
Citation: Ma, J.; Zhu, Y.; Chen, D.;

Zhang, C.; Song, M.; Zhang, H.; Chen,

J.; Zhang, K. Analysis of Urban

Electric Vehicle Adoption Based on

Operating Costs in Urban

Transportation Network. Systems

2023, 11, 149. https://doi.org/

10.3390/systems11030149

Academic Editor: Tinggui Chen

Received: 16 February 2023

Revised: 5 March 2023

Accepted: 10 March 2023

Published: 13 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

Analysis of Urban Electric Vehicle Adoption Based on
Operating Costs in Urban Transportation Network
Jie Ma , Yu Zhu, Dawei Chen *, Chenhao Zhang, Maocan Song, Honggang Zhang, Jingxu Chen and Kai Zhang

School of Transportation, Southeast University, Nanjing 211189, China
* Correspondence: dw_chen@seu.edu.cn

Abstract: Electric vehicles (EVs) are one of the most promising applications that are reshaping the
future urban mobility market and benefitting the urban environment. Analyzing the adoption of
EVs helps both vehicle sales market management and urban transportation-related environmental
cost estimation. Previous studies have shown that EV adoption is mostly affected by the economic
environment and users’ psychological factors; however, both factors vary among specific urban trans-
portation networks. This paper thus proposes network-related vehicle operating cost functions and a
logit-based choice model, which considers both the economic environment and users’ psychological
factors at a network level. The model can thus estimate the vehicle adoption for specific networks.
Numerical experiments and sensitivity analyses were conducted to illustrate the proposed method
and provide practical insights in estimating EV adoption, respectively. The results suggest that EV
adoption greatly varies among different cities.

Keywords: electric vehicle adoption; vehicle ownership; operating cost; logit choice model; urban
transportation network

1. Introduction

Nowadays, electric vehicles (EVs) are one of the most promising innovations of green
transportation; they share a part of the growing private vehicle sales market because of
their low operating costs and great government supports [1,2]. For example, China had
the world’s largest EV market and, from the year 2014 to 2018, its EV sales increased
from 45,048 to 983,740, which grew at a rate of about 116% each year on average [3]. One
critical reason for this development is that the operating cost of EVs is much lower than
that of gasoline vehicles (GVs), especially in the urban traffic environment [4]. Moreover,
governments in many cities around the world provide subsidies to eliminate the price
difference between EVs and GVs [5]. Plenty of studies have presented that the EV subsidy
scheme strongly improves EVs’ cost competitiveness and encourages EV purchasing [6–9].
Moreover, because an urban commuting distance is usually less than the EVs’ range and
because commuters can use home and workplace charging piles [10], EVs are favored by
urban commuters [11–13]; these facts make EVs more attractive in cities.

Analyzing urban EV adoption not only helps with the management of the private
vehicle sales market but also assists the estimation of urban transportation-related envi-
ronmental costs. However, there are several difficulties in analyzing urban vehicle choice.
First of all, users from different cities may have different attitudes towards EVs. Secondly,
the urban transportation network is a complex system; different network structures and
traffic congestion may affect people’s vehicle choices. Last but not least, the function of
quantifying the operating cost of EVs at the network level has not been unified. This
paper thus focuses on removing these obstacles and analyzing urban users’ vehicle choices
between EVs and GVs.
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1.1. Literature Review

There have been several works that have focused on the analysis of users’ vehicle
choice and EV adoption [5,14–16]. For example, Luo et al. [14] proposed a grey prediction
model to predict EV adoption using national statistical EV adoption history data but
obtained a more optimistic result than the reality in the year 2020. Li et al. [15] predicted
EV adoption by using civilian car ownership history data. The authors compared the
performance of the two most commonly used models, the Gompertz and logit models, and
found that the Gompertz model also obtained more optimistic results than the logit model.
These studies only considered ownership history data rather than the factors that influence
users’ vehicle choices. However, Lane and Potter [16] found that both the economic
environment and users’ psychological factors, including attitudes, lifestyle, personality,
and self-image, greatly affect users’ vehicle choices, especially with respect to EVs. On the
one hand, Dumortier et al. [17] and Hagman et al. [5] explored a consumer-centric total
cost of ownership (TCO) model and verified that the economic environment affects users’
vehicle choice the most; they also found that most governments provided subsidies to
eliminate the price difference between EVs and GVs, which highlighted the advantage of
the EVs’ low operating costs. On the other hand, logit models have often been used in users’
choice behavior to consider their psychological factors (e.g., [18–23]). Operating costs and
psychological factors are both network-related factors that are often respectively affected
by traffic congestion and network characteristics; however, to the best of our knowledge,
few works have simultaneously considered them at the network level to analyze urban
users’ vehicle choices because of the complexity of the urban transportation network.

Because the operating cost of vehicles is critical to vehicle choice, many works have
been studied the operating cost. For example, Greene et al. and Xu et al. [24,25] found
that the operating cost of EVs is much lower than that of GVs, which makes EVs more
competitive. Chu et al. [26] investigated the psychological and behavioral factors affecting
EV adoption among the largest EV markets, China and Korea, and found that minimizing
the operating cost is one of the most important determinants for adopters. However, most
of these works only considered the performance of individual vehicles rather than their
performance in urban transportation networks. Mansour et al. [27] conducted a travel
survey to assess the operating costs of EVs for typical home-to-work commutes under
the peak and off-peak traffic conditions and found that congested traffic can significantly
reduce the performance of EVs and, in turn, affect users’ vehicle choices. Their results
confirmed that vehicles’ operating costs are greatly related to the traffic congestion, which
varies among specific urban transportation networks. Therefore, to analyze citizens’ vehicle
choices at the network level, a network-related operating cost function must be considered.

1.2. Objectives and Contributions

This study closes the above research gaps by proposing a logit-based choice model
that incorporates the network-related operating cost functions of EVs and GVs. The main
contributions of this study are three-fold:

• We propose a logit-based choice model for urban vehicle choices. Urban users’ psy-
chological factors are considered by using the logit-based choice model. As afore-
mentioned, because governments provide subsidies to eliminate the price difference
between EVs and GVs, the proposed model pays attention to the operating costs of ve-
hicles to fully consider the economic environment. The question of how to estimate EV
adoption by considering operating costs and psychological factors will be answered.

• Because vehicles’ operating costs are network-related, we have proposed network-
related operating cost functions for EVs and GVs; the proposed functions consider
specific factors such as vehicle type, travel distance, and traffic congestion. By using
the proposed network-related functions, the characteristics and complexity of specific
urban transportation networks are considered, which allows for the proposed logit-
based model to estimate vehicle choices for different cities.
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• Numerical experiments were conducted to assess the proposed method. We used
sensitivity analyses to provide practical insights into urban vehicle adoption among
different cities. The results suggest that urban vehicle adoption is network-related
and that both the users’ psychological factors and urban transportation network
characteristics greatly affect the vehicle choices.

The remainder of this paper is organized as follows. Section 2 introduces the problem
statement. Section 3 formulates a logit-based choice model that incorporates network-
related vehicle operating cost functions to forecast urban users’ vehicle choices. Section 4
provides numerical experiments to assess the proposed method and provide some insights.
Section 5 concludes this study and provides future research directions.

2. Problem Statements

Because of the development of the EV industry and because governments have been
promoting the vehicles, the gap between the purchase costs of EVs and gasoline vehicles
(GVs) is rapidly narrowing [2,28,29]; with the increase in EV penetration into the market
and the progression of battery technology, there is a bright prospect that this gap will
disappear very soon. Moreover, much evidence has suggested that the impact of the EV
purchase price on users’ purchase intentions is decreasing [3,30,31]. Compared with the
purchase prices, urban users are more concerned about vehicles’ operating costs, range,
and reliability when choosing EVs or GVs [4,32,33]. Because EVs’ range and reliability
are quickly increasing, the anxiety about their range and reliability is now being eased.
Moreover, most EVs can travel hundreds of kilometers after being fully charged; thus,
nowadays, urban commuters do not need to consider the driving range [34]. Research
on charging behavior has indicated that EV owners in cities tend to charge for a long
period before or after traveling; for example, commuters usually charge in parking lots near
their residence and workplaces [35,36]. Thus, it is reasonable to assume that during the
intra-urban travel, travelers hardly care about the distribution of charging stations on the
road that they pass. Therefore, especially in urban transportation networks, the impact of
purchase costs and range anxiety on travelers’ choice between GVs and EVs will gradually
decrease. These weakening influential factors highlight the advantage of using EVs to
save operating costs. Due to the much lower energy consumption of EVs compared with
that of GVs, EV users will save a large number of operating costs, which will make EVs
more competitive in the future [37]. Table 1 illustrates a comparison between the energy
consumption of EVs and GVs [38].

Table 1. The energy consumption of electric vehicles and gasoline vehicles in the U.S.

Consumption Gasoline Vehicle Electric Vehicle

Total energy (kJ/100 km) 421,153.46 224,727.55
Total fossil fuel (kJ/100 km) 392,638.76 190,884.40

Coal (kJ/100 km) 8134.86 122,974.21
Natural gas (kJ/100 km) 56,852.12 64,132.90
Petroleum (kJ/100 km) 327,651.78 3777.29

Water (L/100 km) 117.09 370.52

According to Table 1, we observe that an EV saves almost one-half of a GV’s energy
consumption. In addition to the energy consumption difference, the difference in energy
prices also makes the operating cost of EVs much cheaper than that of GVs. Based on
the electricity rate and price of gasoline including taxes in effect on 1 April 2021, i.e.,
$0.10932/kW·h and $1.5/L, Table 2 lists the average unit electricity and gasoline con-
sumption (of the users) of an EV and a GV [39], respectively, as well as their average unit
operating costs.
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Table 2. The average unit operating costs of electric vehicles and gasoline vehicles.

Consumption Gasoline Vehicle Electric Vehicle

Electricity (kW·h/100 km) - 18.8
Gasoline (L/100 km) 9.0 -

Operating cost ($/100 km) 13.50 2.07

From Table 2 we can see that the average unit operating cost of a GV is more than
6.5 times that of an EV, which makes the operating cost a key factor that affects users’ choices
in electric or gasoline vehicles (consistent with Heyvaert et al. [33]). However, Table 2 only
illustrates average unit operating costs and does not consider the scale effect. Specifically,
the operating costs of EVs and GVs could vary among different urban transportation
networks as network-related factors would affect the operating costs. For example, although
EVs and GVs have the same travel time in a mixed traffic flow, traffic congestion of different
degrees may lead to different energy consumption and operating costs for EVs and GVs [40].
Moreover, in addition to the operating cost, which is an observed attribute, the unobserved
attributes should also be considered when we describe users’ choice behavior. For example,
users in different cities may hold different attitudes regarding the operating costs and
vehicle choices. Thus, we further investigated the network-related factors of the vehicle
operating costs, defined a network-related operating cost function, and proposed a logit-
based choice model to describe the users’ choice behavior in the next section.

3. Research Methodology

In this section, we propose a network-related operating cost function for each vehicle
type and a logit-based choice model for the users’ vehicle choice behavior.

3.1. Network-Related Operating Cost Function

Different from the average unit operating cost listed in Table 2, the network-related
operating cost considers the scale effects of specific urban transportation networks. Specif-
ically, the length and travel time of the users’ travel paths, which connect their origin
and destination (OD) pairs, need to be considered. Thus, we defined a network-related
operating cost function with the EVs and GVs separated. According to Yang et al. [41] and
Ma et al. [42], the average electricity (W·h) and fuel (L) consumption of an individual EV
and GV, respectively, can be calculated by

εe =
(

0.0096v3 + 84.775v + 1000
)
× t (1)

and
εg =

(
0.00001v2 − 0.00182v + 0.13408

)
× d (2)

where v denotes the average travel speed (km/h) of vehicles; d denotes the travel distance
(km); and t denotes the travel time (h). Both d and t are network-related factors that vary
among different urban transportation networks, and the average travel time is v = d

t . Note
that we do not necessarily calculate the energy consumption through Equations (1) and (2).
We only employ them here for illustration purposes, as they are classic and representative
enough; other suitable energy consumption functions, if there are any, can also be used
in practice. This study aims to provide a framework to effectively forecast the urban EV
adoption based on operating costs. The framework should be applicable to any reasonable
energy consumption function.

Considering the electricity and gasoline rates and the equation v = d
t , we defined a

network-related operating cost function for each vehicle type as follows:

ce =

[
0.0096

(
d
t

)3
+ 84.775

(
d
t

)
+ 1000

]
× t× re

1000
(3)

and
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cg =

[
0.00001

(
d
t

)2
− 0.00182

(
d
t

)
+ 0.13408

]
× d× r f (4)

where re and r f denote the electricity ($/kW·h) and gasoline rates ($/L), respectively.
In practice, the travel distance d is usually determined by traffic engineering survey

methods, e.g., the floating car method [43,44]. Specifically, a floating car, i.e., a vehicle
driven by the surveyor, travels at a fixed speed v0 when no traffic flow is on the paths,
referred to as the free-flow condition, while recording its free-flow travel time t0. Then, the
travel distance d = v0t0. Therefore, Equations (3) and (4) can be also written as

ce =

[
0.0096

(
v0t0

t

)3
+ 84.775

(
v0t0

t

)
+ 1000

]
× t× re

1000
(5)

and

cg =

[
0.00001

(
v0t0

t

)2
− 0.00182

(
v0t0

t

)
+ 0.13408

]
× v0t0 × r f (6)

where v0 denotes the free-flow speed (km/h) and t0 denotes the free-flow travel time (h).
For example, if we let v0 = 60 km/h, t0 = 1 h, re = $0.10932/kW·h, and r f = $1.5/L, we
curve the network-related operating cost functions of the EV and GV, as shown in Figure 1.
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Figure 1 suggests that the operating costs of an EV and GV vary with respect to the
travel time t. It can be seen that the operating cost of an EV is always lower than that of a
GV in this example. According to Equations (5) and (6), we observe that the only variable
of the proposed network-related operating cost functions is the travel time t, which varies
according to the traffic flow condition of the specific urban transportation networks. That
is, if we can determine the travel time t of each road link, we can, in turn, determine the
operating costs of both the EV and GV. Next, we employ a well-known technique in the
field of transportation engineering referred to as the traffic assignment problem (TAP) to
forecast the traffic flow and travel time.

3.2. Network Traffic Flow and Travel Time

The traffic assignment problem (TAP) is a well-developed technique used to forecast
the traffic flow and travel time of urban transportation networks. Many works [45–47] have
aimed to complete TAPs to forecast the traffic flow and travel time at the network level.
Here, we employ a stochastic user equilibrium (SUE)-based TAP, which fully considers
the stochasticity of travelers’ perception on their travel time, to forecast the traffic flow
and travel time. We consider an urban transportation network (N, A) where N denotes the
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set of nodes and A denotes the set of links. Let w ∈W denote the origin and destination
(OD) pair and p ∈ Pw and qw denote the paths and travel demand between OD pair w,
respectively. The SUE-based TAP is given as follows:

min
f w
p

∑
w,p

∫ f w
p

0
tw

p (ω)dω +
1
θ ∑

w,p
f w
p

(
ln f w

p − 1
)

(7a)

∑
p

f w
p = qw (7b)

f w
p ≥ 0 (7c)

where f w
p is the traffic flow on the path p, referred to as the path flow, which connects the

origin and destination (OD) pair w; tw
p (·) is the travel time function with respect to the path

flow; and θ is a scale parameter indicating the degree of travelers’ perception error on their
travel time. The larger θ is, the more accurately travelers perceive their travel time, i.e.,
travelers are more sensitive to the travel time. As aforementioned, because the EVs’ range
completely satisfies the users’ commuting demand in the urban traffic environment, the
range anxiety is not necessarily considered.

The above TAP formulation is a strictly convex mathematical programming formula
whose solution can be efficiently solved using many algorithms, including the Frank-Wolfe
algorithm [48] and the method of successive average [49–51]; both are widely used.

3.3. Logit-Based Choice Model

Based on the above proposed network-related operating cost functions of EVs and
GVs, we are able to propose a logit-based model for the vehicle choice behavior of the
users. For example, Figure 2 illustrates the users’ vehicle choices on one specific travel path
between an OD pair. The solid line between the OD pair denotes a specific travel path.
The two parallel dash and dot-dash lines denote the EV and GV users on this travel path,
respectively.
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As aforementioned, the proposed network-related operating cost functions are key
factors that affect the users’ vehicle choice behavior. We thus let them be the observed
attributes of the utilities of the alternatives EV and GV:

uw
p,e = −θVcw

p,e + εw
p,e

uw
p,g = −θVcw

p,g + εw
p,g

εw
p,e, εw

p,g ∼ i.i.d. extreme value
, ∀w, p (8)

where uw
p,e and uw

p,g denote the utilities of choosing an EV and GV, respectively; θV is a scale
parameter for the vehicle choice utility; cw

p,e and cw
p,g denote the network-related operating

costs of an EV and GV, respectively; εw
p,e and εw

p,g denote the unobserved terms that are
assumed to follow an independent and identically distribution (i.i.d.) of extreme value.
The unobserved term is also referred to as the “perception error”, which denotes the gap
between travelers’ perceived utility and the actual utility. Psychological factors are the
principal reason for perception errors. For instance, if a traveler is in a bad mood on a day,
they may prefer EVs with lower noise, meaning their perceived utility uw

p,e may be higher
than the actual utility.



Systems 2023, 11, 149 7 of 12

Here, we directly apply the conclusion of logit-based models (Section 5.2 of Ben-Akiva
and Lerman [52]) to save space. The proposed logit-based model (8) derives the users’
vehicle choices as follows:

f w
p,i =

exp
(
−θVcw

p,i

)
× f w

p

exp
(
−θVcw

p,e

)
+ exp

(
−θVcw

p,g

) , ∀w, p, ∀i ∈ {e, g} (9)

where f w
p,i denotes the users’ choice of vehicle type i ∈ {e, g} on path p, which connects OD

pair w.
According to Equation (9) and the flow conservation constraint, we calculate the

amounts of EVs in the entire network by

ϕe = ∑
w,p

f w
p,e (10)

4. Numerical Experiments

To assess the proposed method, we conduct a numerical experiment by using the
classic Sioux Falls urban transportation network as an example. The Sioux Falls network
is widely applied in the field of transportation network modeling, and it has 24 nodes,
76 links, and 528 OD pairs; its topology is given in Figure 3.
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The travel time of the links in this network is described by the Bureau of Public Roads
(BPR) function [53]. Therefore, the travel time tw

p and free-flow travel time tw
p,0 of each path

are given by
tw

p

(
f w
p

)
= ∑

a

{
δw

a,pta,0

[
1 + ρ

(
∑w,p δw

a,p f w
p

ca

)τ
]}

, ∀w, p (11)

and
tw

p,0 = ∑
a

δw
a,pta,0, ∀w, p (12)

where ta,0 denotes the free-flow travel time of link a and δw
a,p is the link/path incidence

parameter. δw
a,p = 1 if path p goes through link a; otherwise, δw

a,p = 0. ca denotes the
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capacity of link a, and the general parameters of ρ = 0.15, τ = 4 are set. The specific values
of ta,0, ca, and travel demand qw are given in Bar-Gera [54]. The network-related operating
costs of the EVs and GVs on each path are respectively given by

cw
p,e =

[
0.0096

(
v0tw

p,0
tw

p

)3
+ 84.775

(
v0tw

p,0
tw

p

)
+ 1000

]
× tw

p × re

1000
(13)

and

cw
p,g =

0.00001

(
v0tw

p,0

tw
p

)2

− 0.00182

(
v0tw

p,0

tw
p

)
+ 0.13408

× v0tw
p,0 × r f (14)

According to many studies [47,55,56], although the total number of paths between
all of the OD pairs in a large-scale network may be very large, the commuters usually
use only the 5–10 shortest paths between each OD pair. Thus, w use the k shortest path
algorithm [57,58] to generate 10 paths for each OD pair. The link/path incidence parameter
δw

a,p can be seen in Ma [59]; other parameters are listed in Table 3.

Table 3. Parameter settings.

Parameter Notation Value

Scale parameter of TAP model θ 0.1
Scale parameter of vehicle

choice model θV 0.1

Free-flow speed v0 60
Electricity rate re 0.10932

Fuel rate r f 1.5

We solve the traffic assignment problem by using the method of successive
average [49,60] to obtain the travel time tw

p of each path in the Sioux Falls network.
Then, the operating costs of the EVs and GVs on each path are calculated by using
Equations (13) and (14). The operating costs of an EV and GV over the entire network are
shown in Figure 4.

Systems 2023, 11, x FOR PEER REVIEW 9 of 13 
 

 

only the 5–10 shortest paths between each OD pair. Thus, w use the k shortest path algo-
rithm [57,58] to generate 10 paths for each OD pair. The link/path incidence parameter 𝛿 ,  can be seen in Ma [59]; other parameters are listed in Table 3. 

Table 3. Parameter settings. 

Parameter Notation Value 
Scale parameter of TAP model 𝜃 0.1 

Scale parameter of vehicle choice model 𝜃  0.1 
Free-flow speed 𝑣  60 
Electricity rate 𝑟  0.10932 

Fuel rate 𝑟  1.5 

We solve the traffic assignment problem by using the method of successive average 
[49,60] to obtain the travel time 𝑡  of each path in the Sioux Falls network. Then, the 
operating costs of the EVs and GVs on each path are calculated by using Equations (13) 
and (14). The operating costs of an EV and GV over the entire network are shown in Figure 
4. 

 
(a)      (b) 

Figure 4. Operating costs of EVs and GVs over the Sioux Falls network. (a) Operating costs of EVs; 
(b) operating costs of GVs. 

Figure 4 suggests that the operating costs of the EVs over the entire network are much 
lower than those of the GVs, which is strong evidence supporting that EVs are much more 
environmentally friendly than GVs. According to the users’ vehicle choices (9) and Equa-
tion (10), we calculate and list the forecasted amounts of EVs and GVs in Table 4. 

Table 4. Forecasted amounts of electric and gasoline vehicles. 

Vehicle Type Forecasted Amount 
Electric vehicle 184,086 

Gasoline vehicle 177,214 

Table 4 suggests that, when we consider the vehicle operating costs of a specific net-
work, the forecasted amount of EVs will be larger than that of GVs. This is because the 
average operating cost of an EV over paths is lower than that of a GV. Note that this result 
is based on the current preset parameters and travel demand level, which are both net-
work characteristics. Next, we conduct sensitivity analyses on the parameters and travel 

Figure 4. Operating costs of EVs and GVs over the Sioux Falls network. (a) Operating costs of EVs;
(b) operating costs of GVs.

Figure 4 suggests that the operating costs of the EVs over the entire network are much
lower than those of the GVs, which is strong evidence supporting that EVs are much



Systems 2023, 11, 149 9 of 12

more environmentally friendly than GVs. According to the users’ vehicle choices (9) and
Equation (10), we calculate and list the forecasted amounts of EVs and GVs in Table 4.

Table 4. Forecasted amounts of electric and gasoline vehicles.

Vehicle Type Forecasted Amount

Electric vehicle 184,086
Gasoline vehicle 177,214

Table 4 suggests that, when we consider the vehicle operating costs of a specific
network, the forecasted amount of EVs will be larger than that of GVs. This is because the
average operating cost of an EV over paths is lower than that of a GV. Note that this result
is based on the current preset parameters and travel demand level, which are both network
characteristics. Next, we conduct sensitivity analyses on the parameters and travel demand
to provide some practical insights into the EV adoption with different urban transportation
network characteristics. Figure 5 shows the results of the sensitivity analyses.
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Figure 5a illustrates the gap between the amounts of EVs and GVs with respect to
the parameters θ and θV ; it suggests that, along with the increase in both parameters, the
gap between the amounts increases. Moreover, the parameter θV has a greater impact
on the users’ vehicle choices than θ. Figure 5b shows the gap between the amounts of
EVs and GVs with respect to the changes in travel demand. Along with the increase
in travel demand, the gap becomes lower, namely, the proportion of users who choose
EVs decreases.

Figure 5a,b both suggest that the users’ vehicle choices are with respect to network
characteristics. The parameters of choice behavior and the degree of traffic congestion
both have significant impacts on users’ vehicle choices. This fact reflects the necessity of
investigating vehicle choices from the perspective of networks.

5. Conclusions

This study analyzed urban users’ vehicle choices and EV adoption by proposing a
logit-based choice model and considering vehicle operating costs. The considered operating
cost functions for EVs and GVs were separately proposed; both functions consider network
characteristics and depend on the traffic environment of the specific urban transportation
networks. An SUE-based TAP model, which fully considers the travelers’ perception error
on the travel time when they make travel decisions, was employed to determine the traffic
flow and, in turn, the users’ travel time in the networks. The employed SUE-based TAP
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model is well developed in the research field of urban transportation networks and thus
can be efficiently solved by many algorithms. We conducted a numerical experiment
to verify the proposed methodology and to provide some practical insights into vehicle
adoption and urban traffic management. The experiment results suggest that the network
traffic environment, such as the traffic flow, travel time, and travel demand, significantly
affect users’ vehicle choices. The more congested the network is, the less that users will
choose EVs.

Though some contributions have been made, there are still several barriers and limita-
tions to this study. Firstly, we neglected the possible uncertainty of travelers’ route choice
behaviors and the elasticity of travel demand. Secondly, for illustration, we set common
values for the scale parameters of the TAP and vehicle choice models. Lastly, the operating
costs may involve other influencing factors besides the traffic condition.

In the future, studies can be performed to extend the proposed methodology and to
provide additional insights. Future challenges may include the following aspects: (i) the
consideration of travelers’ route choice uncertainty in TAP; (ii) the consideration of elastic
travel demand in urban transportation networks; (iii) the calibration of the scale parameters
of the TAP and vehicle choice models; and (iv) the investigation, estimation, and prediction
of the operating costs of EVs and GVs.

6. Patents
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low-carbon travel [Patent], 202210475756.6, 2 May 2022.

Author Contributions: Conceptualization, J.M. and D.C.; methodology, J.M.; software, J.M.; val-
idation, D.C. and Y.Z.; formal analysis, Y.Z. and C.Z.; investigation, M.S.; data curation, H.Z.;
writing—original draft preparation, J.M. and J.C.; visualization, C.Z. and K.Z.; supervision, D.C.;
funding acquisition, J.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Education of the People’s Republic of China
Humanities and Social Sciences Youth Foundation (grant number 22YJCZH123), the Natural Science
Foundation of Jiangsu Province (grant number BK20220846), the China Postdoctoral Science Founda-
tion (grant numbers 2021M690614 and 2021T140112), and the Transportation Science and Technology
Project of Henan Province (grant number 2022-2-2).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data can be shared by request.

Acknowledgments: The authors would like to thank the students from the School of Transportation,
Southeast University for their help in collecting the data required for this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yu, Z.; Li, S.; Tong, L. Market Dynamics and Indirect Network Effects in Electric Vehicle Diffusion. Transp. Res. Part D Transp.

Environ. 2016, 47, 336–356. [CrossRef]
2. Chen, S.; Wang, H.; Meng, Q. Optimal Purchase Subsidy Design for Human-Driven Electric Vehicles and Autonomous Electric

Vehicles. Transp. Res. Part C 2020, 116, 102641. [CrossRef]
3. Dong, X.; Zhang, B.; Wang, B.; Wang, Z. Urban Households’ Purchase Intentions for Pure Electric Vehicles under Subsidy Contexts

in China: Do Cost Factors Matter? Transp. Res. Part A Policy Pract. 2020, 135, 183–197. [CrossRef]
4. Higueras-castillo, E.; Guillén, A.; Herrera, L. Adoption of Electric Vehicles: Which Factors Are Really Important? Int. J. Sustain.

Transp. 2021, 15, 799–813. [CrossRef]
5. Hagman, J.; Ritzén, S.; Stier, J.J.; Susilo, Y. Total Cost of Ownership and Its Potential Implications for Battery Electric Vehicle

Diffusion. Res. Transp. Bus. Manag. 2016, 18, 11–17. [CrossRef]
6. Wu, X.; Gong, J.; Greenwood, B.N.; Song, Y. The Effect of Early Electric Vehicle Subsidies on the Automobile Market. J. Public

Mark. 2023, 42, 169–186. [CrossRef]
7. Li, K.; Wang, L. Optimal Electric Vehicle Subsidy and Pricing Decisions with Consideration of EV Anxiety and EV Preference in

Green and Non-Green Consumers. Transp. Res. Part E Logist. Transp. Rev. 2023, 170, 103010. [CrossRef]

http://doi.org/10.1016/j.trd.2016.06.010
http://doi.org/10.1016/j.trc.2020.102641
http://doi.org/10.1016/j.tra.2020.03.012
http://doi.org/10.1080/15568318.2020.1818330
http://doi.org/10.1016/j.rtbm.2016.01.003
http://doi.org/10.1177/07439156221134927
http://doi.org/10.1016/j.tre.2022.103010


Systems 2023, 11, 149 11 of 12

8. Hao, H.; Ou, X.; Du, J.; Wang, H.; Ouyang, M. China’s Electric Vehicle Subsidy Scheme: Rationale and Impacts. Energy Policy
2014, 73, 722–732. [CrossRef]

9. Thorne, Z.; Hughes, L. Evaluating the Effectiveness of Electric Vehicle Subsidies in Canada. Procedia Comput. Sci. 2019, 155,
519–526. [CrossRef]

10. Rotaris, L.; Giansoldati, M.; Scorrano, M. The Slow Uptake of Electric Cars in Italy and Slovenia. Evidence from a Stated-Preference
Survey and the Role of Knowledge and Environmental Awareness. Transp. Res. Part A Policy Pract. 2021, 144, 1–18. [CrossRef]

11. Hackbarth, A.; Madlener, R. Consumer Preferences for Alternative Fuel Vehicles: A Discrete Choice Analysis. Transp. Res. Part D
Transp. Environ. 2013, 25, 5–17. [CrossRef]

12. Weiss, M.; Dekker, P.; Moro, A.; Scholz, H.; Patel, M.K. On the Electrification of Road Transportation—A Review of the
Environmental, Economic, and Social Performance of Electric Two-Wheelers. Transp. Res. Part D Transp. Environ. 2015, 41,
348–366. [CrossRef]

13. Mirhedayatian, S.M.; Yan, S. A Framework to Evaluate Policy Options for Supporting Electric Vehicles in Urban Freight Transport.
Transp. Res. Part D Transp. Environ. 2018, 58, 22–38. [CrossRef]

14. Luo, H.; Ruan, J.; Li, F. Study on the Electric Vehicles Ownership and Planning for the Construction of Charging Infrastructure. In
Proceedings of the Asia-Pacific Power and Energy Engineering Conference (APPEEC), Wuhan, China, 25–28 March 2011; pp. 1–4.
[CrossRef]

15. Li, X.; Wang, E.; Zhang, C. Prediction of Electric Vehicle Ownership Based on Gompertz Model. In Proceedings of the 2014 IEEE
International Conference in Information and Automation (ICIA), Hailar, China, 28–30 July 2014; pp. 87–91. [CrossRef]

16. Lane, B.; Potter, S. The Adoption of Cleaner Vehicles in the UK: Exploring the Consumer Attitude-Action Gap. J. Clean. Prod.
2007, 15, 1085–1092. [CrossRef]

17. Dumortier, J.; Siddiki, S.; Carley, S.; Cisney, J.; Krause, R.M.; Lane, B.W.; Rupp, J.A.; Graham, J.D. Effects of Providing Total Cost
of Ownership Information on Consumers ’ Intent to Purchase a Hybrid or Plug-in Electric Vehicle. Transp. Res. Part A Policy Pract.
2015, 72, 71–86. [CrossRef]

18. Zhou, F.; Zheng, Z.; Whitehead, J.; Perrons, R.K.; Washington, S.; Page, L. Examining the Impact of Car-Sharing on Private Vehicle
Ownership. Transp. Res. Part A Policy Pract. 2020, 138, 322–341. [CrossRef]

19. Wang, K.; Salehin, M.F.; Habib, K.N. A Discrete Choice Experiment on Consumer’s Willingness-to-Pay for Vehicle Automation in
the Greater Toronto Area. Transp. Res. Part A Policy Pract. 2021, 149, 12–30. [CrossRef]

20. Liu, Y.; Cirillo, C. A Generalized Dynamic Discrete Choice Model for Green Vehicle Adoption. Transp. Res. Part A Policy Pract.
2018, 114, 288–302. [CrossRef]

21. Jin, F.; An, K.; Yao, E. Mode Choice Analysis in Urban Transport with Shared Battery Electric Vehicles: A Stated-Preference Case
Study in Beijing, China. Transp. Res. Part A Policy Pract. 2020, 133, 95–108. [CrossRef]

22. Qian, L.; Grisolía, J.M.; Soopramanien, D. The Impact of Service and Government-Policy Attributes on Consumer Preferences for
Electric Vehicles in China. Transp. Res. Part A Policy Pract. 2019, 122, 70–84. [CrossRef]

23. Hackbarth, A.; Madlener, R. Willingness-to-Pay for Alternative Fuel Vehicle Characteristics: A Stated Choice Study for Germany.
Transp. Res. Part A Policy Pract. 2016, 85, 89–111. [CrossRef]

24. Xu, X.; Aziz, H.M.A.; Guensler, R. A Modal-Based Approach for Estimating Electric Vehicle Energy Consumption in Transportation
Networks. Transp. Res. Part D Transp. Environ. 2019, 75, 249–264. [CrossRef]

25. Greene, D.; Hossain, A.; Hofmann, J.; Helfand, G.; Beach, R. Consumer Willingness to Pay for Vehicle Attributes: What Do We
Know? Transp. Res. Part A Policy Pract. 2018, 118, 258–279. [CrossRef] [PubMed]

26. Chu, W.; Im, M.; Song, M.R.; Park, J. Psychological and Behavioral Factors Affecting Electric Vehicle Adoption and Satisfaction: A
Comparative Study of Early Adopters in China and Korea. Transp. Res. Part D Transp. Environ. 2019, 76, 1–18. [CrossRef]

27. Mansour, C.; Haddad, M.; Zgheib, E. Assessing Consumption, Emissions and Costs of Electrified Vehicles under Real Driving
Conditions in a Developing Country with an Inadequate Road Transport System. Transp. Res. Part D Transp. Environ. 2018, 63,
498–513. [CrossRef]

28. Degirmenci, K.; Breitner, M.H. Consumer Purchase Intentions for Electric Vehicles: Is Green More Important than Price and
Range? Transp. Res. Part D Transp. Environ. 2017, 51, 250–260. [CrossRef]

29. Chen, X.; Wu, T.; Zheng, R.; Guo, X. How Vehicle Market Is Segmented and in Fluenced by Subsidy Policy: A Theoretical Study.
Transp. Res. Part A Policy Pract. 2018, 118, 776–782. [CrossRef]

30. Larson, P.D.; Viáfara, J.; Parsons, R.V.; Elias, A. Consumer Attitudes about Electric Cars: Pricing Analysis and Policy Implications.
Transp. Res. Part A Policy Pract. 2015, 69, 299–314. [CrossRef]

31. Liu, X.; Sun, X.; Zheng, H.; Huang, D. Do Policy Incentives Drive Electric Vehicle Adoption? Evidence from China. Transp. Res.
Part A Policy Pract. 2021, 150, 49–62. [CrossRef]

32. Asadi, S.; Nilashi, M.; Samad, S.; Abdullah, R. Factors Impacting Consumers’ Intention toward Adoption of Electric Vehicles in
Malaysia. J. Clean. Prod. 2021, 282, 124474. [CrossRef]

33. Heyvaert, S.; Coosemans, T.; Van Mierlo, J.; Macharis, C. Electric Vehicle Attitudes and Purchase Intention: A Flemish Case Study.
Int. J. Electr. Hybrid Veh. 2015, 7, 83–100. [CrossRef]

34. De Nunzio, G.; Thibault, L. Energy-Optimal Driving Range Prediction for Electric Vehicles. In Proceedings of the 2017 IEEE
Intelligent Vehicles Symposium, Los Angeles, CA, USA, 11–14 June 2017; pp. 1608–1613.

http://doi.org/10.1016/j.enpol.2014.05.022
http://doi.org/10.1016/j.procs.2019.08.072
http://doi.org/10.1016/j.tra.2020.11.011
http://doi.org/10.1016/j.trd.2013.07.002
http://doi.org/10.1016/j.trd.2015.09.007
http://doi.org/10.1016/j.trd.2017.11.007
http://doi.org/10.1109/APPEEC.2011.5748974
http://doi.org/10.1109/ICInfA.2014.6932631
http://doi.org/10.1016/j.jclepro.2006.05.026
http://doi.org/10.1016/j.tra.2014.12.005
http://doi.org/10.1016/j.tra.2020.06.003
http://doi.org/10.1016/j.tra.2021.04.020
http://doi.org/10.1016/j.tra.2018.01.034
http://doi.org/10.1016/j.tra.2020.01.009
http://doi.org/10.1016/j.tra.2019.02.008
http://doi.org/10.1016/j.tra.2015.12.005
http://doi.org/10.1016/j.trd.2019.09.001
http://doi.org/10.1016/j.tra.2018.09.013
http://www.ncbi.nlm.nih.gov/pubmed/30505075
http://doi.org/10.1016/j.trd.2019.09.009
http://doi.org/10.1016/j.trd.2018.06.012
http://doi.org/10.1016/j.trd.2017.01.001
http://doi.org/10.1016/j.tra.2018.10.026
http://doi.org/10.1016/j.tra.2014.09.002
http://doi.org/10.1016/j.tra.2021.05.013
http://doi.org/10.1016/j.jclepro.2020.124474
http://doi.org/10.1504/IJEHV.2015.068946


Systems 2023, 11, 149 12 of 12

35. Philipsen, R.; Brell, T.; Brost, W.; Eickels, T.; Ziefle, M. Running on Empty—Users’ Charging Behavior of Electric Vehicles versus
Traditional Refueling. Transp. Res. Part F Traffic Psychol. Behav. 2018, 59, 475–492. [CrossRef]

36. Morrissey, P.; Weldon, P.; O’Mahony, M. Future Standard and Fast Charging Infrastructure Planning: An Analysis of Electric
Vehicle Charging Behaviour. Energy Policy 2016, 89, 257–270. [CrossRef]

37. Gao, Y.; Leng, M. Incentivizing the Adoption of Electric Vehicles under Subsidy Schemes: A Duopoly Analysis. Oper. Res. Lett.
2021, 49, 473–476. [CrossRef]

38. Enci, W.; Song, F.; Xuebin, W.; Xianjuan, P.; Zheng, J.; Yongyou, N. GREET-Based Model for Analyzing Pollutant Emissions
Characteristic of New Energy Vehicles. J. Shanghai Univ. 2017, 23, 810–820. [CrossRef]

39. Natural Resources Canada. Fuel Consumption Guide; Natural Resources Canada: Ottawa, ON, Canada, 2018; pp. 1–39.
40. Fiori, C.; Arcidiacono, V.; Fontaras, G.; Makridis, M.; Mattas, K.; Marzano, V.; Thiel, C.; Ciu, B. The Effect of Electri Fi Ed Mobility

on the Relationship between Traffic Conditions and Energy Consumption. Transp. Res. Part D Transp. Environ. 2019, 67, 275–290.
[CrossRef]

41. Yang, S.; Deng, C.; Tang, T.; Qian, Y. Electric Vehicle’s Energy Consumption of Car-Following Models. Nonlinear Dyn. 2013, 71,
323–329. [CrossRef]

42. Ma, J.; Li, D.; Tu, Q.; Du, M.; Jiang, J. Finding Optimal Reconstruction Plans for Separating Trucks and Passenger Vehicles Systems
at Urban Intersections Considering Environmental Impacts. Sustain. Cities Soc. 2021, 70, 102888. [CrossRef]

43. Chen, P.J.; Wang, J.S.; Zhang, Q.; Ji, X.; Wang, J.L. Research on Evaluation and Prediction Method of Link Travel Time Based on
Floating Car Data by Simulation Research on Evaluation and Prediction Method of Link Travel Time Based on Floating Car Data
by Simulation. J. Phys. Conf. Ser. 2019, 1168, 032094. [CrossRef]

44. Dewulf, B.; Neutens, T.; Vanlommel, M.; Logghe, S.; De Maeyer, P.; Witlox, F.; De Weerdt, Y.; Van De Weghe, N. Examining
Commuting Patterns Using Floating Car Data and Circular Statistics: Exploring the Use of New Methods and Visualizations to
Study Travel Times. J. Transp. Geogr. 2015, 48, 41–51. [CrossRef]

45. Ma, J.; Li, D.; Cheng, L.; Lou, X.; Sun, C.; Tang, W. Link Restriction: Methods of Testing and Avoiding Braess Paradox in Networks
Considering Traffic Demands. J. Transp. Eng. Part A Syst. 2018, 144, 04017076. [CrossRef]

46. Ma, J.; Cheng, L.; Li, D. Road Maintenance Optimization Model Based on Dynamic Programming in Urban Traffic Network.
J. Adv. Transp. 2018, 2018, 1–11. [CrossRef]

47. Ma, J.; Xu, M.; Meng, Q.; Cheng, L. Ridesharing User Equilibrium Problem under OD-Based Surge Pricing Strategy. Transp. Res.
Part B Methodol. 2020, 134, 1–24. [CrossRef]

48. Sheffi, Y. Urban Transportation Network; Prentice-Hall: Hoboken, NJ, USA, 1985; ISBN 0139397299.
49. Ma, J.; Wang, H.; Tang, T. Stochastic Electric Vehicle Network with Elastic Demand and Environmental Costs. J. Adv. Transp. 2020,

2020, 1–11. [CrossRef]
50. Liu, H.X.; He, X.; He, B. Method of Successive Weighted Averages (MSWA) and Self-Regulated Averaging Schemes for Solving

Stochastic User Equilibrium Problem. Netw. Spat. Econ. 2009, 9, 485–503. [CrossRef]
51. Jing, W.; Kim, I.; Ramezani, M.; Liu, Z. Stochastic Traffic Assignment of Mixed Electric Vehicle and Gasoline Vehicle Flow with

Path Distance Constraints. Transp. Res. Procedia 2017, 21, 65–78. [CrossRef]
52. Ben-Akiva, M.; Lerman, S.R. Discrete Choice Analysis: Theory and Application to Travel Demand; Routledge: Cambridge, MA, USA;

London, UK, 2008; ISBN 0262022176.
53. Wong, W.; Wong, S.C. Network Topological Effects on the Macroscopic Bureau of Public Roads Function. Transp. A Transp. Sci.

2016, 12, 272–296. [CrossRef]
54. Bar-Gera, H. Transportation Networks for Research. Available online: https://github.com/bstabler/TransportationNetworks

(accessed on 1 March 2023).
55. Chen, X.; Liu, Z.; Zhang, K.; Wang, Z. A Parallel Computing Approach to Solve Traffic Assignment Using Path-Based Gradient

Projection Algorithm. Transp. Res. Part C 2020, 120, 102809. [CrossRef]
56. Leventhal, T.; Nemhauser, G.; Trotter, L. Column Generation Algorithm for Optimal Traffic Assignment. Transp. Sci. 1973, 7,

168–176. [CrossRef]
57. Yen, J.Y. Finding the K Shortest Loopless Paths in a Network. Manag. Sci. 1971, 17, 712–716. [CrossRef]
58. Relund, L.; Allan, K.; Pretolani, D. Finding the K Shortest Hyperpaths. Comput. Oper. Res. 2005, 32, 1477–1497. [CrossRef]
59. Ma, J. Transportation Networks. Available online: https://github.com/majie9001/TenPathsForSiouxFalls (accessed on

13 November 2021).
60. Ma, J.; Cheng, L.; Li, D.; Tu, Q. Stochastic Electric Vehicle Network Considering Environmental Costs. Sustainability 2018, 10, 2888.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.trf.2018.09.024
http://doi.org/10.1016/j.enpol.2015.12.001
http://doi.org/10.1016/j.orl.2021.04.010
http://doi.org/10.12066/j.issn.1007-2861.1723
http://doi.org/10.1016/j.trd.2018.11.018
http://doi.org/10.1007/s11071-012-0663-0
http://doi.org/10.1016/j.scs.2021.102888
http://doi.org/10.1088/1742-6596/1168/3/032094
http://doi.org/10.1016/j.jtrangeo.2015.08.006
http://doi.org/10.1061/JTEPBS.0000111
http://doi.org/10.1155/2018/4539324
http://doi.org/10.1016/j.trb.2020.02.001
http://doi.org/10.1155/2020/4169826
http://doi.org/10.1007/s11067-007-9023-x
http://doi.org/10.1016/j.trpro.2017.03.078
http://doi.org/10.1080/23249935.2015.1129650
https://github.com/bstabler/TransportationNetworks
http://doi.org/10.1016/j.trc.2020.102809
http://doi.org/10.1287/trsc.7.2.168
http://doi.org/10.1287/mnsc.17.11.712
http://doi.org/10.1016/j.cor.2003.11.014
https://github.com/majie9001/TenPathsForSiouxFalls
http://doi.org/10.3390/su10082888

	Introduction 
	Literature Review 
	Objectives and Contributions 

	Problem Statements 
	Research Methodology 
	Network-Related Operating Cost Function 
	Network Traffic Flow and Travel Time 
	Logit-Based Choice Model 

	Numerical Experiments 
	Conclusions 
	Patents 
	References

