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Abstract

Background: Advances in sequencing technology have boosted population genomics and made it possible to

map the positions of transcription factor binding sites (TFBSs) with high precision. Here we investigate TFBS

variability by combining transcription factor binding maps generated by ENCODE, modENCODE, our previously

published data and other sources with genomic variation data for human individuals and Drosophila isogenic lines.

Results: We introduce a metric of TFBS variability that takes into account changes in motif match associated with

mutation and makes it possible to investigate TFBS functional constraints instance-by-instance as well as in sets

that share common biological properties. We also take advantage of the emerging per-individual transcription

factor binding data to show evidence that TFBS mutations, particularly at evolutionarily conserved sites, can be

efficiently buffered to ensure coherent levels of transcription factor binding.

Conclusions: Our analyses provide insights into the relationship between individual and interspecies variation and

show evidence for the functional buffering of TFBS mutations in both humans and flies. In a broad perspective,

these results demonstrate the potential of combining functional genomics and population genetics approaches for

understanding gene regulation.

Background

Gene expression is tightly controlled by transcription

factors (TFs) that are recruited to DNA cis-regulatory

modules (CRMs). Many TFs have well-documented

sequence preferences for their binding sites (transcrip-

tion factor binding sites (TFBSs)) [1]. However, in con-

trast to the startling simplicity of the amino acid code,

the ‘regulatory code’ at CRMs has a more ambiguous

relationship between sequence and function. Chromatin

immunoprecipitation (ChIP) coupled with genome-wide

analyses have made it possible to map TF binding posi-

tions globally in vivo, which in some cases can serve as

good predictors of CRM transcriptional outputs [2-4].

At the same time, these analyses often cannot explain

the exact rules underlying TF binding to a given

sequence, and functional prediction based on sequence

alone has had limited success, in particular in mamma-

lian systems [5].

Evolutionary analyses across species have proven to be

a powerful approach in elucidating the functional con-

straints of DNA elements, in particular protein-coding

genes, but are less interpretable in the context of CRM

architecture [6,7]. In part, this is due to the fact that

CRMs often have a ‘modular’, rather than ‘base-by-base’,

conservation that may escape detection by conventional

alignment-based approaches [8]. Moreover, conservation

in DNA binding profiles can be detected even without

apparent DNA sequence constraint [9]. Even at the level

of individual TFBSs, differences in sequence may be

hard to interpret - as such differences, for example, may

reflect evolutionary ‘fine-tuning’ to species-specific fac-

tors to preserve uniform outputs rather than signifying a

lack of functional constraint [6,10-12].

A complementary way to analyze the relationship

between sequence and function is to explore intra-spe-

cies (that is, polymorphic) variation of functional ele-

ments. Variation at DNA regulatory elements is

relatively common and at least a fraction of it falls

directly at TFBSs [13,14]. While some regulatory var-

iants have been associated with major changes in
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transcription factor binding [15-17], gene expression

[18,19] and disease phenotypes [20], many others do not

result in apparent aberrations in function. This differ-

ence in itself suggests that analyzing TFBS variability in

the context of the same species may lead to insights

into cis-regulatory logic. For example, high tolerance of

a binding site to deleterious variation may indicate that

such variation is effectively ‘buffered’, either at the level

of the same regulatory module or elsewhere in the

system.

Until recently, large-scale population genomics studies

of metazoan TFBSs were unthinkable because of the

limited number of available genotypes and global TF

binding profiles. However, advances in sequencing tech-

nology have paved the way for high-throughput efforts,

such as the human 1000 Genomes project [21] and Dro-

sophila Genetic Reference Panel (DGRP) [22], that are

making available an increasing number of individual

genomes originating from the same population. Com-

bining these data with the binding maps of dozens of

TFs in both species generated by the Encyclopedia of

DNA Elements (ENCODE) for human [23], and mod-

ENCODE and other published sources in Drosophila

[2,24-30] has provided an unprecedented resource for

analyzing TFBS functional constraints.

Here we use three different approaches to take advan-

tage of variation data in this context. First, we analyze

TFBSs position-by-position to confirm that the levels of

variation are generally consistent with TFBSs functional

constraints predicted by their position weight matrix

(PWM) models and highlight some intriguing excep-

tions. Next, we draw inspiration from Haldane’s [31]

and Muller’s [32] genetic load model to devise a metric

of TFBS variation that takes into account the loss of

PWM match score associated with a mutation and

makes it possible to investigate per-instance TFBS func-

tional constraints. Finally, we take advantage of per-indi-

vidual binding maps for a human transcription factor

(CTCF) to highlight the ‘buffering’ of genetic variation

at TFBSs at the level of binding, particularly in evolutio-

narily conserved regions.

Results

We aim to analyze TFBS functional constraints using

the binding data generated by the ENCODE, modEN-

CODE and published sources. Prior to these global ana-

lyses, however, we first examined the relationship

between binding sites’ match to consensus, their conser-

vation and variation using three well-characterized Dro-

sophila TFs, Twist (Twi), Biniou (Bin) and Tinman

(Tin), which have large numbers of TFBSs whose gen-

eral occupancy is predictive of specific spatio-temporal

activity [2]. The discovered PWMs for these TFs from

both in vitro and in vivo studies are good predictors for

their binding [2] and their binding sites show an appre-

ciable level of variation, presumably much of which is

deleterious but not lethal. For these TFs, 24 to 28% of

the bound sites overlapped with SNPs identified by the

DGRP [22] in 162 isogenic lines of Drosophila melano-

gaster (hereafter we refer to variation across these lines

as ‘individual variation’). As expected, variation at the

same sequences detected outside of TF-bound regions

(that is, at potentially random motif matches) was even

higher, with 35% of them containing known SNPs

(Fisher test, P < 1e-50 compared to the bound sites).

Focusing on the TF-bound instances of Twi, Bin and

Tin motifs, we first analyzed sequence variation at each

motif position across 12 Drosophila species (Figure 1a)

and across D. melanogaster individuals (Figure 1b). As

expected, TF-bound motifs both are conserved across

evolutionary distance and show depressed levels of var-

iation across individuals compared to either their

respective flanking regions (Figure 1a,b), reshuffled

motifs, unbound motifs or the third bases of Gly codons

considered to be evolutionarily neutral (Figure S1A in

Additional file 1). Based on these observations, we con-

clude that the quality and genetic diversity of the DGRP

make it suitable for global analyses of TFBS variation

and these data are unlikely to elicit a prohibitive bias.

PWMs are an established way of representing the

sequence preferences of TFBSs, with PWM match

scores reflecting the similarity of a given sequence to

the hypothetical ‘ideal’ binding site for a given TF [33].

To study the relationship between PWM scores and var-

iation, we compared the variation properties of Twi, Bin

and Tin motifs at three score ranges (’strong’, ‘medium’

and ‘weak’ scoring). Weaker (that is, potentially ‘less

optimal’) motifs generally showed higher levels of indivi-

dual variation (Figure 1c), as further confirmed using

only the strongest scoring sites from each bound region

to reduce the contribution of non-functional motif

matches (Figure S1B in Additional file 1). This result is

consistent with the expectation that selection would pre-

dominantly work towards increasing TFBSs’ match to

consensus [34]. We revisit this question more formally

later in the study.

As well as looking across the entire PWM, we can

consider each motif position in turn. Consistent with

previous findings for other TFs in yeast [35] and Droso-

phila [36], cross-species variation at Twi, Bin and Tin

motif positions strongly anti-correlated with their infor-

mation content (Figure 1a; Figure S2 in Additional file

1). Variation across individuals also anti-correlated with

positional information content (Figure 1d), confirming

the general link between evolutionary conservation and

population diversity [37]. There are, however, some

interesting exceptions. For example, positions 6, 7 and

12 of the Twi motif are less varied in the population

Spivakov et al. Genome Biology 2012, 13:R49

http://genomebiology.com/2012/13/9/R49

Page 2 of 15



Figure 1 Position-wise variation properties of three well-characterized developmental TFs from Drosophila melanogaster. (a)

Interspecies diversity at bound motif positions and motif flanks. Diversity is expressed as 1-phastcons scores [64] per position across 15 insect

species normalized to these scores for the scrambled versions of the same motifs detected within the respective TF-bound regions. TF ‘binding

logo’ representations of motif PWMs are shown below each plot. (b) Within-species diversity at bound motif positions and motif flanks,

expressed as genetic diversity (D) [78] per position across 162 isogenic lines of D. melanogaster from the DGRP normalized to the same metric

for the scrambled versions of the motifs detected within the respective TF-bound regions. Asterisks indicate positions showing significantly

reduced variation compared to the scrambled motifs (relative diversity <1; permutation test P < 5e-3). TF ‘binding logo’ representations of motif

PWMs are shown below each plot. The non-normalized versions of the same plots, including both TF-bound and all instances of these motifs

and their scrambled versions, are shown in Figure S1 in Additional file 1. (c) Within-species diversity per motif position across the three score

ranges labeled grey to red in the increasing order: weak (Twi and Tin, 3 to 5; Bin, 5 to 8), medium (Twi and Tin, 5 to 7; Bin, 8 to 10) and strong

(Twi and Tin, >7; Bin, >10). (d) Inverse correlation between individual variation at motif positions (x-axis) and positional information content

according to motifs’ PWM (y-axis). Variation is expressed in the same terms as in (b). Numbers beside the dots indicate motif positions; r is the

Pearson’s correlation coefficients for each TF. The same plots for cross-species variation are shown in Figure S2 in Additional file 1.
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than would be expected from their information content

(Figure 1d, left panel). These positions correspond to

the ‘spacer’ region of the CANNTG E-box consensus

motif recruiting basic helix-loop-helix (bHLH) proteins,

for which specific sequence preferences were documen-

ted depending on specific dimerization partners [38].

Similarly, we found the first two positions of the Bin

motif to be highly constrained despite their very low

information content (Figure 1d, middle panel), suggest-

ing that these positions may also be subject to specific

restrictions depending on the cis-regulatory context of

each motif instance. From this analysis we conclude that

PWMs that have a strong correlation between informa-

tion content and cross-species conservation are likely to

be good descriptors of TF sequence binding preferences

in a population context.

We now turn to the human (ENCODE [23]) and Dro-

sophila datasets (combined from modENCODE and

other studies [2,24-30]), selecting for analysis those TFs

for which position-wise conservation across species gen-

erally correlated with PWM information content. This

initial filtering was done to ensure that PWMs included

in the analysis reflected the global sequence constraints

of these TFs’ binding sites and could therefore be used

to compare such constraints across TFBS instances, as

presented below. Additional filtering criteria were used

to ensure sufficient statistical power (in particular with

respect to the total number of sites showing variation)

and specificity of the analysis, resulting in the final data-

set of 15 Drosophila and 36 human motifs (see Materials

and methods and Supplementary note on TF selection

in Additional file 1 for details). As before, we used

DGRP data [22] to assess individual variation at Droso-

phila TFBSs, while for the humans we used Central Eur-

opean (CEU) genotypes sequenced as part of the 1000

Genomes Pilot Project [21] (using a Yoruban population

instead of CEU yielded consistent results; not shown).

Similar to our findings for the three Drosophila TFs, we

observed reduced levels of individual variation at func-

tional binding sites compared to reshuffled motif

matches and flanking regions for other Drosophila fac-

tors as well as human TFs (Figure 2a). Notably, the sig-

nificance of this effect was similarly high in Drosophila

and humans, despite the fact that the SNP frequency

differed approximately 11-fold (2.9% versus 0.25%,

respectively), as closely reflected by the 7.5-fold differ-

ence in the number of varying TFBSs. This is consistent

with the overall differences in the total number of SNPs

detected in these two species, likely resulting from their

different ancestral effective population sizes [39]. We

also observed a significant anti-correlation between var-

iation frequency at motif positions and their information

content in both species (Figure 2b).

So far we have been aggregating TFBSs position-by-

position, which limits the scope of questions that could

be addressed using these data. This has prompted us to

devise a constraint metric that could be computed for

individual motif instances and compared between het-

erologous TFBS subsets defined on the basis of their

biological properties. The results presented above con-

firm the expected model that the deleterious effect of

TFBS variation depends on how much it perturbs the

motif consensus. Therefore, we proposed to express the

deleterious effect of TFBS mutations in terms of ‘muta-

tional load’, a known population genetics metric that

combines the frequency of mutation with predicted phe-

notypic consequences that it causes [31,32] (see Materi-

als and methods for details). We adapted this metric to

use the reduction in PWM score associated with a

mutation as a crude but computable measure of such

phenotypic consequences. For example, the load of a

motif instance for which no variation is observed equals

zero, while the load of a motif instance with a common

mutation mapping to it that results in a severe loss of

PWM match score is close to 0.5 (see Figure 3a for

real-life examples). As would be expected for a metric

quantifying deleterious effects, motif load showed a

monotonic decreasing distribution in both flies and

humans (Figure S3 in Additional file 1).

We do not assume that TFBS load at a given site

reduces an individual’s biological fitness. Rather, we

argue that binding sites that tolerate a higher load are

less functionally constrained. This approach, although

undoubtedly a crude one, makes it possible to consis-

tently estimate TFBS constraints for different TFs and

even different organisms and ask why TFBS mutations

are tolerated differently in different contexts. Conceptual

and statistical considerations associated with TFBS load

are discussed at length in Materials and methods; here

we will only outline several major points. First, since

binding events limited to minor alleles are likely to be

overlooked by a single-genome ChIP analysis, we com-

pute the decrease in PWM match score relative to the

major and not the highest-scoring allele as in the ‘clas-

sic’ genetic load metric. In addition, since we focus on

the deleterious effects of variation, we have assumed

that mutations yielding increased PWM match scores

have a load of zero. We avoided the use of negative load

values for these ‘gain-of-score’ mutations, as it is possi-

ble that such mutations will often be near-neutral, while

in some cases they may even be deleterious.

Most of the analyzed TFBSs have no detected varia-

tion, in particular in human, and therefore a zero load.

This affects the statistical power, making it challenging

to examine many TFs one-by-one. However, analyzing

the data globally for all included TFs in each organism
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has allowed us to identify a number of significant

trends, as presented below. Technically, the high pro-

portion of sites with no detected variation also leads to

a considerable zero-inflation of TFBS load distributions,

which violates the assumptions of conventional signifi-

cance tests. Therefore, instead we estimate significance

by using permutation tests, as further described in

Materials and methods. For the same reason, we also

chose to present average (more precisely, trimmed

mean) TFBS load values in many comparative analyses

as a metric that reflects both the frequency of variation

(that is, zero versus non-zero load) and the intensity of

its effect (that is, the distribution of non-zero load).

We first asked whether motif load would be able to

detect the expected link between evolutionary and indi-

vidual variation. We used a published metric, branch

length score (BLS) [40], to characterize the evolutionary

conservation of a motif instance. This metric utilizes

both a PWM-based model of the conservation of bases

and allows for motif movement. Reassuringly, muta-

tional load correlated with BLS in both species, with

evolutionarily non-conserved motifs (BLS = 0) showing

by far the highest degree of variation in the population

(Figure 3b). At the same time, approximately 40% of

human and fly TFBSs with an appreciable load (L > 5e-

3) still mapped to reasonably conserved sites (BLS > 0.2,

Figure 2 Individual variation of the binding sites for 15 Drosophila and 36 human TFs selected for this study. (a) Distributions of

position-wise diversity at motif positions (red), scrambled motifs and motif flanks at the TF-bound regions of Drosophila (left panel) and human

(right) TFs; P-values are from Kruskal-Wallis non-parametric significance tests. (b) Violin plots (a combination of boxplots and two mirror-image

kernel density plots) showing the correlation between individual variation and information content per motif position for the bound instances of

Drosophila (left) and human (right) TFs included in this study (top, red) and their scrambled versions detected within the same bound regions

(bottom, grey); P-values are from Wilcoxon two-sample non-parametric significance tests.
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approximately 50% percentile in both organisms),

demonstrating that score-reducing mutations at evolu-

tionarily preserved sequences can be tolerated in these

populations.

Earlier in the study we have shown evidence that

‘weaker’ motifs (that is, those with a poorer PWM

match) are more prone to variation, suggesting that they

are less functionally constrained. Weaker sites have

many more possible variants with similar match scores,

while mutations at stronger sites are less likely to pre-

serve their match. Motif load is based on the decrease

in PWM score associated with mutations and not

sequence variation per se and is therefore more ‘pro-

tected’ from this bias. Using this metric, we confirmed

our original findings, suggesting that TFBSs with higher

PWM scores are generally more functionally constrained

Figure 3 Motif mutational load of Drosophila and human TFBSs located within different genomic contexts. (a) Examples of mutational

load values for individual instances of four human TFs (ranging from high to very low) showing different combinations of parameters that are

combined in this metric: the reduction of PWM match scores at the minor allele (’∆PWM score’) and the number of genotypes within the

mutation in the population (minor allele frequency (MAF)). (b) Relationship between phylogenetic conservation and motif mutational load for D.

melanogaster (left) and human (right) TFs included in this study. Conservation is expressed as per-instance branch length scores (BLSs) for each

instance computed against the phylogenetic tree of 12 Drosophila species. The average load for D. melanogaster-specific sites (BLS = 0) is shown

separately as these have an exceptionally high motif load. (c) Relationship between motif stringency and motif load in Drosophila (left) and

humans (right). Motif stringency is expressed as scaled ranked PWM scores grouped into five incremental ranges of equal size (left to right), with

average motif load shown for each range. (d) Relationship between distance from transcription start site (TSS) and motif load in Drosophila (left)

and humans (right) for all analyzed TFs excluding CTCF (top) and for CTCF alone (bottom), with average motif load shown for each distance

range. (b-d) Average motif load is computed excluding a single maximum value to reduce the impact of outliers. The P-values are from

permutation tests, in which permutations are performed separately for each TF and combined into a single statistic as described in Materials and

methods.
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compared to ‘weaker’ sites (Figure 3c). The fraction of

detected sites mapping to bound regions remained simi-

lar across the whole analyzed score range, suggesting

that this relationship is unlikely to be an artifact of

higher false-positive rates at ‘weaker’ sites (Figure S4A

in Additional file 1). This global observation, however,

does not rule out the possibility that a weaker match at

some sites is specifically preserved to ensure dose-speci-

fic TF binding. This may be the case, for example, for

Drosophila Bric-à-brac motifs, which exhibited no corre-

lation between motif load and PWM score (Figure S4B

in Additional file 1), consistent with the known dosage-

dependent function of Bric-à-brac in embryo patterning

[41].

We then used motif load to address whether TFBSs

proximal to transcription start sites (TSSs) are more

constrained compared to more distant regulatory

regions. We found this to be the case in human, but not

Drosophila (Figure 3d; see Discussion). CTCF binding

sites in both species were a notable exception, tolerating

the lowest mutational load at locations 500 bp to 1 kb

from TSSs, but not closer to the TSS (Figure 3d, bottom

panel), suggesting that the putative role of CTCF in

establishing chromatin domains [42] is particularly

important in proximity of gene promoters.

We then considered the genome-wide properties of

the mutational load metric. Recombination rates are dis-

tributed unevenly along Drosophila chromosomes (Fig-

ure 4a, dashed lines) [22,43]; however, we did not

observe an association between the TFBS load and local

recombination rates (Figure 4a; Figure S5 in Additional

file 1). Rather, the analysis of selected ‘high-load hot-

spots’ (average load per 100 kb window >5e-3) revealed

regions in which motifs with deleterious variation

mapped in close proximity to other motifs for the same

TF (see Figure 4b for examples). This suggested that

TFBS mutations may be partially ‘buffered’ by neighbor-

ing motifs. Consistent with this model, we found that

motifs for at least four Drosophila TFs tolerated a signif-

icantly lower load when present as ‘singletons’ compared

to sites with two motifs (Figure 4c), particularly for evo-

lutionarily conserved instances. Interestingly, TFs whose

binding sites had a higher mean load generally had

more motifs per ChIP region (Figure 4d), raising the

possibility that a higher number of motifs may allow a

TF to tolerate a higher load. The PWM scores of vari-

able motifs were similar to those of ‘constant’ motifs in

their proximity (Figure 4e); it is unlikely, therefore, that

these variable motifs are non-functional a priori.

To gain further insight into the functional effects of

TFBS mutations, we used a dataset that mapped human

CTCF binding sites across four individuals from [16]

(see Materials and methods for more details). TFBS

mutations detected in this dataset often did not result in

a significant loss of binding, with approximately 75% of

mutated sites retaining at least two-thirds of the binding

signal. This was particularly prominent at conserved

sites (BLS >0.5), 90% of which showed this ‘buffering’

effect (Figure 5a). To address whether buffering could

be explained solely by the flexibility of CTCF sequence

preferences, we analyzed between-allele differences in

the PWM score at polymorphic binding sites. As

expected, globally CTCF binding signal correlated with

the PWM score of the underlying motifs (Figure S6A in

Additional file 1). Consistent with this, alleles with

minor differences in PWM match generally had little

effect on the binding signal compared to sites with lar-

ger PWM score changes (Figure 5b), suggesting that the

PWM model adequately describes the functional con-

straints of CTCF binding sites. At the same time, we

found that CTCF binding signals could be maintained

even in those cases where mutations resulted in signifi-

cant changes of PWM score, particularly at evolutiona-

rily conserved sites (Figure 5c). A linear interaction

model confirmed that the effect of motif mutations on

CTCF binding was significantly reduced with increasing

conservation (Figure 5d; interaction term P = 2.9e-2).

These effects were not due to the presence of additional

CTCF motifs (as 96% of bound regions contained only a

single motif), while differences between more and less

conserved sites could not be explained away by differ-

ences in the PWM scores of their major alleles (not

shown). A CTCF dataset from three additional indivi-

duals generated by a different laboratory [44] yielded

consistent conclusions (Figure S6B-D in Additional file

1), suggesting that our observations were not due to

overfitting.

Taken together, CTCF binding data for multiple indi-

viduals show that mutations can be buffered to maintain

the levels of binding signal, particularly at highly con-

served sites, and this effect cannot be explained solely

by the flexibility of CTCF’s sequence consensus. We

asked whether mechanisms potentially accountable for

such buffering would also affect the relationship

between sequence and binding in the absence of muta-

tions. Training an interaction linear model across the

whole set of mapped CTCF binding sites revealed that

conservation consistently weakens the relationship

between PWM score and the binding intensity (P =

1.9e-7; Figure 5e). Thus, CTCF binding to evolutionarily

conserved sites may generally have a reduced depen-

dence on sequence.

Discussion

Deciphering the cis-regulatory ‘logic’ of gene regulation

is one of the biggest challenges genomics faces today.

Understanding the functional constraints of regulatory

elements across species has been the focus of much
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Figure 4 Evidence for the ‘buffering’ of deleterious TFBS variation by neighboring homotypic motifs in Drosophila. (a) Distributions of

average motif load per 100 kb window along Drosophila chromosome 2R and chromosome X (yellow; see Figure S5 in Additional file 1 for

other chromosomes). Recombination rate distributions along the chromosomes (dashed lines) are from [22] (and are near-identical to an earlier

analysis [43]); note that there is no apparent correlation between these two parameters. Regions of high average motif load marked with

asterisks are further examined in (b). Average motif load is computed excluding a single maximum value to reduce the impact of outliers. (b)

Examples of motif arrangement at regions that fall within 100 kb windows having high average motif load (L >5e-3). Motifs with no detected

deleterious variation (L = 0) are colored grey, and those with non-zero load pink (low load) to red (high load). Asterisks refer to similarly labeled

peaks from (a). Note that most high-load motifs found in these regions have additional motifs for the same TF in their proximity. (c)

Distributions of average load across ranges of phylogenetic conservation for motifs with a single match within a bound region (’singletons’, blue)

versus those found in pairs (’duplets’, red). For equivalent comparison, a random motif out of the duplet was chosen for each bound region and

the process was repeated 100 times. Results are shown for the four TFs for which appreciable differences between ‘singletons’ and ‘duplets’

were detected. Phylogenetic conservation is expressed in terms of branch length score (BLS) ranges, similarly to Figure 2b. The P-value is from a

permutation test for the sum of average load differences for each range between ‘singleton’ and ‘duplet’ motifs. Average load was computed

excluding a single maximum value. (d) Relationship between the average load per TF and the average number of motifs per bound region.

Average load was computed excluding a single maximum value; r is Pearson’s correlation coefficient and the P-value is from the correlation test.

(e) The difference in motif score between motif pairs mapping to the same bound regions: the one with the highest load versus one with a

zero load (’constant’; left) or in random pairs (right). These results suggest that the major alleles of motifs with a high load are generally not

‘weaker’ than their non-varying neighbors (the P-value is from the Wilcoxon test).

Spivakov et al. Genome Biology 2012, 13:R49

http://genomebiology.com/2012/13/9/R49

Page 8 of 15



Figure 5 Evidence for the ‘buffering’ of variation at conserved CTCF binding sites. (a) Proportion of homozygous polymorphic CTCF

binding sites with ‘buffered’ levels of ChIP signal depending on the sites’ evolutionary conservation (less conserved, BLS <0.5; more conserved,

BLS ≥0.5). Sites at which the minor variant retained at least two-thirds of the major variant’s signal were considered as ‘buffered’. The P-value is

from the Fisher test. Major and minor variants were defined on the basis of the global allele frequency data from [75,76]. (b) Differences in the

CTCF binding signal (∆ ChIP signal) at homozygous polymorphic sites that show either ‘low’ (left) or ‘high’ (right) disparity in absolute motif

match scores (∆ motif score) between the variants (<1 or >1, respectively). The ChIP signals are sign-adjusted relative to the direction of PWM

score change. Site-specific signals from multiple individuals with the same genotype, where available, were summarized by mean. The P-value is

from the Wilcoxon test. (c) Genotype-specific differences in the CTCF ChIP signal across individuals between homozygous polymorphic sites with

appreciable differences in absolute PWM match scores (∆ motif score >1) at less conserved (BLS <0.5, left) and more conserved (BLS >0.5, right)

CTCF motifs. The ChIP signals are sign-adjusted relative to the direction of PWM score change. Site-specific signals from multiple individuals with

the same variant, where available, were summarized by mean. The P-value is from the Wilcoxon test. (d) An interaction linear model showing

that interspecies motif conservation (expressed by branch length scores) reduces the effect of motif mutations on CTCF binding. Shown are the

effect plots predicting the relationship between the change of PWM score (at the minor versus the major variant) and the change of the

associated ChIP signal at three hypothetical levels of evolutionary conservation: BLS = 0 (low; left); BLS = 0.5 (medium; middle); and BLS = 1

(high; right). Major and minor variants were defined on the basis of the global allele frequency data from [75,76]. (e) An interaction linear model

showing that interspecies motif conservation (BLS) reduces the effect of motif stringency on the binding signal. Shown are the effect plots

predicting the relationship between motif scores and ranked ChIP signal at three hypothetical conservation levels: BLS = 0 (low; left); BLS = 0.5

(medium; middle); and BLS = 1 (high; right). (f) A schematic illustrating the observed effect of binding site mutations on CTCF binding signal at

two polymorphic CTCF sites - one poorly conserved (BLS = 0.03, left) and one highly conserved (BLS = 0.84, right) - that have similar motif

match scores (14.9 and 14.2, respectively). Sequences of higher- (top) and lower-scoring alleles (bottom) are shown on the figure. Mutations

resulting in a similar loss of score (down to 12.5 and 11.8, respectively) resulted in a 53% loss of CTCF binding signal at the non-conserved site

(left, compare the amplitudes of top (blue) to bottom (red) curves), in contrast to a mere 6% at the conserved site (right).
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‘evo-devo’ research, leading to many exciting insights,

such as the preservation of CRM function without a

base-to-base preservation of sequence [9-11] and the

impact of protein-protein interactions [45]. Variation

across individuals presents a snapshot of ‘evolution in

action’, giving access to potentially suboptimal alleles

without having to resort to artificial perturbation, and

are a promising resource for population functional

genomics studies as well as more formal association

analyses. Such ‘pop-fun’ approaches will complement

the insights obtained from ‘evo-devo’ studies.

Here we have used three different approaches to

investigate TFBS functional constraints based on varia-

tion data. In the first one, using position-by-position

comparisons, we have found that variability at TFBS

positions generally correlates with information content,

consistent with previous findings based on cross-species

comparisons in Drosophila and human for other TFs

[35,36] and population studies in yeast [18]. It should be

noted that the majority of PWMs used in this study

have been derived from comparing the sequences across

all binding sites in one genome detected by genome-

wide ChIP studies. Variation analyses look at sequence

diversity in a different ‘dimension’: that is, across indivi-

duals at a particular point in the genome for each given

binding site. That these two dimensions generally corre-

late with each other (and often also with in vitro bio-

chemical data such as SELEX and protein binding

microarrays [46,47]) has been a reassuring confirmation

of the general validity of PWM models to describe the

sequence ‘code’ for the analyzed TFs. This, in turn, is an

important prerequisite for using PWM scores to com-

pute TFBS mutational load, a per-instance metric that

combines the penetrance of a motif mutation with the

loss of the PWM match it causes.

Cis-regulatory variation is accountable for serious

deleterious effects, and yet it is common [14,20]. Under-

standing TFBS functional constraints is therefore inter-

esting for at least two reasons. First, it may shed light

on the regulatory architecture of the genomes. For

example, our finding that CTCF motifs tolerate the low-

est load a short distance away from TSSs underlines the

importance of chromatin architecture at the distal ends

of promoter regions. In addition, TFBS constraints are

indicators of how the system deals with noise in cis-reg-

ulatory networks, and the variation analyses presented

here support such phenomena as homotypic redundancy

[48]. Interestingly, it was previously shown that homoty-

pic clustering does not affect Drosophila TFBS turnover

rate in the phylogenetic context [36], but the dynamics

of selection inside a population need not correspond to

that observed between species. For example, retaining

multiple instances of neighboring homotypic sites in a

given species may in itself bear the selective advantage

to provide robust buffering to variation and other

perturbations.

Genetic load, the concept that lies at the foundation of

our constraint metric, was initially put forward by J Hal-

dane [31] and HJ Muller [32], primarily in the context

of the debate on hard versus soft selection. Here, how-

ever, we use this metric outside of such context and

fully acknowledge that this is a crude, albeit computable

parameter. We do not imply that a high TFBS load

weakens the fitness of the individual bearing it, as would

be the case in the ‘classic’ application of this concept.

Rather, we take advantage of this concept to inquire

why this probably does not occur - that is, why muta-

tions at TFBSs are tolerated differently in different geno-

mic contexts, likely without causing a significant

reduction of an individual’s fitness.

There is no doubt that mutational load is an imperfect

metric. More sophisticated models linking fitness to the

PWM score have been developed for cross-species phy-

logenetic analyses [49,50] and their adaptation to popu-

lation studies, although likely not straightforward, would

be interesting to explore in the future. In addition, we

know that the basic assumption of PWM models - that

the frequency of nucleotide N at motif position K is

proportionate to its positive impact on the binding affi-

nity - does not always hold and even when it does, the

amplitude of this effect may not be fully consistent

across the TFs. Differences between motif sequences at

different genomic locations may reflect TFBS optimiza-

tion for a specific context rather than a lack of con-

straint. It was shown, for example, that differences at

just two positions of the glucocorticoid receptor motif

affect the choice of binding partners [51], while different

k-mers of the apparently degenerate RACRYNNNN-

NACG motif in yeast are associated with the regulatory

regions of genes with different functions [52]. It is possi-

ble, therefore, that some mutations resulting in a loss of

PWM match are, in fact, beneficial rather than deleter-

ious and may be indicative of positive selection that was

recently shown to occur at a fraction of Drosophila

TFBSs by He et al. [12]. However, in line with the

assumption of He et al., we believe that the predomi-

nant direction of positive selection would be towards

increasing PWM scores, and such mutations will have a

zero load according to our definition.

These limitations, however, are universal for the pro-

blem of modeling functional constraints based on

sequence alone. The predictive power of PWMs is prob-

ably comparable with our ability to predict the impact

of mutations on RNA and protein structure. The rapidly

increasing bulk of genotyping data will increase the sta-

tistical power of these analyses, but only experimental

validation of the effects of TFBS mutations can give a

definitive answer. This is why direct analyses of TF
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binding across individuals hold much promise. Using

multi-individual CTCF binding maps [16,44], it was

reassuring to confirm that the loss of CTCF binding

associated with a TFBS mutation is generally propor-

tionate to its impact on motif PWM match. But perhaps

more importantly, using these data has allowed us to

observe that this relationship does not always hold, sug-

gesting that variation at many sites, and in particular the

most evolutionarily conserved ones, can be efficiently

buffered at the binding level. We do not know the exact

nature of these buffering mechanisms, and whether their

prevalence at highly conserved sites is evolutionarily dri-

ven or is merely a side effect of the increasing complex-

ity of regulatory networks [53,54]. It can be expected

that such buffering effects would be, at least in part, due

to interactions with heterologous proteins. Given the

multifaceted functions of CTCF, it is very likely that

such interactions will involve different partners, depend-

ing on specific regulatory context. Studies of more ‘spe-

cialized’ TFs may therefore be more appropriate to

address these questions. For example, analyses of indivi-

dual variation at human NF�B [15] and yeast Ste12 [17]

pinpointed candidate interaction partners that affect the

binding in the absence of mutations at the analyzed

TF’s own binding sites. We attempted to use the NF�B

data to ask the reverse question, that is, look for factors

that may help maintain the binding when mutations at

conserved TFBSs are present; unfortunately, the number

of such cases was extremely low, prohibiting this analy-

sis. It is possible that mutations at conserved NF�B sites

are poorly tolerated, implying that they are less effi-

ciently ‘buffered’. However, studies involving a larger

number of individuals and/or using organisms with

higher variation rates, such as Drosophila, will be

required to adequately address this question.

Theoretically, TFBS mutations can be buffered at many

different levels - starting from the motif itself that may

‘absorb’ a number of mutations due to a permissive con-

sensus, to the level of CRMs (for example, homotypic

motifs and protein interaction partners), cis-regulated

genes (involving possible ‘backup’ by shadow enhancers

[55]) as well as further along the regulatory network [56]

- which may potentially explain the apparent redundancy

that is often observed in the network architecture, both

at the level of cooperative TF binding to enhancers and

multiple ‘cross-talking’ pathways [57]. Consistent with

previous observations at individual CRMs [58], our

observations suggest that much variation is buffered

immediately in cis, via the redundancy of TFBS consen-

sus sequences, neighboring homotypic motifs or other

factors preserving regulator binding (or at least the over-

all CRM output). If true, this model may explain two of

our preliminary observations that we initially found puz-

zling: that the levels of tolerated load did not significantly

vary depending on the functional annotation of regulated

genes (not shown) and that candidate Drosophila enhan-

cers with seemingly very deleterious mutations at Bin,

Tin and Twi binding sites were still able to drive reporter

gene expression in vitro (Figure S7 in Additional file 1).

It is clear, however, that this phenomenon requires

further investigation, perhaps drawing more input from

the biology of individual TFs. Finally, it is worth noting

that a number of disease-causing mutations are located

in regulatory regions, and presumably are either not buf-

fered or inappropriately buffered. A well-studied example

of this is the regulatory mutations in Pax6 regulatory

regions associated with neurodevelopmental abnormal-

ities [59]. In addition, the majority of genome-wide asso-

ciation studies do not implicate a protein-coding variant

[20]. To fully understand these diseases we must gain a

more complete knowledge of how variation impacts reg-

ulatory function.

Conclusions

Integrating genome-wide TF binding profiles with indi-

vidual variation data in Drosophila and humans, we

show that TFBSs are functionally constrained and yet

mutations at them can be tolerated, providing evidence

for possible ‘buffering’ effects. Beyond their direct biolo-

gical implications, these results highlight the potential of

integrating functional genomics and population genetics

approaches for understanding cis-regulatory function.

Materials and methods

Data sources and basic analysis

Motif discovery data were from the modENCODE and

ENCODE repositories [23,24,60,61], with the exceptions

of Bin, Tin and Twi that were from Zinzen et al. [2].

Drosophila ChIP data were from Zinzen et al., modEN-

CODE and other published sources [2,24-30]; human

ChIP data were from ENCODE [23] (see Tables S1 and

S2 in Additional file 2 for details). CTCF multi-indivi-

dual data were from [16,44]. EPO alignments for 12

mammals were from Ensembl [62,63]; phastcons scores

[64] and multiz alignments for 12 Drosophila species

were from Flybase [65,66]. Drosophila variation data

were from the DGRP [22], additionally filtered as

described below. Human variation data were from the

1000 Genomes Pilot Project [21]. Motif matches were

detected using patser [67] (in case of overlapping

matches, only the strongest-scoring motif was included)

and overlaps with ChIP regions (’bound’ motifs) were

called using bedTools [68]. Analysis was performed in

R, Python and Perl with Ensembl API.

Filtering of DGRP data

DGRP SNPs were additionally filtered according to the

following criteria: ε ≤ 0.02 (per SNP); p × ε ≤ 0.01 (per
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allele); coverage ≥ 3 (per allele); median coverage ≤20

(across strains); number of strains with detected homo-

zygous alleles ≥100; number of strains with calls scored

as ‘heterozygous’ ≤5%. The combination of these filters

removed 31.3% low-confidence SNPs and increased the

overlap with the SNPs detected by the Drosophila Popu-

lation Genomics Project [69] based on a subset of the

same Drosophila lines (not shown).

Motif selection for the analysis

For each modENCODE and ENCODE TF, a single com-

bination of motif and cell type was chosen based on

appreciable enrichments at TF-bound versus unbound

regions, the total numbers of TF-bound motifs and a cor-

relation between per-position evolutionary conservation

and information content. Motif PWM score thresholds

for human TFs were determined using TFM_PVALUE (P

= 4e-8) [70], consistent with the thresholds used in

ENCODE integrative analyses [23]. For Drosophila TFs,

thresholds were defined based on balancing the number

of detected instances and motif enrichment at bound

compared to unbound regions. Near-identical PWMs

were removed based on Pearson correlation analyzed

with STAMP [71,72]. See Supplementary note on TF

selection in Additional file 2 for more detail. The proper-

ties of selected motifs are listed in Tables S1 and S2 in

Additional file 2. PWMs are listed in the data/motifs.txt

files at [60] and [61], respectively. The positions,

sequences, PWM scores and variation properties of all

TFBSs included in this study are listed in Additional file

3 (Drosophila) and Additional file 4 (human).

Position-wise motif analysis

Reshuffled PWMs were generated by ten per-position

permutations of the ‘real’ PWMs. Reshuffled motif

matches were detected within the 200 bp proximity of

real TF binding sites at the same PWM score thresholds

as the real motifs. Position-wise variation data obtained

for each permuted motif instance was then ‘de-

reshuffled’ to match the positions of the real PWM to

compute the total diversity per permuted motif position.

For human motifs, the score thresholds used elsewhere

in the study resulted in very low numbers of reshuffled

motif instances detected near the corresponding TF

binding sites. To overcome this, analyses in Figure 2

used slightly relaxed score thresholds for both real and

reshuffled human motifs, adjusted such that the total

number of motif instances detected with the 10

reshuffled PWMs was at least 1.5-times higher than the

number of real instances for each TF.

Branch length score

BLS calculation was reimplemented in Perl for distribu-

ted computation on an LSF compute farm according to

[40], allowing for a 50 bp motif movement either way

along the alignment and a drop of motif score ≤1.

Branch lengths are given relative to 12 eutherian mam-

mals or 12 Drosophila species, respectively. Tree lengths

were computed using Ensembl API.

TFBS mutational load

We defined motif mutational load as:

L =
w0 −

∑
wipi

w0

where w0 is the PWM score of the major allele, and wi

and pi are the score and frequency of each allele, respec-

tively. Classically, genetic load is expressed with respect

to the maximum observed value (w0 = wmax). However,

we have instead chosen to express it relative to the

major allele (w0 = wmaj). The main reason for this is

that, in the absence of ChIP data for each individual or

isogenic line, TFBSs whose minor alleles have a higher

PWM score than the major allele are subject to a signif-

icant ascertainment bias. Indeed, only TF-bound TFBS

instances are included in the analysis, and we are much

more likely to detect TFBSs as ‘bound’ when their

weaker major alleles are also strong enough to ensure

TF binding. Additionally, for reasons explained in the

main text, we have postulated that TFBSs with stronger-

scoring minor alleles have a zero load irrespective of fre-

quency. Using the human data presented an additional

challenge of interpreting heterozygous genotypes. Since

the immediate phenotypic trait associated with TFBS’s

match to consensus (that is, TF binding) occurs in cis,

we have taken the decision to consider each human

allele separately. We did not focus exclusively on homo-

zygous genotypes, as this approach would further reduce

the statistical power of the analysis that was already lim-

ited by the low variation rates in the human genome.

Significance testing of TFBS load

Significance testing on TFBS load data was non-trivial,

as their distributions are sparse (especially in the case of

human data), with the majority of TFBSs having a load

of zero. In statistical terms, these data present a case of

zero-inflation, in which the observed zeros are a mixture

of missing data (that is, mutations that are not observed

due to a limited number of available genotypes) and

‘real’ zeroes (mutations that never occur because their

deleterious effect is prohibitively strong). To overcome

this problem, we have initially used generalized additive

models (gam) based on zero-inflated distributions of the

response variable (ZAGA for Drosophila and BEINF0

for human implemented in the R package gamlss [73];

not shown). However, gam P-values may be difficult to

interpret, especially when the model includes random
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effects [73] (in our case, the TF identity). We have

therefore eventually turned to permutation tests, per-

muting motif load values separately for each TF to

avoid bias associated with specific properties of indivi-

dual factors. To test the significance of trends, we used

a permutation statistic based on [74]: the dot product of

the normalized data vector X and the index vector (1,...,

N), where N is the length of X.

CTCF per-individual ChIP analysis

The analysis was based on lymphoblastoid lines, for

which genotypes were available from the 1000 Genomes

Pilot Project [21]. We focused on the CTCF-binding

data from McDaniell et al. [16] (Gm12892, Gm19239,

Gm19238 and Gm19240) and confirmed the results

using an independently generated dataset (Gm12872,

Gm12873 and Gm12874) [44] processed through quan-

tile normalization using the R/Bioconductor package

preprocessCore. The remaining two datasets from [16]

(Gm12878 and Gm12891) were excluded due to highly

inconsistent overall binding score distributions. Global

major allele data were from [75,76]; assuming all refer-

ence alleles as major gave consistent results (not

shown). Interaction models were plotted using the R

package effects [77]. The sequences, PWM scores and

ChIP binding signals for all TFBSs included in these

analyses are listed in Additional files 5 (individuals from

[16]) and 6 (individuals from [44]).

Additional material

Additional file 1: Supplementary figures S1 to S7 and

Supplementary note. Figure S1: individual variation of bound and

unbound Twi, Bin and Tin motifs. Figure S2: relationship between cross-

species variation and information content at Twi, Bin and Tin motifs.

Figure S3: general distributions of TFBS load in Drosophila and human.

Figure S4: additional information for the analysis of TFBS load relative to

PWM match score. Figure S5: distributions of TFBS load along Drosophila

chromosome arms. Figure S6: additional information on the per-

individual analysis of CTCF binding. Figure S7: naturally occurring

mutations at mesodermal TFBSs do not affect in vitro CRM activity.

Supplementary note: selection of TF binding motifs for the analysis.

Additional file 2: Tables S1 and S2. A two-sheet Excel file listing the

properties of Drosophila (Table S1) and human (Table S2) TFs included in

this study.

Additional file 3: Drosophila TFBS instances included in this study

and their variation properties. A plain text table listing the position,

sequence, PWM match score, branch length score (BLS), mutational load

(L), distance from the nearest TSS and, when detected, the count and

PWM score of the alternative allele for Drosophila TFBSs included in this

study.

Additional file 4: Human TFBS instances included in this study and

their variation properties. A plain text table listing the position,

sequence, PWM match score, branch length score (BLS), mutational load

(L), distance from the nearest TSS and, when detected, the count and

PWM score of the alternative allele for human TFBSs included in this

study.

Additional file 5: CTCF binding and TFBS variation properties for

four individuals from McDaniell et al. A plain text table listing the

position, sequence properties and ChIP binding signals at CTCF binding

sites with detected variation in four individuals from [16].

Additional file 6: CTCF binding and TFBS variation properties for

three individuals from Maurano et al. A plain text table listing the

position, sequence properties and ChIP binding signals at CTCF binding

sites with detected variation in three individuals from [44].
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Bin: Biniou; BLS: branch length score; bp: base pair; ChIP: chromatin

immunoprecipitation; CRM: cis-regulatory module; DGRP: Drosophila Genetic

Reference Panel; ENCODE: Encyclopedia of DNA Elements; NF: nuclear factor;

PWM: position weight matrix; SNP: single-nucleotide polymorphism; TF:

transcription factor; TFBS: transcription factor binding site; Tin: Tinman; TSS:
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