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A self-organizing featuremap (SOM)was used to represent vehicle-following and to analyze the heterogeneities in vehicle-following
behavior. �e SOM was constructed in such a way that the prototype vectors represented vehicle-following stimuli (the follower’s
velocity, relative velocity, and gap)while the output signals represented the response (the follower’s acceleration). Vehicle trajectories
collected at a northbound segment of Interstate 80 Freeway at Emeryville, CA, were used to train the SOM. �e trajectory
information of two selected pairs of passenger cars was then fed into the trained SOM to identify similar stimuli experienced
by the followers. �e observed responses, when the stimuli were classi	ed by the SOM into the same category, were compared
to discover the interdriver heterogeneity. �e acceleration pro	le of another passenger car was analyzed in the same fashion to
observe the interdriver heterogeneity. �e distribution of responses derived from data sets of car-following-car and car-following-
truck, respectively, was compared to ascertain inter-vehicle-type heterogeneity.

1. Introduction

Vehicle-following has been an important topic of tra
c �ow
research in the past 50 years. Many deterministic vehicle-
following models have been proposed and studied [1] and
many of themare being used inmicroscopic tra
c simulation
tools [2]. Earlier studies, for example [3], relied on limited
sets of data collected from instrumented vehicles driven in
test tracks. Results of the earlier studies have been developed
into the well-known Gazis, Herman, and Rothery or simply
the GHR model [3, 4]. Users of the GHR model or other
deterministic models have assumed that the selected model,
once calibratedwith its 	xed parameter values, was applicable
to all driver-vehicles; that is, the driver-vehicle population
is homogenous. Some microscopic tra
c simulation tools
distinguish the behavior between dierent driver-vehicles by
using the same model but vary the parameter values between
dierent driver-vehicles.

With the large-scale vehicle trajectory data collection
eorts enabled by remote sensing techniques in the past
decade, several researchers have begun studies on hetero-
geneous vehicle-following behavior between driver-vehicles
and/or for the same driver-vehicle [5–8]. Such studies still
relied on one or more prespeci	ed vehicle-following equa-
tions.�e researchers either (i) calibrated dierent equations
to show that dierent driver-vehicles responded with dier-
ent driving rules; (ii) calibrated the same equation but dier-
ent parameter values between driver-vehicles; or (iii) calib-
rated the same equation but dierent parameter values
between acceleration and deceleration. Such studies still
depend on the deterministic equations, whichmay need to be
calibrated to dierent segments of the driver-vehicle popula-
tion.

In this paper, we use the term vehicle-following instead of
the conventional term car-following, as the lead or following
vehicle may be a truck instead of a car. We propose to use
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the self-organizing feature map (SOM) to replicate vehicle-
following behavior. �e SOM consists of neurons arranged
systematically on a two-dimensional surface (known as a
“map”). Each neuron has a prototype weight vector that
represents the characteristic features in the input space. Such
structure is capable of mapping patterns in the high dimen-
sional input space into a two-dimensional map. According
to the unsupervised learning rule, vectors that are similar to
each other in the multidimensional space will be clustered
in the same neighborhood in the SOM’s two-dimensional
space, which makes it possible to be adopted as a tool of
data classi	cation. Conventional neural networks do not have
the unsupervised clustering capability. Because of its unique
structure, users of the SOM do not need to specify the func-
tion between the input features and its output variable. No
equation needs to be prede	ned and no parameter calibration
is necessary. �erefore, the SOM may be considered as a
nonparametric approach to model vehicle-following.

�e objective of this paper is to use the SOM to study
the heterogeneities of vehicle-following behavior. We use
a trained SOM to show that when presented with similar
stimuli (i) dierent car drivers respond with dierent magni-
tudes of acceleration when following cars; that is, car drivers
have interdriver heterogeneity; (ii) the same car driver res-
pondswith dierentmagnitudes of accelerationwhen follow-
ing the same car; that is, the same driver has intradriver het-
erogeneity; and (iii) car drivers respond with dierent mag-
nitudes of acceleration when the leaders are of dierent
vehicle types. We called this phenomenon inter-vehicle-type
heterogeneity. In additional to proposing the SOM as a
nonparametric vehicle-followingmodel, the 	ndings of inter-
driver heterogeneity, intradriver heterogeneity, and inter-
vehicle-type heterogeneity serve as complements to limited
earlier studies.

A�er this introduction, the next section of this paper
reviews the vehicle-following models and SOM. �is is fol-
lowed by a description of the data used in this research. �e
next section presents the SOM training. Subsequently, we
present the results of using the trained SOM to analyze the
interdriver, intradriver and inter-vehicle-type heterogeneit-
ies. �e 	ndings are summarized towards the end of this
paper.

2. Literature Review

2.1. Vehicle-Following Models. A vehicle-following model is
an equation (or a set of equations) that describes the move-
ment of a driver-vehicle in response to the dynamics of
the driver-vehicle immediately ahead, when both vehicles
are traveling in the same direction in the same lane. As a
fundamental building block ofmicroscopic tra
c simulation,
the realism of a vehicle-following model improves the accu-
racy of the simulation outcome, which in turn enables better
transportation decision making.

�e historical development of vehicle-following models
from 1958 to 1999 has been summarized in [1]. Many
vehicle-following models have been proposed, tested, and
used in microscopic simulation models over the years [2].
�e deterministic model proposed by Gazis, Herman, and

Rothery [3], o�en known simply as the GHR model, is one
of the earliest and the most well-known models. �e GHR
model, also known as the General Motors (GM)model, takes
the following form:

�̈� (� + Δ�) = ��
[�̇� (� + Δ�)]� [�̇� (�) − �̇� (�)]

[�� (�) − �� (�)]�
, (1)

where �̈� (�) is the acceleration of the follower 
 at time �;
�̇� (�) is the velocity of the follower 
 at time �; �̇� (�) is the
velocity of the leader � at time �; �� (�) is the position of the
follower
 at time �; �� (�) is the position of the leader � at time
�; �� is the follower’s sensitivity constant; Δ� is the time lag in
the follower’s response; and� and  are calibration constants.

�e GHR model equates the follower’s response to the
follower’s sensitivity multiplied by the external stimulus. �e
calibrated � and  values obtained in dierent studies have
been summarized in [1]. �e dierent � and  values found
at dierent study sites gave an indication of the heterogeneity
of vehicle-following behavior across locations. Among other
vehicle-following models that have been studied extensively
are the Helly model [9], Gipps model [10], and Intelligent
Drivermodel [11]. Although thesemodels take dierent func-
tional forms, they share the same characteristics of having
the follower’s acceleration �̈� (� + Δ�) as the response, and

follower’s velocity �̇� (�), relative velocity ⌊�̇� (�) − �̇� (�)⌋,
and space headway ⌊�� (�) − �� (�)⌋ among the stimulus
terms.

Earlier vehicle-following studies have assumed that the
model form and constants, once calibrated, applied to all the
driver-vehicles or at least all passenger cars observed at the
same site. Most of the available tra
c simulation models,
such as CORSIM [12] and VISSIM [13], assume one model
form for all the driver-vehicles but account for variation
between driver-vehicles by assigning dierent parameter val-
ues. In CORSIM, there are 10 types of drivers; each represents
a dierent degree of aggressiveness in vehicle-following. Each
vehicle generated in a CORSIM model is randomly assigned
one type of driver. In VISSIM, users are able to de	ne
the probability distributions of desired speed, maximum
acceleration, and other vehicle performance parameters.

Recently, researchers have begun to study the dierent
responses between drivers (interdriver heterogeneity) and
for the same driver (intradriver heterogeneity, part of it is
also known as asymmetric behavior) when presented with
similar stimuli. Brockfeld et al. [14] and Ranjitkar et al. used
trajectory data collected from nine vehicles driven in a test
track in Hokkaido, Japan, using Global Positioning System
receivers to calibrate many vehicle-following models [15].
�ey found that dierent vehicle-following models produced
dierent error magnitudes a�er parameter calibration. �ey
noted that the variation of errors between drivers were
larger than the variations between dierent vehicle-following
models. Ossen and Hoogendoorn 	tted the parameters ��,
�, and  of the GHR model to a vehicle trajectory data set
collected at the A2 Motorway in Utrecht, the Netherlands
[16].�ey found that dierent drivers had dierent calibrated
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��, �, and  values. Punzo and Simonelli 	tted four vehicle-
following models to vehicle trajectory data collected in
Naples, Italy [17]. �ey found a high degree of variability
of the calibrated parameter values among drivers and also
for the same drivers under dierent driving conditions. �is
is perhaps the 	rst report on the observation of intradriver
heterogeneity. Ossen et al. again attributed the dierence
in the observed vehicle-following behavior between drivers
to (i) dierent vehicle-following equations and (ii) dierent
parameter values of the equations [18]. Kesting and Treiber
calibrated the Intelligent Driver model and the Velocity
Dierence model to a vehicle trajectory data set [19]. �ey
found that intra-driver variability rather than interdriver
variability accounts for a large part of the calibration
errors.

Siuhi and Kaseko appear to be the 	rst to use the Next
Generation SIMulation (NGSIM) vehicle trajectory data set
to analyze vehicle-following behavior [6].�ey calibrated the
GHR model (without the Δ� term in the follower’s velocity)
using the data collected at theU.S. 101 Freeway in LosAngeles.
�ey showed the distributions of Δ� during acceleration and
deceleration, with deceleration having a smaller mean Δ�
value.�e same study also analyzed the distributions of� and
 values and recommended dierent sets of � and  values
for acceleration and deceleration, respectively, even for the
same drivers.�e dierentΔ�,�, and  values in acceleration
and deceleration lead to the so-called asymmetric vehicle-
following phenomenon. Siuhi [5] a
rmed that dierent Δ�,
�, and  values are necessary to also account for vehicle types
of the leader and the follower.

Wang et al. studied interdriver and intradriver hetero-
geneities using vehicle trajectory data collected at the A2
Motorway in Utrecht, the Netherlands [7]. �ey calibrated
the Helly model, Gipps model, and Intelligent Driver model.
�ey found that, for the majority of the drivers, (i) the Δ�
for deceleration was smaller than that for acceleration; (ii)
when the same vehicle-followingmodel was 	tted to the data,
the 	tted parameter values for acceleration and deceleration
conditions were dierent; and (iii) the best 	tted model took
dierent forms in acceleration and in deceleration.

Ossen and Hoogendoorn presented the results of 	ve
vehicle-following models which were calibrated against vehi-
cle trajectory data collected at the A2 Motorway in Utrecht
and the A15 Motorway in Rotterdam, the Netherlands [8].
�ey compared themodelswhen a carwas following a car and
when a car was following a truck. Among the 	ndings were
(i) dierent vehicle-following models best 	tted dierent
passenger cars; (ii) truck tended to be driven in a relatively
lower speed variance compared to passenger cars; and (iii) the
desired headways are lower when a car was following a car
compared to a car following a truck. �eir 	ndings showed
interdriver heterogeneity between passenger cars and well as
the heterogeneity depending on the leader’s vehicle type.

�e above recent studies have shown that heterogeneities
in vehicle-following behavior exist (i) for the same follower
during acceleration and deceleration; (ii) for the same fol-
lower, when the leaders are of dierent vehicle types; (iii)
between dierent followers, even when the leader-follower
pairs are of the same vehicle combination.

Map

Input vector

A = (a1, a2, . . . , aN)

(wxy1, wxy2, . . . , wxyN)

Wxy =

Figure 1: General architecture of self-organizing feature map.

2.2. Self-Organizing Feature Map. �e SOM, introduced by
Kohonen [20], is motivated by the self-organization char-
acteristics of the human cerebral cortex. �e SOM can
learn to detect regularities and correlations in its input with
its existing memory and adapt its responses to that input
accordingly.

�e SOM is one type of neural networks [21].�enetwork
topology and unsupervised training schememake it dierent
from the commonly known neural networks. A SOM is
usually a two-dimensional grid, as shown in Figure 1. �e
map is usually square, but can be of any rectangular or
hexagonal shape. Each point on the grid, denoted by its
coordinate position (�, �), has a neuron and its associated
weight vectorW��. �e �-dimensional weight vectorW�� =
(���1, ���2, . . . , ����, . . . , ���	) represents the centroid of a

data cluster of similar training vectors.�e weight vectors are
collectively known as the SOM’s memory.

�e SOM is a mapping technique to project an �-
dimensional input space to a two-dimensional space, eec-
tively performing a compression of the input space. When an
input vector A = (�1, �2, . . . , ��, . . . , �	) is presented to the
SOM, the “distance” betweenA and each of theweight vectors
in the entire SOM is computed. �e neuron whose weight
vector is “closest” to A will be declared as the “winner” and
has its output set to 1, while others are set to 0.Mathematically,
the output ��� of a neuron located at (�, �) is

��� =
{
{
{

1, if
�����A − W��

����� = min
∀�,�

{�����A − W��
�����} ,

0, otherwise,
(2)

where ‖‖ represents the Euclidean distance and  and ! are
indices of the grid positions in the SOM. �e input vectors
that are categorized into the same cluster, that is, the same
winning neuron, have the same output. In the above equation,
as inmost SOMapplications, ��� is coded as a binary variable.
However, in some real world applications, it is possible for ���
to be a discrete or continuous variable, as illustrated later in
this paper.

�e training of a SOM is to code all theW�� so that each
of them represents the center of a cluster of similar training
vectors. Once trained, the W�� is known as a prototype
vector (of the cluster it represents). �e SOM training is
based on a competitive learning strategy. During training,
the winning neuron, denoted by (", #), adjusts its existing
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weight vectorW� towards the input vector A. Neurons that
are neighboring to thewinning neurons on themap also learn
part of the features of A. For each neuron, the weight vector
during training step � is updated as

W
�
�� (� + 1) = W

�
�� (�) + ℎ��,� (�) �����A

� − W
�
�� (�)����� . (3)

�e function ℎ��,�(�) is the neighborhood function which
embeds the learning rate. �e value ℎ��,�(�) decreases with
increasing %��,�, the distance between the winning neuron
at (", #) and the neuron of interest at (�, �). To achieve
convergence, it is necessary that ℎ��,�(�) → 0 as � → ∞.
More details on the SOM training may be found in [22].

In transportation engineering, the SOM has recently
been applied to vehicle classi	cation [23] and tra
c data
classi	cation [23, 24], among others.

3. Data Professing

�e data used in this research was part of the NGSIM
vehicle trajectory data collected in the northbound direction
of Interstate 80 Freeway at Emeryville, CA, on April 13,
2005 (Wednesday), from 4:00 p.m. to 4:15 p.m. [25]. �e
downloaded data consisted of the trajectories of individual
vehicles at 0.1 second intervals as they traveled across the
503m segment. �ere were six northbound lanes at this site.
�e le�most lane (lane 1) was the High Occupancy Vehicle
lane, while the two rightmost lanes (lanes 5 and 6) have many
weaving or merging movements between an on-ramp and
an o-ramp. To ensure that the data analyzed was mostly
through movements, only data in lanes 2, 3, and 4 was
extracted, processed, and analyzed. During this 15-minute
period, tra
c volume ranged from 1278 to 1414 vphpl, and
the average space-mean-speed ranged from 27.9 to 30.1 km/h
[25].

�e data was 	ltered to meet the following criteria.

(1) �e followers must be passenger cars but the leaders
could be passenger cars or trucks.

(2) Each pair of leader and follower must have at least
5.0 seconds of interaction. If the required interaction
time is too long, few pairs of vehicles could be
extracted from the 503m segment. However, vehicle
pairs must have a few seconds of continuous inter-
actions so as to observe the follower’s acceleration or
deceleration behavior.�e 5.0 seconds was arbitrarily
selected as a compromise between these two con�ict-
ing factors.

(3) Gap at time � is de	ned as �� (�) − �� (�) − * �, where
* � is the length of the lead vehicle. �is is because
the following drivers usually judge the following
distance by looking at the rear end of the lead vehicle
and use the lead vehicle’s brake lights to detect the
leader’s sudden deceleration. Vehicles following with
a large gap behind the leaders are unlikely to have
interaction with the leaders. �erefore, according to
[26], the vehicle pairs with amaximum spacing below
50m were more likely to be in vehicle-following

situations, so only data with gap of 50m of shorter
were processed further.

(4) �e time lag (Δ�) for acceleration was assumed to be
0.80 second while that for deceleration was assumed
to be 0.70 second. �ese values were taken from
the average values reported by [5]. Although other
studies (e.g., [1, 8, 15–18]) have reported dierent
reaction times, the above average values used by [5]
were adopted as they were derived from the NGSIM
vehicle trajectory data collected at the closest available
site (U.S. 101 Freeway in Los Angeles, CA) and then
validated against the data collected at the Interstate 80
Freeway site at Emeryville, CA.

(5) �e vehicle velocities and accelerations were esti-
mated according to the recommendations of [26]. At
every 0.1 second intervals, a vehicle’s instantaneous
velocity was calculated from the longitudinal dier-
ence in the coordinates “Local #”. �e velocity was
further “smoothed” by taking the average valuewithin
the past 0.5 second intervals. At any time instant �,
�� (�) and �� (�) were the vehicle positions at �, �̇� (�)
and �̇� (�) were the average velocities from � − 0.4
to � seconds, while �̈�(� + Δ�) was the follower’s
acceleration or deceleration from � + Δ� − 0.4 to � + Δ�
seconds. �is �̈�(� + Δ�) value was computed from
(�̇�(� + Δ� − 0.4) − �̇�(� + Δ�))/0.5.

(6) �e data were then checked for possible errors. For
example, �� (�) − �� (�) − * � must be greater than 0m,
and �̇� (�) and �̇� (�) must be between 0 and 22m/s
(80 km/h). It was discovered that 381 out of 106,644
vectors did not meet the abovementioned 	ltering
criteria, including gap ≤50m. �ese 381 vectors were
discarded.

�e processed data consisted of 1,347 pairs of “car fol-
lowing car” and 66 pairs of “car following truck” scenarios.
Data from 897 randomly selected pairs of “car following car”
were assembled as the training data set. �e other 450 pairs
of “car following car” formed test data set I. Since 66 pairs of
“car following truck” were insu
cient to form a training data
set, they were assembled to form test data set II. �e training
data set had 67,778 vectors (at 0.5 second intervals). �e test
data set I had 33,803 vectors while test data set II had 4,675
vectors. Each vector (at time �) had four components: �̈�(� +
Δ�), �̇� (�), �̇� (�) − �̇� (�), �� (�) − �� (�) − * �. �e minimum
and maximum values of each component are shown in Table
1. �e accelerations were found to be between −3.41 and
3.41m/s2 which were within the values used in the design of
stopping sight distance [26]. Note that, unlike formula (1), the
follower’s velocity �̇�(�) has no time lag.�is was deliberately
set so that our model input was consistent with most of the
vehicle-following models, including the one used in [5, 6].

4. Training of Self-Organizing Feature Map

4.1. Architecture and Mapping Framework. �e concept of
this research was to 	rst construct a SOMwith weight vectors
that represent the prototype vehicle-following stimuli for the
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Table 1: Minimum and maximum values of the components in the training and test vectors.

Date set

�̈�(� + Δ�)
(m/s2)

�̇�(�)
(m/s)

�̇�(�) − �̇�(�)
(m/s)

��(�) − ��(�) − * �
(m)

min max min max min max min Max

Training set −3.41 3.41 0 20.20 −12.24 14.38 0.03 49.98

Test set I −3.41 3.41 0 21.30 −13.41 16.68 0.01 49.86

Test set II −3.41 3.41 0 14.84 −7.90 7.61 0.03 48.67

Map

Input vector

Output signal

bxy

A = (a1, a2, . . . , aN)

(wxy1, wxy2, . . . , wxyN)
Wxy =

Figure 2: Architecture of self-organizing feature map for vehicle-
following.

“car following car” scenarios. �e acceleration response of
each training vector was then associated with the winning
neuron. With the numerous training vectors, it was possible
to plot and analyze the distribution of acceleration response
associated with each neuron in the SOM (see the distribution
of ��� in Figure 2). Furthermore, the trained SOMwas used to
classify the vehicle-following stimuli embedded in the input
vectors in the test data sets. Once the winning neuron had
been identi	ed, statistical parameters of the response of the
winning neuron could be used to study the heterogeneous
behavior in vehicle-following.

As the input and weight vectors represented the vehicle-
following stimulus, the follower’s velocity, relative velocity,
and gap, following components were selected to form the
input vectors.�at is,A = (�̇�(�), �̇�(�) − �̇�(�), ��(�) − ��(�) −
* �). �ese three components were selected because they are
commonly found in vehicle-following models, such as the
GHR, Helly, and Gipps models.

4.2. Training. �e training of the SOM was performed with
the MATLAB Neural Network Toolbox [27] in a standard
desktop computer. Before the SOM training, each component
of the input vector was linearly scaled to [0, 1] between its
minimum and maximum values in the data set, that is, �� ∈
[0, 1], 3 = 1, 2, 3.�e trainingwas conducted over twophases:
ordering and tuning. In the ordering phase, theweight vectors

were adjusted at relatively larger magnitudes. �e initial
neighborhood radius was arbitrarily set to 3.0, learning rate
set to begin at 0.15, and the number of steps set to 1000. �e
neighborhood size started at an initial distance and decreased
as training proceeded. During the tuning phase, only weights
of the winning neuron and its immediate neighbors were
updated at relatively smaller magnitudes. During this phase,
the neighborhood distance was 	xed at 1.0, learning rate was
	xed at 0.02, and the number of tuning steps was 100.

�e size of the SOM was selected in consideration of the
following two factors. First, the grid has to be large enough
so that there were su
cient neurons to distinguish the varied
stimuli among the prototype weight vectors. Since the SOM
has three input components and the value of each component
may be viewed at 	ve levels (e.g., �̇� (�) may be described as
very slow, slow, moderate, fast, or very fast), there would be
125 possible combinations of input levels. Second, the number
of neurons must be small enough such that most, if not all
neurons have su
cient winning frequencies (sample sizes)
to observe the distribution of the response values. �is was
especially critical for test data set II which had relatively fewer
pairs of “car following truck” observations. A�er some initial
trials which involved SOMswith dierent number of neurons
and with dierent arrangements (square grid, rectangular
grid and linear) in the map, the SOMwas determined to have
121 neurons arranged in an 11 × 11 square grid. Although
the 121 neurons were fewer than the 125 suggested earlier, it
could be used as some combinations of �̇� (�), �̇� (�) − �̇� (�),
�� (�)−�� (�)−* � values were not possible in practical vehicle-
following situations.

5. Results and Discussions

5.1. Distribution of Stimulus. Figure 3 plots the two-
dimensional maps of the three weight components of the
trained SOM. �e neurons are numbered according to the
(�, �) coordinates in the grid, where � = 0, 1, . . . , 10 and
� = 0, 1, . . . , 10. �e darker colors represent smaller weight
values while the lighter colors represent higher weight
values. Because �� ∈ [0, 1], 3 = 1, 2, 3 and because of (3),
���� ∈ [0, 1], 3 = 1, 2, 3. Note that the ranges of ���1, ���2,
and ���3 values are dierent. �is is because the extreme
weight values in the training vectors did not occur o�en,
and formula (3) will update the weights to the normally
encountered ranges. �e statistics of the weight values are
summarized in Table 2. �e three maps in Figure 3 show
that, a�er training, the values of ���1, ���2, and ���3 change
gradually from one corner to the opposite corner in their
respective maps.�is indicates that the weight values (within
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Figure 3: Maps of weight components a�er SOM training.

their respective ranges) have been distributed spatially
among the prototype vectors, with the neighboring vectors
having similar weights.

From the maps in Figure 3, it can be seen that the neu-
rons at the lower le� corner has low follower’s velocities,

almost zero relative velocities (���2 value in the mid-range)
and small gaps. �ey represent the state where vehicles are
queuing in congested conditions. In this condition, the fol-
lower is expected to accelerate or decelerate with small mag-
nitudes.�eneurons located at the top right corner of the grid
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Table 2: Statistics of the weight values of the trained SOM.

���1
Flower’s
velocity

���2
Relative
velocity

���3
Gap

Number of prototype vectors 121 121 121

Average 0.3202 0.4492 0.2692

Standard deviation 0.1088 0.0259 0.1282

Minimum 0.0407 0.3956 0.0770

Maximum 0.5349 0.4152 0.7373

represent stimulus with relatively high follower’s velocities,
negative relative velocities (���2 less than midvalue), and
large gaps.�is condition indicates that the follower is closing
in to the leader from a distance (but may not necessarily
decelerate). �e neurons at the top le� corner have moderate
follower’s velocities, high relative velocities, and moderate
gaps.�ey represent the scenario that the lead vehicle is acce-
lerating away from the follower. �e follower may then
respond by accelerating.�e neurons at the bottom right cor-
ner have weight vectors that have moderately high follower’s
velocities, negative relative velocities, and small gaps. �ese
prototype vectors represent the condition that the follower is
quickly closing in to the leader. �e driver of the following
vehicle is likely to apply his/her brake.

5.2. Distribution of Mean Response. For each neuron, the
mean response (average follower’s acceleration) computed
from the winning vectors is next plotted in Figure 4. Figure
4(a) shows the distribution of mean response calculated from
the training data set. For each � value in the map, as �
increases from 0 to 10, the mean response changes from
deceleration to acceleration. For each � value in the map, as �
increases from0 to 10, themean response changes from accel-
eration to deceleration. �e maximum acceleration occurs
near � = 0, � = 10, which is the top le� corner of the SOM
as shown in Figure 3. On the other hand, themaximum dece-
leration occurs near � = 10, � = 0, which is the bottom right
corner of the SOM in Figure 3.

�e distributions of mean response among the vectors in
the two test data sets are presented in Figures 4(b) and 4(c),
respectively.�ese 	gures exhibit similar patterns, indicating
that the weight vectors had converged towards the end of
the SOM training. �us, viewed in conjunction with Figure
3, it can be concluded that the SOM has learned to capture
the prototype characteristics of most of the vehicle-following
stimuli among the training data.

�e mean and variance of response associated with each
neuron were next analyzed. �e minimum variance of accel-
eration occurred at neuron (� = 0, � = 0). At this neuron,
the variance is 0.41m2/s4 or standard deviation of 0.64m/s2.
�e variances of the other neurons all exceeded this magni-
tude. Another way to view the high variability of the acce-
leration is by means of coe
cient of variation, which is
the ratio of standard deviation over mean. All the absolute
values of coe
cients of variation exceeded 1.19, indicating
high variability in acceleration response.

Figure 5 plots the distribution of follower’s acceleration
for input vectors (in the training data set) that had winning
neurons at (� = 0, � = 9) and (� = 8, � = 3), respectively.
�e neuron at (� = 0, � = 9), as re�ected in Figure 3,
has moderate follower’s velocity, high relative velocity, and
moderate gap. In such a condition, most of the followers are
expected to respond with acceleration. �e accelerations as
shown in Figure 5(a) were distributed between [−3.04, 3.41]
m/s2 with a mean of 0.85m/s2. �e neuron at (� = 8, � = 3)
belongs to the input state that has high follower’s velocities,
negative relative velocities, and small gaps. Majority of the
drivers facing this situation will decelerate to avoid a rear-end
collision. As shown in Figure 5(b), the response ranges from

[−3.41, 2.97]m/s2 with themean of−0.94m/s2.Moreover, for
both neurons, the modes occurred at 0m/s2. �is is because
the followers may choose not to act at the present time step;
they may have responded at an earlier or later time step.

�e analysis in this subsection and Figure 5 has shown
that, given similar stimuli (input vectors that have the same
winning neuron), the follower’s response is not deterministic.
�e variation in the response may be due to the driving
behavior between drivers (interdriver heterogeneity), the
inconsistency of the same driver (intradriver heterogeneity),
or when the leaders belong to dierent types of vehicle (inter-
vehicle-type heterogeneity). Note that the term interdriver
heterogeneity also implicitly includes the varied acceleration
response caused by the dierent performance characteristics
of the same type of vehicle (e.g., cars). �ese three types of
heterogeneities will be demonstrated in the next three sub-
sections.

5.3. Interdriver Heterogeneity. To demonstrate interdriver
heterogeneity, data from two pairs of passenger cars in test
data set I was fed into the trained SOM and the distributions
of their responses were compared. Due to limitations on
space, we chose two pairs which share the most number of
the same winning neurons to demonstrate the interdriver
heterogeneity. �e 	rst pair was denoted as Pair 1794-1790,
in which the follower’s Vehicle Identi	cation Number (VIN)
in the NGSIM data set was 1794 and the leader’s VIN was
1790. �e second pair was Pair 1852-1847. For each pair
of cars, the vehicle trajectories for at least 68 continuous
seconds were extracted, resulting in more than 136 vectors
at 0.5 second intervals. During the observed duration, the
vehicle-following stimuli of Pair 1794-1790 were spread over
30 winning neurons. �e corresponding number of winning
neurons for Pair 1852-1847 was 23. Figure 6 represents these
two followers’ mean acceleration responses associated with
the eight common winning neurons. As shown in the 	gure,
the two followers (VINs 1794 and 1852) had dierent mean
acceleration magnitudes for the same winning neuron. In
two of the winning neurons, the signs of the accelerations
are opposite. Overall, VIN 1794 has higher magnitudes of
acceleration while VIN 1852 has heavier deceleration. �e
dierences may be caused by the followers’ driving habits.

5.4. Intradriver Heterogeneity. Another pair of passenger cars
(Pair 350-346) in test data set I was selected to illustrate
that, even if the same driver is presented with similar stimuli,
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Figure 4: Maps of average acceleration.

0

12

24

36

48

60

F
re

q
u

en
cy

−
3
.4

−
3
.0

−
2.
7

−
2.
4

−
2.
1

−
1.
8

−
1.
5

−
1.
2

−
0.
9

−
0.
6

−
0.
3

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

1.
8

2.
1

2.
4

2.
7

3
.0
3
.4

Acceleration (m/s2)

(a) Neuron at � = 0, � = 9

0

32

64

96

128

160

F
re

q
u

en
cy

−
3
.4

−
3
.0

−
2.
7

−
2.
4

−
2.
1

−
1.
8

−
1.
5

−
1.
2

−
0.
9

−
0.
6

−
0.
3

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

1.
8

2.
1

2.
4

2.
7

3
.0
3
.4

Acceleration (m/s2)

(b) Neuron at � = 8, � = 3

Figure 5: Distribution of response for the same stimulus categories.



Computational Intelligence and Neuroscience 9

Pair
1794-1790
Pair
1852-1847

−1.20

−0.80

−0.40

0.00

0.40

0.80

M
ea

n
 a

cc
el

er
at

io
n

(m
/s
2
)

x = 0
y = 0

0.30

0.50

x = 1
y = 0

0.05

−0.27

x = 2
y = 0

0.06

0.21

x = 3
y = 0

−0.96

−0.01

x = 10
y = 0

−0.34

−0.17

x = 9
y = 1

0.06

0.69

x = 10
y = 1

−0.22

0.07

x = 10
y = 3

−1.06

−0.86

Figure 6: Dierences in mean response between two followers.

4

2

0

−2

−4F
o

ll
o

w
er

’s
 a

cc
el

er
at

io
n

(m
/s
2
)

Time interval

Neuron at (x = 9, y = 0)

Neuron at (x = 10, y = 0) Other neurons

1 + Δt 21 + Δt 41 + Δt 61 + Δt 81 + Δt 101 + Δt

Neuron at (x = 10, y = 2)

Neuron at (x = 10, y = 3)

Neuron at (x = 10, y = 1)
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his/her responsemay be inconsistent.�is pair of vehicles has
50.5 seconds of vehicle-following observations, resulting in
101 vectors at 0.5 second intervals. Figure 7 plots the follower’s
acceleration pro	les over the duration of observation. �e
vertical color coded bars represent the winning neurons
identi	ed by the SOM.�eΔ� in �+Δ� in the horizontal axis is
to account for the time lag when the stimulus occurs at time
�. Five neurons are highlighted here as they have su
cient
winning frequencies for subsequent analysis.

Figure 8 shows the distributions of VIN 350’s responses
in three of the 	ve winning neurons identi	ed in Figure
7. According to Figure 4, on average, drivers decelerate in
neurons (� = 10, � = 0), (� = 10, � = 1), and (� = 10,
� = 3). It appears that, on average, VIN 350 has the same
deceleration signs at neurons (� = 10, � = 0) and (� = 10,
� = 3) which is consistent with the driver population in the
training and test data sets. However, the driver of VIN 350
has, on average, acceleration response at neuron (� = 10,
� = 1) (see Figure 8(b)) while the average response in the
data sets is deceleration. As plotted in Figure 8, when faced
with similar inputs belonging to the same winning neuron,
the driver of VIN 350 had varied responses. �is evidence
suggests that the same driver responded inconsistently when
the stimulating factors are considered analogous.

5.5. Inter-Vehicle-Type Heterogeneity. In this subsection, the
distribution of responses among the vectors in test data sets
I and II was compared. Test data set I consisted of data from
“car following car” scenarios while test data set II consisted of

“car following truck” scenarios. For each stimulus at neuron
(�, �), a two-tail paired �-test was conducted to see if the
dierence between the mean responses is signi	cant. Of the
121 paired �-tests conducted, the results in eight neurons
listed in Table 3 show signi	cant dierences between the two
means at 0.05 level of signi	cance (; value less than 0.05).
�is suggests that the follower’s response is dependent on
the vehicle type of the leader. At the other 113 neurons, the
paired �-test showed no signi	cant dierence between the
twomeans.�e reason ismost likely due to the high variances
in the acceleration of the followers (i.e., inter- and intradiver
heterogeneity).

6. Conclusions, Limitations, and Potential
Research Directions

�is paper has applied the SOMas a nonparametric approach
in modeling vehicle-following behavior. Vehicle trajectory
data, when both leaders and followers were passenger cars,
was used to train a SOMwith 121 neurons arranged in a 11×11
grid.�e follower’s velocity, relative velocity, and gapwere the
components of the weight vectors. A�er training, the SOM
represented the vehicle-following stimuli among its weight
vectors.

Selected pairs of vehicle trajectory data were fed into the
trained SOM.�e SOM identi	ed similar stimuli between the
dierent followers so that the acceleration responses could
be compared. �e results revealed that with similar stimuli
(i) heterogeneity exists between dierent car drivers when
following cars; (ii) heterogeneity exists for a car driver when
following the same car; and (iii) heterogeneity exists for car
drivers when the leaders belong to dierent vehicle types (car
versus trucks).

One of the advantages of the SOM (compared to con-
ventional vehicle-following models) is its ability to map the
essential stimulus components with the acceleration response
without having users specify the function form of the
vehicle-following equation or perform parameter calibration.
Although this research focused on the construction of a
SOM based on “car following car” scenario, it is possible to
construct other SOMs each tailored to a speci	c combination
of vehicle types between the leader and follower, such as “car
following truck,” “truck following car,” or “truck following
truck.” One may also need to construct several sets of SOMs,
with each set for a dierent driving context, for example,
highways versus urban arterials.

�e SOM also has a potential to replace the conventional
vehicle-following models currently being used in micro-
scopic tra
c simulation tools. To apply a trained SOM for
this purpose, a user needs to compare the vehicle-following
stimulus components with the prototype vectors to locate
the winning neuron at (", #). �e follower’s response is then
taken from the probability distribution of ��. �e accelera-
tion response is thus stochastic. It is very likely that the accel-
eration is further subjected to some rules to prevent sudden
�uctuation from one interval to the next. �is is beyond the
scope of this paper and is a subject of future research.

Although this research has explored the use of SOM to
model vehicle-following and used it to study heterogeneities
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Figure 8: Distribution of response by VIN 350.

Table 3: Two-tail �-tests for inter-vehicle-type heterogeneity.

Neuron Leader’s vehicle type Sample size
Mean
(m/s2)

Variance
(m2/s4)

�-stat ; value

� = 4
� = 0

Car 324 −0.78 1.47 −2.080 0.038
Truck 52 −0.41 −0.41

� = 7
� = 2

Car 283 0.00 0.76
2.133 0.034

Truck 50 −0.27 −0.27
� = 8
� = 4

Car 293 −0.21 0.84
2.158 0.032

Truck 35 −0.56 −0.56
� = 0
� = 6

Car 254 0.79 1.05
2.524 0.012

Truck 65 0.45 0.45

� = 5
� = 6

Car 185 0.11 0.72
2.098 0.037

Truck 40 −0.21 −0.21
� = 1
� = 8

Car 94 0.28 0.74
2.195 0.030

Truck 46 −0.05 −0.05
� = 2
� = 10

Car 311 0.53 0.98 −1.977 0.049
Truck 26 0.94 0.94

� = 8
� = 10

Car 383 0.37 0.93
2.900 0.004

Truck 36 −0.11 −0.11

in the follower’s behavior, there are several limitations due
to assumptions in this research. �ese limitations have sug-
gested possible directions of future research. First, the SOM
was developed from data gathered in the a�ernoon peak
period. �e SOM’s prototype vectors may not fully cover
the entire input space during the o-peak tra
c conditions.
Second, the SOMwas trainedwith data fromone freeway site.
It would be interesting to test the transferability of the SOM to
other sites. �ird, 	xed reaction times had been used in the

processing of data. It is known that reaction times vary for
the same driver and between drivers. �at is, reaction time
contributes to heterogeneities. However, without assuming
	xed reaction times, it was very di
cult, if not impossi-
ble to proceed with the analyses presented in this paper.
Future research should explore a new methodology to esti-
mate reaction time or incorporate reaction time into the
SOM’s input or output. Fourth, during training, the number
of neurons and the neighborhood radius of SOM are two
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crucial parameters aecting SOM’s clustering performance.
�e paper determined these parameters empirically based on
the size of data set and the operation speed of computers.
Analytical methods need to be further developed to give a
remark regarding how to determine these parameters in a
more reasonable manner. Fi�h, this research had manually
inspected the weight distributions among the neurons (Fig-
ure 3) to ascertain the convergence of weights at the end of
SOM training. An objective method of assessing the weight
convergence would be helpful in future SOM applications.
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