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Abstract 
With the development of fluid power transmission and control and control technology, using electro-hydraulic driven can significantly 
improve the load-carrying capacity, stiffness, and control accuracy of the stabilization platforms. However, compared to mechanical driven, 
electro-hydraulic driven parallel stabilization platform needs to consider the stiffness and damping of the fluid, as well as the coupling 
effect between the fluid and the structure, making the modal and dynamic response characteristics of the mechanism more complex. 
Aiming at the above problems, taking the electro-hydraulic driven 3-UPS/S parallel stable platform as the research object, considering the 
hinge stiffness, the vibration characteristic equation of the mechanism was established by using the virtual work principle. Then the 
variation characteristics of natural frequency and vibration response with the position of mechanism were analyzed basing on the dynamic 
equation. Finally, the correctness of the model was verified by modal test and Runge-Kutta methods. This study can provide a theoretical 
basis for the dynamic design of electro-hydraulic driven parallel mechanisms. 
Keywords: Electro-hydraulic driven 3-UPS/S parallel stabilized platform, Kinetic equation, Vibration mode, Vibration response, Modal 

test 
 

 

 

1  Introduction  

 

The stabilized platform detects the posture change of the 
equipment through the sensitive element, compensates the 
deviation of the equipment through attitude adjustment, and 
isolates the influence of the environment to keep the 
equipment relatively stable in the inertial space [1-4]. 
According to the mechanism type, the mechanism can be 
classified into series stabilized platform and parallel 
stabilized platform [5-6]. The series stabilized platform is 
simple in control and low in design cost. Thus, it is widely 
used in fields like laser positioning, satellite communication, 
missile guidance and unmanned reconnaissance aircraft. 
Because of its characteristics of strong bearing capacity, high 
stiffness and easy multi-axis coupling driven, the parallel 
stabilized platform has a wide range of application scenarios 
in high-precision operations such as weapon launch and 
maritime rescue [7-10]. By adopting the electro-hydraulic 
driven with the advantages of high power/weight ratio, fast 
response speed and small cumulative error, the motion 
control accuracy of the stabilized platform is greatly 
improved [11-12]. 
 
  *Correspondence: xiaomingbingbing@163.com 
1 Hebei Key Laboratory of Heavy Machinery Fluid Power Transmission 
and Control, Yanshan University, Qinhuangdao, 066004 

To further improve the performance of parallel stabilized 
platform, it is important to study its vibration characteristics 
[13-14]. There are three methods to study the vibration 
characteristics: simulation analysis method [15-17], 
theoretical analysis method [18] and experimental analysis 
method [19]. The simulation analysis method is to analyze 
the vibration characteristics after solving the characteristic 
value of the finite element analysis of the structure [20-22]. 
Therefore, it is widely used in analyzing vibration 
characteristics of complex mechanical systems. The 
experimental analysis method is to estimate the modal 
parameters of the mechanism through the frequency 
response function measured in practice and used to verify the 
conclusion of simulation and theoretical analysis [23-24]. 
Theoretical analysis method is to analyze the vibration 
characteristics based on the dynamic equation and the 
analytical solution of vibration response [25-26]. It can 
quantitatively analyze the vibration characteristics of 
mechanism, and it is a common method for further study of 
mechanical vibration. However, during the process of 
dynamic modeling, the influence of hinges stiffness is 
usually ignored, and the variation characteristics of natural 
frequency and vibration response with the position of 
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mechanism have not been studied yet. 
Therefore, taking the electro-hydraulic driven 3-UPS/S 

parallel stabilized platform as the research object, the 
mechanical-hydraulic coupling dynamic equation is 
established considering the hinge stiffness. Then, the modal 
characteristics and resonant characteristics of the mechanism 
are studied. The theoretical model is verified by numerical 
simulation and modal test. This study can provide a 
theoretical basis for the dynamic modal analysis and 
resonance research of parallel mechanism. 

 

2  Kinematic analysis of Electro-Hydraulic 
Driven 3-UPS/S Parallel Stabilized Platform 

 

2.1  Position Analysis of Electro-hydraulic Driven 3-
UPS/S Parallel Stabilized Platform 

As shown in Figure 1a), the electro-hydraulic driven 3-
UPS/S parallel stabilized platform consists of a moving 
platform, a supporting branch chain, a static platform, and 
three driving branches. Coordinate system U-xyz is the fixed 
coordinate system of the moving platform and coordinate 
system D-XYZ is the fixed coordinate system of the static 
platform. 

 

 
a)  Schematic diagram of electro-hydraulic driven 3-UPS/S 

parallel stabilized platform 

 
b)  Drive chain position vector diagram 

Figure 1  Coordinate system of electro-hydraulic 3-UPS/S 
parallel stabilized platform  

 

As shown in Figure 1b), the local coordinate system di-
xdiydizdi is established at the center of the universal joint, and 
the local coordinate system ui-xuiyuizui is established at the 
center of the spherical hinge. Axis zdi and axis zui are in the 
same direction as the unit direction vector ei of the driving 
branch. The rotation angle of the universal joint about axis 
xdi and axis ydi are respectively 

di
  and 

di
    the rotation 

angle of the spherical hinge about axis xui, axis yui and axis 
zui are respectively θui, u i

  , 
ui

    
di

  , 
ui

   are 
respectively the installation angles of universal joint and 
spherical hinge, which are determined by the platform 
structure. 

The closed-loop equation of the drive chain can be 
expressed as: 

 

    
0

U DD

i i U i i
l = − + +e Ru d u u , (1) 

 

Where 
i

l   is the length of the drive chain  
i

e   is the unit 
direction vector of the drive chain  D

U
R   is the rotation 

transformation matrix between coordinate system U-xyz and 
coordinate system D-XYZ   U

i
u   is the vector from the 

center of spherical hinge to the origin of coordinate system 
U-xyz  D

i
d  is the vector from the center of universal joint 

to the origin of coordinate system D-XYZ  
0

u is the initial 
displacement vector of coordinate system U-xyz to 
coordinate system D-XYZ  u  is the displacement vector of 
coordinate system U-xyz to coordinate system D-XYZ. 

Thus, the expression of the drive chain length can be 
expressed as: 
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    
0

D

U

U D

i i i
l = − + +Ru d u u , (2) 

 

The centroid position of the lower connecting rod of the 
drive chain can be expressed as: 

 

  
g

D

i i i i
q= +p d e , (3) 

 

Where pgi is the position vector of the lower connecting rod 
centroid  

i
q  is the distance between the centroid of the lower 

connecting rod and the center of universal joint. 
The rotation transformation matrix between local 

coordinate system di-xdiydizdi and coordinate system D-XYZ 
can be expressed as: 

 

 d d d d d d
( , ) ( , ) ( , )

i

D

d i i i i i i
z y x  =R R R R , (4) 

 

Since axis zdi is in the same direction as the unit direction 
vector ei, then zdi can be expressed as: 

 

 
d d d d d

d d d d d

d d

sin sin cos sin cos

sin sin cos cos cos

cos cos

ix i i i i i

iy i i i i i

iz i i

e

e

e

    
    

 

+   
   = −   
      

, (5) 

 

Thus, the rotation angle of the universal joint is: 
 

 

d d

d

d d d

cos sin
arctan( )

arcsin( cos sin )

ix i iy i

i

iz

i iy i ix i

e e

e

e e

 

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
 = − −

, (6) 

 

If local coordinate system di-xdiydizdi and ui-xuiyuizui have 
the same direction, the rotation transformation matrix 

i

D

u
R  

between local coordinate system ui-xuiyuizui and coordinate 
system D-XYZ can be obtained from Eq. (4). Thus, the 
rotation angle of the spherical hinge is: 
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Where ( )T T T

F u u
,

i

D D

i i i uU
z =R R R R . 

 

2.2  Velocity Analysis of Electro-hydraulic Driven 3-
UPS/S Parallel Stabilized Platform 

By solving the first derivative of time of Eq. (1), the velocity 
equation of the drive chain can be expressed as: 

 

  
z u

UU

i i i i i D i
l l+  = e ω e ω Ru , (8) 

 

 

Where 
zi
ω   is the angular velocity of drive chain  

u
ω   is 

the angular velocity of moving platform. 
Then the Jacobian matrix between the drive chain and the 

moving platform is: 
 

 

 

 

 

1 1

u 2 2

3 3

UU

D

UU

D
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D
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, (9) 

 

Multiplying both sides of Eq. (8) by the unit direction 
vector ei, and express the result in local coordinate system 
di-xdiydizdi, the result is shown as follows: 
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, (10) 

 

Where  
u

id

i
v represents the center velocity of the spherical 

hinge in local coordinate system di-xdiydizdi. 
The angular velocity of the drive chain is generated by the 

rotation of the universal joint, so the angular velocity of the 
drive chain rotation can be expressed in the local coordinate 
system di-xdiydizdi as: 

 

 
z d d d di i i i

  = +y x , (11) 
 

By representing the vector in Eq. (9) in local coordinate 
system di-xdiydizdi, then Eq. (9) can be expressed as: 

 

 

  ( ) ( ) ( )
( ) ( )

( )

T T T

z d d d d d

T T

d d d

T

d d
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       , 1 0 0
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id

i i i i i

i i i

i i

x y

x

  

 

 

=

+



ω R R

R , (12) 

 

By combining Eqs. (10)-(12), the angular velocity of 
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universal joint can be expressed as: 
 

 

( )  ( )

( )  ( )

d u:,2

d u:,1

1

1

i

i

Ud U

i U D i

i

Ud U

i U D i

i

l

l





 = − 

 = 


R ω Ru

R ω Ru

, (13) 

 

Then the Jacobian matrix of universal joint is: 
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R ω Ru

J R ω Ru
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, (15) 

 

Similarly, considering the motion transmission 
relationship between the spherical hinge and the moving 
platform, the angular velocity of the drive chain can be 
expressed as: 
 

 
z u u d u u u ui i i i i i

  = + + +ω ω y x z , (16) 
 

By representing the vector in Eq. (14) in local coordinate 
system ui-xuiyuizui, then Eq. (14) can be expressed as: 
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By combining Eq. (11) and Eq. (17), the angular velocity 
of spherical hinge can be expressed as: 
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Thus, the Jacobian matrix of spherical hinge can be 
expressed as: 
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Solving the first derivative of time of Eq. (3), the result is 
shown as follows: 

 

    ( ) ( )T

g z d d
0i id d

i i i i i i
q q  =  =p ω e , (22) 

 

Combining Eq. (13) and Eq. (22), the Jacobian matrix of 
the lower connecting rod is: 
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Similarly, the Jacobian matrix of the upper connecting rod 
is: 
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Where hi is the distance between the centroid of the lower 
connecting rod and the center of the universal joint. 

 

2.3  Dynamic Equation of Electro-hydraulic Driven 3-
UPS/S Parallel Stabilized Platform 

To derive the dynamic equation of electro-hydraulic drive 3-
UPS/S parallel stabilized platform, the following 
assumptions need to be made: 

(1) The errors in the process of processing and assembly 
are ignored  

(2) The force of the drive chain on the moving platform 
can be equivalent to the spring force along the expansion 
direction of the drive chain  

(3) The relative friction between components is ignored. 
According to virtual work principle, the virtual power 

acting on each component of the mechanism is calculated as: 
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  (25) 
 

Where fu is the force matrix on the moving platform  k is 
the stiffness matrix of the drive chain  c is the damping 
matrix of the drive chain  Iu is the inertia matrix of the 
moving platform  

u
ω  is the angular velocity of the moving 

platform  mgi is the mass of the lower connecting rod   
gi

di
p  

is the displacement vector of the lower connecting rod  
 
gi

di
I   is the inertia matrix of the lower connecting rod  

 
gi

diω  is the angular velocity of the lower connecting rod  

mhi is the mass of the upper connecting rod   
hi

di
p   is the 

displacement vector of the upper connecting rod   
hi

di
I  is 

the inertia matrix of the upper connecting rod   
hi

diω  is the 

angular velocity of the upper connecting rod. 
Ignoring Coriolis force and centrifugal force, Eq. (25) can 

be simplified to: 
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Where 
u

T=x ω . 

The components of 
u
ω  are independent because the 

generalized coordinates are independent. Thus, the 
coefficients should all equal to 0. The explicit dynamic 
equation of the mechanism can be obtained as follows: 

 

 + + =Mx Cx Kx 0 , (27) 
 

Where 

 ( )
g h

3
T T

u g g h h
1

i ii i i i
i=

= + +M I J I J J I J , (28) 

 T

u u
=C J cJ ， (29) 
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3  Free Vibration Analysis of Electro-Hydraulic 
Driven 3-UPS/S Parallel Stabilized Platform 

 

3.1  Modal Analysis of Electro-Hydraulic Driven 3-UPS/S 
Parallel Stabilized Platform in Fixed Posture 

The structure parameters of Electro-hydraulic drive 3-UPS/S 
parallel stabilized platform are shown in Table 1. 
 

Table 1  Structure parameters of Electro-hydraulic driven 3-
UPS/S parallel stabilized platform 

Parameter Name Parameter Value 

Rotational inertia of the moving 
platform Iu (kg  m2) 

 diag 3.74 3.76 7.72  

Rotational inertia of the lower 
connecting rod Ig (kg  m2) 

 diag 0.96 0.96 0.0506  
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Rotational inertia of the upper 
connecting rod Ih (kg  m2) 

 diag 0.19 0.19 0.0069  

Radius of the moving platform ru (m) 0.38 

Radius of the static platform platform rd 

(m) 
0.51 

Mass of the moving platform mu (kg) 65.703 

Mass of the lower connecting rod mg 

(kg) 
20.604 

Mass of the upper connecting rod mh 

(kg) 
4.263 

Piston diameter of the hydraulic cylinder 
d1 (m) 

0.04 

Piston rod diameter of the hydraulic 
cylinder d2 (m) 

0.025 

bulk modulus of oil E (Pa) 1180×10-6 

Oil density ρ (kg/m3) 900 

Stiffness value of universal joint in 
rotation direction around axis xdi kxd 
(Nm/rad) 

72.07 

Stiffness value of universal joint in 
rotation direction around axis xdi kyd 

(Nm/rad) 

72.07 

Stiffness value of spherical hinge in 
rotation direction around axis xui kxu 

(Nm/rad) 

51.15 

Stiffness value of spherical hinge in 
rotation direction around axis yui kfu 

(Nm/rad) 

62.79 

Stiffness value of spherical hinge in 
rotation direction around axis zui kgu 

(Nm/rad) 

64 

viscous damping coefficient c N·(m/s) 1620 

 

Based on the parameters shown in Table1, the modal and 
natural frequencies of the platform in the initial position α=0°, 
β=0°, γ=28° and the random position α=10°, β=10°, γ=28° 
are calculated, the results are shown in Table 2 and Table 3. 

 

Table 2  Natural frequency and vibration mode at initial position 

Order of 
natural 
frequency 

first order 
natural 
frequency 

Second order 
natural 
frequency 

Third order 
natural 
frequency 

Natural 
frequency 
value (Hz) 

26.38 128.55 128.91 

Main vibration 
modes 

0 0.0278 -1 

-0.0001 -1 -0.0278 

1 -0.0007 0 

Table 3  Natural frequency and vibration mode at random 
position 

Order of 
natural 
frequency 

first order 
natural 
frequency 

Second order 
natural 
frequency 

Third order 
natural 
frequency 

Natural 
frequency 
value (Hz) 

27.46 120.94 148.82 

 

Main vibration 
modes 

0.0678 -0.2417 -1 

0.0875 -1 0.2424 

1 0.0498 0.0234 

 

After analyzing the data in Table 2 and Table 3, the 
following conclusions can be drawn: 
(1) At the initial position, the natural frequency of 

deflection direction is the minimum, and the natural 
frequencies in the direction of rotation and pitch are 
approximately equal  
(2) There is a certain coupling relationship between the 

vibration response of pitching and rotation direction, but the 
coupling relationship between them and the deflection 
direction is small  
(3) With the position changing of the mechanism, the 

coupling of the vibration response in every direction is 
enhanced, and the natural frequencies of each order also 
change. This is because the Jacobian matrix of the 
mechanism changes, and affects the mass matrix and 
stiffness matrix of the mechanism  
(4) When the position of the mechanism changes, the 

natural frequencies of each order change differently. The 
first and third order natural frequencies increased, while the 
second order natural frequencies decreased  
(5) When the vibration frequencies are the first order, 

second order and third order natural frequencies respectively, 
the maximum vibration response appears in the deflection, 
pitching and rotation direction in turn. In actual working 
conditions, the external excitation frequency is most likely 
to approach the first order natural frequency, so the 
mechanism is most prone to vibration in the deflection 
direction. 
 

3.2  Natural Frequency Analysis in Workspace of 
Electro-hydraulic Driven 3-UPS/S Parallel Stabilized 
Platform 

When the platform is used to maintain the stability of the 
horizontal direction of the equipment, the change range of 
deflection angle is small, and the angle compensation is 
mainly carried out through the change of rotation and 
pitching direction. According to the workspace search theory, 
when deflection angle is 28°, The change range of pitch angle 
and rotating angle is the largest. Therefore, taking this 
position as the initial workspace, the natural frequency 
variation curve of the mechanism can be obtained as follows: 
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a) Variation law of first order natural frequency 

 
b) Variation law of second order natural frequency 

 
c) Variation law of third order natural frequency 

Figure 2  Variation law of natural frequency in initial workspace  

 

It can be seen from Figure 2 that in the initial workspace, 

natural frequencies of each order present obvious symmetry 

with position changing, and the first order natural frequency 

is the most obvious, corresponding to the movement in the 

deflection direction. When the mechanism gradually 

deviates from the initial position, the variation trend of each 

order natural frequency is not the same. Meanwhile, the 

positions where the maximum and minimum values of each 

order natural frequency are obtained are different. In general, 

when the pitching angle is quite different from the rotating 

angle, the natural frequency will approach the limit value. 

However, the second order natural frequency has a large 

value near the initial position. When the mechanism 

gradually deviates from the initial position through attitude 

compensation, the second order natural frequency decreases 

gradually. In addition, the third order natural frequency is 

most sensitive to position change, followed by the second 

order natural frequency, and the first order natural frequency 

is least affected by position change. 

 

4  Force Vibration Analysis of Electro-Hydraulic 
Driven 3-UPS/S Parallel Stabilized Platform 

 

4.1  Vibration Response Analysis of Electro-hydraulic 
Driven 3-UPS/S Parallel Stabilized Platform 

When the excitation frequency is close to natural frequency 
of each order, the mechanism will generate resonance, which 
will affect the compensation accuracy and control accuracy. 
Therefore, when the structural parameters remain unchanged, 
the vibration response of the mechanism at the random 
position α=10°, β=10°, γ=28° is solved. The torque matrix 
acting on the mechanism is as follows: 

 

 

( )
( )
( )

0

U 0

0

80cos

80cos

80cos

t

t

t





 
 =  
  

M  (31) 

 

The time domain curve of vibration response is shown in 
Figure 3. As can be seen from the Figure 3, When subjected 
to an external harmonic excitation whose frequency is close 
to the natural frequency, the mechanism will generate 
resonance, and the steady state response is simple harmonic 
motion. When the excitation frequency is close to the first, 
second and third order natural frequency, the angular 
displacement in deflection, pitch and rotation direction 
reaches the maximum respectively. Meanwhile, when the 
external excitation frequency is close to the first order 
natural frequency, the angular displacement of the 
mechanism in rotation direction and pitching direction is 
approximately equal, but when the angular displacement in 
rotation direction or pitching direction reaches the maximum, 
the angular displacement response in the other two directions 
is smaller, which is consistent with the main vibration mode. 
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a) Time domain response when 

0 1
   

 
b) Time domain response when 

0 2
   

 
c) Time domain response when 

0 3
   

Figure 3  Time domain curve of forced vibration 

 

The frequency domain response curve of vibration 
response is shown in Figure 4. It can be seen that when the 
excitation frequency is close to each order natural frequency 
the steady-state vibration response amplitude in each 
direction reaches the maximum at the corresponding natural 
frequency. The maximum amplitude of vibration response is 
0.932° in deflection direction, 0.0213° in pitching direction., 

and 0.0111° in rotation direction. Meanwhile, when the 
excitation frequency is close to the first, second and third 
order natural frequency, the steady-state response amplitude 
in each direction gradually decreases. When the excitation 
frequency is close to the first order natural frequency, the 
steady-state vibration response of in each direction is much 
larger than that when the excitation frequency is close to the 
second or third natural frequency. Thus, when the excitation 
frequency is close to the first order natural frequency, the 
resulting resonance will have a great influence on the 
compensation accuracy and control accuracy. 

 

 

a) Frequency domain response when 
0 1

   

 
b) Frequency domain response when 

0 2
   



 

 

·9· 

 
c) Frequency domain response when 

0 3
   

Figure 4  Frequency domain curve of forced vibration 

 

4.2  Vibration Response Amplitude Analysis in 
Workspace of Electro-hydraulic Driven 3-UPS/S Parallel 
Stabilized Platform 

The amplitude of vibration response is also related to the 
position of the mechanism. Therefore, basing on keeping the 
theoretical parameters unchanged, the vibration response 
amplitude in the initial working space when the excitation 
frequency is close to the first order natural frequency is 
calculated, and the results are shown in Figure 5. 

It can be seen from Figure 5 that when the excitation 

frequency is close to the first order natural frequency, the 

amplitude curves of vibration response in each direction 

show a certain symmetry, and the locations where the 

extreme values of response amplitudes in each direction are 

obtained are not the same. From Figure 5a), we can know 

that the vibration response amplitude in rotation direction is 

small when degree of pitch angle is near 0°. In this position, 

the vibration response amplitude in the rotation direction is 

insensitive to the position change in the pitching direction. 

Similarly, as can be seen from Figure 5b), the vibration 

response amplitude in the pitching direction is relatively 

small when degree of pitch angle is near 0°. In this position, 

the vibration response amplitude in pitching direction is 

insensitive to the position change in rotation direction. When 

the mechanism gradually deviates from the initial position, 

the amplitude of vibration response in the rotation and 

pitching directions increases gradually. When the difference 

between the rotation angle and the pitch angle is large, the 

vibration response amplitude in rotation direction and 

pitching direction is large. As can be seen from Figure 5c), 

when the position changes from the left limit to the right 

limit of the working space, the amplitude of the vibration 

response in the deflection direction increases gradually. And 

when the excitation frequency is close to the first natural 

frequency, the vibration response amplitude in the deflection 

direction is much larger than that in the pitch and rotation 

directions, and the maximum value is more than 1°. The 

vibration generated by the mechanism will have a great 

impact on the control accuracy. 

 

 

a) Amplitude of vibration response in rotation direction 

 

b) Amplitude of vibration response in pitching direction 

 

c) Amplitude of vibration response in deflection direction 
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Figure 5  Amplitude of vibration response when 
0 1

   

 

 

5  Verification of Dynamic Theoretical Model of 
Electro-hydraulic Driven 3-UPS/S Parallel Stabilized 
Platform 

 

5.1  Verification of Free Vibration Theoretical Model 
To verify the correctness of free vibration theoretical model, 
the natural frequency of the prototype at random position 
α=10°, β=10°, γ=28° is measured by using pulse excitation 
method. The experimental schematic diagram is shown in 
Figure 6. The force hammer strikes the moving platform to 
generate impulse excitation force. Then, the signal of the 
exciting force enters the lower computer through the force 
sensor and voltage amplifier on the force hammer, and the 
axial response signal of the prototype is collected by the 
acceleration sensor and input to the computer through the 
voltage amplifier and the lower computer. 

The sampling frequency used in the experiment is 640Hz, 
so it meets the sampling theorem and the collected signals 
are reliable. The time-domain curves of excitation signals 
and vibration signals collected in the experiment are shown 
in Figure 9. 

After processing the data obtained in Figure 9, the power 

spectral density curve of the prototype response signal can 

be obtained, as shown in Figure 10. The curve has peaks at 

26.31Hz, 126.41Hz and 141.88Hz. Compared with the 

theoretical value of the natural frequency, the maximum 

error between the theoretical value and the experimental 

value is 4.66%, which can verify the correctness of the 

theoretical model. 

 

Table 4  Comparison of theoretical and experimental values of 
natural frequency 

Experimental result 
Theoretical 
value/(Hz) 

Experimental 
value/(Hz) 

error/(%) 

First order natural 
frequency 

27.46 26.31 4.18 

Second order natural 
frequency 

120.94 126.41 4.5 

Third order natural 
frequency 

148.82 141.88 4.66 

 

 

1 Oil tank 2 Liquid level gauge 3 Liquid temperature gauge 4 filter 

5 Motor pump 6 Overflow valve 7 Check valve 8 Filter 9 Servo 

valve 10 Electro-hydraulic drive 3-UPS/S parallel stabilized 

platform prototype 11 Acceleration sensor 12 Force hammer 13 

Lower computer 14 Computer 

Figure 6  Schematic diagram of modal experiment 

 

Figure 7  Electro-hydraulic drive 3-UPS/S parallel stabilized 

platform prototype 
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a) Modal test platform 

 

b) Signal acquisition and analysis system 

Figure 8  Modal test diagram 

 

a) Excitation signal of the system 

 

b) Acceleration response of the system 

Figure 9  Time domain curve of measured signal 

 

Figure 10  The power spectral density of the system response 

 

5.2  Verification of Forced Vibration Theoretical Model 
To verify the correctness of the forced vibration theoretical 

model of the mechanism, taking the excitation frequency 

close to the first order natural frequency as example, the 

fourth-order Runge-Kutta method is used to solve the time-

domain and frequent-domain characteristic curves of the 

vibration response, and the results are shown in Figure 11. 

As can be seen from Figure 11a), when the excitation 

frequency is close to the first order natural frequency, the 

time-domain curve of the numerical solution presents stable 

simple harmonic motion, which is consistent with the results 

of theoretical analysis. By comparing Figure 3b) and Figure 

11b), it can be seen that the numerical solutions of the 

maximum vibration response amplitude in the rotation, 

pitching and deflection directions are 0.0627°, 0.0766° and 

0.932° respectively. Correspondingly, the maximum 

vibration response amplitude obtained by theoretical 

calculation in each direction is 0.0626°, 0.0765° and 0.9316° 

respectively. The maximum error between the theoretical 

solution and the numerical solution is 0.016%, which can 

verify the correctness of the forced vibration theoretical 

Force Hammer 

Acceleration Sensor

Moving Platform

DC Power Computer

Lower Competer
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model. 

 

 

a) Time domain curve of numerical solution 

 

b) Frequency domain curve of numerical solution 

Figure 11  Time domain curve of steady-state response numerical 

solution 

Table 5  Comparison of theoretical and numerical values of 
maximum vibration response amplitude 

Direction Theoretical value/(°) Numerical value/(°) error/(%) 
Rotation direction 0.0627 0.0626 0.16 

Pitching direction 0.0766 0.0765 0.13 

Deflection direction 0.932 0.9316 0.042 

 

 

6  Conclusions 

 

(1) The natural frequency is a function of the position of the 
mechanism. In the initial working space, the change of the natural 
frequency is symmetrical, and the position of obtaining the extreme 
value is not the same. With the change of position, the third order 
natural frequency changes most sharply, followed by the second 
order natural frequency, and the first order natural frequency 

changes most gently  
(2) When the mechanism is resonated by the external excitation 

of simple harmonic motion, the steady-state resonance response 
presents simple harmonic motion. When the excitation frequency is 
close to the first, second and third order natural frequency, the 
amplitude of the vibration response reaches the maximum in the 
direction of deflection, pitching and rotation respectively  

(3) The vibration response amplitude varies symmetrically in the 
initial working space. When the excitation frequency is close to the 
first natural frequency, the vibration response amplitude in the 
deflection direction is larger than that in the other two directions, 
and the value is close to 1°, which will have a great influence on the 
compensation accuracy and control accuracy  

(4) The modal test and fourth-order Runge-Kutta numerical 
simulation method are used to verify the theoretical model. The 
maximum error between the theoretical value and the experimental 
value is 4.66%, and the maximum error between the numerical 
value and the theoretical value values 0.016%, which verifies the 
correctness of the theoretical model m. 
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