref. 11 
= velocity fluctuation of normal shock 
= position coordinate along the axis of the diffuser 
= position fluctuation of normal shock 
= acoustic reflection coefficient of normal shock 

presented to downstream disturbance 
= ratio of specific heats 
= pressure fluctuation 
= dimensionless entropy, defined by Eq. (9) 
= ratio of airflow through the injector to the main 

flow 
= density 
= angular frequency 
= rate of air injected into the main flow 
= rate of liquid fuel injected into the main flow 
= dimensionless angular frequency, defined by 

Eq. (8) 

Superscripts 

(). = sonic condition 
() = average value 
( )' = fluctuation 

Subscripts 

e = incident disturbance 
ex = value at exit of diffuser 
in = value at entrance of diffuser 
p = liquid phase 
s = value at normal shock 
sg ;:= value at port of fuel injector 
t = transmitted disturbance 
1,2 = value upstream and downstream of normal shock, 

respectively 

Introduction 
T TNSTEADY inlet diffuser flow with a shock wave has 
\.) received considerable attention in recent investigations of 
longitudinal combustion instabilities in ramjet engines. l As a 
consequence of pressure fluctuations generated by combustion 
processes, the stability margin of the inlet diffuser may have to 
be increased to accommodate perturbations of the shock 
system. In the work reported herein, a finite difference scheme 
with a shock-fitting algorithm is used to study unsteady 
behavior of the inlet flow. The formulation is directed 
specifically to obtaining results required in the analysis of 
unsteady motions in engines. 

In a continuing experimental program, Sajben and co­
workers2-4 have reported extensive, detailed observations in 
the transonic range. They have summarized the features of the 
flow fields under various conditions. Both self-sustaining and 
mechanically induced oscillations were investigated. Schadow 
et aI. 5 examined oscillations in a research dump combustor 
with special attention focused on the inlet shock/acoustic 
wave interaction. Two kinds of data have been taken: the 
acoustic wave structure and the characteristics of the inlet 
shock. 

Several analyses of the problem have been carried out. 
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Adamson et ai. 6 obtained systematic solutions for large­
amplitude shock-wave motion in a two-dimensional transonic 
flow using methods of matched asymptotic expansions. The 
same approach was later extended to include boundary-layer 
displacement effects, 7 and shock-wave/boundary-Iayer in­
teraction. 8 In Refs. 9 and 10, numerical solutions of Navier­
Stokes equations for multidimensional transonic/supersonic 
flows were reported. The detailed information obtained pro­
vides a better understanding of the flow fields, especially under 
conditions when flow separation occurs. 
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For linear stability analysis of unsteady motions in an 
engine, the boundary condition at the upstream end of the dif­
fuser is conveniently expressed as the admittance function of a 
normal shock wave. A pressure fluctuation incident on the 
shock causes a velocity fluctuation. The admittance function 
is proportional to the ratio of the velocity to the pressure fluc­
tuations. Culick and Rogers 11 analyzed the problem of small­
amplitude motions of a normal shock in one-dimensional 
flow. Results for the admittance function were given for two 
cases: inviscid flow, and a case which might be regarded as a 
crude approximation to the influences of separation. The 
work reported herein begins with essentially the same model of 
the flow, bur numerical results are obtained for finite­
amplitude motions. 

Figure 1 shows the idealized inlet system considered, con­
sisting of a convergent-divergent channel and a fuel injection 
system. Air is delivered to a diffuser, becomes sonic at the 
throat, then accelerates supersonically in the divergent section. 
After passing through a normal shock wave, the flow becomes 
subsonic and decelerates to the exit, which may represent the 
inlet/combustor interface. Either fuel or fuel-air mixture, 
depending on the injector and atomizer used, is injected into 
the main flow downstream of the shock to provide the 
necessary combustible mixture. As a first approximation, the 
gas flow is treated as inviscid. Neglect of the viscous boundary 
layers is an obvious deficiency, which will be corrected in 
subsequent work. 

Within this representation, interaction between the inlet and 
combustor may be visualized as follows. Unsteady combus­
tion generates a pressure wave propagating upstream and 
causes the shock to oscillate about its mean position. As a con­
sequence, the induced shock motion produces fluctuations of 
entropy and mass flow rate, which, together with the reflected 
pressure wave, may augment or attenuate the initial distur­
bance. The purpose of this paper is to examine this process 
with the following objectives: 1) to study the response of a 
normal shock wave to various disturbances; 2) to analyze the 
changes of flow properties, such as entropy and mass flow 
rate, due to shock motion; and 3) to examine the influences of 
liquid fuel droplets and wall air jet injected downstream of the 
shock wave. The coupling between the inlet and processes in 
the combustion chamber are not treated here. 

Formulation 
To facilitate numerical calculation, only the flow 

downstream of the throat is considered. The flowfield 
therefore consists of three different regions shown in Fig. 1: 
the supersonic and subsonic regions, separated by a normal 
shock; and a region containing both air and fuel droplets. The 
fuel droplets are assumed to have uniform size and to be 
distributed over the entire cross-sectional area, the initial 
phase of fuel jet breakup and multidimensional effects being 
ignored. For some systems, preparation of fuel droplets may 
be achieved outside the diffuser. In that case, a mixture of air 
and fuel, rather than pure fuel, is injected into the 
mainstream. Both cases are accommodated. 
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Fig. 1 Schematic diagram of inlet diffuser. 

The analysis is based on a two-phase, quasi-one­
dimensional model. If we neglect viscous boundary-layer ef­
fects and droplet vaporization, the equations governing the 
gas and the liquid flows can be expressed in the following con­
servation and nonconservation forms. 

Gas phase: 

ap 1 a(puA) 
--+----. =w 
at A ax g 

(1) 

a(pu) +..!...~[(E-+PU2.)A] =.L dA +p +u W (2) 
at A ax "( '. . "(A dx p sg g 

a [( T U
2
)] 1 a [ (T U

2
)] - p +- +-- puA +-

at ,,(,,(-1)' 2 A ax "("(-1) 2 

-1 a(upA) (Tsg U~g) Qp 
=-- +w ---+- +--+u F 

"(A ax g "( -1 2 "( -1 p p 
(3) 

Liquid phase: 

(4) 

(5) 

(6) 

The flow properties are normalized with respect to their quan­
tities at the entrance except the velocity which is referenced to 
the speed of sound. Note that the mass source terms Wg and wp 

are introduced only at the injector position (x=Lf ), and the 
momentum and heat-transfer coupling terms Fp and Qp 
vanish in regions I and II. 

Specification of Boundary Conditions 

In order to solve this problem, three boundary conditions 
must be specified at both boundaries for each phase. These 
conditions can be formulated by considering: 1) physical situa .. 
tions, 2) compatibility relations obtained from the method of 
characteristics, and 3) numerical one-sided differences. 12•13 

For the gas phase, the conservation equations are totally 
hyperbolic with the existence of three distinct eigenvalues. 
Therefore, the upstream boundary conditions are determined 
by specifying three physical quantities-the Mach number, 
static pressure, and temperature-since there is no 
characteristic line running from the interior region to the 
boundary. At the downstream end, the flow is subsonic. Two 
characteristic lines run from the interior region to the exit; 
only the static pressure needs to be specified. 

Because the liquid droplets are dispersed, no signal can prop­
agate through them. The governing equations change from 
totally hyperbolic to hyperbolic; the three characteristic lines 
collapse into one. This suggests using a one-sided difference 
for the calculation of the downstream boundary conditions 
for the liquid phase. Detailed analysis shows that the one­
sided difference has the same virtue as the liquid-phase com­
patibility relation. The conditions at the upstream boundary 
(x = L f) are determined from the physical requirements set by 
the convection of droplets downstream. 

Numerical Method 

The basis for the analysis is a numerical program originally 
developed for treating one-dimensional nonlinear combustion 
instability in solid propellant rocket motors. 12 Recently, this 
program has been improved to accommodate steep-fronted 
waves by employing a combined finite difference operation. 14 
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Fig. 2 Distributions of mean flow properties (diffuser A). 

The conventional two-step Lax-Wendroff method is hybrid­
ized with Harten and Zwas' first-order scheme and further 
modified by an artificial compression correction. 15 The 
spurious pre- and postshock oscillations produced by second­
order finite difference approximations are greatly reduced. 
Because of its remarkable shock-capturing feature, the scheme 
is applied first to solve for steady flowfields. 

For unsteady problems, direct application of that method is 
accompanied by two problems. First, the shock transition re­
quires a small number of computational grids. The flow 
properties immediately in front of and behind the shock are 
not well defined. Second, there are two time scales involved in 
the calculation: 7sh and 7 e• 7sh is the time required for a shock 
to pass through a grid, and 7 e is associated with an external 
disturbance. Unless very fine meshes are used, i.e., 7sh~7e' 
the crude time resolution of shock motion may produce false 
information. To overcome these problems and improve 
numerical efficiency, a shock-fitting algorithm has been 
incorporated. 

The shock-fitting technique16 treats the shock as an internal 
boundary, separating the supersonic and subsonic regions. 
The Rankine-Hugoniot equations together with four char­
acteristic relations, three in the supersonic region and one in 
the subsonic region, suffice to provide the required boundary 
conditions for the finite difference scheme on each side. The 
motion of the shock front is determined as part of the 
solution. 

The numerical calculation starts with application of the self­
adjusting hybrid scheme. As soon as the shock is captured and 
reaches its steady condition, the shock-fitting algorithm is ac­
tivated to refine the solution. This has proved to be an effec­
tive procedure, producing accurate results with modest costs. 

Discussion of Results 
Calculations have been carried out for two different dif­

fusers, referred to as A and B, respectively. Diffuser A has a 
linear area distribution, 

(7) 

where Ld is the length of the diffuser from the entrance to the 
exit. Diffuser B is a convergent-divergent nozzle with a flat 
bottom and a contoured top wall described in Ref. 4. For each 
case, the analysis is applied first to compute the flow field 
under steady conditions. The response of a shock wave to 
various disturbances and its associated influences on the 
flow field are then examined in detail. 

Figure 2 shows the distributions of the mean flow properties 
in diffuser A with only the gas flow accounted for. The shock­
fitting scheme functions well, confining the numerical error 
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Fig. 3 Instantaneous shock position (diffuser A). 
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Fig. 4 Pressure distributions at various times within one cycle of 
oscillation (diffuser A). 

within 0.100/0. At t = 0 a sinusoidal pressure oscillation is im­
posed at the exit, simulating a pressure fluctuation induced by 
combustion instability. After the time required for the distur­
bance to travel upstream to the shock, the shock begins to 
oscillate about its mean position. The local pressure and 
velocity fluctuations just downstream of the shock are of 
course different from those existing at the exit and exhibit 
features due to the nonlinear behavior of the shock and the 
nonuniformity of the mean flowfield. Figure 3 shows the in­
stantaneous position of the shock for downstream distur­
bances having different frequencies and amplitudes. The 
strong influences of frequency and amplitUde on the average 
position are evident; lower frequency and higher amplitude 
tend to displace the shock toward the throat, unfavorable for 
the performance of an inlet. 

The upstream excursion of the shock shown in Fig. 3 at first 
seems unreasonably large. Due to the average displacement, 
the entropy production at the shock during oscillations is less 
than that for the shock in the initial steady state. Thus, the 
stagnation pressure loss is less. It would appear, then, that the 
average exit pressure should be higher in the unsteady flow. 
This is not in agreement with the requirement imposed in the 
calculations that the average ambient pressure at the exit is the 
same in the steady and unsteady flows.t That the results are in 
fact consistent is shown by Figs. 4 and 5. 

Figure 4 shows the pressure distributions at four times dur­
ing one cycle, including the extreme excursions and two in­
termediate positions of the shock. Due to the nonlinear 
gasdynamics, the oscillation imposed at the exit develops into 
a steep-fronted wave as it propagates upstream. The 
associated entropy production and stagnation pressure loss 

tThe authors are indebted to the reviewer for noting this apparent 
paradox. 
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compensate the average changes caused by the displacement of 
the normal shock. This reasoning is verified by calculation of 
the average pressure, shown in Fig. 5. Curves A and B are the 
distributions for isentropic steady flows. The time-averaged 
distribution correctly joins the exit pressure and the value im­
mediately downstream of the average position of the unsteady 
shock. 

The shock response depends strongly on the local diffuser 
shape. Earlier work 11 has shown that the dimensionless fre­
quency n, defined as 

(8) 

plays an important role. As a check of the numerical analysis 
described here, the results for the admittance function given in 
Ref. 11 for small-amplitude motion have been reproduced. 
These show that the response of the shock increases if {} is 
decreased. According to Eq. (8), this happens if the fractional 
change of cross-sectional area is increased. For the frequencies 
chosen here, the values of n for the two diffusers treated here 
are given in Table 1. 

Thus, one would anticipate that the shock wave in diffuser B 
should be more responsive. Comparison of the results shown 
in Fig. 6 (diffuser B) and Fig. 3 (diffuser A) confirms this 
conclusion. 

Oscillation of Entropy 

Entropy fluctuations are generated as a consequence of 
shock motion due to a pressure disturbance, and are convected 
downstream by the mean flow. In turn, these may produce 
pressure waves when passing through a region of nonuniform 
velocity. From the results for temperature and pressure, the 
entropy fluctuations can be determined from the following 
thermodynamic relation: 

(9) 

The induced entropy fluctuation is usually very small except 
for a strong shock. For example, for diffuser A and the 
unsteady motions shown in Fig. 3, the entropy response func­
tion, defined as the ratio IlS/(IlP2Ip2)' has magnitude less 
than 0.1. 

Figure 7 shows the entropy distributions at various times 
during a cycle of oscillation in diffuser A for the case il­
lustrated in Figs. 4 and 5: f = 300 Hz and op = 0.3Pex' The fluc­
tuations are not smooth because they contain contributions 

Table 1 Values of {) for two diffusers 

Diffuser 

3.0 

2.0 

1.0 

o 

A 
B 

300 Hz 

17.76 
2.475 

{) 

600 Hz 

35.52 
4.950 

\

tlme- overoged pressure, f = 300 Hz 

lip, 0.3Pe, 

steady stote A,M r =1.245 

\ 

025 0.50 075 100 

Altlol Position" 1 xl Ld 

Fig. 5 Time-averaged pressure distributions (diffuser A). 

generated at the shock, which propagate downstream with the 
mean flow, and contributions from the local waves as argued 
in the preceding section. 

Oscillation of Mass Flow Rate 

Even for a fixed mass flow rate upstream of the shock, an 
oscillation will occur in the downstream region due to the 
shock motion. To first-order accuracy, the fluctuation of mass 
flow rate can be written as 

(10) 

Combination of the above equation with the expression for 
the incident pressure fluctuation P;, which is given in Ref. 11, 
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and rearrangement of the result, produce a formula for the 
mass response function. 

(11) 

where Ps is a function of M" defined in Ref. 11. This agrees 
identically with the result obtained by Waugh17 using an alter­
native approach due to Hurrell. Oscillations of the mass flow 
rate for small-amplitude disturbances are easily calculated 
with this formula. 

Oscillations of mass flow rate in diffuser A have also been 
computed, giving the results shown in Fig. 8. A pressure 
disturbance with frequency 300 Hz and amplitude 10070 of the 
average pressure causes the airflow rate to fluctuate with an 
amplitude of nearly 3%. If the fuel flow rate remains con­
stant, this implies that the equivalence ratio will fluctuate with 
the same amplitude. This will obviously affect the downstream 
combustion processes. Unlike the predictions of linear theory, 
the amplitude of mass flow oscillation is smaller for distur­
bances with higher amplitude. This is due to the fact that 
nonlinear effects tend to displace the shock toward the throat 
and reduce its strength. 

Upstream Disturbances 

Pressure oscillation originating upstream of the shock due 
to unsteady boundary layers or changes in flight conditions 
may be important. Their influences on shock motion and the 
downstream flow field are discussed in this section. A linear 
analysis is first carried out, followed by a numerical nonlinear 
analysis. 

In contrast to the problem dealt with in the earlier work,1I 
the shock motion studied here is due to upstream distur­
bances. Thus, the fluctuations of velocity in a frame moving 
with the shock and pressure just upstream of the shock are 

du, 
u'==u'-u'+--x' J e ~ dx s 

(l2) 

d-
, I PI , 

p, ==p.+ dx xs (13) 

respectively, where the last terms on the right-hand sides are 
due to shock motion in a nonuniform flow field , and the 
subscript e denotes the incident disturbance. Similarly, the 
fluctuating velocity and pressure immediately downstream of 
the shock are 

(14) 

5.0 

M, '2.0 
4.0 

175 

30 

>:. 1.463 

20 
125 

1.0 
10 

0 20 40 60 60 100 

DImensIonless Frequency. n 

Hg.9 Magnitude of transmission coefficient, Tr • 

(15) 

Substituting the above expressions [Eqs. (12-15)] into the 
normal shock relations and assuming quasisteady behavior for 
the shock, the following formula is obtained for the transmis­
sion coefficient of a shock, Tr : 

(16) 

where 

_2_+_(,-1_--.:'Y;;.}M_-..:..} P +'YM2 (_ii2_) [1 +_4_M_,_(_P_' )] U 
h+l)Mj S iiI 'Y+l P2 S 

(17) 

(18) 

(19) 

(20) 

Figures 9 and 10 show the magnitude and phase of the 
transmission coefficient Tr • The result is well known: the 
shock amplifies all the disturbances from upstream. The 
magnitude of Tr is always greater than unity, and increases 
with the shock strength. 

Numerical calculations for finite disturbances have shown 
that the dependence of the shock motion on amplitude and 
frequency are similar to those for downstream disturbances. 
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The average position of shock wave is always shifted 
upstream. 

Resonance 

One of the important issues regarding the oscillatory 
pressure field in an acoustic cavity is resonance. With super­
sonic flow upstream of the shock in an inlet diffuser, the cav­
ity is defined as the region from the shock to the exit, where 
the counter-running wave system exists. Calculation of the 
natural frequencies is straightforward using a linear one­
dimensional acoustic model. If we assume that the cross­
sectional area of the diffuser varies slowly, then the ap­
propriate equation describing the acoustic pressure field is 

p' ~-2_U2 ( [ jX dx'] P=-_-= --_- P +exp -iwt+iw -_--_ 
-YP a Lf a+ u 

+p_exP[-iwt-iw
rX ~'-]J 
JLf a-u 

(21) 

where P + and P _ are complex amplitudes of the right- and 
left-running waves. By applying the condition for reflection at 
the shock and treating the exit as an acoustic node, the follow­
ing transcendental equation for the natural frequencies is 
obtained: 

[ jLd dx'] [ jLd dx' ] (3exp iw -_--_ + exp - iw -_--_ = 0 
Lf a+u Lf a-u 

(22) 

where (3 is the acoustic reflection coefficient at the shock given 
in Ref. II. 

To check if resonances exist, numerical calculations have 
been carried out for periodic pressure oscillations with a wide 
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Fig. 14 Instantaneous shock position due to downstream distur­
bance with/=300 Hz (diffuser B). 

range of frequencies imposed at the entrance. Figure II shows 
the spectra of the extreme excursions of the shock in diffuser 
A with op = O.IPin' where the vertical arrows indicate natural 
frequencies determined from Eq. (22). Only near the fourth 
harmonic (560 Hz) does the shock response (weakly) resemble 
that for resonance. The shock is an over damped system. A 
similar conclusion has been reached by Sajben and Bogar3 in 
their experimental investigation of forced oscillation in super­
critical diffuser flows. 

Influence of Fuel and Air Injections 

Thus far only the behavior of a single-phase flow has been 
examined. For many practical ramjet engines, fuel is injected 
and atomized in the inlet section. Thus, it is necessary to ex­
amine the flowfield with liquid fuel droplets accounted for. 
Calculations have been done for various drop sizes, injector 
locations, and airflow rates through the injector, while keep­
ing the boundary conditions and fuel-to-air ratio fixed. Figure 
12 shows the mean pressure distributions in diffuser B with 
stoichiometric RJ-4 fuel droplets (mCuel =0.07mair ) and wall 
air jet introduced. The injected fuel/airflow modifies the main 
flow field noticeably, moving the shock upstream and reducing 
the shock strength. The mean shock positions for various in­
jection conditions are shown in Fig. 13. The effects of fuel 
droplets· are measured best by their momentum and heat 
transfer to the gas flow. Since smaller droplets mean a greater 
specific surface area for a mixture with fixed fuel-to-air ratio, 
the effects increase with decreasing droplet size. Evidently the 
dependence of shock position on the rate of mass injection is 
the dominant effect. 

Figure 14 shows the instantaneous shock positions subject 
to downstream disturbances. A comparison between Figs. 6 
and 14 clearly indicates that the stability margin of a shock is 
reduced by injecting fuel and air into the main flow. A 
pressure disturbance with op = O.IPex forces the shock to pass 
through the throat in a flow with a small amount of air added 
(11 = 0.05), while the stability is ensured even for op = 0.15Pex in 
a flow without injection. 

Concluding Remarks 
The numerical analysis described here serves as a convenient 

and inexpensive means of assessing the influence of large­
amplitude disturbances on the unsteady behavior of an inlet 
diffuser. It is not the intention of this work to provide a theory 
of the diffuser, but rather to construct an approximate 
representation which may later be used in analysis of the 
nonlinear behavior of an entire engine. Because viscous effects 
have been ignored, any results obtained with the formulation 
used here are restricted to relatively weak shocks so that flow 
separation does not occur. 
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