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Abstract

As a procedure for handling missing data, Multiple imputation consists of estimating the missing

data multiple times to create several complete versions of an incomplete data set. All these data

sets are analyzed by the same statistical procedure, and the results are pooled for interpretation. So

far, no explicit rules for pooling F-tests of (repeated-measures) analysis of variance have been

defined. In this paper we outline the appropriate procedure for the results of analysis of variance

for multiply imputed data sets. It involves both reformulation of the ANOVA model as a

regression model using effect coding of the predictors and applying already existing combination

rules for regression models. The proposed procedure is illustrated using three example data sets.

The pooled results of these three examples provide plausible F- and p-values.

Introduction

Missing data are ubiquitous in applied studies. Their presence needs to be addressed in

research whenever differences between groups are the central focus of attention. Multiple

imputation (Rubin, 1987, p. 2) is one of the preferred techniques for handling missing data

but little seems to have been done with this technique in the analysis-of-variance context. In

this paper we present a procedure for addressing this problem for both standard analysis of

variance and its repeated-measures variants. Combination rules for other designs follow

directly but not necessarily trivially, from the cases presented here.

Designs

Analysis of variance (ANOVA) is one of the most widely used statistical techniques where

differences in means between groups are the primary focus. It is mainly used in

experimental research based on factorial designs, but it is also regularly employed in non-

experimental studies. The technique is especially geared towards testing statistical

relationships between categorical independent or predictor variables on the one hand and a

numerical dependent or response variable on the other hand.

When the same subjects are measured repeatedly at different time points and (possibly)

under different conditions on the same predictor variables the technique is referred to as

repeated-measures analysis of variance. Predictor variables that vary across persons are

called between-subjects factors, while the repeated measurement of the response variable is

evaluated as a within-subjects factor.
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Handling Missing Data: Listwise Deletion

As any other statistical technique, the results from (repeated-measures) ANOVA are

influenced by the presence of missing data. The simplest way to deal with this problem is to

delete all cases from the analysis with at least one missing value. However, besides a loss of

valuable information and power due to the reduction of the sample size, results may also be

biased if this loss of subjects is not random but systematic. More specifically, when deleting

incomplete cases, the missing values have to be missing completely at random (MCAR;

Little & Rubin, 2002, p. 10) in order to obtain valid results.

Handling Missing Data: Multiple Imputation

Multiple imputation (Rubin, 1987) is an alternative missing-data procedure, which has

become increasingly popular. The technique consists of substituting M plausible random

values for each missing value so as to create M plausible complete versions of the

incomplete data set. The M complete data sets are then analyzed by the statistical analysis of

interest, and the results of these M analyses are pooled into one analysis, in which the

additional uncertainty due to the missing data is incorporated.

Multiple imputation is implemented in several software packages such as Stata 10.0 (ICE;

StataCorp, 2007), the MICE library in S-Plus (2007), SPSS 19.0 (SPSS, 2010), SAS 9.3

(2011) in the procedure PROC MI (Yuan, 2000), NORM (Schafer, 1998), Amos 7.0

(Arbuckle & Wothke, 2010), the missing-data library in S-Plus and several packages for R

(Su, Gelman, Hill, & Yajima, 2011; Van Buuren & Groothuis-Oudshoorn, 2011).

Comparison Procedures

Multiple imputation has several advantages over Listwise deletion. Firstly, unlike Listwise

deletion, Multiple imputation uses all available data and does not throw away any

information. Secondly, Multiple imputation makes less stringent assumptions about the

missingness mechanism. While Listwise deletion requires the data to be MCAR in order to

obtain valid inferences, Multiple imputation will also lead to valid results if the missing data

are missing at random (MAR; Little & Rubin, 2002, p. 10; Rubin, 1976). In this case the

missing data are considered to have occurred at random conditional on one or more

observed variables. For example, if people with high incomes tend to leave more questions

open on the other variables than people with low incomes, people with the same income

have the same probability of missing data on the other variables, and income is observed for

all respondents, then the missingness for these questions is said to be missing at random

(MAR), provided that income is included in the imputation model

Combination Rules for (Repeated-Measures) ANOVA

A problem of Multiple imputation in the context of analysis of variance is that to our

knowledge the rules for pooling the significance tests of the M analyses of the completed

data sets have never been explicitly discussed in the literature. Even SPSS 19.0, which

performs Multiple imputation and pools results from multiply imputed data sets for several

statistical techniques, does not provide pooled F-tests for any type of analysis of variance.
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A possible reason for this is that Multiple imputation may not often be considered necessary

in ANOVA. ANOVA is often used in experimental settings where a researcher has control

over the situation, so that missing data will not occur frequently. In a repeated-measures

ANOVA design missing data may be more common due to attrition but in this context

researchers usually handle the missing data using multilevel with full information maximum

likelihood (e.g., Hox, 2002; Snijders & Bosker, 1999). The necessity of Multiple imputation

in an ANOVA context may thus not seem obvious at first.

However, ANOVA is used in non-experimental research as well. It frequently happens that

researchers are interested in mean differences among the different sexes, different SES’s, or

different ethnicities. Moreover, a disadvantage of full information maximum likelihood is

that for handling the missing data it normally cannot include variables outside the multilevel

model. An exception to this is full information maximum likelihood in a structural equation

modeling context, in which auxiliary variables may be used as saturated correlates (see,

Graham, 2003). However, structural equation modeling is not the most obvious choice for

carrying out ANOVA.

A consequence of this limitation of full information maximum likelihood is that it will only

be guaranteed to provide unbiased results if the missingness depends on variables within the

multilevel model. If the missingness depends on observed variables outside the multilevel

model, the MAR assumption is violated for the specific analysis and valid results can no

longer be guaranteed. Multiple imputation on the other hand can include auxiliary variables

that are not part of the analysis, in the imputation model. Therefore it is also guaranteed to

give unbiased results if the missingness depends on observed variables outside the

multilevel model.

Besides non-experimental settings, Multiple imputation may also be useful in experimental

settings, although its usefulness may not seem obvious at first. Unbalanced designs in which

groups have unequal sample sizes, can be conceived of as a missing-data problem (e.g.

Schafer, 1997, p. 21). For example, if a control group in an experiment has a sample size of

n1 = 15 and the experimental group has a sample size of n2 = 12, this may also be conceived

of as a balanced design in which 3 subjects in the experimental group have missing data on

the dependent variable. One could decide to ignore the unbalancedness and carry out the

ANOVA anyway. However, variations in the dependent variable due to overall main effects

and interactions are only additive in balanced designs (Winer, 1971, pp. 402–404). In

unbalanced designs additivity is lost. As a result, F-tests become less robust to unequal

variances and loose power.

In short it can be argued that there is clearly a need for combination techniques for

(repeated-measures) ANOVA of multiply imputed data sets. Although these rules have not

explicitly been defined for ANOVA as of yet, it is straightforward to extend the already

existing pooling rules to the F-tests of (repeated measures) analysis of variance, as will be

shown in this paper. An earlier brief discussion of this idea was presented in an unpublished

conference presentation (Van Ginkel & Kroonenberg, 2011).
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It should be noted that both SAS 9.3 (MIAnalyze; Yuan, 2000, see the manual1, pp. 4676–

4678) and Stata 10.0 have the tools needed for carrying out our proposed procedure, but

neither are their steps fully automated, nor do the complete procedures follow directly from

the manuals or the existing literature. For example, the SAS manual does not contain the

words “analysis of variance” or “ANOVA”. Thus, a SAS user would have to figure out the

practicalities made explicit in this paper by him- or herself.

Once realized what is required the procedure itself is conceptually fairly straightforward.

However, to figure out which steps are needed to get to the correct procedure intimate

knowledge of Multiple imputation and effect coding is required, something which the

average user of ANOVA does not have. One of the purposes of this paper is to explicitly

supply guidelines for carrying out ANOVA on multiply imputed data sets.

In the next section we will discuss existing rules for combining the results of multiply

imputed data sets. Then we will discuss how these rules can be applied in the context of both

ANOVA and repeated-measures ANOVA. Finally we provide three empirical applications

and indicate which conclusions may be drawn about the proposals.

Rules for Pooling Significance Tests of Multiply Imputed Data Sets

In this section we will first outline the theory behind pooling significance tests from

multiply imputed datasets for single parameters followed by those for several parameters

simultaneously. With this as a basis we will formulate the rules for analysis-of-variance

designs in the next section.

Single Parameter Estimates

After constructing M completed versions of the incomplete data set, the same statistical

analysis is applied to each of the imputed data sets. These M analyses are combined into one

pooled result so that the uncertainty due to the missing data can be taken into account. When

the analysis involves a single parameter estimate, such as a single regression coefficient or

the difference between two sample means, the following pooling rules for M imputed data

sets apply (Rubin, 1987): First, define Q̂ as the parameter estimate of the parameter Q that

would have been obtained if no data were missing, and  as its standard error. Each

imputed data set m (m = 1,…, M) has an estimate of Q̂, denoted Q̂m, and a standard error

. An overall estimate of Q based on the M imputed data sets is simply the mean of the

M estimates.

(1)

The estimate of the overall variance T of Q̅ consists of two parts, namely U̅the within-

imputation variability i.e. the mean of the squared standard errors within the imputed data

sets

1http://support.sas.com/documentation/onlinedoc/stat/930/mianalyze.pdf
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(2)

and B the between-imputation variability caused by the differences in imputed values across

the data sets

(3)

The overall variance T associated with Q̅ then becomes

(4)

where the coefficient (1 + M−1)B serves to correct for the extra variability due to the missing

data. To test the null hypothesis that a parameter is equal to a specific value, i.e. Q = Q0, the

following statistic can be used:

(5)

which has a t-distribution with ν degrees of freedom, or equivalently

(6)

can be used, which has an F-distribution with 1 degree of freedom in the numerator, and ν
degrees of freedom in the denominator.

For ν we cannot use the same number of degrees of freedom as when no data are missing,

because there is extra uncertainty due to the missing data. Thus, ν has to be adjusted

downwards. Two approximations for ν exist. The first approximation, denoted ν#, is given

by

(7)

(Rubin, 1987, p. 77). This is the approximation that is for instance used in the Multiple-

imputation procedures in SPSS 19.0 (SPSS, 2010). Note that this approximation is totally

independent of the sample size since it is not included in the formula. This is because the

approximation was derived under the assumption that if no data were missing, statistical

inferences would be based on statistical tests with infinite number of error degrees of

freedom. More specifically, for the complete-data case, the statistical test should be a z-test

rather than a t-test (see Barnard & Rubin, 1999). To correct for the sample size, Barnard and

Rubin (1999) proposed an alternative approximation, which is implemented in SAS 9.3

van Ginkel and Kroonenberg Page 5

Multivariate Behav Res. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(2011). Define νcom as the number of degrees of freedom that would have been obtained if

no data were missing. Then the approximation ν* is given by

(8)

This approximation is always smaller than νcom and for an infinite sample size it reduces to

Equation 7. For the complete derivation of this approximation we refer to Barnard & Rubin

(1999).

Multiparameter Estimates—When more than one parameter is tested for significance

simultaneously, we need a pooled statistic that simultaneously tests several parameters. In

the context of regression, Rubin (1987, pp. 79–81) defined extensions of Equations 1–7 for

multiparameter estimates. Suppose that Q̂ is a p × 1 vector of parameter estimates of the

parameter vector Q that would have been obtained if no data were missing, and U is a p × p

covariance matrix of the parameter estimates. For a regression model this covariance matrix

can be computed as follows: Let X be an N × p matrix containing the predictor variables, let

 be the error variance. The covariance matrix of the dependent variable Y is defined as

(9)

The covariance matrix of the parameter estimate Q is

(10)

(See also, Rubin, 1987, p. 79). Each imputed data set m (m = 1,…, M) has an estimate for

the parameters Q̂, denoted Q̂
m, and a covariance matrix Ûm. An overall estimate for the

parameter vector Q based on the parameter estimates from the M imputed data sets is

(analogous to Equation 1)

(11)

As for single parameter estimates, the overall covariance matrix of Q̅ consists of two parts,

namely the within-imputation varianceU̅

(12)

(analogous to Equation 2) and the between-imputation variance B
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(13)

(analogous to Equation 3). The best multivariate estimate of the total covariance matrix, to

date, is given by (analogously to Equation 4)

(14)

where r denotes the average relative increase in variance due to nonresponse across the

parameters of Q (see Rubin, 1987). More specifically, using some algebra it can be shown

that r is the ratio of the increase in variance due to the missing data, defined as T − U̅, to the

average variance U̅. Analogously to the univariate case the null hypothesis of differences

between the pooled parameter estimate and its population value can be tested by an F-

statistic

(15)

which has an approximate F-distribution with p and ν degrees of freedom. As for the

univariate case, two approximations for the degrees of freedom for the denominator ν exist.

Suppose that q = p(M−1) and we are dealing with a large sample then the degrees of

freedom  is approximated by

(16)

for q > 4, and

for q ≤ 4 (Li, Raghunathan, & Rubin, 1991). Like Equation 7, Equation 16 was derived

under the assumption that if no data were missing, the error degrees of freedom would be set

at infinity. To correct for sample size, Reiter (2007) proposed a more accurate

approximation, based on second-order Taylor series expansions. Since such approximations

contain several terms, the complete formula is quite long and complex. Using  as

computed in Equation 8, the complete formula is given by:

(17)

with

For the derivation of this formula we refer to Reiter’s paper (2007).
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Although the distribution of F in Equation 15 was derived under the strong assumption that

the fractions of missing information are equal across all p parameters in Q̅, a simulation

study by Li, Raghunathan, and Rubin (1991) showed that this procedure is robust to

violation of this assumption. As we will show below the above development can be used in

analysis of variance by transforming such models into regression ones.

Applying the Rules for Multiple Imputation to (Repeated Measures) ANOVA

The pooling techniques described above can also be used to obtain pooled F-tests for

(repeated measures) ANOVA. However, as far as we have been able to trace this has not yet

been presented in the literature. Rubin (1987) provided an example of regression analysis

(pp. 79–81) but did not explicitly extend this to (repeated-measures) ANOVA. Moreover,

we have not been able to find published ANOVA applications for multiply imputed data

sets. Furthermore, implementation in statistical software packages is either limited (SPSS

19.0) or not well documented and not fully automated (SAS 9.3, Stata 10.0).

Applying the Combination Rules for Multiple Imputation to Analysis of

Variance

Factorial Designs

In this section we will describe how Van Ginkel and Kroonenberg’s (2011) proposals for

using Rubin’s (1987) pooling procedures for regression can be used for the analysis of

variance of two-way factorial designs. The procedure readily extends to ANOVA for other

factorial designs. Even though analysis of variance is nothing but a regression analysis with

categorical predictors the regression rules cannot directly be applied here, as the standard

way of handling categorical variables in regression is by dummy coding. The crux of using

regression analysis for analysis of variance in general is the use of effect coding (e.g.,

Edwards, 1985, pp. 146–150) rather than dummy coding. This will ensure appropriate

estimates for the effects. Since pooled F-tests from ANOVA in Multiple imputation can

only be obtained by using the parameters and covariance matrices of a regression analysis,

the use of effect coding is essential in this context.

The Two-Way ANOVA Model for Independent Measures—In a two-way design the

value of the dependent variable of person i (i = 1,…, N) in group j (j = 1,…, J) of the first

factor, and group k (k = 1,…, K) of the second factor is described by

(18)

where μ is the overall mean, αj is the deviation of group j from the first factor from the

overall mean, βk is the deviation of group k from the second factor from the overall mean,

αβjk is the interaction between factors 1 and 2, and εijk is an individual error term which is

assumed to be normally distributed with mean zero and variance σ2.

The Two-Way ANOVA Model in Regression Format Using Dummy Coding—For

dummy coding of the effects the X1ij’s (j = 1,…, J - 1) are coded as 1 if respondent i belongs

to group j of Factor 1, and 0 otherwise. The same goes for X2ik (k = 1,…, K - 1) for Factor 2.
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If a respondent has 0’s for all dummy variables of a specific factor the individual belongs to

the reference group. The intercept is written as β0, and β1j, β2k, and β3jk are the regression

coefficients of group j of factor 1, group k of factor 2, and the interaction of factors 1 and 2,

respectively. The two-way ANOVA model can now be formulated as a regression model:

(19)

However, in this form the intercept is no longer the overall mean and the effects do not have

the same meaning as in the standard ANOVA parameterization. Instead, the intercept is the

mean of the respondents who are in the references groups for both independent variables,

and the effects are the deviations of each group from the mean of the reference group.

Consequently, when this parameterization is used for combining the results of ANOVA

from multiply imputed data sets, firstly the F-test of the intercept does not test whether the

overall mean differs significantly from zero but whether the mean of the reference category

differs from zero. Secondly, the F-tests of the effects does not test whether all means differ

from the overall mean but whether all means except the mean of the reference category

differ significantly from the mean of the reference category. This interpretation differs from

the interpretation of the F-tests in standard ANOVA.

The Two-Way ANOVA Model in Regression Format Using Effect Coding—In

order to give the regression coefficients the standard meaning in analysis of variance, one

has to use effect coding (Edwards, 1985, pp. 146–150). In this type of coding, the X1ij’s (j =

1,…, J - 1) are coded as 1 if respondent i belongs to group j of Factor 1, −1 if the individual

belongs to the reference group, and 0 otherwise. The same coding system is used for factor

2. With this coding system, the intercept β0 equals the overall mean μ, and each effect βqℓ of

factor q is the difference between the mean of group l and the overall mean. The regression

coefficient of the reference group is defined as . The interaction effects

are defined as the product of the effect coded factors.

Covariance of parameter estimates—For an appropriate evaluation of the analysis of

variance and its tests of significance we also need the covariance matrix of the parameter

estimates. For each effect in the ANOVA this can be obtained by substituting the standard

ANOVA mean square error (MSE) for the error variance  in Equation 9, and using for X
the effect coded design matrix of the specific effect.

Example: The NICHD data

The pooling procedure for effect-coded factors will be illustrated with an analysis of a small

subset of the data from the National Institute of Child Health and Human Development

(NICHD) Study on Early Child Care (1996). The total dataset consists of information from

N = 1364 children and it contains a sizeable number of missing data. The descriptives for the

selected categorical variables are given in Table 1 and those for the numerical variables in

Table 2.
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To illustrate the above procedure for handling missing data in an ANOVA context 5

(Mother’s ethnicity) × 2 (Child’s gender) analyses of variance with the Child’s school

readiness as the response variable were carried out on the multiply imputed data sets.

Because school readiness and ethnicity were not completely observed their missing data

were imputed five times within SPSS using Predictive Mean Matching (Little, 1988; Rubin,

1986). Roughly, this method first predicts the missing values for a numerical variable j using

a regression model with the other variables as predictors. Next, for each respondent with a

missing value it finds a matching respondent having variable j observed, who closely

matches the respondent with a missing value on the predicted value. The observed value of

this matching respondent is then used for the imputation of the missing value. For

categorical variables Predictive Mean Matching does not use this matching procedure but

imputes random values from a (multinomial) logistic regression model. All variables listed

in Tables 1 and 2 were included in the imputation model.

In principle, it is possible to use other Multiple-imputation methods, for example, by

generating random values from a normal linear regression model, or if the data are not

normally distributed, by using transformations of the data, or other distributions (see, van

Buuren, 2012, for an overview). However, the comparison of different Multiple-imputation

methods is not the focus of this paper.

Using effect coding, the results of the five imputed data sets were combined employing

Rubin’s (1987) rules for multiparameter estimates. Because the standard ANOVA

procedures in SPSS do not provide covariance matrices for the parameters, the ANOVAs on

the imputed data sets had to be carried out using the SPSS Mixed Models procedure. The

pooling procedure was carried out using an SPSS macro by Van Ginkel (2010a). Detailed

information about how to use this macro and the instructions for carrying out the entire

analysis can be found in the corresponding manual (Van Ginkel, 2010b).

For predictor variables with only two levels (here, Child’s Gender) the rules for single-

parameter estimates must be used (Equations 1–4, and Equation 6); for predictor variables

with more than two levels (here, Mother’s Ethnicity) the rules for multiparameter estimates

must be used (Equations 11–15). For the error degrees of freedom, the approximation from

Reiter (2007) was employed. The complete syntax code for the analysis can be downloaded

from the first author’s website2. Table 3 shows the pooled ANOVA results of the five

imputed data sets (second row of each panel), together with the results of Listwise deletion

(first row of each panel). For the results of Multiple imputation, λ̅, the average proportion of

variation in Q attributable to missing data is shown as well (Van Buuren, 2012, p. 41). This

measure gives an indication of the severity of the missing-data problem.

One noticeable result is that the pooled number of error degrees of freedom of the imputed

data is always smaller than the number of error degrees of freedom of Listwise deletion

(second row). With the exception of the F-test of the total model (Table 3, second row), this

difference between the degrees of freedom of Listwise deletion and Multiple imputation is

2http://www.socialsciences.leiden.edu/educationandchildstudies/childandfamilystudies/organisation/staffcfs/van-ginkel.html
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more severe for large values of λ̅ (last column). However, by increasing the number of

imputations, the number of error degrees of freedom of the imputed data may come closer

to, or even exceed the number of error degrees of freedom of Listwise deletion, since the

approximation of the number of degrees of freedom is also influenced by the number of

imputations. Schafer (1997, p. 111) explained this phenomenon in the context of a single

parameter estimate Q̅ as follows: the variance of Q̅ contains a term that equals the between-

imputation variance B divided by M (represented by M−1 in Equation 14). As the number of

imputations increases, this term becomes smaller, resulting in less uncertainty about the

missing data. This is also reflected in the number of degrees of freedom (see Equations 7

and 8). The same holds for the approximation of the degrees of freedom for multiparameter

estimates (Reiter, 2007). However, it should be noted that the number of degrees of freedom

based on Reiter’s approximation (see Equation 17) can never exceed the number of degrees

of freedom of the hypothetical complete data (see Reiter, 2007, p. 502).

As a check we carried out the same analyses again, only now using 100 imputations (Table

3, each third row). The results confirm our conjecture: with 100 imputations, the error

degrees of freedom are larger than those of Listwise deletion. Also, note that the effect of

Gender was significant for 5 imputations, but not anymore for 100 imputations.

The F- and p-values of Multiple imputation and Listwise deletion do not differ much.

However, it is not clear in this example to what extent the differences between the results of

Multiple imputation and Listwise deletion are systematic or can be attributed to sampling

fluctuation. However, a simulation study by Li, Raghunathan, and Rubin (1991) within a

regression context shows that this pooling procedure provides accurate F- and p-values.

As an aside with respect to the substantive outcomes it should be noted that the only

significant predictor of School readiness, Mother’s ethnicity, is a variable which is strongly

related to other variables such as education and income (see for instance Bakermans-

Kranenburg, Van IJzendoorn, & Kroonenberg, 2004). However, sorting out the most

complete analysis goes beyond the illustrative use of these data for ANOVA on multiply

imputed data sets.

Repeated-Measures Designs

Because repeated-measures ANOVA has more than one error term in the model, the pooling

procedure for the Multiple imputation is hardly trivial and more complicated than standard

ANOVA. Suppose we have a two-way model with only within-subject factors. First, let πi

be the random effect of person i with mean 0 and variance . Second, let (απ)ij be the

interaction term for the j-th level of Factor 1 of person i with mean 0 and variance , let

(βπ)ik be the interaction term for the k-th level of Factor 2 of person i with mean 0 and

variance , and let (αβπ)jki be the three-way interaction term of the j-th level of Factor 1,

the k-th level of Factor 2, and respondent i with variance . Finally, let εijk be an error

term for the j-th level of Factor 1 and the k-th level of Factor 2 for person i with variance .

The two-way repeated-measures ANOVA model can then be written as
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(20)

See also, Maxwell & Delaney (2004, pp. 574–577), who discuss the features of this model

and calculations of the F-tests in more detail. To conform to Rubin’s (1987) combination

rules the repeated measures ANOVA model has to be rewritten as a regression model as

well. However, since the factors are nested within each person i and each factor has its own

error term, this can only be realized by rewriting it as a special case of a multilevel model

where the repeated measures are nested within persons. First, let β0i be a random intercept of

person i with mean γ00 and variance . Next, let β1ij be the random coefficient of person i

for group j of Factor 1, with mean γj0 and variance . Third, let β2ik be the random

coefficient of person i for group k of Factor 2, with mean γ0k and variance . Finally, let

β3jk be the regression coefficient of the interaction effect for group j of Factor 1 and group k

of Factor 2 with mean 0 and variance , and let  be the error variance of respondent i at

level j of Factor 1 and level k of Factor 2. The multilevel model that describes the two-way

repeated measures ANOVA model can be written as

(21)

where η0, ηj0i, η0ki, ηjki, and εijk are the individual random terms of the intercept, the effect

of Factor 1, the effect of Factor 2, the interaction, and the error respectively. Like standard

ANOVA, the independent variables X1ij and X2ik have to be effect coded.

The covariance matrix of the parameter estimates is defined as follows. First, suppose H is

the total number of random effects in the model,  is the estimated variance of the h-th

random effect, and D is the number of levels within the h-th random effect. Next, let Whi be

an (NJK) × D design matrix for subject i with entry 1 indicating the d-th random term for

subject i, and 0 otherwise. Third, let Wh be an (NJK) × (ND) design matrix of the h-th

random effect for all subjects which can be contructed as Wh= [Wh1,…,WhN]. Fourth,

define . The (NJK) × (NJK) covariance matrix V of variable Y can now be

computed as

(22)
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with . Finally, for each effect the covariance matrix of its parameter estimates is

computed as Equation 10, using for X the effect coded design matrix of the specific effect

(see, for example, Giesbrecht and Burns, 1985, and Robinson, 1991). From hereon the

calculations proceed in exactly the same way as in an ANOVA with independent measures.

Example: The McArdle-Nesselroade Developmental Change Data

The use of the combination rules for a two-way repeated measures ANOVA with two

within-subjects factors will be illustrated using the data from the McArdle and Nesselroade

(1994) study. Children (N = 32) were measured on 25 occasions on 7 tasks (Table 4).

Because the imputation model would become overparameterized if 25 × 7 = 175 variables

were to be included given there were only 32 children, it was decided for illustrative

purposes to use only the measurements on weeks 1, 13, and 25 for both the imputation

procedure and the subsequent repeated measures ANOVA; for the descriptives see Table 5.

To impute the data for all time points without the imputation model becoming

overparameterized, more respondents would be needed.

Table 5 shows that not all children provided data on all tasks and on each occasion, so that

the missing data needed to be imputed. This was done five times using Predictive Mean

Matching. Since all variables were numeric, the underlying Multiple-imputation model for

each variable was a linear regression model with the other time points being the (numerical)

predictors. A 3 (Weeks) × 7 (Tasks) repeated measures ANOVA was carried out on the

multiply imputed data with the scores on the specific tasks as the dependent variables.

Again, the SPSS Mixed Models procedure was used. Using effect coding for the predictors,

the results of the five imputed data sets were combined using Rubin’s (1987) rules for

multiparameter estimates.

The pooling procedure was again carried out using the SPSS macro by Van Ginkel (2010a;

2010b) using the error degrees of freedom approximation from Reiter (2007). The complete

syntax for the analysis with 5 imputations is provided on the first author’s website. Table 6

shows the pooled results of the imputed data sets for both 5 imputations and 100 imputations

(third and fourth row of each panel). For comparison, the results of Listwise deletion are

also shown. Because in multilevel modeling it is possible to estimate the model using Full

information maximum likelihood (FIML) without throwing away incomplete cases, results

for Full information maximum likelihood are also shown (second row of each panel).

Since no auxiliary variables are used for Multiple imputation in this example, FIML uses the

same amount of information for handling the missing data as Multiple imputation does.

Consequently, Multiple imputation has no advantages over FIML here so that FIML can

serve as a gold standard. It should be noted though that normally it is recommendable to

include auxiliary variables in the imputation model. A data set without auxiliary variables

has been used here to keep the results comparable with FIML.

It can be seen that the Multiple imputation procedure provides plausible F-values in the

sense that their values are close to the F-values that result from the gold standard FIML.

Unlike the previous example the numbers of error degrees of freedom for 5 imputations are

not smaller than for Listwise deletion. Additionally the numbers of error degrees of freedom
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for 5 imputations hardly differs from the numbers of error degrees of freedom for 100

imputations. This difference between this example and the previous one could lie in the fact

that on average the proportion of variation attributed to missing data (last column) is lower

than in the previous example.

Mixed Designs

Finally we will look at an ANOVA design with both a between-subjects factor αj and a

within-subjects factor βk. Let πi(j) be random term for the effect of person i with mean 0 and

variance  in group j, and let εijk be an error term for the j-th level of Factor 1 and the k-th

level of Factor 2 for person i with variance . The mixed two-way ANOVA model is

written as

(23)

where the j between brackets indicates that i is nested within group j (also, see Maxwell &

Delaney, 2004, pp. 594–597). Rewriting this model as a multilevel model goes as follows:

First, we define the value of a between-subjects factor for respondent i in group k (k = 1,…,

K) as Zik, and the value of a within-subjects factor for respondent i in group k at time point j

(j = 1,…, J) as Xijk. Next, let β0i be a random intercept of person i with mean

 and variance , and let β1ij be the random coefficient for measure j of

Factor 1, with mean  and variance . Finally, let  be the error variance

of respondent i in group k at time point j. The multilevel model that describes the mixed

two-way ANOVA model can be written as

(24)

where η0i, ηji, and εijk are the individual error terms of the intercept, the effect of the within-

subjects factor, and of the lowest level. Again, the independent variables Zij and Xijk have to

be effect coded. For each effect the covariance matrix of its parameter estimates can be

computed as in Equations 22 and 10, using for X the effect coded design matrix of the

specific effect. The only difference with a completely within-subjects design is that here

there is only one design matrix Wh.

Example: Anorexia Data

In our last example we will analyze a data set collected from N = 71 young girls suffering

from Anorexia (Hand, Daly, Lunn, McConway, & Ostrowski, 1994, p. 229). In this study

three different groups received three different kinds of treatment, namely Cognitive
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behavioral treatment (n1 = 29), Standard treatment (control group; n2 = 26), and Family

therapy (n3 = 17). For each girl body weight was measured before and after treatment. Thus,

there was one between-subjects factor (treatment) and one within-subjects factor (time

point). The descriptives for each group are given in Table 7.

Although this example contains no missing data it may be conceived of as a missing-data

problem because the design is unbalanced. By imagining three additional cases in the

Control group and twelve in the Family therapy group with missing values on body weight

at both time points, we get a balanced design with missing data on the dependent variable.

Like in the other examples, Multiple imputation was done using Predictive Mean Matching.

For each time point the underlying Multiple-imputation model was a linear regression

model, using group membership as a categorical predictor. A 3 (Treatment) × 2 (Time point)

mixed ANOVA was carried out on the multiply imputed data with body weight as the

dependent variable. Again, the SPSS Mixed Models procedure was used. Using effect

coding of the predictors X, the results of the imputed data sets were combined using Rubin’s

(1987) rules for multiparameter estimates using the SPSS macro by Van Ginkel (2010a;

2010b). The complete syntax for 5 imputations may also be found on the first author’s

website. Table 8 shows the pooled results of the imputed data sets for both 5 imputations

and 100 imputations (second and third row of each panel). The results of the unbalanced

ANOVA (equivalent to Listwise deletion) are shown for comparison (first row).

In this example it is even more noticeable that the number of error degrees of freedom of 5

imputed data sets is smaller than for Listwise deletion. For example, the number of error

degrees of freedom of the intercept is as low as 7 whereas for Listwise deletion it is 68

(second row). When data are imputed 100 times the differences in number of degrees of

freedom with Listwise deletion are smaller, and for most F-tests (though not all) the number

of degrees of freedom are larger than for Listwise deletion.

In this example, the λ̅s (last column) are substantially larger on average than in the previous

examples. This is probably due to a combination of a higher percentage of missing data than

in the previous examples, and a relatively small sample size, causing much uncertainty about

the imputed values.

Additionally, the λ̅s for 5 imputations are substantially larger than for 100 imputations. To

see whether differences in λ̅ between 5 imputations and 100 imputations were systematic or

caused by sampling fluctuation, we reran the imputation procedure with 5 imputations with

many different seed values. These runs showed that the values of λ̅ varied substantially

across different imputation runs with 5 imputations, and were sometimes larger and

sometimes smaller than for 100 imputations. Thus, differences found between 5 and 100

imputations are most probably due to sampling fluctuation.

Finally, the main effect of Treatment is not significant for 5 imputations while it is

significant for Listwise deletion and 100 imputations.
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Discussion

In this paper the pooling of F- and p-values for (repeated measures) ANOVA on multiply

imputed data sets was described in detail. We showed how the existing regression rules for

pooling Multiple imputation significance tests (Rubin, 1987) can also be applied to

(repeated-measures) ANOVA provided one uses effect coding rather than dummy coding.

The procedures were illustrated with three data sets, one with two between-subjects factors,

one with two within-subjects factors, and one with a between-subjects and a within-subjects

factor.

The benefits of the described procedure are considerable. While it was not described in the

past how to pool significance tests of (repeated measures) ANOVA for multiply imputed

data sets, a procedure to do so was outlined in this paper, which makes use of already

available procedures. This has the advantage that no simulations need to be carried out to

study the robustness of the proposed methods, because our proposal is completely based on

existing methods of which the robustness has already been discussed and studied in other

contexts (Barnard & Rubin, 1999; Li, Raghunathan, & Rubin, 1991; Reiter, 2007).

One noticeable finding was that in two of the examples the number of error degrees of

freedom of the F-tests was (substantially) smaller for five imputed data sets than for

Listwise deletion. However, when data were imputed 100 times, the number of error degrees

of freedom was often larger than for Listwise deletion. These findings suggest that Multiple

imputation would introduce more uncertainty in the results than Listwise deletion. This is,

however, an awkward conclusion since Multiple imputation uses more information in the

data than Listwise deletion does. A more plausible interpretation would be that for high

amounts of missing data the approximations of the degrees of freedom are (too) sensitive to

the number of imputations.

Also, for five imputations it was found that an effect was significant which was not

significant for 100 imputations and Listwise deletion, and the other way around. Moreover,

in the Anorexia example the results turned out to vary substantially for 5 imputations when

the multiple-imputation procedure was repeatedly carried out. The differences in findings

for 5 and 100 imputations and the unstable results for 5 imputations suggest that 5

imputations are too few for obtaining stable results (also, see Bodner, 2008, who reached

similar conclusions). When some F-tests of the ANOVA have p-values close to the

significance level it is advisable using more than 5 imputations, in order to obtain more

reliable results.

However, for the McArdle-Nesselroade developmental change data the numbers of error

degrees of freedom obtained from 5 imputations were larger than for Listwise deletion, and

did not differ substantially from the numbers of error degrees of freedom obtained from 100

imputations. We suspected that this difference with the other two examples was due to a

relatively small sample size in combination with the chosen imputation method (Predictive

mean matching). With a small sample size Predictive mean matching will often find the

same matching cases over multiply imputed data sets, resulting in a small between-

imputation variance. Due to this small between-imputation variance the number of error
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degrees of freedom is already quite large for five imputations. Consequently, increasing the

number of imputations to 100 will not improve much on the stability.

To test this conjecture we also imputed the data using the linear regression method from

MICE instead of Predictive mean matching (results not shown). Roughly said, this method

imputes expected values from a regression model plus some random error term, rather than

finding matching cases. Since the imputed values from this imputation method are not

restricted to values from certain response patterns observed in the data, they can vary more

than when Predictive mean matching is used, resulting in more between-imputation

variance.

When using this method, the number of error degrees of freedom indeed dropped below the

number of degrees of freedom for Listwise deletion, for each F-test. However, besides this

drop in degrees of freedom, conclusions obtained from the F-tests also changed substantially

(i.e., p-values changing from far below the significance level to higher than 0.50). When

inspecting the data it turned out that many of the variables were skew-distributed. Thus, on

second thought the linear regression approach did not seem to be the best imputation method

for this data set either. On the other hand, the data set may be too small to find an

appropriate number of matching cases for predictive mean matching. It seems like a proper

handling of the missing data goes beyond the use of these data as an illustration. In fact, this

would require a separate study.

Implementation in Existing Software Packages

To date, the implementation of the combination rules needed for ANOVA in statistical

software packages has either been quite limited or very well hidden. SPSS 19.0 does not

provide any pooled results for F-tests for multiply imputed data. Using an SPSS macro (Van

Ginkel, 2010a) the procedure may be carried out in SPSS but this still requires substantial

manual pre-processing. For repeated-measures ANOVA the procedure is even more

complicated.

Although SAS 9.3 and Stata 10.0 have a procedure for carrying out the combination rules

for ANOVA in Multiple imputation, the manual provides no clear practical guidance in how

to use them in the specific context of ANOVA. The procedure outlined in this paper should

also be of assistance to any SAS or Stata user who intends to use Multiple imputation in this

context. In the appendix it is explained how exactly the procedures can be carried out in

SAS 9.3, Stata 10.0, and SPSS 19.0 using Van Ginkel's (2010a) macro.

Considering the involved task needed to actually carry out the described procedure, its

implementation in future releases of SPSS and other software packages, as well as a clear

guidance with examples in the SAS and Stata manuals seems desirable if its use is to

become common place for routine use.

Further improvements in Multiple imputation for ANOVA

A next step in extending the pooling of ANOVA results of multiply imputed data sets would

be to derive the pooling techniques for post hoc tests, contrasts, and effect sizes. Although to
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our knowledge no literature on this exists as of yet, this will mostly be a matter of applying

the existing rules to these situations, just like we did in this paper for the F-tests in ANOVA.
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APPENDIX: Complete scheme for pooling significance tests of a two-way

ANOVA of multiply imputed data sets

Scheme for independent measures:

1. Use effect coding for the coding of the independent variables. If effect coding is not

implemented in the software package used, this requires creating additional effect

coded variables which should then be used as predictors in the regression.

2. Estimate the regression model of Equation 19 using a procedure in a statistical

software package that provides both its regression coefficients and the covariance

matrix of Equation 10. In SPSS such a procedure is Mixed models, in SAS this can

be done using the procedure PROC MIXED, and in Stata using the procedure

XTMIXED.

3. For effects of variables with two categories, use the formulas from Equations 1–6,

and 8 for pooling the F- and p-values, for effects of variables with more than two

categories use the formulas from Equations 11–15, and 17. In SAS 9.3 these

calculations are provided in the PROC MIANALYZE procedure using the MULT

option within the TEST statement. Stata 10.0 can perform these computations using

the MI ESTIMATE procedure. SPSS 19.0 does not support the combination rules

needed but they may be applied using Van Ginkel’s (2010a; 2010b) macro.

Scheme for repeated measures:

1. Store the data in stacked format with different time points below each other.

2. Use effect coding for the coding of both the between-subjects factors and within-

subjects factors.

3. Carry out the multilevel regression model from either Equation 21 or 24, providing

both its regression coefficients and the covariance matrix of Equation 22 (Mixed

models in SPSS 19.0, PROC MIXED in SAS 9.3, and XTMIXED in Stata 10.0). If

manually created effect coded variables are used, beware that these effect coded

variables cannot be used for specifying the random effects. For example, whereas it

is sufficient in Mixed models in SPSS 19.0 to use the indicator variables for both

the fixed and the random effects when the standard implemented dummy coding is

used, this will not work for effect coding. In the latter case, the effect coded

variables will have to be entered as Covariates and specified as fixed effects, while

the original indicator variables will have to be entered as Factors and specified as

random effects.
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4. Use the formulas from Equations 1–6, 8, 11–15, and 17 for pooling the F- and p-

values (MIANALYZE in SAS 9.3, MI ESTIMATE in Stata 10.0, and using the

macro by Van Ginkel in SPSS 19.0). Note: for repeated measures, carrying out the

pooling procedure in SPSS 19.0 requires substantial pre-processing of the

covariance matrix of Equation 22 since it is saved in a format that cannot readily be

read by the macro. Examples are available from the first author upon request.
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Table 1

Descriptive Statistics for Selected Categorical Variables from the NICHD Study of Early Child Care (1996).

Variable Values n

Gender 1. Male 705

2. Female 659

Total 1364

Mother’s ethnicity 1. American Indian, Eskimo, Aleutin 8

2. Asian; Pacific Islander 30

3. Black; Afro-American 174

4. White 1127

5. Other 25

Total 1364

Mother’s education 1. seven years of schooling 3

2. eight years of schooling 13

3. nine years of schooling 20

4. ten years of schooling 42

5. eleven years of schooling 61

6. High school diploma 287

7. Some college; no degree 455

8. Bachelor's degree 284

9. Some graduate work or master's degree 161

10. law degree 14

11. PhD; several master’s degrees 23

Total 1363
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Table 4

Descriptions of the Tasks in the Study From McArdle and Nesselroade (1994).

Task Description

1. Trial 1 on Board Game (delayed spatial recognition task)

2. Trial 2 on Board Game

3. Forward Digit Span

4. Backward Digit Span

5. True Gist Correct (Text memory task)

6. False Gist Correct (Text memory task)

7. Elaborations (Text memory task)
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