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Abstract We present a comprehensive analysis and extrac-

tion of the unpolarized transverse momentum dependent

(TMD) parton distribution functions, which are fundamental

constituents of the TMD factorization theorem. We provide

a general review of the theory of TMD distributions, and

present a new scheme of scale fixation. This scheme, called

the ζ -prescription, allows to minimize the impact of pertur-

bative logarithms in a large range of scales and does not gen-

erate undesired power corrections. Within ζ -prescription we

consistently include the perturbatively calculable parts up

to next-to-next-to-leading order (NNLO), and perform the

global fit of the Drell–Yan and Z-boson production, which

include the data of E288, Tevatron and LHC experiments. The

non-perturbative part of the TMDs are explored checking a

variety of models. We support the obtained results by a study

of theoretical uncertainties, perturbative convergence, and a

dedicated study of the range of applicability of the TMD fac-

torization theorem. The considered non-perturbative models

present significant differences in the fitting behavior, which

allow us to clearly disfavor most of them. The numerical

evaluations are provided by the arTeMiDe code, which is

introduced in this work and that can be used for current/future

TMD phenomenology.

1 Introduction

The transverse momentum dependent (TMD) distributions

are universal functions that describe the interactions of par-

tons in a hadron. The TMD distributions naturally appear

within the TMD factorization theorem for the differential

cross section of double-inclusive hard processes. A lot of

effort has been made to achieve a comprehensive picture of

TMD factorization (for the latest works see [1–8]). In this

work we perform a detailed comparison of the experimen-

tal measurements with the theory expectations based on our

a e-mail: ignazios@fis.ucm.es

studies of higher-order perturbative expansions and power

corrections for unpolarized TMDPDFs made in Refs. [9–12].

Among many different spin (in)dependent TMD distri-

butions, the unpolarized TMD parton distribution functions

(TMDPDFs) play a central role. From the practical point

of view, their precise knowledge is required to extract fur-

ther TMD distributions and perform other precision mea-

surements. The ideal process to study the unpolarized TMD-

PDFs is the unpolarized vector boson production. The data

on the qT -dependent cross-section for the Drell–Yan pro-

cess are collected by many experiments, including the pre-

cise measurements done by Tevatron and LHC. The theo-

retical descriptions of Drell–Yan data were made by many

groups using different forms of TMD factorization (see e.g.

[8,13–22]).

This work presents a number of differences with respect

to the previous literature. The collection of the improve-

ments forms a completely new point of view in the TMD

phenomenology. The main difference of the present work

with respect to the more standard ones (here we consider as

the most spread out, and de facto standard, analyses those

based on the codes ResBos [15,23] and DYqT/DYRes

[17,18,21]) are as follows: (i) We extract the parameters

related to individual TMDPDFs, which are suitable for phe-

nomenological description of other TMD-related processes.

(ii) We consistently include the perturbative ingredients,

such as coefficient functions and anomalous dimensions, at

the next-to-next-to-leading order (NNLO), introducing and

using the ζ -prescription to solve the problem of perturbative

convergence at large-b (where b is the transverse distance).

(iii) The TMDPDF parameterization is based on and is con-

sistent with the theory expectation on the TMD behavior with

b. To our knowledge this is the first attempt to include in a

fit both high and low energy data at NNLO precision. The

extraction of TMDs takes into account (for the first time to

our knowledge) also LHC data. All this represents for us a

clear improvement with respect to the more classical analy-

ses.
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In a modern view, a TMD distribution is a cumbersome

function of many factors, which mix up perturbative and non-

perturbative information. In this context, the issue of the sep-

aration of perturbative and non-perturbative physics requires

a fine analysis and it is open to different solutions. The ζ -

prescription proposed in this work, is an attempt to consider

the perturbative input to a TMD distribution as it is, with-

out artificial regulators. The ζ -prescription is founded on the

fact that the TMD factorization introduces two factorization

scales, one for the collinear and one for the soft exchanges.

These scales are usually fixed to the same point, while in the

ζ -prescription they are chosen to eliminate the problematic

double-log contributions. In other words, the ζ -prescription

is based on the freedom to select the normalization and fac-

torization scales, which is guaranteed by the structure of the

perturbative theory. The ζ -prescription is essentially differ-

ent from other used schemes. In particular, it does not strictly

solve the problem of the large logarithmic contributions at

large-b. It only decreases the power of the logarithmic con-

tributions. However, the x-dependence of the remaining log-

arithmic terms has a form which prevents the blow up of the

perturbative series, which is not accidental, but the result of

the charge conservation. In this way, the ζ -prescription post-

pones the large logarithm problem to the very far domain of

b-space, where other factors suppress a TMD distribution.

The practical implementation of the ζ -prescription shows

that it is efficacious and it allows a very accurate and sound

description of the data.

The description of the non-perturbative parts of TMD dis-

tributions is the most interesting task. It is highly non-trivial

because the definition of the non-perturbative part is strongly

affected by schemes and prescriptions used in the perturba-

tive implementation. In this respect a full NNLO can be clar-

ifying. As an example, we recall that the non-perturbative

behavior of the TMDPDFs is often assumed to have a Gaus-

sian shape (see e.g. discussions in [15,22,24,25]). Although

the Gaussian ansatz is widely used, it comes into conflict with

the usual picture of long-distance strong interaction fueled

by light-meson exchanges. The typically expected behav-

ior at long distances is exponential, which is confirmed also

by model calculations [26]. However, the Gaussian shape

is often introduced together with the b∗-prescription [27].

Notwithstanding many positive features, the b∗-prescription

has a serious issue: it introduces undesired b-even power cor-

rections. In turn, these power correction introduced by b∗ can

easily simulate the Gaussian behavior (see also discussion

in [28]). Once the b∗-prescription is removed the Gaussian

ansatz for the TMD shape is no more essential, according to

what we find.

An additional remarkable point of the present study is

the wide range of energies covered by the data that we have

analyzed. The lowest energy measurements included in the

fits have (Q,
√

s) = (4, 19.4) GeV (E288 experiment [29]),

while the most energetic have (Q,
√

s) = (116 − 150, 8 ·
103) GeV (ATLAS collaboration [30]). Typically, the low-

and high-energy data are considered separately. The main

reason for a separate scan is the assumed physical picture of

strong interactions, which describes different energies. The

description of the high-energy data requires a precise per-

turbative input and it is expected to be less sensitive to the

fine non-perturbative dynamics. The situation is the opposite

for the low-energy measurements. Our experience shows that

the inclusion of data of different energies is not only possi-

ble within the TMD formalism, but it is also desired because

it cuts away inappropriate models very sharply. We find

also that the precision achieved by LHC is already sensitive

enough to the non-perturbative structure of TMDs. We show

that low and high energy data are sensitive to different regions

of b-space, and consequently to different non-perturbative

regimes of the TMDs: high energy data are better described

by a Gaussian non-perturbative correction, while low energy

data prefer an exponential type of non-perturbative models.

The code (arTemiDe) that we have prepared allows to test

all these hypotheses, and can be adaptded also to test different

non-perturbative inputs for TMDs.

In order to extract the non-perturbative core of the TMDs,

in the present study we choose a neutral tactic. We have

scanned many possibilities such as a Gaussian and exponen-

tial behavior, with/without inclusion of power corrections,

and so on. We have also studied the non-perturbative cor-

rection to the evolution kernel. During the examination of

models we have prioritized the following criteria:

(i) Stability The TMD factorization is valid at small-qT

(the dilepton transverse momentum) up to a certain

limit. Therefore, an acceptable model should produce

a stable and good description within the allowed qT -

range. In other words, the value of χ2 should be suffi-

ciently close to one and the central values of the param-

eters should be stable independently of the number of

included data points (as far as the points belong to the

allowed range).

(ii) Convergence The agreement with data should improve

with the increase of the perturbative order. Given the

current state of the art of the theory, we can define

four successive perturbative orders, which is enough to

test the perturbative convergence. Also, the value of the

phenomenological non-perturbative constants that one

extracts should converge to some central value.

(iii) χ2 minimization Naturally, among the models with sim-

ilar behavior we select the model with the minimal χ2.

We have found that it is difficult to find a model (with one

or two parameters), which fulfills the demands (i) and

(ii), and that at the same time provides a good χ2 value

on the whole set of data points (although it is relatively

easy to achieve this, selecting a particular experiment).
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The models that we test consider a kind of minimal set

of parameters which can be enlarged in future studies,

refining the fitting hypotheses.

In the present fit, we have included the measurements of E288

at low-energies, Z-boson production at CDF, D0, ATLAS,

CMS and LHCb, and Drell–Yan measurements from ATLAS.

To our knowledge, this is the largest set of Drell–Yan data

points ever simultaneously considered in a fit within the TMD

formalism. We find also that the LHC data below the Z-boson

peak and at small qT are very important for current/future

TMD studies. In the article we present the most successful

models that we have found, and discuss some popular models.

In order to numerically evaluate the theoretical expres-

sions, we have produced the package arTeMiDe.

arTeMiDe has a flexible module structure and can be used

at any level of TMD theory description, from the evaluation

of a single TMDPDF or evolution factor to an evaluation of

differential cross-section. The arTeMiDe code is available

at [31] and can be used to check our statements or test a

possible future/alternative ansatz (for instance [14,32]). In

arTeMiDe we have collected all recent achievements of

TMD theory, including NNLO matching coefficient func-

tion, and N3LO TMD anomalous dimensions. In the current

version, arTeMiDe evaluates only unpolarized TMDPDFs

and related cross-sections, however, we plan to extend it fur-

ther.

The body of the article is divided as in the following. In

Sect. 2 we review the theoretical construction of the Drell-

Yan cross section and summarize the theoretical knowledge

on unpolarized TMDPDFs. In this section, we also describe

all the theoretical improvements which are original for this

work. The main original point, namely ζ -prescription is pre-

sented in Sect. 2.4 and “Appendix B”. The phenomenological

studies are presented in Sect. 3. This section includes also a

dedicated discussion of the shape of the non-perturbative part

of the TMD. The allowed range of validity of the TMD factor-

ization is explored in Sect. 3.4, the presentation of theoretical

uncertainties is given in Sect. 3.5. The results of the final fit

are presented in Sect. 3.7. A final discussion and conclusions

can be found in Sect. 4.

2 Theoretical framework

We consider the Drell–Yan reaction h1 + h2 → G(→ ll ′)+
X , where G is the electroweak neutral gauge boson, γ ∗ or

Z . The incoming hadrons have momenta p1 and p2 with

(p1 + p2)
2 = s. The gauge boson decays to the lepton pair

with momenta k1 and k2. The momentum of the gauge boson

or equivalently the invariant mass of lepton pair is Q2 =
q2 = (k1 +k2)

2. The differential cross-section for the Drell–

Yan process can be written in the form [33,34]

dσ = d4q

2s

∑

G,G ′=γ,Z

L
µν

GG ′ W
GG ′
µν ∆G(q)∆G ′(q), (1)

where 1/2s is the flux factor, ∆G is the (Feynman) propagator

for the gauge boson G. The hadron and lepton tensors are

respectively

W GG ′
µν =

∫

d4z

(2π)4
e−iqz

×〈h1(p1)h2(p2)|J G
µ (z)J G ′

ν (0)|h1(p1)h2(p2)〉,
(2)

LGG ′
µν =

∫

d3k1

(2π)32E1

d3k2

(2π)32E2
(2π)4δ4(k1 + k2 − q)

×〈l1(k1)l2(k2)|J G
ν (0)|0〉〈0|J G ′

µ (0)|l1(k1)l2(k2)〉,
(3)

where J G
µ is the electroweak current.

The point of our interest is the qT dependence of the

cross-section, where qT is the transverse component of the

produced gauge boson in the center-of-mass frame. More

precisely, we are interested in the regime qT ≪ Q, where

the TMD factorization formalism can be applied. Within the

TMD factorization, one obtains the following expression for

the unpolarized hadron tensor (see e.g. [35])

W GG ′
µν = −gT µν

π Nc

|CV (q, µ)|2
∑

f, f ′
zGG ′

f f ′

∫

d2b

4π
ei(qb)

× F f ←h1(x1, b;µ, ζ1)F f ′←h2
(x2, b;µ, ζ2)+Yµν,

(4)

where gT is the transverse part of the metric tensor and the

summation runs over the active quark flavors. The variable

µ is the hard factorization scale. The variables ζ1,2 are the

scales of soft-gluons factorization, and they fulfill the rela-

tion ζ1ζ2 ≃ Q4. In the following, we consider the symmetric

point ζ1 = ζ2 = ζ = Q2. The variables x1,2 are the longitu-

dinal parts of parton momenta

x1 =

√

Q2 + q2
T√

s
ey ≃ Q√

s
ey,

x2 =

√

Q2 + q2
T√

s
e−y ≃ Q√

s
e−y . (5)

The factors zGG ′
f f ′ are the electro-weak charges and they are

given explicitly in Sect. 2.1. The factor CV is the match-

ing coefficient of the QCD neutral current to the same cur-

rent expressed in terms of collinear quark fields. The explicit

expressions for CV can be found in [36–38], and are also

given in “Appendix A”. The functions F f ←h are the unpolar-

ized TMDPDFs for quark f in the hadron h. They are uni-
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versal non-perturbative functions and the main objects of our

study. The details of their definition and their parametriza-

tion are given in Sect. 2.3. Finally, the term Y denotes the

power corrections to the TMD factorization theorem (to be

distinguished from the power corrections to the TMD oper-

ator product expansion). The Y -term is of the order qT /Q

and composed of TMD distributions of the higher dynamical

twist. In our study, we restrict ourself to the limit of low qT

such that the Y -term can be dropped.

Evaluating the lepton tensor, and combining together all

factors one obtains the cross-section for the unpolarized

Drell–Yan process at leading order of the TMD factoriza-

tion, in the form [1,2,6,39–41]

dσ

d Q2dyd(q2
T )

= 4π

3Nc

P

s Q2

∑

GG ′
zGG ′

ll ′ (q)
∑

f f ′
zGG ′

f f ′ |CV (q, µ)|2

×
∫

d2b

4π
ei(bq)F f ←h1(x1, b;µ, ζ )

×F f ′←h2
(x2, b;µ, ζ ) + Y, (6)

where y is the rapidity of the produced gauge boson. The

factor P is a part of the lepton tensor and contains information

on the fiducial cuts. It is discussed in details in Sect. 2.6. In

the rest of this section a more detailed description of the

particular components is presented.

2.1 Expressions for cross-section for different produced

bosons

In the case of neutral vector bosons production, the sum over

G and G ′ in Eq. (6) has three terms

dσ

d Q2dyd(q2
T )

= dσ γ γ

d Q2dyd(q2
T )

+ dσ Z Z

d Q2dyd(q2
T )

+ dσ γ Z

d Q2dyd(q2
T )

, (7)

which correspond to γ ∗-production, Z -production and inter-

ference of γ ∗-Z production amplitudes. These three terms

of the cross-sections differ from each other only due to the

factors zGG ′
f f ′ in Eq. (6), which are

z
γ γ

ll ′ z
γ γ

f f ′ = δ f̄ f ′α
2
em(Q)e2

f ,

zZ Z
ll ′ zZ Z

f f ′ =
δ f̄ f ′α2

em(Q)Q4

(Q2 − M2
Z )2 + Γ 2

Z M2
Z

1 − 4s2
W + 8s4

W

8s2
W c2

W

×
1 − 4|e f |s2

W + 8e2
f s4

W

8s2
W c2

W

z
Zγ

ll ′ z
Zγ

f f ′ + z
γ Z

ll ′ z
γ Z

f f ′ =
δ f̄ f ′α2

em(Q)2Q2(Q2−M2
Z )

(Q2 − M2
Z )2 + Γ 2

Z M2
Z

1 − 4s2
W

4sW cW

×
|e f |(1 − 4|e f |s2

W )

4sW cW

, (8)

where MZ and ΓZ are the mass and the width of the Z-boson,

sW and cW are sine and cosine of the Weinberg angle. We

use the following of values [42]

MZ = 91.2 GeV, ΓZ = 2.5 GeV, s2
W = 0.2313. (9)

In many studies (see e.g.[15,19,20,22,43]) the contribution

of γ ∗ to the cross-section is neglected in the vicinity of the Z-

peak, i.e. the zero-width approximation is used. Here, instead,

we include the γ ∗ and interference terms in the evaluation of

the the cross-section. The inclusion of these terms is impor-

tant for LHC (in particular ATLAS experiment), where the

measurement precision often exceeds the theory precision.

2.2 TMD parton distributions: evolution

The quark unpolarized TMDPDFs are given by the matrix

element [1,2,11]

Fq←h(x, b; ζ, µ)

= Zq (ζ, µ)Rq (ζ, µ)

2

∑

X

∫

dξ−

2π
e−i xp+ξ−

×
〈

h|
{

T
[

q̄i W̃ T
n

]

a

(

ξ

2

)

|X
〉

γ +
i j

〈

X |T̄
[

W̃ T †
n q j

]

a

(−ξ

2

)}

|h
〉

,

(10)

where n is the light-cone vector along the large component

of the hadron momentum, ξ = {0+, ξ−, b}, Z and R are the

ultraviolet and rapidity divergence renormalization factors.

The Wilson lines Wn pointing along the direction n to the

infinity. For the detailed definition of all constituents in this

expression we refer to [11].

The peculiar feature of the TMD operator is the pres-

ence of two types of divergences and, as a consequence,

two renormalization factors Z and R. Firstly, we have ultra-

violet divergences, which have their collinear counterpart

in the coefficient function CV . These divergences are the

result of collinear factorization and give rise to the loga-

rithms of the factorization scale µ. Secondly, we have rapid-

ity divergences, which arise in the factorization of the soft-

gluon exchanges between partons. The singular soft-gluons

exchanges can be collected into the soft factor, which in turn,

can be written as a product of rapidity renormalization fac-

tors R, see e.g. [10,11,44]. This procedure introduces the

rapidity factorization scale ζ .

The dependence of TMDPDF on the factorization scales

µ and ζ is given by the pair of evolution equations

µ2 d

dµ2
F f ←h(x, b;µ, ζ ) = 1

2
γ

f
F (µ, ζ )F f ←h(x, b;µ, ζ ),

(11)

ζ
d

dζ
F f ←h(x, b;µ, ζ ) = −D

f (µ, b)F f ←h(x, b;µ, ζ ).

(12)
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The TMD anomalous dimensions γ and D are known up to

order a3
s (see [45] for γV , and [44,46,47] for D). They sat-

isfy the consistency condition (Cauchy–Riemann condition),

which guaranties the existence of the common solution for

equations (11) and (12),

ζ
d

dζ

γ
f

F (µ, ζ )

2
= µ2 d

dµ2
(−D

f (µ, b)) = −Γ f (µ)

2
, (13)

where Γ f is the cusp anomalous dimension. This equation

fixes the logarithmic part of the anomalous dimensions. So,

the anomalous dimensionγ is linear in logarithm at all orders,

while the rapidity anomalous dimension D has all powers of

logarithms,

γ
f

F = Γ f lζ − γ
f

V , D
f =

∞
∑

n=1

an
s

n
∑

k=0

Lk
µd

(n,k)
f . (14)

Here and in the following, we use the following notation for

logarithms

LX = ln

(

b2 X

4e−2γE

)

, lX = ln
µ2

X
. (15)

The explicit expressions for the anomalous dimensions up

to third-loop order can be found e.g. in the “Appendix” of

[11,44].

The initial values of the factorization scales are dictated

by the kinematics of the considered process. In particular, the

scales ζ1,2 are related to the momentum of hard partons as

ζ1ζ2 = (2p+
1 p−

2 )2 = (Q2 + q2
T )2 ≃ Q4. (16)

In the following, we use the symmetric normalization point,

ζ1 = ζ2 = ζ = Q2. The µ-dependence cancels between the

parts of factorization formula, namely between hard coeffi-

cient function |CV |2 and the TMDPDFs. The natural choice

of µ is such that logarithms appearing in |CV |2 are mini-

mized, i.e. µ = Q. Therefore, TMDPDFs enter in the cross-

section in Eq. (6) at the hard point (µ f , ζ f ) = (Q, Q2).

A typical construction of a model for a TMD distribution

requires its evolution to a different set of scales. The evolution

from (µ f , ζ f ) to (µi , ζi ) takes the form

F f ←h(x, b;µ f , ζ f ) = R f [b; (µ f , ζ f ) → (µi , ζi )]
×F f ←h(x, b;µi , ζi ), (17)

where

R f [b; (µ f , ζ f ) → (µi , ζi )]

= exp

[∫

P

(

γ
f

F (µ, ζ )
dµ

µ
− D

f (µ, b)
dζ

ζ

)]

. (18)

Here, the
∫

P
denotes the integration along the path P in the

(µ, ζ )-plane from the point (µ f , ζ f ) to the point (µi , ζi ).

The integration can be done on an arbitrary path P , and the

solution is independent of it, thanks to the Cauchy–Riemann

condition Eq. (13). At a finite perturbative order, the con-

dition Eq. (13) is violated by the next perturbative order.

As a consequence the expression for the evolution factor R

is dependent on the path of integration. The two simplest

choices of integration paths are the combinations of straight

segments as

path 1 : (µ f , ζ f ) → (µi , ζ f ) → (µi , ζi ),

path 2 : (µ f , ζ f ) → (µ f , ζi ) → (µi , ζi ).

These paths are depicted in Fig. 1. The factor R evaluated

along these paths reads

R f [b; (µ f , ζ f )
1−→ (µi , ζi )]

= exp

[∫ µ f

µi

dµ

µ
γ

f

F (µ, ζ f ) − D
f (µi , b) ln

(

ζ f

ζi

)]

,

(19)

R f [b; (µ f , ζ f )
2−→ (µi , ζi )]

= exp

[∫ µ f

µi

dµ

µ
γ

f
F (µ, ζi ) − D

f (µ f , b) ln

(

ζ f

ζi

)]

.

(20)

The numerical difference between these two expressions rep-

resents the value of the uncertainty at a given perturbative

order.

The expressions for the evolution factor R given in

Eqs. (19) and (20), contain the rapidity anomalous dimension

D(µ, b). The latter contains potentially large values of Lµ,

which should be resummed with the help of Eq. (13). Addi-

tionally, the rapidity anomalous dimension can acquire power

corrections from the higher orders in the power expansion

of the factorization theorem [48]. These power corrections

can be also observed in the renormalon structure described

in [12]. The non-perturbative correction takes the form of a

series of even powers of the transverse distance. Therefore,

the practical expression for the rapidity anomalous D is

D
f (µ, b) =

∫ µ

µ0

dµ′

µ′ Γ f + D
f

pert(µ0, b) + gK b2, (21)

where gK is an unknown parameter. Here, D
f

pert is the per-

turbative expression for D. Correspondingly, the value µ0

should be chosen such that Lµ0 is minimal in the pertur-

bative region. Substituting this expression to the evolution

factor, we obtain

R f [b; (µ f , ζ f ) → (µi , ζi );µ0]

= exp

[∫ µ f

µi

dµ

µ
γ

f
F (µ, ζ f ) −

∫ µi

µ0

dµ

µ
Γ f (µ) ln

(

ζ f

ζi

)]

×
(

ζ f

ζi

)−D
f

perp(µ0,b)−gK b2

. (22)

In this form, the evolution factor R does not depend on the

path of evolution, as can be checked explicitly. The pertur-
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Fig. 1 (left) The evolution plane (µ, ζ ) and paths for the evolution

integrals from (µ f , ζ f ) to (µi , ζi ). Gray lines are equi-evolution lines

ζµ at different b. Paths 1 and 2 reprent the solutions in Eqs. (19) and (20),

corespondingly. These solutions are equivalent to the evolution to the

point (µ f , ζµ f
), which is shown by path 3, because there is no evolution

along the blue segment (at b = 0.7 GeV−1). (right) The plot of ζµ at

b = 1 GeV−1 for different orders

Fig. 2 Schematic picture of the regions in b-space of the TMDPDF

and the corresponding/needed theoretical treatment

bative uncertainty which previously has been given by the

variation of evolution path, now is represented by the depen-

dence on the parameter µ0. Thus, using Eq. (22) the uncer-

tainties of the perturbative calculation can be measured by

varying the scale µ0. In the following, we use the evolution

factor as in Eq. (22).

2.3 TMD parton distributions: b-space behavior

The TMDPDF is a genuine non-perturbative function, which

is to be fitted by a certain ansatz, which covers the whole

domain in b-space. Different intervals of b-space describe

different regimes of strong interactions. In Fig. 2 we show

schematically the parts of b-space which need a specific treat-

ment for each TMDPDF. In order to construct an optimal and

physically meaningful fitting ansatz, the behavior in every

part of the b-space should be reproduced. In this section, we

collect the main information on the b-dependence of TMD-

PDFs, as it is understood according to the current state of

art.

The starting point of our description of a TMD distribu-

tion is the small-b operator product expansion (OPE), which

results in the series

Fq←h(x, b;µ, ζ )

=
∞
∑

n=0

(

b2

B2

)n
∑

f

(

C
(n)
q← f (b;µ, ζ ) ⊗ f

(n)
f ←h(µ)

)

(x),

(23)

where f (n) are PDFs of a 2(n +1)-twist, C (n) are coefficient

functions of OPE and the symbol ⊗ represents the convolu-

tion in momentum fractions of partons. The parameter B is

an unknown non-perturbative parameter which represents an

intrinsic hadron scale.

Region 1 In the range b ≪ B, the TMDPDF is dominated

by the n = 0 term of OPE, Eq. (23). The leading term is

represented by the usual matching onto twist-2 PDFs and

reads

b ≪ B : Fq←h(x, b;µ, ζ )

=
∑

f

∫ 1

x

dz

z
Cq← f (z, Lµ;µ, ζ ) f f ←h

(

x

z
, µ

)

, (24)

where C is known up to two-loop order [11,49].

There is a subregion b ≪ 1/Q, which should be consid-

ered specially. While the TMD distribution is completely per-

turbative within this region, the contributions of this region to

the cross-section strongly overlaps with the Y -term, Eq. (4),

which is formally O(1/(bQ)). The behavior of TMD dis-

tributions within this tiny range together with the Y-term

dictates the asymptotics of the cross-section at large qT . As
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a consequence, it has a significant influence on the value of

the total cross-section. In our current evaluation we restrict

ourself to the range of small-qT (for a dedicated study of the

applicability of this approximation in practice, see Sect. 3.4).

Therefore, we drop the Y -term and do not need any special

treatment of b ≪ Q−1 region.

Region 2 In the range b � B the OPE is still valid. How-

ever, one has to include the higher order terms in addition to

the leading one. Very little is known about power suppressed

terms of the small-b OPE. Our recent study of the renormalon

singularities [12] suggests several hints that can be used to

model this region:

(i) The OPE contains only even powers of b. Moreover, the

coefficient function of n’th order has a prefactor xn . In

other word, the natural scale of OPE is x b2/B2 rather

then just b2/B2.

(ii) The higher order OPE contributions induced by renor-

malons, can be summed together to some effective non-

perturbative function under the convolution integral.

Therefore, in this region the TMDPDF can be approximated

by the form

b ∼ B : Fq←h(x, b;µ, ζ )

=
∑

f

∫ 1

x

dz

z
Gq← f

(

z,
zb2

B2
, Lµ;µ, ζ

)

× f f ←h

(

x

z
, µ

)

, (25)

where the leading term of the power series in b/B of G is

given by C . As the power n grows, the sub-leading terms

of OPE switch on, which is schematically presented by gray

lines in Fig. 2. The particular contributions at higher n are

not so important in the continuous TMD picture. However,

(iii) The n = 1 contribution to OPE can be estimated by the

leading renormalon contribution of order ∼ x b2 [12].

It has the form

C ren
q←q(x, b;µ, ζ ) = 2x̄ + 2x

(1 − x)+

− δ(x̄)

(

LΛ − L√
ζ + 2

3

)

, (26)

where Λ = ΛQC D is the position of the Landau pole.

Region 3 At b ≫ B the small-b OPE cannot be consid-

ered as a source of information, and the TMD is completely

non-perturbative. Luckily, this region is suppressed by the

evolution factor. As a consequence, the cross-section is not

very sensitive to the fine structure of TMD distribution in

this region, but the general behavior is important. We have

tested several asymptotical forms of the TMDPDF, including

Gaussian, exponential and power-like and found that the best

agreement with the experimental data is achieved with expo-

nential behavior. This observation is in agreement with the

general physical intuition, that at high distances the strong

forces are dominated by meson exchange, while the Gaus-

sian and power-like asymptotics can not be produced in any

simple way.

We should mention that the size of the parameter B, as well

as, the order of convergence of the small-b OPE, which influ-

ences the size of the intermediate region 2, are not known.

Our estimations of these characteristic sizes are presented in

Sect. 4.

2.4 Definition of scaling parameters

The small-b matching is the starting point for the construction

of the majority of phenomenological ansatzes for TMD distri-

butions. It can be considered as an additional collinear factor-

ization, which is performed at some convenient set of scales

(µi , ζi ). The difference of (µi , ζi ) from the initial (defined

by process kinematic) scales of TMD distribution is compen-

sated by the evolution factor in Eq. (17). As usual, the all-

order expression is independent of (µi , ζi ), but in practice,

these scales are to be chosen such that the coefficient function

C f ← f ′ has good perturbative convergence. This procedure is

alike the choice of hard-factorization scale, with one essen-

tial difference: the parameter b, which accompanies µi and

ζi in the logarithms, has no fixed value. It varies from zero

to infinity within the Fourier integral.

The choice of scales (µi , ζi ) is one of the central point of

the TMD phenomenology. To make the discussion clearer, let

us recall the expression for the coefficient function at NLO.

It reads

Cq←q(x, Lµ;µ, ζ )

= δ(x̄) + as(µ)CF

[

−2Lµ

(

2

(1 − x)+
− 1 − x

)

+ 2x̄ + δ(x̄)

(

−L2
µ + 2Lµlζ − π2

6

)]

, (27)

where the notation for the logarithms is defined in Eq. (15).

Ideally, the scales µ and ζ should be chosen such that no large

perturbative contributions appear in the coefficient function.

Clearly, it cannot be done at arbitrary b due to the presence of

µ in the coupling constant and in Lµ. However, such a strict

choice is not required. The only requirement for scales is to

keep the perturbative ansatz stable, i.e. to prevent its blow-

ing up. There are several solutions of this problem. The most

famous is the b∗-prescription [27]. Within the b∗-prescription

the logarithms Lµ are absent, and this fact allows the con-

trol of the perturbative series in the full region of b. How-

ever, the b∗-prescription introduces artificial power correc-
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tions to the small-b OPE, which washes out any theoretical

intuition. Another popular scheme [50,51] is based on the re-

expression of Hankel-integral as an integral in the complex

b-plane. In this way, the logarithms Lµ can be minimized by

µ ∼ b−1 and the Landau pole at large-b is by-passed in the

complex plane. The drawback of this scheme is the neces-

sity of the analytical continuation into the complex b-plane,

and the restriction to NNLO (since the analytical solution for

running coupling at N3LO is unknown).

In this work we use another scheme which we call ζ -

prescription. It is a novel one (to our best knowledge), and it

is described in the following.

The ζ -prescription uses the fact that the TMD operator

and hence its small-b OPE depends on two scales µ and ζ ,

which are entirely independent. This simple fact has been

overlooked so far. Indeed, the first typical step is to fix ζ =
C2

0/b2, or ζ = µ2 [1,12,52]. It reduces the problem to a

single variable problem, which looks simpler, but finally, it

does not provide a simple solution for the appearance of large

logarithms in the OPE.

The initial point of the ζ -prescription is the observation

that not all logarithms in the coefficient function are danger-

ous. So, the terms L2
µ and Lµlζ in Eq. (27) are problematic,

while the logarithm in the first term is not. There are several

reasons for it. First, the double logarithm contributions vio-

late the normal perturbative counting and at large-b grows

faster than the single logarithms. Second, the first term of

Eq. (27) comes together with the DGLAP kernel, and thus,

it preserves the area (say, the integral over x) of the TMD-

PDF, due to the conservation of the electromagnetic charge.

We remind that logarithms accompanying the DGLAP ker-

nel are related to PDF evolution, while the rest of logarithms

are related to the TMD evolution. For this reason, the main

problem of convergence is represented by the logarithms that

are related to the TMD evolution. The logarithms related to

the PDF evolution come with a particular x-dependent func-

tion. The probabilistic interpretation of PDF ensures their

minimal contribution in the very large domain of b. Practi-

cally, this fact has been already demonstrated although not

entirely realized in the fit [20]. In the realization of Ref. [20],

the DGLAP logarithms were left unregulated and they do not

influence the convergence of the fit.

The logarithms related to the TMD evolution can be elim-

inated completely by a particular choice of ζ = ζµ. Along

the curve ζµ, the TMD distributions are independent of µ. In

other words, the curve ζµ is an equi-evolution curve in the

plane (µ, ζ ). Such a curve satisfies the equation

µ2 d F(x, b;µ, ζµ)

dµ2
= 0. (28)

Using the definition of anomalous dimensions in Eq. (11) we

rewrite this equation as

D(Lµ) f ′(Lµ) + Γ

2
f (Lµ) − D(Lµ) − γV

2
= 0, (29)

where f (Lµ) = lζµ . The perturbative solution is discussed

and presented in the “Appendix B.1”. The curve ζµ is dif-

ferent for quark and for gluon TMDs, and it is expressed in

terms of the TMD anomalous dimensions Eq. (62). In our

analysis, we need only the quark case. Up to NNLO it reads

lζµ = Lµ

2
− 3

2
+ as

[

11CA − 4TF N f

36
L2

µ

+ CF

(

−3

4
+ π2 − 12ζ3

)

+ CA

(

649

108
− 17π2

12
+ 19

2
ζ3

)

+ TF N f

(

−53

27
+ π2

3

)]

+ O(a2
s ). (30)

Note, that in Eq. (30) we have set the boundary condition such

that no terms singular at Lµ → 0 appear in lζ (see “Appendix

B.1”, for details). Also, in the current work we drop the power

contributions to the rapidity anomalous dimension D. The

influence of these decisions should be investigated later. One

can check that the leading term of ζµ (i.e. lζ = Lµ/2) cancels

leading powers of logarithms at all orders in perturbation the-

ory (i.e. all terms an
s L2n

µ ). Then, including the next correction

(asβ0L2
µ/12) cancels subleading powers of logarithms at all

orders of the perturbation theory (i.e. all terms an
s L2n−1

µ ) ,

and so on.

Substituting the leading term of the solution in Eq. (30) to

the quark small-b coefficient function, we obtain

Cq←q(x, Lµ;µ, ζµ)

= δ(x̄)

+ as(µ)CF

[

−2Lµ

(

2

(1 − x)+
− 1 − x

)

+ 2x̄ + δ(x̄)

(

−3Lµ − π2

6

)]

. (31)

This coefficient function is stable for any value of Lµ, which

can be seen by considering its integral

∫ 1

0

dxCq←q(x, Lµ;µ, ζµ) = 1 + as(µ)CF

(

1 − π2

6

)

,

(32)

which is independent of Lµ.

The general expression for the coefficient of arbitrary

flavour at NNLO has the form

C f ← f ′(x, b;µ, ζµ)

= δ f f ′δ(x̄)

+ as

(

−Lµ P
(1)

f ← f ′ + C
(1,0)

f ← f ′

)
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+ a2
s

⎡

⎣L2
µ

P
(1)
f ←k ⊗ P

(1)

k← f ′ − β0 P
(1)

f ← f ′

2

− Lµ

(

P
(2)

f ← f ′ + C
(1,0)
f ←k ⊗ P

(1)

k← f ′ − β0C
(1,0)

f ← f ′

)

+
d

(2,0)
f γ

f (1)

V

Γ
f

0

δ(x̄) + C
(2,0)

f ← f ′

⎤

⎦ + O(a3
s ), (33)

where C (n,0) is the finite part of the coefficient function at

n’th perturbative order, and P(x) =
∑

an
s P(n) is the DGLAP

kernel. The detailed derivation of Eq. (33) is presented in the

“Appendix B.2”. Eq. (33) has the form of the usual coefficient

function for an object without external evolution (e.g. coeffi-

cient function for DIS). In other words, it is straightforward

to check that

µ2 d

dµ2
C f ← f ′(x, b;µ, ζµ) ⊗ f f ′←h(x, µ) = 0, (34)

by direct differentiation of Eq. (33). The integral of this func-

tion over x is independent of Lµ due to the charge conserva-

tion, and thus at least the area of TMDPDF is stable at large

b.

A further positive point of the ζ -prescription is that the

scale µ remains unconstrained. Often, the scale µ is selected

such that it behaves as ∼ 1/b at b → 0. Such a choice

minimizes the small-b logarithms in small-b OPE and in the

evolution exponent. At large-b the scale µ should be frozen

to some fixed value (of the order of a few GeV’s), in order to

avoid the Landau pole. We use the simplest function which

satisfies these criteria

µ = µb = C0

b
+ 2 GeV. (35)

There are several practical motiviations for the choice of the

2 GeV asymptotic (at b → ∞) scale. To start with, the fixed

scale 2 GeV is a standard scale of PDF extractions. The data

that we analyze start with a dilepton invariant mass of 4 GeV,

so that we want to fix the starting scale below this energy. On

the other side we do not want to implement a perturbative

expansion below 1 GeV, where the convergence of the the-

ory is not ensured. A discussion about the theoretical error

induced by this choice in the interval 1–4 GeV is posponed

to Eq. (37).

Finally, we should also select the value for the parame-

ter µ0 that enters in the expression for the evolution factor,

Eq. (22). To keep our discussion simple, we set µ0 = µb.

2.5 Theoretical uncertainties and perturbative ordering

In the construction of the cross section, one finds several

sources of perturbative uncertainties. The size of these uncer-

tanties can be estimated by the variation of associated scales.

We list here the ones that we have considered in the present

work.

– Uncertainty associated with the perturbative matching

of rapidity anomalous dimension This uncertainty arises

from the dependence (at the fixed perturbative order) on

µ0, which should be compensated between the Sudakov

factor and the boundary term D(µ0) in the TMD evo-

lution factor Eq. (22). This uncertainty can be tested by

changing µ0 → c1µ0 and varying c1 ∈ [0.5, 2].
– Uncertainty associated with the hard factorization scale

This uncertainty arises from the dependence (at the fixed

perturbative order) on the scale µ f (∼ Q) which is to

be compensated between the hard coefficient function

|CV |2 and the TMD evolution factor. This uncertainty

can be tested by changing µ f → c2µ f and varying c2 ∈
[0.5, 2].

– Uncertainty associated with the TMD evolution fac-

tor This uncertainty arises from the dependence (at

the fixed perturbative order) on the initial scale of TMD

evolution µi , which is to be compensated between the

evolution integral and the µ-dependence of ζi in Eq. (22).

This uncertainty can be tested by changing µi → c3µi

and varying c3 ∈ [0.5, 2].
– Uncertainty associated with the small-b matching This

uncertainty arises from the dependence (at the fixed per-

turbative order) on the scale of the small-b matching

µOPE which is to be compensated between the small-

b coefficient function C f ← f ′ and evolution of PDF. This

uncertainty can be tested by changing µOPE → c4µOPE

and varying c4 ∈ [0.5, 2].

We remark that our definition of perturbative uncertain-

ties c1,2 is commonly used in the literature (as far as it can

be compared among different schemes of calculation), see

e.g. [21,43]. Usually the uncertainties c3,4 are not distin-

guished and they are commonly varied simultaneously i.e.

in the literature one finds discussions of errors for the case

c4 = c3. To our best knowledge, the distinction of the match-

ing and evolution uncertainties is made here for the first time.

In this way, the general expression for the cross-section in

Eq. (6) with our choice of scales reads

dσ

d Q2dyd(q2
T )

= 4π

3Nc

P

s Q2

∑

GG ′
zGG ′

ll ′ (q)

×
∑

f f ′
zGG ′

f f ′

∫

d2b

4π
ei(bq)|CV (Q, c2 Q)|2

×
{

R f [b; (c2 Q, Q2) → (c3µi , ζc3µi
); c1µi ]

}2
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Table 1 The perturbative orders

studied in the fit. For each order

we indicate the power of as of

each piece that enters in the

TMDs. Note, that the order of as

and PDF set are related, since

the values of as are taken from

the PDF set

Name |CV |2 C f ← f ′ Γ γV D PDF set as (run) ζµ

NLL/LO a0
s a0

s a2
s a1

s a2
s nlo nlo NLL

NLL/NLO a1
s a1

s a2
s a1

s a2
s nlo nlo NLO

NNLL/NLO a1
s a1

s a3
s a2

s a3
s nlo nlo NNLL

NNLL/NNLO a2
s a2

s a3
s a2

s a3
s nnlo nnlo NNLO

× F f ←h1(x, b; c4µOPE, ζc4µOPE)F f ′←h2

× (x, b; c4µOPE, ζc4µOPE), (36)

where the evolution factor R is given in Eq. (22) and the

explicit expression for the ζµ is given in Eq. (30). The low-

normalization pointµi and the scale of small-b operator prod-

uct expansion µOPE are fixed at the same point as in Eq. (35)

µi = µOPE = C0

b
+ 2 GeV. (37)

In the limit b → ∞ the scale µi reaches the fixed point of

2 GeV, cfr. Eq. (35). The error induced by this choice of the

asymptotic energy scale is evaluated together with the error

induced by the scale µi . In particular, one observes that the

variation of c1,3,4 in formula (36) allows to test the impact of

the variation of the fixed scale of 2 GeV in the whole range

1–4 GeV, as discussed around Eq. (35).

The perturbative orders of each cross section constituent

are to be combined consistently. Having at our disposal

the NNLO expressions for coefficient function and N3LO

expressions for anomalous dimensions, we can define four

successive self-contained sets of ordering. This is reported

in Table 1. In our definition of orders we use the following

logic: (i) The order of the as-running should be the same as

the order of PDF set, since their extraction are correlated. (ii)

The order of D should be the same as the order of Γ since

they enter the evolution kernel R with the same counting of

logarithms (i.e. an
s lnn+1 µ), and one-order higher then the

order of γV , since it has counting an
s lnn µ. (iii) The order of

small-b matching coefficient should be the same as the order

of evolution of a PDF, because large logarithms of b are to

be compensated by the PDF evolution. (iv) The order of ζµ

should be such that no logarithms appear in the coefficient

function, and the general logarithm counting coincides with

the counting of the evolution factor. In Table 1 the order of the

ζµ is defined as following: NLL is lζ = Lµ/2, NLO has in

addition finite part at order a0
s (i.e. two first terms of Eq. (30)),

NNLL has in addition logarithmic part at order a1
s (i.e. the

first line of Eq. (30)), and NNLO is given by whole expres-

sion Eq. (30). The lζ cases NLL and NNLL are somewhat

intermediate cases. In fact, while one achieves a cancella-

tion of logs of the same order in the evolution kernel and

the coefficient, one finds that the counting in the coefficient

is consistent with the as L2
µ ∼ a0

s . A similar counting was

introduced in [53]. We postpone a full study of this counting

within ζ -prescription to a future work.

To label the orders we use the nomenclature where the part

with ’LO suffix designates the order of coefficient functions,

and the part with ’LL suffix designates the order of the evo-

lution factor in the as ln µ ∼ 1 scheme. So, our highest order

is NNLL/NNLO, which at the moment the highest available

combination of the perturbative series. The order NLL/LO

appears to be barely inconsistent, because it requires the

LO PDF evolution to match the trivial coefficient function.

Therefore, we exclude the NLL/LO from our phenomeno-

logical studies.

2.6 Implementation of lepton cuts

In modern experiments, the cross-section is often evaluated

using fiducial cuts on the dilepton momenta. That is, the lep-

ton tensor in Eq. (3) should be evaluated taking into account

the experimental cut phase-space. At leading order the lepton

tensor takes the form

(−g
µν
T )LGG ′

µν = 32zGG ′
ll ′

∫

d3k1

2E1

d3k2

2E2
((k1 · k2)

+ (k1 · k2))θ(k1,2 ∈ cuts)δ4(k1 + k2 − q),

(38)

where θ -function restricts the lepton momenta to the allowed

region.

In the limit Q → ∞ and no restriction on the lepton pair

phase space we obtain

lim
Q→∞

(−g
µν
T )LGG ′

µν = 16π

3
zGG ′

ll ′ Q2. (39)

Substituting this expression to the cross-section we obtain

the standard formula to the Drell-Yan cross-section within

TMD factorization [1,2,6,39–41]. In order to include the

corrections due to a finite Q and experimental cuts let us

introduce a factor P , i.e.

(−g
µν
T )LGG ′

µν = 16π

3
zGG ′

ll ′ Q2
P, (40)

which is consistent with the cross section expression pre-

sented in Eq. (6). The function P in the absence of cuts reads

P(no cuts) = 1 +
q2

T

2Q2
. (41)
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Table 2 The characteristics of

the data measured at E288

experiment

E288 200 E288 300 E288 400

√
s 19.4 GeV 23.8 GeV 27.4 GeV

Process p + Cu → γ → µ+µ− p + Cu → γ → µ+µ− p + Cu → γ → µ+µ−

Q range 4–9 GeV 4–9 GeV 5–14 GeV

∆Q-bin 1 GeV 1 GeV 1 GeV

y y = 0.4 y = 0.21 y = 0.03

Observable E d3σ
d3q

E d3σ
d3q

E d3σ
d3q

Ref. [29] [29] [29]

In the presence of cuts the expression for P is involved. For

example, at qT = 0 and y = 0 it reads

PqT =0,y=0(|k1,2|>pT ; |η1,2|<η)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, Q < 2pT
(

1 − p2
T

Q2

)

√

1 − 4p2
T

Q2 , 2pT < Q < 2pT cosh η
(

1 − 1

4 cosh2 η

)

η, 2pT cosh η < Q.

(42)

Generally, P cannot be evaluated analytically, but it is rather

easy to evaluate numerically.

3 Comparison with experiment

3.1 Review of experimental data

In this section we present the experimental data that have

been included in our fit. We have splitted the data into two

large data sets with respect to a generic energy scaling. They

include the measurements from the following experiments:

– Low-energy data set

– E288: Drell-Yan process, at 4 < Q < 14 GeV.

– High energy data set:

– CDF/D0: Z-boson production at
√

s = 1.8, 1.96

TeV.

– ATLAS/CMS/LHCb: Z-boson production at
√

s =
7, 8, 13 TeV.

– ATLAS: Vector boson production outside the Z-peak

(46 < Q < 66 and 116 < Q < 150 GeV) at
√

s = 8

TeV.

In the present study, we have not included the data of other

experiments, such as E605, or R209. In a previous work [20]

it was observed that the E605 data suffer from internal incon-

sistencies and because of their reduced number they do not

alter sensibly the results of the fit. The data points from R209

are even less, they have enormous uncertainties (they can be

extracted only from a plot) and result to be even less signi-

ficative. One observes also that the data of LHC below the

Z-boson threshold have cinematical features similar to the

ones of R209 and have a much bigger precision (see Fig. 13).

Because of this reason we exclude these data from the present

fit.

In the following, we present each included measurement

in more detail.

E288 The E288 experiment [29] presents a large number of

low energy points which is nearly equal the total number of

points of high energy experiments. For convenience we have

splitted this data set into three subsets with different center of

mass energy s. The characteristics of the measurements are

shown in Table 2. Concerning these data we can comment

the following:

– We exclude the data points in the range 9 < Q < 11 GeV,

because these data are dominated by the ϒ-resonance

(Mϒ ≃ 9.5 GeV). The description of ϒ-resonance pro-

duction is beyond the scope of current TMD factorization

approach.

– The E288 experiment is made on a copper target. To sim-

ulate the effects of copper nuclei we replace the proton

PDFs by the following combinations

uCu(x) = Zu(x) + Nd(x)

A
,

dCu(x) = Zd(x) + Nu(x)

A
,

sCu(x) = s(x), (43)

where Z = 29, A = 63 and N = A − Z = 34, are

charge, atomic number and the number of neutrons in

copper correspondingly.

– The absolute normalization of the E288 pT -cross-section

is unknown. Typically, one includes an additional nor-

malization factor NE288, as a parameter of the fit, see

e.g. [13,15,19,20]. There is no agreement on this factor

values, it varies from ∼ 0.8 [13,19,20] to ∼ 1.2 [15]. In

our analysis we fix NE288 = 0.8.
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Table 3 The characteristics of the data measured at CDF and D0 col-

laborations at run 1

CDF run I D0 run I

√
s 1.8 TeV 1.8 TeV

Process p + p̄ → Z → e+e− p + p̄ → Z → e+e−

Mll range 66–116 GeV 75–105 GeV

y y-integrated y-integrated

Observable dσ
dqT

dσ
dqT

Exp. σtot [pb] 248 ± 17 σ = 221 ± 11

σtot[pb]
[17, 54]NLO

[17, 54]NNLO :
223.8 ± 0.05

237.63 ± 0.18

223.8 ± 0.05

237.63 ± 0.18

Ref. [55] [56,57]

Table 4 The characteristics of the data measured at CDF and D0 col-

laborations at run 2

CDF run II D0 run II

√
s 1.96 TeV 1.96 GeV

Process p + p̄ → Z → e+e− p + p̄ → Z → e+e−

Mll range 66–116 GeV 70–110 GeV

y y-integrated y-integrated

Observable dσ
dqT

1
σ

dσ
dqT

Exp. σtot [pb] 256 ± 2.91 σ = 255

σtot[pb]
[17, 54]NLO

[17, 54]NNLO :
245.0 ± 0.06

259.77 ± 0.22

245.0 ± 0.06

259.77 ± 0.22

Ref. [58] [59]

The theoretical uncertainties for low energy experiments

are large, of the order ± 10% at the best (see Sect. 3.5).

As a consequence, the value of the cross-section is very

sensitive to the choice of the PDF set and the overall nor-

malization factor. For example, we have checked that the

E288 data can be fitted also with NE288 = 0.9 with the

same (or better) value of χ2 by an additional variation

of µb. However, we consider this as a bad practice and

restrict ourself to NE288 = 0.8, as the most conventional

solution.

– The data are splitted into different bins with different

dilepton invariant mass. For each bin we evaluate the

cross-section Eq. (6) as

E
dσ

dq3
=

∫ Qmax

Qmin

d Q
2Q

π

dσ

d Q2dyd(qT )2
, (44)

where Qmax,min are the boundary of the Q-bin.

CDF and D0. The data on the Z-boson production measured

by CDF and D0 collaborations at Tevatron Run 1 and Run

2 [55–59] have been used nearly in every fit of unpolarized

TMDPDFs. They are summarized in Tables 3, 4. Concerning

these data we can comment the following:

– There is a known tension between the values of total

cross-section at run I of CDF and D0. Here we restrict

ourself to the fit of the shape of the cross-section and nor-

malize the theoretical points on the bin-by-bin integrals

in the allowed range of qT . I.e. we multiply the theoretical

cross-section by the factor

N =

∑

included
bins

∆qT
dσexp.

dqT

∑

included
bins

∆qT
dσth.
dqT

, (45)

where ∆qT is the size of qT -bins. As we show in Sect. 3.6

the obtained normalization factors are very close to one

(at NNLO), and the values of partial cross-sections are in

agreement with the experimental ones within error-bars.

In the Tables 3, 4, we also present the values of the total

cross-sections evaluated by DYNNLO code [17,54]. In

this calculation of the total-cross-section, we have used

the same inputs as in the TMD fits, i.e. the PDF are taken

from MMHT2014 set [60].

– The experimental values for cross-section points are

obtained by integrating over all values of y, integrating

over measure range of Q and averaging in qT . Conse-

quently, we have used the following expression for the

cross-section

dσ

dqT

= 1

∆qT

∫ qT,high

qT,low

2q ′
T dq ′

T

∫ y0

−y0

dy

×
∫ Mll,max

Mll,min

2Qd Q
dσ

dyd(q ′
T

2
)d Q2

, (46)

where y0 = 1
2

ln(s/Q2), qT,low and qT,high are bound-

aries of qT -bin, and ∆qT is the size of the qT -bin.

ATLAS The data by ATLAS collaboration in [30,62] cover

a broad range of dilepton invariant masses for the Drell–Yan

process with small experimental error-bands. So, this set pro-

vide the biggest constraints on TMD extraction coming from

high energy data points. The characteristics of the measure-

ments are resumed in Tables 5, 6 and here we comment the

following:

– The data from the ATLAS detector at 8 TeV run are pre-

sented in several sets [30], which corresponds to different

treatment of final-state photon radiation. We have consid-

ered the “dressed” set of the data.

– The values of cross-section have been calculated using

the expression in Eq. (46), where y0 = 2.4, as it is pre-

sented in the Tables 5, 6.

– There is a known tension between the theoretical calcu-

lation of the integrated cross-section and the measured

one, see e.g. [30,61]. Moreover the available theoretical
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Table 5 The characteristics of

the Z-boson production data

measured by ATLAS

collaborations

ATLAS ATLAS

√
s 7 TeV 8 TeV

Process pp → Z → ee + µµ pp → Z → µµ

Mll range 66–116 GeV 66–116 GeV

lepton cuts
pT > 20 GeV

|η| < 2.4

pT > 20 GeV

|η| < 2.4

y −2.4 < y < 2.4 −2.4 < y < 2.4

Observable 1
σ

dσ
dqT

1
σ

dσ
dqT

Exp.σfid[pb] – 537.1 ± 0.63(± 2.8%)

Theor.σfid[pb]
[17, 54]NLO : 448.56 ± 0.19

[17, 54]NNLO : 471.53 ± 0.94

[17, 54]NLO : 505.53 ± 0.21

[17, 54]NNLO : 531.39 ± 0.93

[61] : 507.9+2.4
−0.7

Ref. [62] [30]

Table 6 The characteristics of the data for the vector boson production

off the Z-peak measured by ATLAS collaborations

ATLAS ATLAS

√
s 8 TeV 8 TeV

Process pp → Z/γ ∗ → µµ pp → Z/γ ∗ → µµ

Mll range 46–66 GeV 116–150 GeV

Lepton cuts
pT > 20 GeV

|η| < 2.4

pT > 20 GeV

|η| < 2.4

y −2.4 < y < 2.4 −2.4 < y < 2.4

Observable 1
σ

dσ
dqT

1
σ

dσ
dqT

Exp.σfid[pb] 14.96 ± 2.62(±2.8%) 5.59 ± 1.52(±2.8%)

Theor.σfid[pb] – –

Ref. [30] [30]

cross-section for vector boson production is not precise

enough for the present study. Therefore, we normalize

the calculated cross-sections by a factor, as explained in

more detail in the text around Eq. (51). In Sect. 3.6, we

compare the obtained values of normalization to the total

cross-section. We have found that the values of obtained

normalization are practically independent of the non-

perturbative input of the TMD model, and at NNLL/-

NNLO correctly reproduce (within the error-bars) the

measured total cross-section.

– All data sets from LHC are presented within fiducial

cross-sections. Therefore, we have implemented the cut

leptonic tensor as it is discussed in Sect. 2.6.

CMS and LHCb The CMS and LHCb collaborations pro-

vide data around the Z-boson peak in [63–67], see Tables 7, 8.

The treatment of these data is similar to the case of ATLAS

data:

Table 7 The characteristics of the Z-boson production data measured

by CMS collaborations

CMS CMS

√
s 7 TeV 8 TeV

Process pp → Z → ee + µµ pp → Z → µµ

Mll range 60–120 GeV 60–120 GeV

Lepton cuts
pT > 20 GeV

|η| < 2.1

pT > 15 GeV

|η| < 2.1

y |y| < 2.1 |y| < 2.1

Observable 1
σ

dσ
dqT

1
σ

dσ
dqT

Norm. exp. – –

σfid[pb]
[17, 54]NLO

[17, 54]NNLO

379.43 ± 0.16

398.27 ± 0.71

427.32 ± 0.53

448.04 ± 0.83

Ref. [63] [64]

– The values of cross-section have been calculated using

the expression in Eq. (46), where the limits for y-

integration y0 are taken in accordance to the

Tables 7, 8.

– Just as in the case of ATLAS data we have normalized

the calculated cross-sections by the factor provided in

Eq. (45) discussed in Sect. 3.6. We have found a good

agreement between the theoretical and experimental val-

ues for total cross-section for LHCb data.

– All data sets from LHC are fiducial cross-sections. There-

fore, we have implemented the cut leptonic tensor as it is

discussed in Sect. 2.6.

Finally, we have considered only points which allow a

consistent TMD treatment. I.e. the points with the value of

qT < δT Q, where δT is sufficiently small. In the literature

we have not found any special study on this limiting ratio.

So, we present our study in Sect. 3.4, and conclude that TMD

factorization range is qT /Q < 0.2.
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Table 8 The characteristics of

the Z-boson production data

measured by LHCb

collaborations

LHCb LHCb LHCb

√
s 7 TeV 8 TeV 13 TeV

Process pp → Z → µµ pp → Z → µµ pp → Z → µµ

Mll range 60–120 GeV 60–120 GeV 60–120 GeV

Lepton cuts
pT > 20 GeV

2 < η < 4.5

pT > 20 GeV

2 < η < 4.5

pT > 20 GeV

2 < η < 4.5

y 2 < y < 4.5 2 < y < 4.5 2 < y < 4.5

Observable dσ(qT ) dσ(qT ) dσ
dqT

Norm. exp. σ = 76.0 ± 3.1 pb σ = 95.0 ± 3.2 pb σ = 198.0 ± 13.3 pb

σfid[pb]
[17, 54]NLO

[17, 54]NNLO

69.85 ± 0.3

74.30 ± 0.21

88.98 ± 0.397

93.50 ± 0.3

185.0 ± 0.09

192.78 ± 0.82

Ref. [65] [66] [67]

3.2 arTeMiDe

In order to evaluate the cross-sections we have prepared the

program package arTeMiDe. The arTeMiDe package is

a collection of FORTRAN modules that evaluates individual

terms of the TMD factorization formalism, such as TMD evo-

lution factors, TMDPDFs, and combines them into the differ-

ential cross-sections. arTeMiDe forms a flexible package

for TMDPDF phenomenology based on the ζ -prescription,

as described in this article. It is publicly available at the web-

page [31].

arTeMiDe version 1.1 evaluates the quark and gluon

unpolarized TMDPDFs (although in the discussed fit the

gluon TMDPDFs are not necessary) for any given function

fN P , at any composition of perturbative orders from LO to

NNLO, with or without renormalon-induced power correc-

tions. For the current study, the input PDFs are taken from

the MMHT2014 PDF set [60].

The most time-consuming part of the numerical evalua-

tion of the TMDPDFs, is the convolution integral in Eq. (48),

which is especially expensive at NNLL/NNLO. Within the

arTeMiDe package the convolution integral is optimized

using an approximate expression for NNLO coefficient func-

tions. The approximate form of the NNLO coefficient func-

tion is (note, that NLO and renormalon coefficient functions

can be presented in this form without approximation)

C(Lµ, x) = A1δ(x̄) + A2

(

1

1 − x

)

+
+ A3

(

ln x̄

1 − x

)

+
+ A4 ln x̄ + A5 ln2 x̄ + +A6 ln3 x̄

+ B1 ln x+B2 ln2 x+B3 ln3 x+B4
1

x
+B5

ln x

x

+ c1 + c2x + c3x2 + c4x3 + c5 ln x̄ ln x

+ c6 ln x̄ ln2 x, (47)

where coefficients A, B and c are functions of Lµ. Such an

approximate form is widely used in NNLO+ phenomenol-

ogy of PDFs, see e.g. [68]. Here, the coefficients A and B

represent the singular at x → 1 and x → 0 terms, and are

evaluated exactly. The coefficients c represent the smooth

part of the coefficient function, which is reconstructed by

appropriate values of ci with better then 1% accuracy. The

values of constants A, B and c are presented in the “Appendix

B.3”. In the convolution integral the main numerical con-

tribution comes from the singular terms proportional to A

and B, which are exact. The relative difference between the

convolution with exact coefficient function and approximate

expression in Eq. (47) is of order 10−6. This numerical error

is compatible with the numerical error of integration proce-

dure and far inside the theoretical error-bands.

The evaluation of the Hankel-type integral over b is one

of the main source of numerical errors. Typically, in order to

obtain sufficient precision one should include a large number

of points into the integral, which is very costly especially at

NNLL/NNLO. arTeMiDe evaluates this integral with the

Ogata quadratures [69]. The Ogata quadrature is a double

exponential quadrature, whose nodes are the zeros of the

Bessel function. It provides a fast and precise evaluation of

Hankel-type integrals with the minimal number of integrand

calls.

The fitting procedure has been performed by minimiz-

ing the χ2-function. The minimization of the χ2 distribu-

tion has been done using the MINUIT package from the

CERN library [70,71]. The estimation of the statistical uncer-

tainties for non-perturbative parameters is made with the

MINOS procedure, performing the variation of parameters

in the range χ2 ± ∆χ2, with ∆χ2 corresponding to the

68% confidence level (i.e. ∆χ2 ≃ {1.03, 2.32, 3.55} for 1–

3 fitting parameters, correspondingly.) The sources of the-

oretical uncertainties have been pointed in Sect. 2.5, and

parameterized by the constants c1,2,3,4. The variation of these

constants in the region (0.5, 2) produces the error-bands.

The discussion on the individual contributions of theoreti-

cal uncertainties associated with different scales is given in

Sect. 3.5.
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3.3 Models for non-perturbative part of TMDPDFs

The non-perturbative part of the TMDPDF in general needs

some ansatz, the parameters of which are to be extracted

from data. In our study we have tested different ansatzes of

the following general form

Fq←h(x, b) =
∫ 1

x

dz

z

∑

f

Cq← f

(

z, b;µ, ζµ

)

f f ←h

(

x

z
, µ

)

× fN P (z, b) , (48)

where f f ←h is the PDF of the parton with the flavour f .

The non-perturbative information of the TMDPDF, which is

unreachable from the PDFs, is contained in fN P . In order

to match the perturbative regime, the function fN P should

approach 1 for b → 0. Instead, the behavior of fN P for

b → ∞ is not so well established, which requires a test of

different models. In the current study, we restrict ourself to

flavor independent fN P , i.e. fN P is common for TMDPDFs

of different flavours. The flavour-dependence of TMDPDFs

enters only through PDFs and coefficient functions, i.e. it is

completely determined.

The large-b behavior of TMD distributions is the key

point of TMD parametrization and extraction. There is no

common agreement on this behavior. Clearly, such an agree-

ment cannot be achieved in general, since the b-shape of a

TMD distribution is strongly dependent on the large-b pre-

scription. For example, the Gaussian behavior is typically

observed in the models based on b∗-prescription. Moreover,

the classical fits byResBos package [15] disfavor other non-

perturbative behaviors, such an exponential one (for more

recent discussion, see [24]). Also the Gaussian shape is used

in DYRes code [21] (together with b∗-prescription) and in

DYqT code [18] (together with the minimal prescription).

Contrary, the fit made in Ref. [20], which does not employ

the b∗-prescription, uses an exponential shape of fN P and

also obtains an agreement with data. We point out that the

use of LHC data for TMD extraction is made here for the first

time (to our knowledge). Given the precision of LHC data,

the consistency and/or goodness of all previous hypotheses

has to be rediscussed.

In order to decide the best shape of fN P within ζ -

prescription, we have considered several subsets of the data.

It appears important to include simultaneously both high-

energy and low-energy data because they are sensitive to

different parts of the b-space spectrum. We have found that

the most optimal data subset is given by the E288 data and

the ATLAS Z-boson production data, see Tables 2, 5. In this

subset, the very small error-bands of ATLAS data are com-

pensated by a large number of points in E288 data, and as a

result, we have a certain equilibrium between low and high-

energy inputs.

Table 9 The values of χ2/d.o. f for different single-parameter non-

perturbative functions fN P , minimized on different data sets. The

χ2/d.o. f values correspond to δT = 0.2 and NNLL/NNLO

data/ fN P e−λb e−λb2
cosh−1(λb)

ATLAS 4.78 1.43 1.42

E288 2.70 5.68 3.64

E288 + ATLAS 8.18 5.77 3.72

Using the E288/ATLAS subset we have performed mul-

tiple fits using several different functional forms of fN P .

Probably, the most informative preliminary test is the com-

parison of the pure Gaussian and exponential behavior for

separate/joint low and high energy data points. In Table 9 we

demonstrate results of fit with some simple single-parameter

models. According to this table, although the quality of the

fit is still not optimal, the high-energy data clearly favor the

Gaussian shape of fN P , while the low-energy data favor

the exponential behavior of fN P . This difference is simply

explained if we recall that at higher energies (and thus at

generally higher qT ) the Fourier integral in Eq. (4) is sat-

urated by small values of b. At lower energies (and thus

at generally smaller qT ) the Fourier integral in Eq. (4) is

affected by a wider interval of values of b. Therefore, the

results presented in the Table 9, suggest that fN P should be

Gaussian at small-b and exponential at large-b. This is in

complete agreement with the theory expectations discussed

in Sect. (2.3). The expected fN P should be a function with a

Taylor series expansion (around b = 0) of even powers of b,

with an exponential decay at b → ∞. A simple representa-

tive of such functions is cosh−1(λb). The test of this fN P is

given in the last columns of the Table 9 which clearly shows

that this function alone, although it works much better than a

Gaussian or an exponential, is not able to describe both low

and high energy data, and thus we need extra parameters.

The preliminary tests with simple one-parameter depen-

dence for the fN P shape can be summerized by the following:

(i) The high and low energy data should be considered

altogether, because they test different intervals of the

b-space spectrum of fN P .

(ii) The subset of data points E288 and ATLAS Z-boson,

is very selective for the fN P . A good fit of this subset

guaranties the good fit for the whole set of data points.

Nevertheless, in the following sections, we include all

experiments, for consistency.

(iii) Both theoretically and phenomenologically, we argue

that fN P should be a function of even powers of b

with an exponential asymptotic behavior at b → ∞.

Using a minimal set of two parameters (and the evolu-

tion parameter gK ) we find that one can easily fit the

data with a χ2/d.o. f ∼ 1.2–1.3. The addition of more
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parameters (say for the control of b4 correction and/or

flavor dependence) has the possibility to increase the

quality of the fit. However, in this work, we do not

consider extra parameters, since the current quality of

the fit is already typical and reasonable for the modern

TMD extraction (compare e.g. with [22]).

(iv) One needs at least two parameters (one to control

∼ b2 behavior at b → 0 and another to control the

asymptotics) to fit simultaneously low and high-energy

data. However, the multiplication by polynomials (e.g.

fN P ∼ (1 +λb2)/ cosh(b)) does not work well, which

suggests that the asymptotic terms ∼ b2e−b are disfa-

vored.

Based on this experience we have formulated some simple

ansatzes for fN P .

– Model 1 This ansatz uses the fact that the simplest even-

b function with exponent asymptotics is the hyperbolic

cosine. The model reads

fN P (b) =
cosh

((

λ2
λ1

− λ1
2

)

b
)

cosh
((

λ2
λ1

+ λ1
2

)

b
) , (49)

where λ1[GeV] > 0 and λ2[GeV2] > 0 are free param-

eters. The advantage of this model is its simplicity and

independence of the Bjorken variable. The model 1 has a

quadratic (Gaussian) behavior at small-b fN P ∼ e−λ2b2

and exponential behavior at large-b fN P ∼ e−λ1b.

– Model 2 The model 2 reads

fN P (z, b) = exp

⎛

⎜

⎜

⎝

−λ2zb2

√

1 + z2b2 λ2
2

λ2
1

⎞

⎟

⎟

⎠

, (50)

where λ1[GeV] > 0 and λ2[GeV2] > 0 are free param-

eters. In this model we attempt to incorporate the theo-

retical expectations on the z-dependence of fN P . So, the

model 2 has a zb2-behavior at small-b fN P ∼ e−λ2zb2

and exponential behavior at large-b fN P ∼ e−λ1b.

Both models have two parameters, which we include in

the parameterization such that the parameter λ1[GeV] dic-

tates the asymptotical behavior at large b. and the parameter

λ2[GeV2] gives the quadratic term. A priory, the parameter

λ1 should be of order of mπ ∼ 0.14 GeV, since it is the

only natural scale of strong forces at large distances. The

parameter λ2[GeV2] roughly corresponds to the size of the

leading power correction to small-b OPE, see Sect. 2.3. We

can associate λ2 with the scale B as λ2 ∼ B−2. In Ref. [12]

we have estimated the size of this parameter in the large-β0

approximation as λ2 ∼ 0.075 GeV2.

Additionally, to the parameters λ1,2 we have studied the

parameter gK [GeV2] > 0, which parametrizes the non-

perturbative contribution to the rapidity evolution kernel D

(see Eq. (21)). The importance of this parameter is not clear

from the literature. In Ref. [12] we have estimated its size in

the large-β0 approximation as 0.01 ± 0.03 GeV2, i.e. con-

sistent with zero. Also, the fit of [20] shows a negligible

influence of this parameter on the final results. Therefore,

in the following we consider both possibilities gK = 0 and

gK �= 0. In Sect. 3.7, we demonstrate that the parameter gK

is important at lower perturbative order, but its influence is

negligible at NNLL/NNLO.

3.4 The domain of TMD factorization

The TMD factorization is restricted to the small-qT range.

The size of the allowed qT -region is a priory unknown. We

have not found any phenomenological studies on this point

but only some statement on the strong dependence of the fit

on the qT -window. A specific study on TeVatron Z-boson

production data in Ref. [53] shows that the Y-term contribu-

tion is extremely marginal for qT < 30 GeV.

In order to make a qualitative study, we introduce the

parameter δT and we consider all data points with qT < δT Q.

The amount of data points which are allowed by such a

restriction are shown in the Table 10. In order to estimate

the maximum value of δT we perform a series of fits with

increasing values of δT . Ideally, the χ2/d.o. f. and the fitting

parameters should be stable within and unstable outside of

the allowed δT interval. In this way, considering the depen-

dence on δT one should find an interval of δT for which the

fit is not sensitive to the Y -term. This point indicates the

region of TMD-factorization, and should not depend of the

perturbative order.

We have performed such a test for high-energy data

set with different one-parameter forms of fN P . We have

especially used the one parameter models to guarantee the

absence of fine-tuning of the cross-section. For this rea-

son we also exclude the E288 data, because it is impos-

sible to describe high- and low-energy data with a single

non-perturbative parameter. The result of the fits practically

agrees for all tested models and orders. In Fig. 3, we present

some typical outcome of the fits.

In plots 3 one can see that all models reproduce the data

very-well at very small δT , which is expected since the TMD

factorization is only valid at qT ≪ Q. Then the value of

χ2 slightly grows but keeps less then one until δT = 0.2 and

after this threshold it jumps to higher values. The next jump is

seen at δT = 0.25. After δT = 0.25 the value of χ2 increases

rapidly. We interpret this fact saying that at δT = 0.2 we

become sensitive to Y -term, and at δT = 0.25 the Y -term
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Table 10 The number of points

with qT < δT Q for each data

set. In the majority of fits we use

δT = 0.2, see explanation in the

text

δT 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3

CDF + D0 run1 27 34 38 41 44 47 49 51 52

CDF + D0 run2 22 28 32 38 43 49 55 60 63

ATLAS Z-production (7 + 8 TeV) 10 12 14 16 18 20 21 23 24

ATLAS DY (8 TeV) 9 11 12 14 14 16 16 18 18

CMS (7 + 8 TeV) 8 10 10 12 14 16 16 18 18

LHCb (7 + 8 + 13 TeV) 18 21 24 27 30 30 33 33 33

High energy total 94 116 130 148 163 178 190 203 208

E288 200 GeV 16 20 24 29 35 36 41 44 47

E288 300 GeV 22 27 33 38 45 46 51 55 59

E288 400 GeV 33 40 49 57 66 69 76 82 85

Low energy total 71 87 106 124 146 151 168 181 191

Total 165 203 236 272 309 329 358 384 399

Fig. 3 The δT dependence of

the value of χ2/d.o. f. for some

one-parameter models. The

value of the parameter coming

from the fit is also shown

together with systematic

uncertainties

starts to dominate the cross-section, i.e. we leave the domain

of TMD factorization. We have found that the presented plots

rather strongly depend on the set of pertubative scales. For

some choice of these scales, one can obtain an ideally flat

plateau of χ2 for δT � 0.2. However, the values of the two

important thresholds, namely, δT = 0.2 (where deviation

form TMD factorization appears) and δT = 0.25 (where

the TMD factorization is completely broken), are stable with

perturbative scales.

As a result of these tests, in the following we use the data

points with qT � 0.2 Q, or say δT = 0.2. The choice of δT

that we make is consistent with [53]. This range includes 163

high-energy and 146 low-energy data points (in total 309 data

points). Comparing this number of points with the literature,

we observe that, it is the largest set of points for Drell-Yan/Z-

boson production used up to present in a simultaneous fit

of TMDPDF (to our knowledge), which also has the largest

considered range of energies from (Q,
√

s) = (4, 19.4) GeV

(from the E288 experiment) to (Q,
√

s) = (150, 8000) GeV

(from the ATLAS experiment).

3.5 Scale variations and theoretical uncertainties

The theoretical uncertainties of the perturbative inputs are

tested by varying the perturbative scales around their cen-

tral values, as it is discussed in Sect. 2.4. The distribution of

uncertainties through orders for a typical high energy exper-

iment is shown in Figs. 4, 5, and for a typical low-energy

experiments in Figs. 6, 7. The complete set of plots for every

included experiment can be found in [31].
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Fig. 4 Theoretical error-bands and experimental data points for CDF-

Run 2 experiment. The theoretical error is estimated changing c1,2,3,4 in

the range (0.5, 2) at each perturbative order. The nonpertubative input is

provided by model 2. The sub-panels show the relative size of error-band

for theory and experiment

The uncertainty associated with the TMD evolution factor

is parameterized by the c1-variation. This uncertainty drops

down between NLL/NLO and NNLL/NLO orders, that is

together with the increase of the perturbative order for D (see

Table 1). The size of the band is correlated with the energy

of the process, that is, it is less significant for higher-energy

experiments.

The uncertainty associated with the hard scale depends on

the c2-variation. This band is independent of qT . This error

is the main one at NLL/LO (which we do not present here),

but becomes negligible at higher orders.

The uncertainty associated with the low-energy behavior

of the evolution factor is parameterized by the c3-variation.

We have found that it significantly influences the shape

of the cross-section and also it is rather large at small-

qT . As expected it is decreases going from NLL/NLO to

NNLL/NNLO. At NNLL/NNLO it gives the main contribu-

tion to the uncertainty band for the cross-section.

The uncertainty associated with the small-b matching of

coefficients and PDFs is represented by the c4-variation. It is

the most interesting error because it checks the convergences

of the ζ -prescription. The corresponding error-band is larger

at qT → 0, which corresponds to the contribution of large Lµ

(we remind that in ζ -prescription, Lµ grows unrestrictedly).

The important observation is that the large uncertainty area

significantly shrinks between NLL/NLO and NNLL/NNLO,

although the NNLL/NNLO contains a higher power of Lµ.

This shows a very good behavior of the ζ -prescription. In

total this error is dominant at NLL/NLO, but becomes smaller
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Fig. 5 Theoretical error-bands and experimental data points for LHCb

(13 TeV) experiment at 13–14 GeV. The theoretical error is estimated

changing c1,2,3,4 in the range (0.5, 2) at each perturbative order. The

nonpertubative input is provided by model 2. The sub-panels show the

relative size of error-band for theory and experiment

(although compatible) to the one coming from the c3 variation

at NNLL/NNLO.

The size of the theoretical error-band is significantly

bigger at small-Q, as can be visually checked comparing

Figs. 4, 5 to Figs. 6, 7. The uncertainties reduces when one

increases the perturbative orders, both in high and low energy

cases. However for the low energy case the error remains of

order ∼ 20% or higher even at NNLL/NNLO, which can be

problematic for a precise description of these experiments.

We additionally stress that at NLL/LO the uncertainties range

from 50 to 100% and higher. This shows that this particular

order has no prediction power, and should not be considered

any serious for a well based extraction of TMDs. This is the

main reason for excluding NLL/LO order from our analysis.

In order to provide a final definition of the theoretical

error, we use all scale variations and we take the maximum

deviation among them. We have found that our definition of

uncertainties is close, as far as one can compare different the-

oretical expressions, to the common definition used e.g. in

[21,43]. In total, for the high-energy experiments we find that

the theoretical uncertainty (at NNLO) is of the order 2–3%

at the peak. It grows to ∼ 5–6% at maximum allowed qT ,

and to ∼ 10% at qT → 0. This value seems to be smaller

(but comparable) to the typical values of uncertainties pre-

sented ResBos or DYRes. This is a definite positive point

of the ζ -prescription. Indeed, the main contribution (at high

energies) to it comes from the c3- and c4-error-bands, which

are controlled by ζ -prescription. The c4-band would be sig-
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Fig. 6 Theoretical error-bands and experimental data points for E288

(200 GeV) experiment at 5–6 GeV. The theoretical error is estimated

changing c1,2,3,4 in the range (0.5, 2) at each perturbative order. The

nonpertubative input is provided by model 2. The sub-panels show the

ratio of deviation to the central line (with ci = 1)

nificantly larger in the presence of double-logarithms, which

are absent due to the ζ -prescription.

3.6 Normalization

As the TMD factorization approach describes the shape of

the differential cross section only in a limited range of qT ,

we need some extra input to normalize the curves. In order

to compare with the data, we weight the differential cross-

section by the total (or fiducial) cross-section. The values of

the theory predictions for total cross-sections can be obtained

from the studies of other groups. For example, one can use the

DYNNLO code [17,54]. Its predictions for the total cross-

sections are presented in the Tables 3, 4. However, we found

that such a strategy is unreliable, because even tiny dis-

agreement in the normalization leads to huge effects in the

χ2-minimization. This is especially important for LHC data

sets, which have very small error-bands. Additionally, as we

demonstrate later, the DYNNLO predictions are worse than

that obtained using our normalization factors.

Therefore, to fit the high energy data set we introduce

a normalization factor for each data set. This factor equals

the partial integral over qT for experimental and theoretical

cross-sections, and reads
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Fig. 7 Theoretical error-bands and experimental data points for E288

(400 GeV) experiment at 13–14 GeV. The theoretical error is estimated

changing c1,2,3,4 in the range (0.5, 2) at each perturbative order. The

nonpertubative input is provided by model 2. The sub-panels show the

ratio of deviation to the central line (with ci = 1)

N =

∑

included
bins

∆qT
dσexp.

dqT

∑

included
bins

∆qT
dσth.
dqT

, (51)

where ∆qT is the size of the qT bin. In this way, we fit only the

qT -shape of cross-section, which is already very restricting,

as we discussed in the previous section.

The values of N−1 resulting from the calculations are pre-

sented in Table 11. It is clear that the deviation between the

theory and experiment decreases with perturbative orders.

For the majority of experiments (excluding the Z-boson pro-

duction measured by ATLAS), we find a good agreement for

the absolute value of the differential cross-section obtained

from the data points and the TMD factorization. It is impor-

tant that the values of N are very stable with respect to the

change of non-perturbative model and to the scale variation.

In particular, we do not present the error-band on the normal-

ization values in the Table 11, because they are smaller then

the present precision.

The normalization of the data from E288 experiment is

generally unknown. Most probably, the main source of dis-

crepancy comes from the fiducial cuts made for E288 experi-

ment, which cannot be restored nowadays. The small fiducial

cuts do not seriously influence the qT -shape of the differential

cross-section, but can sizably decrease the total normaliza-

tion. In our analysis, we change the common normalization

of all E288 data points as
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Table 11 The normalization factors for the cross-section for each

experiment. The dimensional-less numbers are ratios of partially inte-

grated cross section over qT (51) (theory/experiment, i.e. N−1), for the

data with the published value of total cross-section. For the data sets with

unpublished values of total cross-section, the value of the total cross-

section used for normalization is presented. The numbers are given for

the model 1. The variation of the scales and models gives the change

of numbers in the unrepresented digits. The numbers shown in bold are

those which agree with the measured cross-section within the error bars

Order ATLAS Z-boson

7 TeV (pb)

ATLAS Z-boson

8 TeV

ATLAS 46–66

8 TeV

ATLAS 116-150

8 TeV

CMS

7 TeV (pb)

CMS

8 TeV (pb)

LHCb

7 TeV

LHCb

8 TeV

LHCb

13 TeV

NLL/NLO 438 0.92 1.01 0.93 369 407 0.92 0.93 0.93

NNLL/NLO 438 0.92 1.01 0.93 368 407 0.92 0.93 0.93

NNLL/NNLO 461 0.97 1.08 0.98 387 429 0.97 0.99 0.98

Table 12 The results of the χ2-minimization procedure with gK = 0.

The values of χ2 are given including the theoretical error-band. The

values of extracted parameters are given with statistical error-band (the

first pair of numbers) and the theoretical error-band (the second pair of

numbers). The visual presentation of this table is given in Fig.9

Order
χ2

d.o. f.
λ1 λ2

Model 1

NLL/NLO 2.33 +2.76
−0.68 0.321+0.008

−0.007
+0.095
−0.100 0.271+0.014

−0.013
+0.155
−0.063

NNLL/NLO 1.76 +1.25
−0.48 0.289+0.004

−0.004
+0.007
−0.121 0.424+0.051

−0.045
+0.673
−0.139

NNLL/NNLO 1.34 +0.44
−0.20 0.271+0.007

−0.006
+0.076
−0.073 0.277+0.015

−0.012
+0.081
−0.042

Model 2

NLL/NLO 2.19 +2.34
−0.64 0.329+0.008

−0.008
+0.047
−0.101 0.289+0.019

−0.017
+0.276
−0.008

NNLL/NLO 1.65 +1.32
−0.39 0.236+0.005

−0.004
+0.070
−0.064 0.440+0.049

−0.044
+0.573
−0.126

NNLL/NNLO 1.36 +0.35
−0.18 0.284+0.007

−0.006
+0.074
−0.079 0.280+0.019

−0.017
+0.086
−0.034

NE288 = 0.8. (52)

This or close values have been used in different fits, see e.g.

[15,20]. However, we do not seriously ground on it, e.g. we

can switch to 0.85 or 0.9 without significant loss in χ2 (how-

ever, the value 1 produces serious disagreement with our

current input). One should take into account that the theoret-

ical uncertainty at small−Q is very large, see Figs. 6, 7. It

also implies that low-energy cross-sections are very sensitive

to the choice of PDF set (in particular, our approximation of

Eq. (43) for nuclei PDF could be too crude). We have checked

that the E288 data can be also fitted with NE288 = 1 to the

same values (or better) of χ2 by additional variation of Q0

(similar to the fit made in [24]). Such an ambiguity represents

a problem in the analysis of the low-energy data.

3.7 Results of the fits and TMD extraction

In this section, we present the results of the global fit for the

complete data sets presented in Sect. 3.1, which allows the

extraction of the unpolarized TMDPDF. We have made two

independent fits, with gK = 0 and with gK �= 0. The results

of the χ2 minimization and the values of the extracted param-

eters are presented in Tables 12, 13. The visual presentation

is given in Figs. 8, 9.

We have estimated both statistical and theoretical errors

on the fit parameters. The statistical errors are related to the

uncertainty of the χ2-minimization and are induced by the

experimental error-bands. The statistical errors have been

estimated by the MINOS procedure of MINUIT package

[71]. The theoretical errors are related to the uncertainty of

perturbation series. There is no common procedure for the

estimation of the theoretical error. Therefore, we propose the

method presented in the following.

The theoretical error is estimated by a set of independent

fitting procedures for each variation of the scale constants

c1,2,3,4 ∈ [0.5, 2], as discussed in Sect. 2.5. In other words,

Table 13 The results of the

χ2-minimization procedure with

non-zero gK . The values of χ2

are given with theoretical

error-band. The values of

extracted parameters are given

with statistical error-band (the

first pair of numbers) and the

theoretical error-band (the

second pair of numbers). The

visual presentation of this table

is given in Fig. 9

Order
χ2

d.o. f.
λ1 λ2 gK × 10−2

Model 1

NLL/NLO 1.17 +1.32
−0.07 0.189+0.009

−0.009
+0.114
−0.052 0.425+0.054

−0.045
+0.047
−0.250 2.31+0.25

−0.24
+1.44
−1.19

NNLL/NLO 1.21 +1.16
−0.02 0.175+0.008

−0.008
+0.089
−0.041 0.532+0.076

−0.067
+0.426
−0.203 1.27+0.22

−0.21
+1.19
−1.27

NNLL/NNLO 1.23 +0.30
−0.13 0.228+0.016

−0.013
+0.034
−0.060 0.306+0.031

−0.026
+0.265
−0.063 0.73+0.24

−0.23
+1.09
−0.73

Model 2

NLL/NLO 1.18 +1.31
−0.07 0.199+0.011

−0.010
+0.104
−0.062 0.443+0.061

−0.052
+0.503
−0.093 2.18+0.26

−0.25
+1.57
−1.06

NNLL/NLO 1.22 +1.16
−0.01 0.181+0.009

−0.009
+0.099
−0.045 0.562+0.092

−0.075
+0.468
−0.206 1.18+0.22

−0.21
+1.12
−1.18

NNLL/NNLO 1.29 +0.26
−0.18 0.244+0.016

−0.015
+0.035
−0.069 0.306+0.034

−0.029
+0.216
−0.050 0.59+0.24

−0.27
+1.01
−0.59
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Fig. 8 The values of parameters for fN P extracted from the global fit

with gK = 0. Red marks represent the extraction with model 1. Blue

marks represent the extraction with model 2. The black marks show the

values of parameters extracted at c1,2,3,4 = 1. The thick bands represent

the statistical errors of parameter determination. The thin error-bands

represent the theoretical error on extracted parameters due to variation

of c1,2,3,4 ∈ [0.5, 2]. The numerical values of parameters are given in

the Table 12

Fig. 9 The values of parameters for fN P extracted from the global fit

with gK �= 0. Red marks represent the extraction with model 1. Blue

marks represent the extraction with model 2. The black marks show the

values of parameters extracted at c1,2,3,4 = 1. The thick bands represent

the statistical errors of parameter determination. The thin error-bands

represent the theoretical error on extracted parameters due to variation

of c1,2,3,4 ∈ [0.5, 2]. The numerical values of parameters are given in

the Table 13

we set, say, c1 = 2 and perform the minimization of χ2. In

this way, we obtain a new set of model parameters (and a

new value of χ2). In total, we have 8 independent variations

and hence have 8 values of parameters. The final theoretical

error-band is given by the maximal positive and minimal

deviations from the central value and the results are reported

in Table 14. A drawback of this procedure is the variation of

a scale can lead to the serious increase in χ2. In other words

changing the matching scales affects also the quality of the

fit. In general, the size of the band for χ2 value represents the

stability of the theoretical model, and they are also reported

in Table 14. One can see that the error for χ2 significantly

drops with orders.

In Refs. [21,43] a different procedure has been used for

the estimation of theoretical errors which takes into account

a combined variation of all constants ci in a Monte Carlo

analysis. Because of the fact that the error is usually domi-

nated by just one of these constants we expect that the method

used here offers a comparable estimate. More work about this

issue can be done in the future.

The values of the parameter λ1, which parametrizes the

asymptotics of TMDPDFs, extracted at different orders agree

with each other within the error-band, that slightly reduces

with the increase of the order. It has a natural size of the

order of pion mass, λ1 ∼ 1.3mπ − 2.3mπ . The values of the

parameter λ2, which parameterizes the quadratic correction

to the small-b regime, are not so stable although the values

at different orders are compatible within the errors. In par-

ticular, they have large error-bars at NNLL/NLO order. The

behavior of gK is the most peculiar. It decreases with the
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Table 14 Example of parameter

extraction with the variation of

c1,2,3,4 constants, and evaluation

of the theoretical error. Bold

numbers in brackets represent

the deviation of the parameter

from its central value

Variation
χ2

d.o. f.
λ1 λ2 gK × 10−2

Model 1 NNLL/NLO

c1,2,3,4 = 1 1.17 0.189 0.425 2.31

c1 = 2 1.31 (+0.14) 0.201 (+0.012) 0.316 (−0.109) 3.00 (+0.69)

c1 = 0.5 1.10 (−0.07) 0.184 (−0.005) 0.308 (−0.117) 1.60 (−0.71)

c2 = 2 1.19 (+0.02) 0.204 (+0.015) 0.223 (−0.202) 2.12 (−0.19)

c2 = 0.5 1.20 (+0.03) 0.219 (+0.030) 0.226 (−0.199) 1.93 (−0.38)

c3 = 2 1.23 (+0.06) 0.251 (+0.062) 0.315 (−0.110) 3.75 (+1.44)

c3 = 0.5 1.13 (−0.04) 0.160 (−0.029) 0.220 (−0.205) 1.12 (−1.19)

c4 = 2 1.76 (+0.59) 0.137 (−0.052) 0.473 (+0.046) 2.71 (+0.40)

c4 = 0.5 2.49 (+1.32) 0.303 (+0.114) 0.175 (−0.250) 1.15 (−1.16)

Result 1.17+1.32
−0.07 0.189+0.114

−0.052 0.425+0.047
−0.250 2.31+1.44

−1.19

Model 1 NNLL/NNLO

c1,2,3,4 = 1 1.23 0.228 0.306 0.73

c1 = 2 1.40 (+0.17) 0.242 (+0.014) 0.296 (−0.010) 1.21 (+0.48)

c1 = 0.5 1.14 (−0.09) 0.221 (−0.007) 0.346 (+0.020) 0.12 (−0.61)

c2 = 2 1.22 (−0.01) 0.217 (−0.011) 0.295 (−0.011) 0.86 (+0.13)

c2 = 0.5 1.26 (+0.03) 0.252 (+0.024) 0.326 (+0.020) 0.48 (−0.25)

c3 = 2 1.27 (+0.04) 0.260 (+0.032) 0.344 (+0.038) 1.82 (+1.09)

c3 = 0.5 1.31 (+0.08) 0.198 (−0.030) 0.358 (+0.052) 0.00 (−0.73)

c4 = 2 1.10 (−0.13) 0.168 (−0.060) 0.571 (+0.265) 1.27 (+0.54)

c4 = 0.5 1.53 (+0.30) 0.262 (+0.034) 0.243 (−0.063) 0.68 (−0.05)

Result 1.23+0.30
−0.13 0.228+0.034

−0.060 0.306+0.265
−0.063 0.73+1.09

−0.73

increase of the perturbation order. Moreover, at NNLL (both

/NLO and /NNLO) its error-band touches the zero. It can be

interpreted as following: the parameter gK is very small (or

even zero) but within the fit, it tends to compensate the miss-

ing higher perturbative orders of evolution exponent. We also

observe that all extractions of gK agrees with the theoretical

estimation gK = 0.01 ± 0.03 GeV2 made in [12]. One can

see that both models produce very similar results both for χ2

and the parameters.

As expected the theoretical error is reduced with the

increase of the perturbative order. In particular, the band on

the value of χ2 is significantly smaller at NNLL/NNLO. The

distribution of parameter values over perturbative orders pre-

sented in Table 14 is typical. The variation of c1 does not rep-

resent the main contribution to the error-band. It implies that

the low-energy matching for the rapidity anomalous dimen-

sion is not so important (in comparison to other matchings),

as typically expected.

The variation of c2 is almost negligible. Here, however,

we recall that c2 influences only the common normalization

factor, and thus the effect of its variation could be underes-

timated due to our fitting procedure. The variation of c3 and

c4 produces the most part of the error-band and the strongest

variation of χ2. At gK = 0 these variation are more-or-less

equivalent. At gK �= 0 there is a clear pattern. In this case,

the variation of c3 gives the main error-band on gK , while

the variation of c4 gives the main error-band on parameters

λ1,2. It is very natural since the variation of c3 tests the low-

energy normalization point of the evolution factor, and c4

tests the uncertainties of perturbation determination of the

TMDPDF.

In Table 15 we present the distribution of values for χ2

among experiments. One can see that the most stringent con-

straints come from the Z-boson production data of ATLAS

and D0 run2. This is due to the small experimental uncer-

tainty of these data points. At the low-energy, the main ten-

sion is presented by the 4–5 GeV bins, while the rest are dis-

tributed more-or-less homogeneously. It probably indicates

the influence of generic factorization violating terms. The

plots of the theoretical curves (at NNLL/NNLO for model

1) and the data points for individual experiments are shown

in Figs. 10, 11, 12, 13 and 14. The plots for different models

and at other orders can be found in [31].

4 Conclusion

The unpolarized Drell-Yan process at small-qT offers the

simplest application of the TMD factorization formalism, and

as such it has been studied by many groups. In this work, we

123



Eur. Phys. J. C (2018) 78 :89 Page 25 of 36 89

Table 15 The values of χ2/points for individual data sets. The boxes indicate the values of partial χ2 which are responsible for the increment of

χ2/d.o. f. from NLL/NLO to NNLL/NNLO

Data set Point Model 1 Model 2

NLL/NLO NNLL/NLO NNLL/NNLO NLL/NLO NNLL/NLO NNLL/NNLO

CDF run1 30 0.67 0.68 0.64 0.67 0.67 0.64

D0 run1 14 0.50 0.52 0.60 0.49 0.51 0.62

CDF run2 36 1.22 1.36 1.30 1.17 1.29 1.33

D0 run2 7 2.52 2.69 2.75 2.45 2.64 2.79

ATLAS (7TeV) Z-boson 9 1.54 1.55 2.01 1.60 1.59 2.27

ATLAS (8TeV) Z-boson 9 2.32 2.48 2.69 2.46 2.70 2.79

ATLAS (8TeV) 46-66 GeV 5 0.04 0.05 0.16 0.05 0.04 0.20

ATLAS (8TeV) 116-150 GeV 9 0.30 0.35 0.31 0.30 0.36 0.30

CMS (7 TeV) 7 1.38 1.39 1.36 1.38 1.38 1.36

CMS (8 TeV) 7 1.38 1.38 1.54 1.38 1.37 1.58

LHCb (7 TeV) 10 0.26 0.26 0.31 0.25 0.26 0.33

LHCb (8 TeV) 10 0.11 0.12 0.27 0.11 0.12 0.32

LHCb (13 TeV) 10 0.50 0.50 0.28 0.50 0.50 0.27

High energy data 163 0.95 1.00 0.94 0.94 1.00 1.04

E288(200) 4-5 GeV 5 3.86 4.28 3.86 4.25 4.59 4.30

E288(200) 5-6 GeV 6 3.00 3.03 1.92 3.05 3.07 1.92

E288(200) 6-7 GeV 7 1.68 1.68 0.84 1.66 1.67 0.79

E288(200) 7-8 GeV 8 1.10 1.10 0.93 1.13 1.11 1.00

E288(200) 8-9 GeV 9 1.83 1.84 0.78 1.89 1.87 1.87

E288(300) 4-5 GeV 5 1.93 2.20 4.09 2.24 2.44 4.90

E288(300) 5-6 GeV 6 1.15 1.18 1.15 1.19 1.21 1.21

E288(300) 6-7 GeV 7 0.84 0.83 0.66 0.85 0.83 0.69

E288(300) 7-8 GeV 8 1.18 1.17 0.90 1.16 1.17 0.86

E288(300) 8-9 GeV 9 1.13 1.14 1.13 1.11 1.36 1.10

E288(300) 11-12 GeV 12 1.08 1.08 1.00 1.11 1.10 1.04

E288(400) 5-6 GeV 6 2.11 2.04 1.12 1.94 1.92 1.01

E288(400) 6-7 GeV 7 2.59 2.68 2.55 2.59 2.64 2.55

E288(400) 7-8 GeV 8 0.83 0.97 2.02 0.99 1.07 2.44

E288(400) 8-9 GeV 9 1.36 1.31 1.37 1.37 1.32 1.54

E288(400) 11-12 GeV 12 1.08 1.06 1.25 1.05 1.05 1.17

E288(400) 12-13 GeV 12 0.88 0.88 1.10 0.87 0.88 1.14

E288(400) 13-14 GeV 12 0.39 0.38 0.72 0.39 0.39 0.71

Low energy data 146 1.38 1.41 1.35 1.50 1.48 1.49

Total 309 1.17 1.21 1.23 1.18 1.22 1.29

have revised the main points of the practical implementation

of TMD factorization, and reveal some new aspects of the

TMD phenomenology. Altogether it allows us to critically

reanalyze the available Drell-Yan data and to extract con-

sistently the unpolarized TMDPDFs, within some approxi-

mation. The primary aim of our analysis is to answer some

general questions for the TMD approach such as: Up to which

qT the TMD factorization works? What is the best asymp-

totical behavior of a TMD distributions? How convergent

is TMD formalism at higher orders of perturbative expan-

sion? The answers to these questions are naturally affected

by the used prescriptions for the practical implementation

of the TMD formalism. Even so, these important issues of

TMD phenomenology are undiscussed in the literature or

discussed very superficially. Implementing consistently the

TMD factorization formalism, we are able to fit a large set of

Drell-Yan data points which ranges from low (Q = 4 GeV)

to high (Q = 116–150 GeV) dilepton invariant masses on

a wide interval of center of mass energies and using a lim-

ited set of parameters (two for the non-perturbative part of
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Fig. 10 The comparison of the data for Z-boson production collected

at Tevatron experiments (run 1 and run 2) to the fit of model 2 at

NNLL/NNLO. Red data points are those which included in the fit (i.e.

with δT = 0.2). Gray data points are those which are not include in the

fit (i.e. δT > 0.2). The blue band is the theoretical uncertainty obtained

from the variation of scales

TMDPDF and one for the non-perturbative part of the TMD

evolution).

In this work, we have formulated and used the ζ -pres-

cription, which is one of the main new theoretical contribu-

tions of this article. The ζ -prescription consists of a particular

choice of the rapidity evolution scale ζ = ζµ, which depends

on µ, b and the parton flavor (quark or gluon). This choice

corresponds to the equi-evolution line in the space of TMD

scales, and thus a TMD distribution is µ-independent along

this line. As a consequence, all logarithms related to the TMD

evolution, which are essentially double logarithms, are elim-

inated from the small-b OPE. It significantly improves the

perturbative convergence and the radius of convergences for

the small-b OPE. The value of ζµ is dictated by the differ-

ential equation (29), which can be solved order-by-order in

perturbation theory. We stress that the ζ -prescription does

not strictly solve the problem of large-b logarithms, which

are still present in the matching coefficients. However, these

logarithms are not related anymore to the TMD scales. More-

over, these logarithms are accompanied by the x-dependent

coefficients which preserve the integral over x in accordance

with the probability interpretation of PDFs. Note, that the ζ -

prescription is universal for all TMDs of the leading dynami-

cal twist, due to the universality of TMD ultraviolet and rapid-

ity renormalization factors. There are multiple possibilities to

apply ζ -prescription, see some discussion in “Appendix B.1”.

In this work, we have used the simplest one, which can be

certainly improved. A further study of the ζ -prescription will

be done elsewhere.

Within our implementation of TMD factorization and

TMD distributions, which has a generic form, we have three

independent perturbative series: one for hard matching, one

for rapidity evolution, and one for small-b matching. To

defend the approach we provide the estimation of the pertur-

bative uncertainty by variation of associated scales by factor

2, see Sect. 3.5. We have considered several successive per-
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Fig. 11 The comparison of the data for Z-boson production collected

at ATLAS and CMS experiments to the fit of model 2 at NNLL/NNLO.

Red data points are those which included in the fit (i.e. with δT = 0.2).

Gray data points are those which are not include in the fit (i.e. δT > 0.2).

The blue band is the theoretical uncertainty obtained from the variation

of scales

Fig. 12 The comparison of the data for Z-boson production collected

at LHCb experiment to the fit of model 2 at NNLL/NNLO. Red data

points are those which included in the fit (i.e. with δT = 0.2). Gray data

points are those which are not include in the fit (i.e. δT > 0.2). The blue

band is the theoretical uncertainty obtained from the variation of scales
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Fig. 13 The comparison of the data for Drell–Yan reaction collected

at ATLAS to the fit of model 2 at NNLL/NNLO. Red data points are

those which included in the fit (i.e. with δT < 0.2). Gray data points are

those which are not include in the fit (i.e. δT > 0.25). The blue band is

the theoretical uncertainty obtained from the variation of scales

turbative orders (see Table 1), and demonstrate that the the-

ory uncertainties and the agreement with the data improve

with the increase of the perturbative order. The agreement of

the theory with the experiment resulting in our fit is a con-

sequence of the ζ -prescription to a large extent. The lowest

possible combination of perturbative order, namely NLL/LO,

produces very large theoretical error-bands and thus has been

excluded from the present study.

Our analysis shows that data are very selective about the

non-perturbative part of the TMDs and only well-behaved

models can accommodate the fit. The best models for the

non-perturbative part of TMDPDF that we have found are for-

mulated in Sect. 3.3. They have a common non-perturbative

structure, namely

F(x, b) ≃
∫ 1

x

dz

z
C(z, Lµ) fN P (z, b) f (x/z, µ), (53)

where f is the PDF, C is the small-b matching coefficient

and fN P is a non-perturbative input. We have found that the

best agreement with data is given when the function fN P

behaves as

at small b : fN P ≃ e−λ2b2

,

at large b : fN P ≃ e−λ1|b|. (54)

We have considered two ansatzes which respect Eq. (54),

see Sect. 3.3 and Eqs. (49) and (50). The models have dif-

ferent behavior in the intermediate b region, in particular,

model 2 has z dependence. Nonetheless, the models pro-

duce nearly identical values of χ2 and of parameters λ1,2.

It implies that the parameters λ1,2 that largely determine the

shape of TMDPDF have a precise physical meaning. The val-

ues of parameters are reasonable λ1 ∼ 1.5 mπ and λ2 ∼ 0.5

GeV2. We also study the influence of the parameter gK , that

parameterizes the non-perturbative part of TMD evolution.

We have found that this parameter is significant at lowest

order (in our case NLL/NLO) and less significant at higher

orders. Moreover, at NNLL/NNLO the value of gK is com-

patible with zero within the error-bars. We supplement our

extraction with the estimation of the theoretical and statistical

errorbars.

The theoretical uncertainty on the extracted parameters

is shown in Figs. 8, 9. Several improvements of the cur-

rent approach can certainly help the reduction of errors and

allow us to understand them better. In fact one can cite the

inclusion of factorization breaking corrections (Y-terms), and

also QED/isospin breaking corrections for LHC data. These

issues will be a matter of discussion of future works.

Another aspect that we point out, is the practical limitation

of TMD factorization. To make the discussion quantitative

we introduce the parameter δT , which is the highest allowed

ratio qT /Q accounted in the fit. Clearly, at very low δT the

TMD formalism should perfectly work, e.g. provide small

values of χ2-distribution. Our expectation is that within the

domain of the TMD-factorization the value of χ2/d.o. f. is

largely constant and starts to grow outside of this domain.

Indeed, for the best models, the observed picture agrees with

the expectation. In this way, we have shown that TMD fac-

torization as it is, i.e. in the absence of Y -term, is capable of

describing the data with qT � 0.2 Q, i.e. δT = 0.2. With

some risk, one can prolong it to δT = 0.25. After δT = 0.25

the TMD factorization loses any agreement with the experi-

ment. This analysis is unique, or at least we do not know any

analog in the literature.
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Fig. 14 The comparison of the data for Drell–Yan reaction collected at

E288 experiment to the fit of model 2 at NNLL/NNLO. Red data points

are those which included in the fit (i.e. with δT = 0.2). Gray data points

are those which are not include in the fit (i.e. δT > 0.2). The blue band

is the theoretical uncertainty obtained from the variation of scales
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The fit and the plots of the data has been done with the

help of arTeMiDe, version 1.1, available at [31]. This is

a code package for the numerical evaluation of TMD distri-

butions and related cross-sections. It has a flexible structure

and allows to consider an arbitrary combination of perturba-

tive orders up to NNLO for coefficient functions and N3LO

for evolution factors. In the current version, it evaluates only

unpolarized TMDPDFs, but we expect to update it for polar-

ized cases and TMD fragmentation functions, as well as, to

include the Y -term, in the future.
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Appendix A: Hard coefficient function

The hard coefficient function |CV (µ, Q)|2 can be obtained

from the expression for the quark form factor. At NNLO, it

can found in [36,37]. Here, we present the combined expres-

sion in Drell-Yan kinematic

|CV (µ, Q)|2

= 1 + 2asCF

(

−l2
Q2 − 3lQ2 − 8 + 7π2

6

)

+ 2a2
s CF

{

CF

[

l4
Q2 + 6l3

Q2 +
(

25 − 7π2

3

)

l2
Q2

+
(

93

2
− 5π2 − 24ζ3

)

lQ2

+511

8
− 83π2

6
− 30ζ3 + 67π4

60

]

+ CA

[

− 11

9
l3
Q2 + l2

Q2

(

−233

18
+ π2

3

)

+ lQ2

(

−2545

54
+ 22π2

9
+ 26ζ3

)

−51157

648
+ 1061

108
π2 + 313

9
ζ3 − 4π4

45

]

+ TF N f

[4

9
l3
Q2 + 38

9
l2
Q2 + lQ2

(

418

27
− 8π2

9

)

+4085

162
− 91π2

27
+ 4

9
ζ3

]

}

+ O(a3
s ). (55)

Appendix B: ζ -prescription and expressions for coeffi-

cient functions

In this appendix, we elaborate the details of the ζ -prescription

and expression for the coefficient function. Throughout the

paper, we use the following notation for logarithms

LX = ln

(

b2 X

4e−2γE

)

, lX = ln

(

µ2

X

)

. (56)

For convenience we introduce the following notation for the

perturbative coefficient of anomalous dimensions

Γ f =
∞
∑

n=0

an+1
s Γ

f
n , γ

f
V =

∞
∑

n=1

an
s γ

f (n)

V ,

D
f (µ, b) =

∞
∑

n=1

an
s

n
∑

k=0

Lk
µd

(n,k)
f . (57)

The LO terms are

Γ
q

0 = 4CF , Γ
g

0 = 4CA, γ
q(1)

V = −6CF ,

γ
g(1)

V = −2β0, d
(1,1)
f = Γ

f
0

2
, d

(1,0)
f = 0, (58)

where β0 = 11
3

CA − 2
3

N f is the leading order QCD

β-function. The higher order terms can be found e.g. in

Ref. [11].

B.1 Derivation of ζ -value

The ζ -prescription is defined as a curve in (µ, ζ )-plane along

which a TMD distribution has no evolution. In other words,

at ζ = ζµ

µ2 d F(x, b;µ, ζµ)

dµ2
= 0. (59)

This equation can be rewritten as

(

µ2 ∂

∂µ2
+

(

µ2

ζ

dζ

dµ2

)

ζ
∂

∂ζ

)

F(x, b;µ, ζ ) = 0. (60)

Using the explicit expressions for the anomalous dimensions

Eq. (11), and introducing the intermediate function lζµ =
f (Lµ) we obtain

D(Lµ) f ′(Lµ) + Γ f

2
f (Lµ) −

γ
f

V

2
− D(Lµ) = 0. (61)

Solving this equation order-by-order in perturbation theory,

we obtain
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lζµ = Lµ

2
+

γ
f (1)

V

Γ
f

0

+ c
f
1

Lµ

+ as

⎡

⎣

β0

12
L2

µ +
γ

f (2)

V + d
(2,0)
f

Γ
f

0

−
γ

f (1)

V Γ
f

1

(Γ
f

0 )2

+c
f
1 β0

2
+ c

f
2

Lµ

−
2c

f
1 d

(2,0)
f

Γ
f

0 L2
µ

⎤

⎦

+ a2
s

⎧

⎨

⎩

β2
0

24
L3

µ + β1Γ
f

0 + β0Γ
f

1

12Γ
f

0

L2
µ

+
[

β0

Γ
f

0

(

4d
(2,0)
f

3
+

γ
f (2)

V

2

)

−
β0γ

f (1)

V Γ
f

1

2(Γ
f

0 )2
+ 5β0

12
c

f
1

]

Lµ

+
γ

f (1)

V (Γ
f

1 )2

(Γ
f

0 )3
−

γ
f (2)

V Γ
f

1 + γ
f (1)

V Γ
f

2 + d
(2,0)
f Γ

f
1

(Γ
f

0 )2

+
γ

f (3)

V + d
(3,0)
f + β0Γ

f
1

c
f
1
2

Γ
f

0

+c
f
1 β1 + 3c

f
2 β0

2
+ c

f
3

Lµ

+
2c

f
1 d

(2,0)
f Γ

f
1

(Γ
f

0 )2L2
µ

− 2
c

f
2 d

(2,0)
f + c

f
1 d

(3,0
f

Γ
f

0 L2
µ

+
4c

f
1 (d

(2,0
f )2

(Γ
f

0 )2L3
µ

⎫

⎬

⎭

+O(a3
s ), (62)

where c
f
1,2,3 are integration constants. To derive this expres-

sion we have used that the Lµ-dependence of rapidity anoma-

lous dimension at NNLO has the form

D
f (Lµ) = as

Γ
f

0

2
Lµ + a2

s

(

Γ
f

0 β0

4
L2

µ + Γ
f

1

2
Lµ + d

(2,0)
f

)

+ a3
s

⎛

⎝

Γ
f

0 β2
0

6
L3

µ + 2Γ
f

1 β0 + Γ
f

0 β1

4
L2

µ

+
4β0d

(2,0)
f + Γ

f
2

2
Lµ + d

(3,0)
f

⎞

⎠ + O(a4
s ),

(63)

where the constants d
(2,0)
f and d

(3,0)
f can be found in [46].

The integration constants c1,2,3 that appears in Eq. (62) are

to be fixed by additional conditions, which would correspond

to a selection of a particular curve among the family of equi-

evolution curves in (µ, ζ )-plane. In our current analysis, we

set all constants ci to zero for simplicity. It corresponds to

the curve that passes though the point (µ, ζ ) = (0, 0). We

leave for the future a dedicated study of boundary condition

and its influence on the phenomenology. Thus, the explicit

NLO expression for lζµ for quark TMDPDF reads

lζµ = Lµ

2
− 3

2
+ as

[

11CA − 4TF N f

36
L2

µ

+ CF

(

−3

4
+ π2 − 12ζ3

)

+ CA

(

649

108
− 17π2

12
+ 19

2
ζ3

)

+ TF N f

(

−53

27
+ π2

3

)]

+ O(a2
s ). (64)

The explicit NLO expression for lζµ for gluon TMDPDF

reads

lζµ = Lµ

2
− 11

6
+ 2

3

TF N f

CA

+ as

[

11CA − 4TF N f

36
L2

µ

+ CA

(

247

54
− 11π2

36
− 5ζ3

2

)

+TF N f

(

−16

3
+ π2

9

)

+
(

2CF + 40

27
TF N f

)

T f N f

CA

]

+ O(a2
s ). (65)

The expression for the ζµ then reads

ζµ = 2
µ

b
e−v f −γE , v f = lζµ − Lµ

2
. (66)

B.2 Scale dependence and logarithmic part of coefficient

function

The small-b coefficient function satisfies the pair of equations

µ2 d

dµ2
C f ← f ′(x, b;µ, ζ )

=
∑

k

C f ←k(x, b;µ, ζ )

⊗
[

δk f ′

2

(

Γ f lζ − γ
f

V

)

− Pk← f ′(x)

]

, (67)

ζ
d

dζ
C f ← f ′(x, b;µ, ζ )

= −D
f (µ, b)C f ← f ′(x, b;µ, ζ ), (68)

where P(x) is the DGLAP kernel of the PDF evolution, and⊗
denotes the Mellin convolution in the variable x . Using these

equations one finds the logarithmic part of the coefficient

function. At NNLO the expression for the coefficient function

reads

C f ← f ′

= δ f f ′(x̄) + as

[

− Lµ P
(1)

f ← f ′ + C
(1,0)

f ← f ′ + δ f f ′(x̄)

×
(

−Γ
f

0

4
L2

µ + Γ
f

0

2
Lµlζ −

γ
f (1)

V

2
Lµ

)]

+ a2
s

{

δ f f ′(x̄)
(Γ

f
1 )2

8

(

1

4
L4

µ − L3
µlζ + L2

µl2ζ

)
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+Γ
f

0

4

[(

P
(1)

f ← f ′ + δ f f ′(x̄)
γ

f (1)

V

2

)

(

L3
µ − 2L2

µlζ
)

+ δ f f ′(x̄)β0

(

−2

3
L3

µ + L2
µlζ

)

]

+
(

δ f f ′(x̄)Γ
f

1 + Γ
f

0 C
(1,0)

f ← f ′

) 2Lµlζ − L2
µ

4

+
[

1

2
P

(1)
f ←k ⊗ P

(1)

k← f ′ +
γ

f (1)

V − β0

2
P

(1)

f ← f ′

+ δ f f ′(x̄)γ
f (1)

V

γ
f (1)

V −2β0

8

]

L2
µ+δ f f ′(x̄)d

(2,0)
f (lζ −Lµ)

+
[

−P
(2)

f ← f ′ −C
(1,0)
f ←k ⊗ P

(1)

k← f ′ +C
(1,0)

f ← f ′

(

β0−
γ

f (1)

V

2

)

− δ f f ′(x̄)
γ

f (2)

V

2

]

Lµ + C
(2,0)
f ← f

}

+ O(a3
s ), (69)

where we omit the argument (x) of DGLAP kernel P(x) =
∑

n an
s P(n)(x) and the finite part of the coefficient function

C (n,0)(x), and δ f f ′(x̄) = δ f f ′δ(x̄).

Substituting the NLO expression for lζ , Eq. (62) into the

coefficient function, Eq. (69) we obtain at NNLO

C f ← f ′

= δ f f ′(x̄) + as

[

− Lµ P
(1)

f ← f ′ + C
(1,0)

f ← f ′ + c
f
1 Γ

f
0

2
δ f f ′(x̄)

]
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s

⎡

⎣

(

1
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(1)
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(1)

k← f ′ − β0
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µ
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(
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(
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f
1 Γ

f
0

2
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)

⊗ P
(1)

k← f ′

+β0

(

C
(1,0)

f ← f ′ + δ f f ′(x̄)
c

f
1 Γ

f
0

2
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+ C
(2,0)
f ← f + c
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1 Γ

f
0

2
C

(1,0)

f ← f ′(x) + δ f f ′(x̄)

×

⎛

⎝
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f (1)

V d
(2,0)
f

Γ
f

0
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f
1 Γ
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1

2
+ c
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f
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2
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f
1 Γ
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8

⎞
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⎤

⎦

+O(a3
s ). (70)

Note, that despite the fact that the solution for ζ -prescription

in Eq. (62) has inverse powers of Lµ, the coefficient function

has not. It is easy to check that this expression convoluted

with PDF is renormalization-invariant,

µ2 d

dµ2
Cq←k ⊗ fk←h(x) = 0 . (71)

B.3 Expression for NNLO coefficient function in

ζ -prescription

The NNLO coefficient functions are cumbersome structures,

which contain logarithms and polylogarithms of order 2 and 3

and their straight numerical evaluation is costly. To speed up

the evaluation of convolutions within arTeMiDe, we have

used an approximate expression for the coefficient function.

A similar method for higher-order expressions has been sug-

gested in Ref. [68] and it is widely used in NNLO+ phe-

nomenology of PDFs. We parameterize the NNLO coeffi-

cient function by 17 terms

C(Lµ, x)

= A1δ(x̄) + A2

(

1

1 − x

)

+

+ A3

(

ln x̄

1 − x

)

+
+ A4 ln x̄ + A5 ln2 x̄ + A6 ln3 x̄

+ B1 ln x + B2 ln2 x + B3 ln3 x + B4
1

x
+ B5

ln x

x

+ c1 + c2x + c3x2 + c4x3 + c5 ln x̄ ln x

+ c6 ln x̄ ln2 x . (72)

Here, the coefficients A represent the singular at x → 1

terms, and are evaluated exactly. The coefficients B repre-

sent singular at x → 0 terms, and also evaluated exactly.

The coefficients c represent interpolation functions between

asymptotics. These coefficients are fit numerically. The rel-

ative precision of the approximation is ∼ 10−3. The con-

volution integral receives the main numerical contributions

at singular points, while the rest are minor corrections. So,

we find that the relative accuracy of the convolution is better

then 10−6, which is far beyond any currently needed accu-

racy. The values of coefficients A, B, and c are given in the

Tables 16, 17, 18.
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