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ABSTRACT

Spotted cDNA microarrays are emerging as a powerful and cost-effective tool for large-
scale analysis of gene expression. Microarrays can be used to measure the relative quantities
of speci� c mRNAs in two or more tissue samples for thousands of genes simultaneously.
While the power of this technology has been recognized, many open questions remain about
appropriate analysis of microarray data. One question is how to make valid estimates of the
relative expression for genes that are not biased by ancillary sources of variation. Recognizing
that there is inherent “noise” in microarray data, how does one estimate the error variation
associated with an estimated change in expression, i.e., how does one construct the error
bars? We demonstrate that ANOVA methods can be used to normalize microarray data and
provide estimates of changes in gene expression that are corrected for potential confounding
effects. This approach establishes a framework for the general analysis and interpretation of
microarray data.
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INTRODUCTION

The regulation of gene expression in a cell begins at the level of transcription of DNA into
mRNA. Although subsequent processes such as differential degradation of mRNA in the cytoplasm

and differential translation also regulate the expression of genes, it is of great interest to estimate the
relative quantities of mRNA species in populations of cells. The circumstances under which a particular
gene is up- or down-regulated provide important clues about gene function. The simultaneous expression
pro� les of many genes can provide additional insights into physiological processes or disease etiology that
is mediated by the coordinated action of sets of genes.

Spotted cDNA microarrays (Brown and Botstein, 1999) are emerging as a powerful and cost-effective
tool for large scale analysis of gene expression. In the � rst step of the technique, DNA clones with known
sequence content are spotted and immobilized onto a glass slide or other substrate, the microarray. Next,
pools of mRNA from the cell populations under study are puri� ed, reverse-transcribed into cDNA, and
labeled with one of two � uorescent dyes, which we will refer to as “red” and “green.” Two pools of differ-
entially labeled cDNA are combined and applied to a microarray. Labeled cDNA in the pool hybridizes to
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complementary sequences on the array and any unhybridized cDNA is washed off. Hybridization ef� ciency
may vary from clone to clone, confounding comparisons between genes. However, if we assume that the
ef� ciency of an individual clone is not altered by the type of the dye label, then the relative abundance of
a particular mRNA in the two samples can be measured.

Microarray technology has the potential to address many interesting questions in genetics by revealing
patterns of expression for genes and classifying samples (such as tumor samples) based on such patterns.
However, basic questions about microarray data persist without satisfactory answers. The simplest mi-
croarray experiment studies the variation in gene expression across the categories of a single factor, such
as tissue types, strains of mice, or drug treatments. (We refer to the categories of the factors under study
as varieties, as is common in the statistical design literature.) The purpose of such an experiment is to
identify differences in gene expression among the varieties. Since there are other sources of variation in
these experiments, such as the two dyes and the arrays themselves, how does one estimate the magnitude
of differences for the spotted genes? Further, given that there is inherent “noise” in the data, how does
one state one’s con� dence in the estimates? In particular, how does one determine what level of observed
differential expression is statistically signi� cant? Error estimates are necessary for making valid, rigorous
inferences from the experiment (Fisher, 1935, p. 60). Looking ahead, we believe they will also be useful
in assessing the quality of the results from higher-order analyses such as clustering (Eisen et al., 1999;
Tamayo et al., 1999).

In this work, we perform analysis of variance on microarray data from two designed experiments
that used independent arrays to study the same tissue samples. We employ a bootstrapping technique
to construct con� dence intervals for the estimates of interest. Comparing the results of the two separate
analyses demonstrates the reproducibility of estimated changes in expression levels.

RESULTS

ANOVA models for microarray data

A microarray experiment may involve multiple arrays to compare multiple samples. Every measurement
in a microarray experiment is associated with a particular combination of an array in the experiment, a
dye (red or green), a variety, and a gene. Let yij kg denote the measurement from the i th array, j th dye,
kth variety, and gth gene. To account for the multiple sources of variation in a microarray experiment,
consider the model

log.yij kg/ D ¹ C Ai C Dj C Vk C Gg C .AG/ig C .VG/kg C ²ij kg; (1)

where ¹ is the overall average signal, Ai represents the effect of the ith array, Dj represents the effect of
the j th dye, Vk represents the effect of the kth variety, Gg represents the effect of the gth gene, .AG/ig

represents a combination of array i and gene g (i.e., a particular spot on a particular array), and .VG/kg

represents the interaction between the kth variety and the gth gene. The error terms ²ij kg are assumed
to be independent and identically distributed with mean 0. The array effects Ai account for differences
between arrays averaged over all genes, dyes, and varieties. These may arise, for example, because arrays
are hybridized under slightly different conditions that result in a change in hybridization ef� ciency across
an array. Similarly, the dye effects Dj account for differences between the average signal from each dye.
One dye may be inherently “brighter” than the other, and this must be taken into account in the analysis.
The terms Vk account for overall differences in the varieties. Such differences could arise if some varieties
have more transcription activity in general, or simply because of differential concentration of mRNA in the
labeled sample. The terms Gg account for average effects of individual genes spotted on the arrays in the
experiment. The .AG/ig account for the average effect of the spot on array i for gene g. Essentially, these
are “spot” effects and may arise because there is not complete control over the amount and concentration
of cDNA immobilized from one array to the next. All of these effects are generally not of interest, but
account for sources of variation in microarray data. It is also possible to include other effects, such as
dye£gene interactions. However, as we discuss below, including additional effects uses degrees of freedom
that may need to be reserved to estimate the error variance in the experiment. The effects of interest in
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Model (1) are the interactions between varieties and genes, .VG/kg. These terms capture departures from
the overall averages that are attributable to the speci� c combination of a variety k and a gene g. Nonzero
differences in variety£gene interactions across varieties for a given gene indicate differential expression.

Our decision to analyze the data on the log scale was based on several considerations. The log transform
is the natural method for analyzing data with an additive model where the effects in the data are believed
to be multiplicative. The common use of ratios to analyze microarray data illustrates that this is a prevalent
assumption, and in fact some tools for clustering genes based on microarray data advise using the log
transform on ratios (Eisen, 1999). Further, exploration of untransformed data and the examination of other
transformations (square-root, reciprocal, etc.) led us to conclude that the log transform is a good choice
(Sapir and Churchill, 2000).

The terms A, D, and V in the ANOVA model are used to capture differences that occur between
different arrays, dyes, and varieties. However, these terms also capture all of the higher-order interactions
among these factors. This is a consequence of the constraints on the design of microarray experiments that
are imposed by pairing samples on arrays. For example, if the array number and dye of an observation
are given, one knows which variety is associated with that observation. In this situation, the array£dye
interaction (AD) is said to be confounded with the variety main effect (V ). Confounding is an advantage
in this setting. If there is signi� cant variation in the rate of dye incorporation from one labeling reaction
to another, this will result in a large dye£variety interaction (DV ) effect. In our � rst experiment, DV is
confounded with array (A), and a large A effect is observed.

The A, D, and V terms effectively normalize the data without preliminary data manipulation. Thus we
combine the normalization process with the data analysis. We believe this integrated approach has several
advantages. First, the normalization is based on a clearly stated set of assumptions that can be evaluated
using information in the data. Second, the ANOVA analysis systematically estimates the normalization
parameters based on all of the relevant data, as opposed to a piecemeal approach. In so doing, it properly
accounts for the degrees of freedom used to normalize. In the event that further study shows preprocessing
is necessary, we believe that ANOVA methods will remain useful and valuable in some modi� ed form.

Finally, the Model (1) is designed for experiments in which each gene is spotted only once on each
array. Ideally, genes could be replicated on multiple spots on an array, providing a means to directly
assess experimental error variance. Model (1) can be generalized to this situation by breaking down the
“spot” effects AG to account for replication. As one would expect, replication would lead to more precise
estimation. In addition, it would provide degrees of freedom that would allow one to assess the importance
of additional effects in the model. Lack of replication limits our ability to assess some effects. We will
return to this point in our data analysis examples.

The Latin square experiment

In the � rst experiment, we compared an mRNA sample obtained from human liver tissue to a second
sample obtained from muscle tissue. The design used two arrays such that on array 1 the liver sample
is assigned to the “red” dye and the muscle sample is assigned to the “green” dye. On array 2 the dye
assignments were reversed (Table 1). We assigned the array index to be i D 1, 2; the dye index to be
j D 1, 2 for red and green, respectively; and the tissue index to k D 1, 2 for liver and muscle, respectively.
This design can be summarized by the index set .i; j; k/ 2 f.1; 1; 1/; .1; 2; 2/; .2; 1; 2/; .2; 2; 1/g. Each
clone index g D 1; : : : ; N occurs once with each combination of .i; j; k/. Notice that specifying any two
of array, dye, and tissue automatically determines the third. With respect to the design factors, array and

Table 1. The Latin Square Design

Array

Dye 1 2

Red Liver Muscle
Green Muscle Liver
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dye, the layout of the tissue varieties forms a 2 £ 2 Latin square (Cochran and Cox, 1992). We therefore
refer to this as the Latin square design (it is sometimes called a “dye-swap” experiment).

Given the factors in our model, there are sixteen possible effects when we consider interactions of all
orders. It turns out that the latin square design has a particularly neat structure. Each of the sixteen effects
is completely confounded with one other effect, meaning one effect is estimable only assuming the other
is zero. Table 2 shows the pairs of confounded effects. Effects that are not completely confounded are
orthogonal in the Latin square. Orthogonality arises when a factor is completely balanced with respect to
another factor. For example, if every variety in a microarray experiment appears in the design labeled with
the red and green dyes equally often, variety is orthogonal to dye. One consequence of orthogonality is
that the estimates of the two factors are uncorrelated. A second consequence is that including or excluding
one effect in the model does not alter the estimates obtained for the other effect. In general, effects that
are neither confounded nor orthogonal are said to be partially confounded.

Examining Table 2, we see there is one pair of effects not represented in the model (1), DG » AVG. It
is possible that DG effects could be present in a microarray experiment. However, leaving them out of the
latin square analysis will not alter the estimates of other terms in the model. This is only true for designs
in which the DG effect is orthogonal to the other effects. Omitting DG effects leaves degrees of freedom
for estimating error. Assigning some effects to be “error” is essential when there is no replication of clones
within the arrays. Otherwise, there is no basis for statistical inference.

We computed the least-squares � t of the Model (1) subject to the parameter constraints
P

Ai D
P

Dj DP
Vk D

P
Gg D

P
g.AG/ig D

P
i.AG/ig D

P
g.VG/kg D

P
k.VG/kg D 0. Some details about estimating

model parameters are provided in the appendix. Table 3 gives the analysis of variance. We present the
sums of squares as a gauge of the relative contribution of each set of effects. For example, one sees from
the sums of squares that there is a large difference between the two arrays, compared to a modest tissue
effect and an even smaller dye effect. The large array effect may be due to variety£dye (i.e., labeling)
variation—recall from Table 2 that A is completely confounded with DV .

Accounting for degrees of freedom, the smallest effects are the array£gene or “spot” effects. We did not
want to rely on the F-distribution to test the signi� cance of these effects as we have not established normally
distributed error. Instead, we employed a nonparametric version of the F-test to determine the signi� cance
of these interactions, following an example in Manly (1997, p. 128) motivated by Still and White (1981).
We � rst adjusted the data to remove the overall effects of the other factors. In other words, we created a
dataset from the residuals from � tting the model log.yij kg/ D ¹ C Ai C Dj C Vk C Gg C .VG/kg. We then
randomly assigned residuals to factor combinations by sampling with replacement, � t the full Model (1),
and calculated the F-statistic testing for array£gene interactions. The F-statistics from 19,999 simulations

Table 2. Confounding Structure for the
Latin Square Designa

mean » ADV
A » DV
D » AV
V » AD
G » ADVG

VG » ADG
AG » DVG
DG » AVG

aThis design partitions the 16 experimental factor ef-
fects into eight pairs. The members of each pair are
completely confounded; i.e., one member of a pair is
estimable only by assuming the other is zero. The Latin
square design results in uncorrelated estimates for all
effects not in the same pair. The proposed Model (1)
includes an effect from every pair except the last. Thus
it accounts for all data effects except DG and AVG,
which are assumed to be zero.
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Table 3. Analysis of Variance for the
Latin Square Designa

Source df SS MS

Array 1 92.34 92.34
Dye 1 0.74 0.74
Variety 1 2.97 2.97
Gene 1285 1885.89 1.47
Array£Gene 1285 160.01 0.12
Variety£Gene 1285 1357.28 1.06

Residual 1285 82.75 0.0644

Corrected Total 5143 3581.99

aThe correlation coef� cient of the � tted model is R2 D 0:977.
Abbreviations: df—degrees of freedom; SS—sum of squares; MS—
mean square.

ranged from 0.81 to 1.27, compared to 1.93 for the original data. We therefore concluded array£gene
effects are statistically signi� cant, although relatively small.

The estimated gene effects, Gg , and variety£gene interactions, .VG/kg , are summarized as histograms
in Figs. 1a and 1b, respectively. The estimated gene effects re� ect the expression levels of individual genes
averaged across varieties, dyes, and arrays. As noted in the introduction, these effects are confounded by
variation in the hybridization properties of individual spotted clones. The value of such estimates is yet to
be established and will depend on the magnitude of clone-to-clone variation. We simply present a summary
of these estimates and note that they are skewed right, suggesting that the bulk of genes may be expressed
at low levels with fewer genes being expressed at moderate and high levels in these samples. We note that
unexpressed genes may have been eliminated when we prescreened the data for signal quality (see section
on data preparation below). The variety£gene interactions are centered around zero with heavy tails in
either direction, indicating differential expression of genes across the tissue samples.

For the Latin square design, the estimated differences in the variety£gene interaction terms for a given
gene g0 can be expressed as

.cVG/1g0 ¡ .cVG/2g0 D
1

2
log

³
y111g0y221g0

y122g0y212g0

´
¡

1

2N
log

³
Y

g

y111gy221g

y122gy212g

!
: (2)

We again note that this estimator does not change if we alter Model (1) by including DG effects or dropping
AG effects or both. This is a consequence of the balanced (orthogonal) design.

Despite its rather intimidating appearance, the interpretation of (2) is straightforward. The second term
is simply a centering constant that does not depend on the particular gene g0. It corrects for the overall
difference in treatments across genes. The � rst term is the log of the ratio of the geometric means of
the observations for the gene g0 in the two treatment groups. Thus, the exponentiated differences can be
interpreted as estimates of “fold change.” This interpretation is one motivation for working on the log scale.
However, instead of relying on raw ratios as error-free measures of relative expression, we can further
estimate the error-variation in the estimates (2) resulting from Model (1). We discuss this next.

We wish to determine which of the differences (2) are signi� cantly different from zero. Least-squares
estimates are averages, so under the assumption of independent, identically distributed error, the central
limit theorem tells us that they are asymptotically normal. However, this justi� cation is problematic for
the variety£gene interactions because they are essentially averages of just two observations, too few to
invoke large-sample arguments. Furthermore, the � tted residuals appear to be heavy-tailed, as illustrated
in Fig. 2a. These observations suggest that the usual con� dence intervals based on normal theory are not
appropriate. Therefore, we employed a bootstrap analysis of the residuals (Efron and Tibshirani, 1986) to
address this question.
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Using the bootstrap, we produced a set of simulated datasets log.yij kg/¤, where

log.yij kg/¤ D O¹ C OAi C ODj C OVk C OGg C .cAG/ig C .cVG/kg C ²¤
ij kg:

The notation “ O” indicates an estimated parameter value based on the original � t of the model. The ²¤
ij kg

are drawn independently from
p

4N=.N ¡ 4/ OF , where OF is the empirical distribution of residuals from
the original � t. Rescaling OF produces an empirical distribution with the same variance as the true residuals
(Wu, 1986). Thus, we are resampling, with replacement, from the rescaled � tted residuals to generate a new
set of observations. We � t the Model (1) to each of 20,000 bootstrap data sets and recorded the parameter
estimates. We then used the percentile method to obtain 99% con� dence intervals for the differences
.VG/1g ¡ .VG/2g . The bootstrap con� dence interval width was 1.61, which implies that an estimated fold
change of e1:61=2 D 2:24 is signi� cant at the 0.01 level. The normal con� dence interval for these data
has width 1.29. We note that multiple testing has not been taken into account, which may or may not be
necessary depending on the intended purpose of the analysis.

The bootstrap procedure assumes that residuals are identically distributed. Fig. 2b shows a scatterplot of
residuals against the � tted values \log.yij kg/. There is no obvious trend in the residual plot to cast doubt on
the assumption of constant error variance ¾ 2. To further examine the distribution of residuals, we plotted
the absolute value of each residual against the � tted values \log.yij kg/ and � t a local regression curve
(Hastie and Tibshirani, 1990, p. 29). Fig. 3a shows there is no overwhelming trend in the absolute size
of the residuals, with only a very slight trend towards larger residuals for the smallest and largest � tted
values. The fact that the residual plot is unremarkable is also evidence that the log scale is the appropriate
transform of the data.

The reference sample experiment

In the second experiment, we made an independent comparison of the same samples used in the � rst.
Again we used two arrays, but in this case we used placenta as a “reference” sample. Each of the muscle
and liver samples were directly compared to the placenta sample on one array such that the test samples
(liver and muscle) were assigned to the green dye and the reference sample (placenta) was assigned to the
red dye, as in Table 4. The array and dye indices are assigned as before. The tissue index is expanded to
k D 1; 2; 3 for liver, muscle, and placenta respectively. This design can be summarized by the index set
.i; j; k/ 2 f.1; 1; 3/; .1; 2; 1/; .2; 1; 3/; .2; 2; 2/g. We refer to this design as the reference sample design.

One advantage of the reference sample design is that it is readily extendable. Additional varieties can
be added to the experiment by adding another array on which a new variety is compared to the reference
sample. A second advantage is that each sample needs only to be labeled with one dye. However, one
can intuitively appreciate some of the drawbacks of this design. More data are collected on the reference
variety than any other, although this variety will generally be of least interest. In this case, there is only
one measurement per gene for liver and muscle tissues, as compared to two measurements in the Latin
square design.

More problems with this design become apparent when one considers Model (1). First, varieties are
completely confounded with dyes because each variety is labeled with only one dye. Thus, one cannot
include both variety effects and dye effects in an ANOVA model. This in itself is not a great concern
because these main effects are not of interest. The more substantial problem is the large cost in degrees of
freedom that comes with the additional reference variety. With N genes on each array, there are 4N ¡ 1
degrees of freedom. Array main effects account for 1 degree of freedom, variety main effects account for
2, gene effects use N ¡ 1, VG effects use 2(N ¡ 1), and AG effects account for the remaining N ¡ 1
degrees of freedom. At least one set of effects must be excluded to be able to estimate error and allow
statistical inference. We note that if genes were spotted more than once on the arrays, it would be possible
to include AG terms in the model and still have degrees of freedom to estimate error.

The confounding of effects in the reference design is more complex than for the latin square design.
There is no counterpart to the simple confounding structure presented in Table 2. As mentioned, varieties
are completely confounded with dyes. In addition, since the varieties are not balanced with respect to
arrays, variety main effects and array main effects are partially confounded, as are variety£gene interac-
tions (the effects of interest) and array£gene interactions. When effects are partially confounded instead
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of completely confounded, it is possible to obtain separate estimates for each effect, although they are
correlated. Generally, the estimators have a more complicated functional form because the effects must be
“disentangled.” This usually means less precise estimation, i.e., larger error bars. Failure to account for
potentially important effects, such as DG or AG, that are confounded or partially confounded with effects
of interest can produce biased estimates.

We � rst consider the model

log.yij kg/ D ¹ C Ai C Vk C Gg C .VG/kg C ²ij kg; (3)

where the Vk nominally represent tissue effects but are also measuring dye effects. The Ai , Gg , and
.VG/kg terms are interpreted as in Model (1). Dye effects Dj cannot be explicitly included because they
are completely confounded with variety effects Vk . It is possible to extend Model (3) to include AG effects,
but this would leave no degrees of freedom to estimate error and thus it would not be possible to assess
the signi� cance of any effects or produce con� dence intervals for estimated changes in expression. The
limitations of the design force us to exclude at least one set of effects to be able to estimate error. The
array£gene interactions were the smallest effects in our analysis of the Latin square experiment. However,
because these are partially confounded with variety£gene effects, excluding them leads to potentially
biased estimates of VG effects.

We � t Model (3) to the data by least squares, subject to the constraints
P

Ai D
P

Gg D
P

g.VG/kg D
V1 C V2 C 2V3 D .VG/1g C .VG/2g C 2.VG/3g D 0. Because genes are balanced with respect to all other
factors, the estimates of gene and variety£gene effects are uncorrelated with the other effect estimates in
Model (3). We can partition the total sums of squares into four sources of variation, as in Table 5.

The estimated gene effects for the reference sample experiment are shown in Fig. 1c. The range and
shape of the distribution are almost identical to the Latin square experiment. The distribution of estimated
differences in the variety£gene effects is shown in Fig. 1d. The distribution is centered around zero with
a mild left skew, but is somewhat tighter than the distribution obtained from the Latin square experiment.
Long tails on this distribution indicate differentially expressed genes in the liver and muscle samples.
Under Model (3), these estimates are given by

.cVG/1g0 ¡ .cVG/2g0 D log

³
y121g0

y222g0

´
¡

1
N

log

³
Y

g

y121g

y222g

!
: (4)

For a gene g, the estimates are based on a single pair of observations of the liver and muscle samples for
the gene.

All of the measurements on liver and muscle tissue (half of the data) are � t exactly here, that is, with
zero residual. This is because there is only one observation for these tissues for any given gene. A normal
quantile plot of the nonzero residuals (from the reference sample) is shown in Fig. 2b. Again, we see
that the residual distribution is heavy-tailed. To look for trends in the residuals contrary to our modeling
assumptions, we plotted the absolute value of each residual against the corresponding � tted value and � t a
local linear regression smooth (Fig. 3b). Other than the largest residuals that are more frequent for medium
values, the smooth does not detect any remarkable nonuniformity. Overall, the residuals are smaller in this
experiment. Even after adjusting for degrees of freedom, the estimate of error variance is half as large as
for the latin square experiment. This is a property of these particular experiments, probably re� ecting an
overall difference in data quality. The smaller estimate of error variance is not a general property of the
designs.

We again employed the bootstrap to obtain con� dence intervals for the estimated differences in expres-
sion. The nonzero residuals, rescaled by

p
2N=.N ¡ 1/, were used in the bootstrap simulation. Fig. 4b

shows the bootstrap 99% con� dence intervals, based on 20,000 bootstrap simulations, for the liver–muscle
differences. These intervals have width 1.62, as compared to 1.23 for normal intervals. Thus a 2.25-fold
estimated difference is signi� cant. Although the estimate of error variance is smaller for this experiment
compared to the Latin square experiment, the con� dence intervals for the comparisons of interest have
about the same size because of the lesser ef� ciency of the reference design.
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FIG. 3. Absolute value of residuals compared to � tted values. Plots (a) for the Latin square design and (b) for the
reference design contain a loess smooth with span 0.35 (Hastie and Tibshirani, 1990, p. 29). In each case, the curve
does not show any prominent departure from homoscedasticity.

Table 4. The Reference
Sample Design

Array

Dye 1 2

Red Placenta Placenta
Green Liver Muscle
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Table 5. Analysis of Variance for the
Reference Designa

Source df SS MS

Array, Variety 3 761.97 253.99
Gene 1904 3394.17 1.78
Gene£Variety 3808 1264.43 0.33

Residual 1904 55.21 0.0290

Corrected Total 7619 5475.78

aThe correlation coef� cient of the � tted model is R2 D 0:990.
Abbreviations are as in Table 3.

We were concerned about possible bias in our estimates due to the omission of AG effects in Model (3).
To examine the possible bias, we � t an extended version of Model (3), including array£gene effects.

log.yij kg/ D ¹ C Ai C Vk C Gg C .VG/kg C .AG/ig C ²ij kg: (5)

Although we could not evaluate the � t of this model because there are no residual degrees of freedom,
we can compare the estimates (cVG) from (5) with those from (3) to evaluate the extent to which the latter

FIG. 4. Bootstrap con� dence intervals. Estimated differences (liver ¡ muscle) of the variety£gene interactions are
shown for (a) the 1286 genes in the Latin square experiment � tting Model (1) and (b) the 1905 genes in reference
sample experiment � tting Model (3). The estimates are plotted in increasing order along with their 99% bootstrap
con� dence limits. There is an optical illusion that the con� dence intervals shrink at the ends because the lines are
steeper, but the vertical distance between the upper and lower con� dence bounds is constant in each plot.
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might be biased. The estimates from Model (5) are different because they account for AG effects. The
expression is more complicated because of the confounding structure in the design:

.cVG/1g0 ¡ .cVG/2g0 D 2
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(6)

Notice that observations from variety 3 do not come into play at all in (4) because that estimator comes
from a model that assumes no “spot” effects. Observations from variety 3 appear in (6) because this
estimator corrects for spot-to-spot variation.

Figure 5 compares the differences of interest, .cVG/1g ¡.cVG/2g , for the Models (3) and (5), i.e., compares
the estimators in Equations (4) and (6). There is a fairly substantial difference in the estimates for a handful
of genes, suggesting there is some spot-to-spot variation biasing our estimates from (3). Fortunately, there
appears to have been enough uniformity among spots from array to array so that most estimates of VG
effects from � tting Model (3) are not too severely biased.

Comparison of the experiments

We used two approaches to compare the results from these two experiments. The � rst approach takes
advantage of spots for which the same gene is represented by different clones on a single array. The second
uses a subset of the clones that were common across all four arrays.

For those genes that are represented by two spots on an array, we were not able to determine whether the
same clones were used and thus we treated these spots as distinct genes when � tting the ANOVA models.
However, it seems desirable that a gene duplicated within an experiment should produce similar results. In
particular, one would like the two con� dence intervals for liver–muscle differences to either both contain
0 or both not contain 0. To study this question, we separately produced 1,000 bootstrap datasets for each
experiment and recorded .cVG/¤

1g ¡ .cVG/¤
2g for the duplicated genes. Let g and g0 be indices for spots that

are the same gene. For each bootstrap dataset, we plotted the estimate of .VG/1g ¡ .VG/2g against the
estimate of .VG/1g0 ¡ .VG/2g0 . Fig. 6 presents the results. The � rst eleven plots (reading left to right, top
to bottom) are for the genes that were duplicated on arrays in both experiments. Gene 931 was duplicated
only in the Latin square experiment. The remaining eight genes were duplicated only in the reference
design experiment. The clouds of symbols generally fall along the line of identity indicating that the two
estimates from within an experiment are close to one another. However, comparison of the genes common
to both experiments (the � rst 11 subplots) shows that different conclusions were obtained for three genes
(116, 256, and 840) in the two experiments.

An alternative approach to assessing reproducibility that is not subject to doubts raised by nonidentity
of clones is to compare 1,177 genes common to both experiments. For each experiment, we categorized
genes into groups for which expression was higher in liver, not signi� cantly different, or higher in muscle
as determined by the bootstrap 99% con� dence intervals. Table 6 shows the cross-tabulation for the two
experiments. The two analyses agree on 88% of the 1,177 genes. The largest source of disagreement
is genes for which the Latin square con� dence interval contains 0 while the reference design interval
does not. In general, when AG effects are accounted for, the con� dence intervals for the reference design
should be larger than those for the Latin square design by a factor of

p
3. However, we were not able to

account for AG effects and estimate error in the same analysis of the reference design experiment. Without
accounting for AG effects, con� dence intervals for the reference design should still be larger by a factor ofp

2. However, in these particular experiments, the reference design yielded a smaller estimate of residual
error, perhaps re� ecting higher overall data quality, resulting in con� dence intervals of about the same size
for the two experiments.

Finally, we generated scatterplots of the estimated differences .cVG/1g ¡ .cVG/2g for the 1,177 common
genes. On the whole, there is remarkable agreement between the two experiments. Fig. 7a shows the
estimates for the reference design experiment using Model (3) and Fig. 7b shows estimates from Model
(5). Each plot contains an orthogonal regression line (Casella and Berger, 1991, p. 581). In both plots,
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FIG. 5. Difference in estimated log fold change for the reference design when array£gene effects are taken into
account. Comparison of estimated differences . cVG/1g ¡ . cVG/2g with estimator (4), which does not account for AG
effects, and with estimator (6), which does account for these effects. The plot summarizes the magnitude of bias in
estimates from (4) due to excluding AG effects. There is little change for most genes but notable change for a handful
of genes.

the regression line has slope close to 1 and intercept close to 0. Agreement appears somewhat better for
Model (5). In any case, the agreement of the independent estimates con� rms our assertion that ANOVA
analysis correctly normalizes microarray data and yields reproducible estimates.

DISCUSSION

A common practice with microarray data is to compute ratios of the raw signals as estimates of dif-
ferential expression (Chen et al., 1997). We � nd this approach to be inadequate for several reasons. It
is natural and convenient to speak of fold change in expression, but it can also be misleading because
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ratios expressing fold change in � uorescence do not necessarily correspond to fold changes in expression.
Simple ratios do not necessarily account for differential behavior of dyes or variations between samples
or arrays. These effects must be accounted for to obtain unbiased estimates of expression ratios. Indirect
approaches to normalization require preprocessing steps, and ratios can be very sensitive to how these
steps are carried out. ANOVA methods provide an automatic correction for the extraneous effects in a
microarray experiment as an integral part of the data analysis.

Changes in gene expression across experimental samples are captured in the variety£gene interaction
terms of the ANOVA model. In this study, we have simply looked at differences among these terms in order
to test the hypothesis of differential expression for individual genes. The estimates .cVG/kg can be subject
to alternative analyses, depending on the questions of interest. Hierarchical clustering (Eisen et al., 1999)
and self-organizing maps (Tamayo et al., 1999) are two popular approaches to microarray data analysis that
could be directly applied. The “normalized” estimates of differential expression obtained from ANOVA
analysis should provide a more suitable and robust input for these analyses than raw ratios.

The properties of ANOVA estimates are tied to the experimental design. In practice, full factorial designs
are impossible for microarrays because only one sample can correspond to each array–dye combination.
However it is possible to derive ef� cient designs that satisfy the constraints imposed by this technology
(John and Mitchell, 1977; Cheng, 1978). In general, for a given number of arrays, designs that are balanced
across the samples of interest will provide the greatest ef� ciency. In our studies, using two arrays each,
we prefer the Latin square design to the reference sample design. The Latin square design produces more
data on the varieties of interest and allows more degrees of freedom for estimating error variance.

It is common practice in applied statistics to seek a transformation of the raw data to obtain normal
residuals with constant variance (Draper and Smith, 1998). In this study we have applied a logarithm
transformation to the � uorescent intensities. The residual distribution on the log scale is nonnormal, but
we did not detect any dramatic evidence against our assumption of constant error variance. The ease
of interpretation provided by the logarithmic transformation gives it a unique advantage over all other
transformations. Biologists are quite accustomed to interpreting ratios and “fold change” for a good reason.
Many natural phenomena occur on multiplicative scales; i.e., a system is more likely to “double” in response
to a change of conditions than to shift by an additive constant amount. Nonnormality is a problem only
in so far as it complicates the data analysis and results in inef� cient estimators. In this study, we have
used a bootstrap approach to obtain con� dence intervals without relying on normality assumptions. Other
approaches to obtain con� dence intervals could be considered. The model � t and parameter estimates in
our study were obtained by the method of least squares, which is most ef� cient for normal data. Alternative
methods, such as minimum absolute deviation, can improve the ef� ciency of estimators for nonnormal data.
Finally, we wish to note that, when large numbers of similar quantities are being estimated, the estimates
of the highest and lowest effects will tend to be too extreme. This can be addressed by treating the gene
and variety£gene terms as random effects in the ANOVA model (Robinson, 1991). This approach leads
to “shrinkage” estimators for these terms (Newton et al., 2000). We view these problems as areas that are
ripe for further investigation in the context of the analysis of well-designed microarray experiments.

METHODS

Tissue acquisition

Human liver and skeletal muscle samples from a 24-year-old male donor and placenta from a 26-year-
old female donor were obtained from the BioChain Institute, Inc. (www.biochain.com). These tissues were
collected expressly for mRNA isolation and were quick frozen within minutes of biopsy.

Probe preparation

Total RNA was isolated using a guanidine thiocyantate solution. For mRNA preparation, polyadeny-
lated mRNA was isolated using oligo-dT cellulose. Fluorescently labeled cDNA was prepared from 3
ug mRNA by oligo dT-primed (21-mer) polymerization using SuperScriptII reverse transcriptase (LTI
Inc.) and 0.5 mM dGTP, dATP, dTTP and 0.2 mM dCTP. Fluorescent nucleotides Cy3-dCTP ro Cy5-
dCTP (Amersham) were present at 0.1 mM. Residual RNA was degraded by NaOH, neutralized and

http://www.biochain.com
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FIG. 6. Comparison of genes duplicated within an array. Bootstrap samples of estimated differences (liver ¡ muscle)
of the variety£gene interactions for the 20 genes that are duplicated in one or both experiments are shown. Each subplot
corresponds to one of the duplicated genes, with the gene identi� er shown in the upper left corner. Each point represents
the estimated difference .VG/1g ¡ .VG/2g obtained for the two spots from one of 1000 bootstrap datasets. The Latin
square estimates are indicated by dots and the reference sample estimates are indicated by crosses. The clouds of points
generally fall along the line of identity, indicating that pairs of estimates from within an experiment are close to one
another. There are eleven plots (containing both dots and crosses) for genes that were duplicated in both experiments.
Disagreement between the experiments is noted for genes 116, 256, and 840.
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(a)

(b)

FIG. 7. Comparison of estimates for genes duplicated across experiments. A scatterplot of the Latin square and
reference sample estimates of log fold-change for the 1177 genes common to the two experiments are shown. In (a)
the estimates for the reference design come from � tting Model (3); in (b) estimates for the reference design come from
Model (5), which includes AG effects. The orthogonal least squares regression line in both plots is essentially the line
of identity. The high correlation con� rms that the ANOVA results are reproducible and the near identity relationship
demonstrates that the methodology properly normalizes the effect estimates.
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Table 6. Concordance of the Liver–Muscle Differences, by Gene, for the
1177 Genes in Common to the Latin Square and Reference Design Analysesa

Reference design

Latin square Liver<Muscle LiverDMuscle Liver>Muscle

Liver<Muscle 164 37 0 17.1%
LiverDMuscle 49 780 43 74.1%
Liver>Muscle 0 17 87 8.8%

18.1% 70.9% 11.1% 1177

aThe genes are binned depending on whether the bootstrap 99% con� dence intervals contain zero
or do not. In the latter case, we conclude that there is signi� cantly greater expression in either liver
or muscle. The analyses agree that 780 of the genes do not have differential expression. There are
no cases in which the experiments found differential expression in opposite directions. Overall, the
experiments agree on 87.6% of the genes.

precipitated in ethanol. Washed pellets from 3 ug mRNA were suspended in 5 ml hybridization buffer (5X
SSC, 0.2%SDS).

Hybridization and scanning

Labeled probe mixtures were aliquoted onto the cDNA microarray surface under a coverslip and in-
cubated for 6–12 hours at 60 C in a hybridization chamber. Following washes, the arrays were scanned
in 0.1X SSC using a � uorescence laser scanning device (D. Shalon, S.J. Smith, and P.O. Brown (1996)
Genome Research 6, 639-645). A separate scan, at the appropriate excitation wavelength, was done for
each � uorophore . Differential expression measurements were obtained by taking the average of the ratios
of two independent hybridizations.

Data preparation

Data were prescreened for quality using Synteni “Gem Tools” software. We did not have access to
raw images and thus excluded all data points marked by the software as unreliable. The data for the � rst
experiment is comprised of red and green � uorescence readings for 1,556 spots on array 1 representing
1,540 different genes and 1,455 spots on array 2 representing 1,442 different genes. Spots that are indicated
as representing the same gene may not contain the same clones. For each array, gene-identi� ers were
recorded to clone identi� ers so that each dataset contained as many distinct clone identi� ers as spots. This
maintained a balanced design and also allowed an appraisal of the methodology. For analysis, a combined
dataset was created containing readings for clone identi� ers appearing for both array 1 and array 2. The
� nal dataset had 1,286 clone identi� ers representing 1,274 different genes.

The data for the second experiment is comprised of red and green � uorescence readings for 2,125 spots
on array 1 representing 2,103 different genes and 2,098 spots on array 2 representing 2,078 different genes.
As before, we assigned unique clone identi� ers to different spots and created a combined dataset containing
clone identi� ers appearing on both arrays. The � nal data set had 1,905 clone identi� ers representing 1,886
different genes.

Data analysis

All computations for the data analysis were carried using Matlab software (Mathworks Inc., Natick,
MA). Data and routines are available at www.jax.org/research/churchill/.

APPENDIX: DERIVING LEAST-SQUARES ESTIMATORS

Generally, to � t a linear model it is not necessary to derive the functional form of least-squares parameter
estimates because the estimates can be calculated by constructing the design matrix X, which depends on

http://www.jax.org/research/churchill/
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the model and the experimental design (Draper and Smith, 1998). To � t the model, one inverts the p £ p

matrix Xt X, where p is the number of parameters in the model. In our case, p is very large because
thousands of genes are spotted on microarrays and our models have G, VG, and AG effects for every gene.
This makes inverting Xt X computationally infeasible for general matrix inversion programs. To get around
the hurdle, we derived the functional form of the parameter estimators.

The name “least-squares” comes from the fact that the estimates minimize the residual sum of squares
RSS, the total squared difference between all data points and the estimated value under the � tted model.
Let tij kg D log.yij kg/ be the log transformed data. For example, considering Model (1), RSS D

P
ij kg

.tij kg ¡ ¹ ¡ Ai ¡ Dj ¡ Vk ¡ Gg ¡ .AG/ig ¡ .VG/kg/2. The summation is over all combinations of indices
i, j , k, and g that appear in the design. Estimators are derived by taking partial derivatives of RSS with
respect to the parameters and setting them equal to zero. The result is a set of linear equations that can be
solved for the least-squares estimates.

For example, taking partial derivatives with respect to the parameters of interest, VG, in Model (1) yields

±RSS

±VGkg
/

X

ij

.tij kg ¡ ¹ ¡ Ai ¡ Dj ¡ Vk ¡ Gg ¡ .AG/ig ¡ .VG/kg/:

Note k and g are � xed, so the sum is over all pairs i, j such that i, j , k, g is a set of indices in the
design. For the Latin square design and for any � xed k and g, i ranges over all arrays, so the constraintsP

i Ai D
P

i.AG/ig D 0 cause the A and AG terms to drop out of this expression (similarly for the
Dj terms). The resulting equation simpli� es to

P
ij .tij kg ¡ ¹ ¡ Vk ¡ Gg ¡ .VG/kg/ D 0. Taking partial

derivatives with respect to ¹, Vk , and Gg yields similar equations whose simultaneous solution gives

.cVG/kg D t ::kg ¡ t::k : ¡ t :::g C t ::::;

where a “ ¢” as an index means to average over that index. This expression for .cVG/ does not depend on
whether AG effects are included in the model because of the special orthogonality properties of the Latin
square design.

In contrast, consider the reference design. For the smaller Model (3), the form of .cVG/ is the same as
above. Model (5) includes AG effects, which are partially confounded with VG effects in the reference
design. The reference variety is balanced across arrays but variety 1 is only on array 1 and variety 2 is
only on array 2. Calculating ±RSS

±VGkg
for k D 1; 2, none of the other effects in (5) drops out. In the end, one

� nds that

.cVG/3g D t :13g ¡ t :13: ¡ t:::g C t ::::;

while for k D 1; 2,

.cVG/kg D 2.tk2kg ¡ tk2k : ¡ tk ::g C tk :::/ C t:13g ¡ t :13: ¡ t :::g C t ::::;

and the estimator (6) follows by taking differences.
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