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ABSTRACT

This paper considers the implications of mean shifts in a multivariate setting.

It is shown that under the additive outlier type mean shift specification, the

intercept in each equation of the vector autoregression (VAR) will be subject

to multiple shifts when the break dates of the mean shifts to the univariate

series do not coincide. Conversely, under the innovative outlier type mean shift

specification, both the univariate and the multivariate time series are subject to

multiple shifts when mean shifts to the innovation processes occur at different

dates. We consider two procedures, the first removes the shifts series by series

before forming the VAR, and the second removes intercept shifts in the VAR

directly. The pros and cons of both methods are discussed.

Key Words: Trend break; Structural change; Causality tests; Forecasting

1 INTRODUCTION

In recent years, many univariate statistics have been developed to test for the

presence of structural breaks in stationary and nonstationary time series. When

applied to macroeconomic data, the evidence suggests that breaks in the form of a

shift in mean and=or the trend function have occurred in many series. For example,
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Perron[1] analyzed the Nelson-Plosser data set and found that many series are

stationary around segmented means and=or trends. Structural change in many of

these series was confirmed by Vogelsang[2] and Chu and White[3] using direct tests

for shifts in trend. Vogelsang[4] found evidence of a mean shift in the

unemployment rate. Series for international output were also found to have

segmented trends by Banerjee et al.,[5] Ben-David and Papell[6] and Perron.[7] In

spite of these findings, many vector autoregressions (VARs) continue to be

estimated as though there were no breaks in the series. If there are breaks in the

univariate series, it seems natural that the breaks should also appear in a

multivariate system. While it is fairly well known how an unstable mean affects

univariate analysis, much less is known about how unstable means affect

multivariate analysis.

This paper considers additive outlier (AO) and innovational outlier (IO) mean

shifts in a vector time series. This terminology is borrowed from the outlier and

intervention analysis of Box and Tiao.[8] We explore the ramifications of unstable

means for estimation, inference and forecasting using VARs. We show that some

parameter estimates of the VAR can remain consistent even when there are omitted

mean shifts, but only under very restrictive assumptions about the causal structure

of the vector time series. In general, inference based on the estimates of the VAR is

invalid when mean shifts are omitted. Our analysis thus provides a theoretical

explanation for the simulations reported in Lutkepohl[9] and Bianchi[10] which

show that Granger causality (GC) tests over-reject in finite samples when mean

shifts are ignored. We show that the extent of over-rejection depends on whether

the mean shift is of an AO or an IO type.

We also consider the case when there is one mean shift in each series but they

occur at different break dates. We show that AO type mean shifts will induce

multiple intercept shifts in each equation of the VAR but only a single shift in

the univariate representation of the series. In contrast, IO type mean shifts will

induce multiple mean shifts in both the univariate representation of the series and

the reduced form VAR. We then consider strategies for removing the breaks when

it is not known a priori whether the mean shifts are AO or IO. The two choices are

(i) remove the breaks before estimating the dynamic parameters, and (ii) estimate

the mean shifts simultaneously with the autoregressive parameters. We show that if

the break dates are the same, strategy (i) is inefficient when the data are of the IO

type, while strategy (ii) is appropriate but inefficient for AO data. When the break

dates differ, some demeaning procedures are invalid. We discuss the relative merits

of those that are robust even when the break dates are unknown.

2 THE MODEL

There are two common approaches to modeling mean shifts in a univariate

time series which are based on models with outliers.[11,12] The first is the
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AO approach1 which specifies a series, yt, as the sum of a deterministic component

mþ dDUt and a stochastic component, zt ¼ azt�1 þ et, where DUt ¼ 1ðt > TBÞ

and 1ð�Þ is the indicator function, TB is the break date and et is a white noise

process. The second is the IO approach which models the break as occurring to the

mean of the innovation series. That is, yt ¼ mþ vt, vt ¼ avt�1 þ et þ dDUt. Thus,

yt can equivalently be represented as yt ¼ mð1 � aÞ þ dDUt þ ayt�1 þ et. The IO

model has the advantage of permitting mean shifts to occur gradually over time,

but has the disadvantage that the unconditional mean of the series depends on the

dynamics of the noise component.

The AO and IO approaches to modeling mean shifts in univariate processes

provide a natural starting point to modeling mean shifts in multivariate time series.

Let yt ¼ ð y1t; . . . ; yntÞ
0 be a n � 1 vector for t ¼ 1; . . . ;T. The jth time series is

denoted Yj ¼ ð yj1; . . . ; yjT Þ
0. An AO mean shift model can be specified as follow:

yt ¼ mþ dDUt þ zt ð1Þ

Gzt ¼ Azt�1 þ et ð2Þ

where y0 is non-random, et is an n � 1 vector of white noise sequences with finite

fourth moments and Eðete
0
tÞ a diagonal matrix, m is a vector of constants, DUt ¼

ðdU1t; . . . ; dUntÞ
0 is an n � 1 vector of break dummies with dUit ¼ 1ðt > TBi

Þ

where TBi
is the break date for the series i, and d is a n � n diagonal matrix with

diagðdÞ ¼ ðd1; . . . ; dnÞ
0. In the special case when TBi

¼ TB 8i, then DUt ¼ idUt,

where i is the unit vector. The contemporaneous correlation in zt is given by the

n � n matrix G. The matrix A is n � n with elements aij. We focus on a lag one or

first order VAR to minimize complicated notation. The generalization to higher

order lags is straight forward. The roots of jIn � BLj are assumed to lie outside the

unit circle where B ¼ G�1A. We denote the ði; jÞth element of B by bij, and the ith

row of B by B0
i. For future reference, we also define Dt from DUt ¼ DUt�1 þ Dt.

Thus, the ith element of Dt is defined as dit ¼ 1 ðt ¼ TBi
þ 1Þ for i ¼ 1; . . . ; n.

By transforming the above model in standard fashion, the VAR representa-

tion of (1) and (2) is

yt ¼ m� þ dADUt þ gAdt þ Byt�1 þ ut ð3Þ

where m� ¼ In � B, dA
¼ ðIn � BÞd, gA ¼ Bd, ut ¼ G�1et. The corresponding

vector moving-average (VMA) representation is

yt ¼ mþ dDUt þ
X1
i¼0

Biut�i

An IO mean shift model can be specified as:

yt ¼ mþ vt ð4Þ

Gvt ¼ Avt�1 þ et þ dDUt ð5Þ

1In the outlier literature what we are labelling an AO mean shift would be called a level shift.
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To contrast the difference with the AO model, it is useful to rewrite the IO model as:

yt ¼ mþ ðG� ALÞ�1dDUt þ zt

zt ¼ Gzt�1 þ ut

The reduced form VAR corresponding to the IO model is:

yt ¼ m� þ dI DUt þ Byt�1 þ ut ð6Þ

where m� ¼ In � B, and dI
¼ G�1d. The VMA representation of the IO model is

yt ¼ mþ
X1
i¼0

BiðdI DUt�i þ ut�iÞ

The VMA representations reveal three important differences between the AO and

the IO models. First, the unconditional means for Yi in the AO case are invariant to

mean shifts in Yj for i 6¼ j. This is not the case with IO data. Second, the impact of

the IO mean shifts changes over time. In contrast, the short and long run impact of

AO mean shifts are the same. Third, the effect of AO mean shifts falls relative to

the unconditional variance of yt as B moves closer to the unit circle. In the IO case,

the effect of mean shifts and the unconditional variance of the series both increase

with B. Thus the size of the AO mean shifts is relatively less sensitive to B.

2.1 Omitted Mean Shifts

To understand the effects of omitted mean shifts for estimation of the VAR,

consider without loss of generality estimation of the ith equation:

yit ¼ m̂m�i þ B̂B0
iyt�1 þ ûu�it ð7Þ

when the data are generated by:

yit ¼ m�i þ B0
iyt�1 þ u�it

In the AO case we have u�it ¼ uit þ di
A0DUt þ gi

A0dt. In the IO case we have

u�
it ¼ uit þ di

I 0DUt. Therefore, unless di
A and di

I are zero vectors, regressions

based upon (7) that do not take into account mean shifts in the data are

misspecified. The implications for the least squares estimates are summarized in

the following two theorems.

Theorem 1

Let yt ¼ ð y1t; . . . ; yntÞ
0, t ¼ 1; . . . ;T be generated by the AO model (1) and (2).

Let the parameters Bi ¼ ðbi1; . . . ; binÞ
0 be estimated from (7) by OLS to yield

B̂Bi ¼ ðb̂bi1; . . . ; b̂binÞ
0. Let li ¼ TBi

=T , and for each i, li is constant as T increases.

Let L and � be n � n matrices with Lij ¼ 1 � minðli; ljÞ � ð1 � liÞð1 � ljÞ,

� ¼ Eðztz
0
tÞ, and define C ¼ dLd0 þ �. Then as T ! 1, p limðB̂Bi � BiÞ ¼

C�1dLdi
A.

Theorem 1 shows that the least squares estimates of Bi are inconsistent when

mean shifts are omitted except when di
A is a zero vector. In general, a mean shift in
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any one series will induce bias in all the estimates of the VAR. The exceptional

case is the following:

Corollary 2

Under the assumptions of Theorem 1, p lim B̂Bi ¼ Bi only if the following two

conditions hold: (a) either di ¼ 0 or bii ¼ 1, and (b) either dj ¼ 0 or bij ¼ 0 for j 6¼ i.

If, in addition, DUit ¼ DUt 8i, then p lim B̂Bi ¼ Bi if i0di
A ¼ 0 or C�1di ¼ 0n�1.

One possibility for di
A to be zero is di ¼ 0 and bij ¼ 0 8j 6¼ i. That is, Yi is

not Granger caused by any other series in the system and Yi does not experience a

mean shift. If the break dates coincide, L ¼ lð1 � lÞii0, l ¼ TB=T , TB being the

common break date. Then p lim B̂Bi ¼ Bi if i0di
A ¼ 0. This occurs when the mean

shifts and dynamics are such that the intercept to the Yi equation of the VAR is not

affected by mean shifts.2 These, however, are very special cases.

The results for the IO model are given in the next Theorem.

Theorem 3

Let yt ¼ ð y1t; . . . ; yntÞ
0, t ¼ 1; . . . ; T be generated by the IO model (4) and (5).

Let the parameters Bi ¼ ðbi1; . . . ; binÞ
0 be estimated from (7) by OLS to yield

B̂Bi ¼ ðb̂bi1; . . . ; b̂binÞ
0. Let li ¼ TBi

=T remain constant as T increases. Let gðiÞ be the

n � n matrix associated with the ith lag of gðLÞ ¼ ðI � BLÞ�1. Define

Q ¼
X1
i¼0

gðiÞdLd0gðiÞ0 þ �

where L and � are defined as in Theorem 1. Then as T ! 1, p limðB̂Bi � BiÞ ¼
Q�1gð1ÞdLdi

I .

Clearly, the parameters estimated from the ith equation will generally not be

consistent except when di
I is a zero vector. The exceptional case is given by:

Corollary 4

Under the assumptions of Theorem 2, p lim B̂Bi ¼ Bi if for every j ¼ 1; . . . ; n,

either dj ¼ 0 or ½G�1�ij ¼ 0. If, in addition, DUit ¼ DUt 8i, then p lim B̂Bi ¼ Bi if

i0dI
¼ 0 or gð1Þdi ¼ 0n�1.

In the IO model, regression (7) is always misspecified as long as di 6¼ 0.

However, if gð1Þdi is a zero vector, the unconditional means of the series are

eventually unaffected by the IO mean shifts. The transitory nature of the mean

shifts allows the OLS estimates to remain consistent.

An important use of bivariate autoregressions is testing for Granger

Causality. The theoretical results indicate the circumstances in which omitted

mean shifts will adversely affect GC tests. Consider estimation of a first order

VAR:

y2t ¼ m̂m�2 þ b̂b21y1t�1 þ b̂b22y2t�1 þ ûu�
2t

2The mean shifts have the property of a co-feature in the sense of Engle and Kozicki.[12]
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The GC test is the square of the Wald test for the null of b21 ¼ 0.

Theorem 5

Suppose the data are generated under the AO model (1) and (2). Then under

the null hypothesis of no GC ðb21 ¼ 0Þ the following holds as T ! 1.

1. If d2 ¼ 0 then GC ) w1
2;

2. If d2 6¼ 0 then T�1GC ¼ Opð1Þ > 0, unless d1 ¼ 0, b12 ¼ 0 and y12 ¼ 0

in which case GC ¼ Opð1Þ.

From Corollary 2, a sufficient condition for consistency of b̂b21 is d2 ¼ 0. Consistent

estimates of b21 (but not b22) can be obtained even if d2 6¼ 0, but this would require

Y1 and Y2 to be asymptotically orthogonal. Even in that case, size distortions could

still arise when the variance of b̂b21 is biased. In general, we should expect the GC

statistic to reject non-causality even when Y1 does not Granger cause Y2 when mean

shifts are omitted. Similar results hold for the IO model.

2.2 Simulations for Bivariate Vector Autoregression

In this subsection we illustrate the practical implications of omitted means

shifts for GC tests in a bivariate VAR. Without loss of generality, we focus on the

null hypothesis that Y1 does not Granger cause Y2, i.e., the maintain null

hypothesis is b21 ¼ 0. We generated series according to (1) and (2) using T ¼ 200

and TB ¼ 100. Four possible combinations of ðd1; d2Þ were considered: (0,0),

(1,0), (0,1), (1,1). This allows for the possibility that a break occurs in none, one,

or both series. We assumed throughout that G ¼ I so that B ¼ A. The errors, et, are

i.i.d draws from a standard bivariate normal distribution using the rndn( ) function

in Gauss with seed ¼ 999. Since the variances of the eits are unity, the magnitude

of the mean shift is measured in terms of the standard deviations of the eits. In all

cases, 2500 replications were used.

Figures 1 (AO) and 2 (IO) are typical of the simulations results. The top

panels of both figures show that when d0 ¼ ð0; 0Þ and (1, 0), the GC test has an

exact size close to the nominal size of 5%.3 The lower panels of Figs. 1 and 2 show

that size distortions are larger when both series are subject to mean shifts rather

than to Y2 alone. Size distortions in AO models (Fig. 1) are smaller the closer is b22

to the unit circle. This is because when b22 is unity and b21 ¼ 0, Y2 is a random

walk, and a mean shift only induces a one time outlier in the first differences of the

data. On the other hand, negative serial correlation in y2t reduces the unconditional

variance of the series and effectively increases the relative magnitude of the break.

In such cases, a 100% rejection rate is possible even if there is no causal

relationship in the data.

3We considered three values of b11ð�0:5; 0:0; 0:5Þ. Values for b12 and b22 are taken from the

parameter set �0:6, �0:4, �0:2, 0.0, 0.2, 0.4, 0.6 for each value of b11. All parameterizations have

eigenvalues of A that lie inside the unit circle with unequal roots.
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Now consider the IO model in Fig. 2. While it is still true that the

unconditional variance of Y2 increases as b22 approaches one, the magnitude of the

mean shift also increases. When b22 ¼ 1 the mean shift becomes a trend shift and

y2t becomes a unit root series with a slope shift. Thus, the magnitude of size

distortions also reflects this discontinuity in the functional form of the

deterministic components of the series.

Figures 1 and 2 also illustrate how given a set of dynamic parameters,

omitting AO and IO type mean shifts can have rather different quantitative

implications, even in the simple bivariate case with common break dates.

Because omitted mean shifts lead to inconsistent estimates of the VAR,

forecasts and impulse response functions based upon the OLS estimates will also

be inconsistent. The obvious solution to removing the least squares bias is to

account for the mean shifts when estimating the model. In the next section, we will

show that the effectiveness of detecting and removing mean shifts also depends on

the model type on hand.

Figure 1. AO: Size of Granger casuality test, T¼ 200.
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3 HOW TO REMOVE THE BREAKS?

Suppose a practitioner has an idea of the number of breaks and either knows

the breaks dates or has estimated them. Then, there are two strategies for removing

the mean shifts. The first is estimate the mean shifts, remove them from the data,

and then form a VAR for the demeaned data. Examples include Blanchard and

Quah[13] and Gambe and Joutz[14] where a mean shift in output growth in 1973

was suspected, and the break was removed from the series prior to estimating the

VAR. We refer to this as the two-step method. The second approach is to work

directly with the VAR by adding intercept shifts to the equations of the VAR. We

refer to this as the one-step approach. From a practitioner’s point of view, is one

method preferred over the other?

Consider first the two-step method under which the VAR is fitted to the data

with one mean shift removed from each series:

ŷyit ¼ B̂B0
i ŷyt�1 þ ûuit ð8Þ

Figure 2. IO: Size of Granger casuality test, T¼ 200.
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where ŷyit ¼ yit � m̂mi � d̂diDUit, m̂mi and d̂di are obtained from OLS estimation of (1).

From (3), the AO model written in terms of data with no mean shifts is:

�yyit ¼ B0
i �yyt�1 þ uit

where �yyit ¼ yt � mi � diDUit. Clearly, this differs from (8) only to the extent that

ŷyit is based on m̂mi and d̂di rather than mi and di. The two-step procedure is thus

correct for the AO model, whether or not the break dates coincide.

A typical equation of the IO model in terms of demeaned data

�yyit ¼ yit � mi � ðdi
I Þ
0DUt is:

�yyit ¼ B0
i �yyt�1 þ B0

iðdi
I Þ
0DUt�1 þ uit

Since �yyit�1 is uncorrelated with DUt�1, omitting DUt�1 from a VAR in �yyit will only

have efficiency implications. But except when the break dates coincide, �yyit is the

result of removing mean shifts occurring to the entire data vector from yit. Thus,

when the data is IO, using ŷyit which only removes one mean shift to form the VAR

will generally be inappropriate.

Now consider the one-step procedure which estimates a VAR using the raw

data but allows for one intercept shift per equation:

yit ¼ m̂m�i þ d̂d�0i dUit þ B̂B0
i yt�1 þ ûuit ð9Þ

A typical IO equation is

yit ¼ m�i þ ðdi
I Þ
0DUt þ B0

i yt�1 þ uit

When the break dates coincide, (9) is clearly the correct specification for the IO

model. However, when the break dates are different, ðdi
I Þ
0DUt will generally

exhibit multiple shifts. One would need to account for multiple intercept shifts to

every equation in the VAR.

Now, suppose the data is generated under the AO model. A typical equation is

yit ¼ m� þ ðdi
AÞ

0DUt þ ðgi
AÞ

0dt þ B0
i yt�1 þ uit

If the break dates coincide, the equation differs from (9) only in that dt is omitted.

But this dummy for a one time outlier has asymptotically negligible effects on the

remaining estimates, so that while the one-step procedure is inefficient if dt is

omitted, it nevertheless will deliver consistent estimates for the slope and intercept

parameters when the DGP is an AO model. Now if the break dates do not coincide,

ðdi
AÞ

0DUt will exhibit multiple shifts. Then following arguments analogous to the

IO case, the one-step procedure would need to allow for multiple intercept shifts.

The main observations can be summarized as follows. When the break dates

are the same, both the one and two step procedures are appropriate. However, the

two step procedure is more efficient for AO data while the one step procedure is

more efficient for IO data. When the break dates differ, the two step procedure that

removes one mean shift per series remains correct for AO data but is incorrect for

IO data. The one step procedure with one intercept shift is incorrect for either data

type. Both strategies can be made robust to mean shifts at different dates by
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controlling for multiple shifts. However, the two step procedure with multiple

shifts is inefficient for AO data with single shifts.

This discussion clearly illustrates that distinct known break dates or unknown

break dates seriously complicates estimation strategies. One could always take the

robust route and include n breaks per series or equation. But, this approach

becomes computationally burdensome as n increases and could be inefficient if

break dates coincide. To help provide some practical advice, we conducted

extensive finite sample simulations for a bivariate VAR. The goal here is to

compare the one and two-step procedures in the simplest possible environment.

We hope this analysis stimulates further simulation studies of higher order VARs.

For a bivariate VAR, we consider six procedures of removing mean shifts

from the data. As a matter of notation, the procedures are labeled xSyzB, where x is

1 for one-step procedures and 2 for two-step procedures. If the break dates are

estimated from the VAR, y ¼ V ; if the break dates are estimated based on (1)

(univariate method), y ¼ U . If no breaks are included, z ¼ 0; if one break is

included per equation or series, z ¼ 1; if two breaks are included per equation or

series, z ¼ 2. Recall that DUt ¼ ðdU1t; dU2tÞ
0. Details of break date estimation are

given in Section 3.2.

The following are the one-step procedures.4

1. 1SU2B: Given the break dates, the VAR analysis is based on the

regressions

yit ¼ mi þ didU1t þ pidU2t þ bi1y1t�1 þ bi2y2t�1 þ uit; i ¼ 1; 2 ð10Þ

If the break dates are unknown, they are estimated using the regressions

yit ¼ mi þ didU1t þ pidU2t þ zit; i ¼ 1; 2 ð11Þ

2. 1SU1B: Given the break dates, the VAR analysis is based on the

regressions

yit ¼ mi þ didU1t þ bi1y1t�1 þ bi2y2t�1 þ uit; i ¼ 1; 2 ð12Þ

If the break dates are unknown, they are estimated using the regressions

yit ¼ mi þ didUit þ zit; i ¼ 1; 2 ð13Þ

3. 1SV1B: Given the break dates, the VAR analysis is based on regres-

sion (12). If the break dates are unknown, they are estimated using

regression (12).

4. 1SV2B: Given the break dates, the VAR analysis is based on regres-

sion (10). If the break dates are unknown, they are estimated using

regression (11).

4The one step procedure can also be augmented to include lags of dUt (or dt). These are irrelevant

lags in an IO setting but could improve the efficiency of the estimates in the AO case.

362 NG AND VOGELSANG

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016



5. 1SV0B: No breaks are included in the model and the VAR analysis is

based on the regressions

yit ¼ mi þ bi1y1t�1 þ bi2y2t�1 þ uit; i ¼ 1; 2

The following are the two-step procedures. Let ŷyit generically denote OLS

residuals from the regression of yit on deterministic regressors. For all two-step

procedures, the VAR analysis is based on the regression:

ŷyit ¼ bi1ŷy1t�1 þ bi2ŷy2t�1 þ uit; i ¼ 1; 2

1. 2SU1B: Given the break dates, ŷyit is obtained using regression (13). If

the break dates are unknown, they are estimated using regression (13).

2. 2SU2B: Given the break dates, the ŷyit is obtained using regression (11).

If the break dates are unknown, they are estimated using regression (11).

3. 2SU0B: No breaks are included in the estimation and the ŷyit ¼

yit � T�1
PT

t¼1 yit.

To assess the merits of the various procedures, we use the trace of the mean-

squared error (MSE) of the h step ahead forecasts as the metric for comparison.

This amounts to summing the h step ahead squared forecasts errors of y1t and y2t.

We report results for h ¼ 5. With smaller h, it is difficult to see substantial

differences in the procedures. Results with h ¼ 1, 2, 3, 4 are available upon

request. Our experiments are based on 2500 replications using N ð0; 1Þ errors in

Gauss with seed ¼ 999. Without loss of generality, G11 and G22 are normalized

to 1. We also set a21 ¼ 0:3 and a22 ¼ 0:6. By varying G12, G22, a11, and a12, we

obtain 16 parameterizations for given d1, d2, TB1
and TB2

. We then consider four

combinations of d1 and d2, and two combinations of the break dates. In all cases,

we generate 205 observations. Estimations are based on the first T ¼ 200

observations. We then evaluate the out-of-sample forecasts for the next five

periods. We organize the simulations results according to whether the break dates

are treated as known or unknown.

3.1 Known Break Dates

When the break dates are known, several of the procedures become

equivalent. If the break dates are the same for both series, then, with the exception

of procedure 1SV0B, the one-step procedures are equivalent (two breaks cannot be

included in a regression if the break dates are the same). Similarly, procedures

2SU1B and 2SU2B are equivalent when the break dates are the same. If the break

dates are not the same but known, then procedures 1SU1B and 1SV1B are

equivalent, as are procedures 1SU2B and 1SV2B.

The results are reported in Table 1 (same break dates) and Table 2 (different

break dates). To make comparisons across the procedures easier, we report MSE

relative to the MSE for procedure 2SU2B. In other words, for a given
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parameterization, we divide all the MSE by the MSE for 2SU2B. Thus, the entries

for 2SU2B will always be 1.0. Entries less than 1.0 indicate a procedure that gives

more accurate forecasts than 2SU2B whereas entries greater than 1.0 indicate a

procedure that gives less accurate forecasts than 2SU2B. When there are no mean

shifts, data generated by the AO and the IO models are observationally equivalent

and we only report one set of results.

The first panel of Table 1 gives results when there are no breaks in the data. The

procedures that omit the breaks have the lowest MSE as expected. However,

including breaks does not significantly increase forecast error MSE even when two

breaks are included in each series=equation. The second and third panels give results

for breaks in both series that occur at the same dates, TB ¼ 100 (halfway through the

sample) for the AO and IO DGPs respectively. Omitting the breaks leads to much

higher MSE. Even including two breaks when only one break per series=equation is

required, does not significantly increase MSE. These results hold whether the data is

AO is IO. Because including the breaks does not significantly increase MSE but

omitting them does, our results strongly suggest that breaks should be included if

they are suspected. If we compare the one-step and two-step procedures, we see that

they are, for practical purposes, equivalent. This is not surprising because, by the

Frisch-Waugh theorem, a VAR in demeaned data and a VAR that includes the same

intercept shifts used for the demeaning are asymptotically equivalent.

When the break dates are different, TB1
¼ 75, TB2

¼ 150, some differences in

the procedures emerge. Consider the first and third panels of Table 2. Here, there is

only a break to the second equation=series. For AO data, the 2SU1B procedure is

often the best as would be expected in theory. When the data is IO, the 2SU1B

procedure often has much higher MSE especially when there are two breaks. See the

fourth panel. Interestingly, when the data is AO, the 2SU2B procedure is nearly as

efficient as 2SU1B. The 2SU2B procedure remains robust to IO data and has MSE

very close to the one-step procedures. The one-step procedures remain quite robust to

AO data when the break dates are the same. But when the mean shifts are at different

dates in AO data, the 1SV1B procedure can have higher MSE because there are two

intercept shifts per equation in the VAR and only one is taken into account.

In accord with the theoretical discussion, when the break dates are known,

the 1SV2B and 2SU2B procedures are the most robust when it is unknown

whether the data is AO or IO. Our results do not indicate that one should be used

over the other. The 2SU1B procedure is not recommended unless it is known that

the data is of AO type or that the break dates are the same.

3.2 Unknown Break Dates

In practice, it is often the case that break dates are unknown and need to

be estimated. Because we are focusing on mean shifts in stationary VARs,

consistency of estimators of the break date ratios, li ¼ TBi
=T , follows from results
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in Bai[15] and Bai and Perron.[16] Note that estimates of the break dates themselves

are not consistent.

The break dates for the 1SU1B and 2SU1B procedures were estimated as

follows. For each TBi
2 ½0:15T ; 0:85T �, let SSRiðTBi

Þ denote the sum of squared

residuals from regression (13). Then

T̂TBi
¼ arg minTBi

SSRiðTBi
Þ

The demeaned data ŷyit are then obtained from regression (13) using T̂TBi
. Note that

if T̂TBi
6¼ T̂TBj

, then the VAR for the 1SU1B procedure is estimated using regression

(10) rather than regression (12). This makes the 1SU1B procedure more robust to

AO data than if regression (12) were always used.

For the 1SU2B and 2SU2B procedures, the two break dates are estimated

jointly using (11). Following one of the methods proposed by Bai and Perron,[16]

we estimate the break dates sequentially as follows. Letting SSRiðTB1
Þ denote the

sum of squared residuals from the ith regression in (13), then

~TTB1
¼ arg minTB1

ðSSR1ðTB1
Þ þ SSR2ðTB1

ÞÞ

is the estimator of the first break date. Note that ~TTB1
is the least squares estimator

of a single break date constrained to the be same for both series. ~TTB1
is then used to

define the dummy variable, dU1t ¼ 1ðt > ~TTB1
Þ for regression (11). For each

TB2
2 ½0:15T ; 0:85T �, let SSRiðTB2

j ~TTB1
Þ denote the sum of squared residuals from

the ith regression in (11) using ~TTB1
to define the dummy variable, dU1t. Then,

~TTB2
¼ arg minTB2

ðSSR1ðTB2
j ~TTB1

Þ þ SSR2ðTB2
j ~TTB1

Þ

is the estimator of the second break date.

The break dates for the 1SV1B and 2SV2B procedures were estimated in

exactly the same way as the U1B and U2B procedures except that regressions (12)

and (10) were used instead of regressions (13) and (11) to construct the sum of

squared residuals. Therefore, for the 1SV2B procedure, the two break dates are

estimated jointly using both equations of the VAR.

The simulation results are reported in Tables 3 and 4. Table 3 gives results for

break dates TB1
¼ TB2

¼ 100. As would be expected for the case where the break

dates are the same, it matters little whether the data are generated according to the

AO or IO models. Both the one-step and two-step procedures are fairly robust to

the type of data. Because the break dates are the same, the procedures that have

one break per series or equation tend to have the more accurate forecasts as

expected. In most cases 2SU1B dominates 2SU2B, and 1SU1B generally

dominates 1S2UB. On the other hand, 1SV2B dominates 1SV1B. This seems

surprising at first since there is only one break per equation. But, recall that 1SV2B

estimates the break dates sequentially using both equations of the VAR

simultaneously and the first break date is estimated under the correct restriction

that the break date is the same for both series. Thus, following Bai et al.[17] the

estimate of the first break date is more efficient than estimates based on the

individual equations as is done for 1SV1B. Even though 1SV2B includes a
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superfluous break which reduces forecast precision, the greater efficiency of the

first break date estimator outweighs this effect and results in more accurate

forecasts. Clearly this does not occur for 2SU2B even though the break dates are

estimated simultaneously using both series. In this case, the sampling variability of

the estimate of the superfluous break coefficient is greater because the variance of

zt is larger than the variance of et. Thus while a more precise first break date

estimate improves the forecast for 2SU2B, this improvement is more than o.set by

the increase in forecast MSE from the extra break.

When the break dates are different, some different and interesting patterns

emerge. These results are given in Table 4. When the data is AO and there are

breaks in both series (see panel 2 of Table 4), the 2SU1B procedure dominates the

other procedures as expected. But, the 2SU1B procedure cannot be recommended

in practice if it is unknown whether the data is AO or IO because, under IO data

with breaks in both equations, 2SU1B often does much worse than both 1SV1B

and 2SU2B. Interestingly, under IO data, 2SU2B has forecasts that are nearly as

efficient as the best of the one-step procedures. Thus, the 2SU2B procedure is

quite robust when the break dates are unknown and is recommended in practice.

Note that 1SU2B generates nearly equivalent forecasts to 2SU2B and is also

recommended in practice.

On the other hand, the 1SV2B procedure performs badly when there are

breaks in each series or equation. See panels 2 and 4. Things are especially bad

when the data is IO. In this case, 1SV2B can deliver much worse forecasts than

1SV1B. This happens because the break dates are estimated sequentially. Consider

the cases where each equation of the VAR has exactly one intercept shift

ðG12 ¼ G21 ¼ 0Þ. Because the break dates are different, imposing the constraint

that the break dates are the same when estimated the first break date results in a

misspecified model and a break estimate that is far from either true break date.

Thus, 1SV2B generates break date estimates far from the truth and performs

similarly to the 1S0B procedure. More surprisingly is the fact that 1SV2B

continues to do badly when G12 6¼ 0 and=or G21 6¼ 0 in which case both equations

of the VAR have both intercept shifts.

The simulation results for the case of an unknown break date can be

summarized as follows. The 1SU2B and 2SU2B procedures are the most robust

methods and are recommended. Our results suggest that whether breaks are

removed from the data prior to VAR analysis or the breaks are included directly

into the VAR, the break dates should be obtained using estimators from the two-

step procedures. The 1SV2B procedure is not recommended as it can lead to

substantially less precise forecasts.

4 CONCLUSION

In this paper, we focus on two practical implications of omitted mean shifts

in a multivariate setting. First, as is well known from simulation studies, omitted
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mean shifts can cause GC tests to over-reject. We formally show the conditions

under which over-rejections occur. We illustrate the over-rejection problem in a

bivariate VAR in a simple simulation study. Our second focus is on methods of

estimating and modeling mean shifts in the context of forecasting. We consider a

two-step method which estimates and removes the mean shifts. The VAR analysis

proceeds using the demeaned data. We also consider a one-step method which

estimates and includes intercept shifts directly in the VAR. When there is one

break per series or equation at different breaks, we find that the most robust

methods are those that allow for two breaks per series or equation. Fortunately for

practitioners, there does not seem to be a big difference between removing the

breaks in the first step or modeling them directly in the VAR. This is true whether

the data is of the AO or IO type. However, whether we use the one or two step

procedure, we recommend the break dates be estimated in the first step of the two-

step procedure, and not directly from the VAR. Our results are based on

comparisons of forecasting precision. Whether or not these conclusions continue

to hold when other metrics are used awaits further analysis.

This paper should be viewed as a first step in understanding how to model

unstable deterministic trends in multivariate models. There are several directions

for future research. For example, we have taken the presence of mean shifts as

given. In practice, preliminary tests are usually used to determine whether the

mean is stable or not. For the two-step procedure, one would ideally want mean

shift tests that allow multiple shifts and are robust to serial correlation and a unit

root in the errors. Perron[7] and Vogelsang[2,4] robust to serial correlation=unit

roots but not designed for multiple shifts. On the other hand, the multiple shift

analysis of Bai and Perron[16] require stationarity of the errors. Hence no existing

test is fully satisfactory. Much less research has been done on testing for intercept

shifts in VARs. Bai et al.[17] is a natural starting point.

Additional topics worth investigation include trend stationary VARs with

trend shifts, cointegrated VARs with unstable deterministic trends, and effects of

trend breaks on lag length selection.

5 APPENDIX

Proof of Theorem 1

Let ~YY2, gDUDU , ~dd, and ~ee2 be ðT � 1Þ � 1 vectors of demeaned y2t, DUt, dt, and

e2t respectively. Let ~XX be the ðT � 1Þ � 2 matrix of demeaned ð y1t�1; y2t�1Þ. The

AO model can be written as

~yy2t ¼ d�02
gDUDU þ g�02

~ddt þ ~BB0
2Xt þ ~ee2t ðA1Þ

Using regression (7) and plugging in for ~YY2 using (A1), we have

B̂B2 ¼ ð ~XX 0 ~XX Þ
�1 ~XX 0 ~YY2

¼ B2 þ ð ~XX 0 ~XX Þ
�1 ~XX 0ðgDUDUd�2 þ ~ddg�2 þ ~uu2Þ
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We now consider the following limiting results:

T�1 ~XX 0 ~XX ¼ T�1
X

~XXt
~XX 0

t

¼ T�1
X

½d ~DDUt�1 þ ~ZZt�1�½d ~DDUt�1 þ ~ZZt�1�
0

¼ T�1d
X

~DDUt�1
~DDU 0

t�1

h i
d0 þ T�1

X
~ZZt�1

~ZZ 0
t�1

�!
p

dLd0 þYð0Þ � C:

Because C is positive-definite for all values of d1 and d2, it follows that

ðT�1 ~XX 0 ~XX Þ
�1

�!
p

C�1. Furthermore, it is easy to see

T�1 ~DDUit
2 �!

p
lið1 � liÞ;

T�1
X

~DDUit
~DDUjt �!

p
ð1 � liÞlj

if TBi
< TBj

, and ð1 � ljÞli otherwise. Thus,

T�1 ~XX 0 ~DDUdi
A ¼ T�1

X
Xt

~DDU 0
t

h i
di

A

¼ T�1
X

ðd ~DDUt�1 þ ~ZZt�1Þ ~DDU 0
t

h i
di

A

¼ T�1
X

d ~DDUt�1
~DDUt

h i
di

A þ opð1Þ�!
p

dLdi
A

where L ¼ 1 � minðli; ljÞ � ð1 � liÞð1 � ljÞ. Using these convergence results it

directly follows that

p limðâa2 � a2Þ ¼ p lim½ðT�1 ~XX 0 ~XX Þ
�1T�1 ~XX gDUDUd�2� ¼ C�1dLdi

A

This establishes Theorem 1. Corollary 1 follows from the fact that the n � n matrix

L becomes lð1 � lÞii0 when the break dates coincide. The proof of Theorem 3

follows using similar arguments and is omitted.

Proof of Theorem 5

The F-test for the hypothesis that b21 ¼ 0 is given by:

GC ¼
ðb̂b21 � b21Þ

s2ð ~XX 0 ~XX Þ11
�1

¼
T ðb̂b21 � b21Þ

2

s2ðT�1 ~XX 0 ~XX Þ11
�1

ðA2Þ

where X is the ðT � 1Þ � n matrix of values of Xt ¼ ð y1t�1; y2t�1Þ, ~XX are the

demeaned X’s and s2 ¼ ðT � 4Þ�1 PT
t¼2ðûu

�
2tÞ

2.

Consider the simple case when the break dates coincide. When d2 ¼ 0 (and

a21 ¼ 0), the AO model reduces to y2t ¼ m�2 þ b22y1t�1 þ b22y2t�1 þ u2t. Therefore

regression (7) is correctly specified and standard OLS results apply giving part 1 of

the Theorem. When d2 6¼ 0, we have from Theorem 1 that ðb̂b21 � b21Þ
2
¼
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Opð1Þ > 0 and ðT�1 ~XX 0 ~XX Þ11
�1 ¼ Opð1Þ > 0. Let M ¼ I � ~XX ð ~XX 0 ~XX Þ

�1 ~XX 0. The limit

of s2 follows from

s2 ¼ T�1 ~YY 0
2M ~YY2 ¼ T�1ðgDUDUd�2 þ ~ddg�2 þ ~uu2Þ

0M ðgDUDUd�2 þ ~ddg�2 þ ~uu2Þ

¼ T�1ðgDUDUd�2 þ ~uu2Þ
0M ðgDUDUd�2 þ ~ee2Þ þ opð1Þ

¼ d�2T�1gDUDU 0MgDUDU þ T�1 ~ee02M ~ee2 þ opð1Þ

¼ ðd�2Þ
2
½T�1gDUDU 0gDUDU � T�1gDUDU 0 ~XX ðT�1 ~XX 0 ~XX Þ

�1T�1 ~XX 0 ~DDU �

þ s2
2 þ opð1Þ

!
p
ðd�2Þ

2
½lð1 � lÞ � lð1 � lÞd0C�1dlð1 � lÞ� þ s2

2

Because 0 < p limðs2Þ < 1, we have 0 < p limð1=s2Þ < 1. Combining these

results gives T�1GC ¼ ðb̂b21 � b21Þ
2=½s2ðT�1 ~XX 0 ~XX Þ11

�1� ¼ Opð1Þ > 0. Whend1 ¼ 0,

b12 ¼ 0 and s12 ¼ 0, it is straightforward to show that Tðâa21 � a21Þ
2
¼ Opð1Þ, and

since it is still true that ðT�1 ~XX 0 ~XX Þ11
�1 ¼ Opð1Þ and 0 < p limð1=s2Þ < 1, we have

GC ¼ Opð1Þ.
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