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ABSTRACT

In this paper, data from three 2-dimensional video disdrometers (2DVDs) and an S-band polarimetric

radar are used to characterize rain microphysics in Oklahoma. Sampling errors from the 2DVD measure-

ments are quantified through side-by-side comparisons. In an attempt to minimize the sampling errors, a

method of sorting and averaging based on two parameters (SATP) is proposed. The shape–slope (�–�)

relation of a constrained gamma (C-G) model is then refined for the retrieval of drop size distributions

(DSDs) from polarimetric radar measurements. An adjustable term that is based on observed radar re-

flectivity and differential reflectivity is introduced to make the C-G DSD model more applicable. Radar

retrievals using this improved DSD model are shown to provide good agreement with disdrometer obser-

vations and to give reasonable results, including in locations near the leading edge of convection where

poorly sampled large drops are often observed.

1. Introduction

Rain microphysics can be characterized through joint

disdrometer and polarimetric radar observations,

where in situ measurements from the disdrometer pro-

vide information on individual drop sizes, shapes, and

terminal velocities; also, remote measurements from ra-

dar provide information on the bulk precipitation char-

acteristics over a wide area. In recent years, much

progress has been made in developing drop size distri-

bution (DSD) models, retrieving DSD parameters from

polarimetric radar measurements, and quantitatively

comparing the disdrometer measurements with the ra-

dar retrievals (e.g., Haddad et al. 1997; Bringi et al.

2002, 2003; Gorgucci et al. 2002; Brandes et al. 2004a,b;

Vivekanandan et al. 2004; Zhang et al. 2001, 2006). In

this study, we further demonstrate the potential of joint

disdrometer–radar observations to improve quantita-

tive precipitation estimation and microphysical param-

eterization.

DSDs are usually modeled by a gamma distribution

(Ulbrich 1983) as

N�D� � N0D� exp���D�, �1�

where N0 (mm�1�� m�3) is a number concentration

parameter, � is a distribution shape parameter, �

(mm�1) is a slope parameter, and D (mm) is the equiva-
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lent volume diameter. Several researchers (e.g., Ulbrich

1983; Chandrasekar and Bringi 1987; Haddad et al.

1997) have shown that the three parameters (N0, �, and

�) of a gamma function fit are not mutually indepen-

dent. Ulbrich (1983) introduced an N0–� relation

whereby the three DSD parameters could be retrieved

using radar measurements of radar reflectivity (ZH)

and attenuation. However, the N0–� relation, depend-

ing on the fitting procedure, is unstable and fluctuates

by several orders of magnitude, and therefore its utility

is limited. Chandrasekar and Bringi (1987) attributed

the N0–� relation to statistical error. Haddad et al.

(2006) further showed that even in the absence of ob-

servation noise, the dual-frequency retrieval using a

N0–� relation could be ambiguous. Haddad et al.

(1997) introduced a parameterization of gamma distri-

bution, which has three mutually independent param-

eters. Realizing that there are 3 degrees of freedom for

a gamma distribution, Bringi et al. (2002) proposed us-

ing polarimetric radar measurements of reflectivity, dif-

ferential reflectivity (ZDR), and specific differential

phase (KDP) to retrieve a normalized gamma DSD.

However, Brandes et al. (2004b) showed that this ap-

proach is sensitive to KDP noise. In addition, KDP is

derived from measurements made over many range

gates and does not always match ZH and ZDR measure-

ments well at every range gate. Therefore, the addition

of KDP may result in a deterioration of the DSD re-

trieval at a specific range gate, especially if it is not used

optimally. Through disdrometer observations, Zhang et

al. (2001) and Brandes et al. (2004a) found that � is

highly related to �. The resulting �–� relationship can

be used as a constraint that allows DSDs to be retrieved

from dual-polarization or dual-frequency radar mea-

surements. In general, this approach was proven to per-

form well for DSD retrieval (Vivekanandan et al. 2004;

Brandes et al. 2004a,b; Zhang et al. 2006). Nevertheless,

there are still several issues that need to be addressed,

such as natural DSD variability, sampling errors, and

the applicability of the DSD model.

The first issue examined in this paper is the quanti-

fication of disdrometer sampling errors related to small

sampling volumes and limited sampling times. Dis-

drometer observations contain not only physical varia-

tion but also measurement errors. Gertzman and Atlas

(1977) and Wong and Chidambaram (1985) presented a

detailed analysis of sampling errors based on the as-

sumption of independent Poisson distributions. Rain

events, however, may not be independent stationary

random processes. Physical variation and sampling er-

rors coexist (e.g., Jameson and Kostinski 1998; Schuur

et al. 2001). It is difficult to separate sampling errors

from physical variations with a single instrument. Side-

by-side comparisons, on the other hand, provide infor-

mation that allows sampling errors to be quantified.

Tokay et al. (2001) compared measurements from a

2-dimensional video disdrometer (2DVD) and an im-

pact disdrometer [the Joss–Waldvogel disdrometer

(JWD)]. However, their study focused mainly on the

comparison of DSD parameters and rain variables and

did not quantify errors. To our knowledge, error quan-

tification for 2DVD observations through side-by-side

comparison has not yet been reported. By knowing ob-

servational errors and their error correlations for dif-

ferent DSD moments, the error propagation can be

estimated for any rain variable estimator based on rain

moments (e.g., Zhang et al. 2003). On the other hand,

error quantification helps to introduce advanced pro-

cessing techniques to reduce error effects on DSD mod-

eling or retrieval.

It is well known that DSD variability can be reduced

by averaging. For example, Joss and Gori (1978) dem-

onstrated that random, time-sequential, and rain-rate

sequential averaging will lead to exponential DSDs.

Sauvageot and Lacaux (1995), considering “instanta-

neous” DSDs having strong variability, further studied

averaged DSDs of JWD data within a set of rain-rate

intervals and found that the rain rate–reflectivity (R–

ZH) relations obtained from averaged DSDs are close

to those calculated from nonaveraged data and com-

patible with those proposed in previous studies. Lee

and Zawadzki (2005) introduced the sequential inten-

sity filtering technique (SIFT), which was to be used for

processing a single rain event, by sorting DSDs within a

time window (typically 1 h) by reflectivity and averag-

ing consecutive DSDs (typically 10). They found that

averaging DSDs within an interval of reflectivity could

reduce observational errors of disdrometric measure-

ments and yield more stable R–ZH relations. The aver-

aging methods mentioned above, however, apply a

coarse filtering technique that results in a significant

loss of physical variation. A better method to process

disdrometer data is needed—one that can preserve

physical variability while reducing the impact of obser-

vational error.

Although a DSD model can be readily developed

based on disdrometer observations, the model may not

always be applicable for retrieving DSDs from radar

measurements. There are discrepancies between radar

and disdrometer measurements that are attributable to

factors such as rainfall inhomogeneity, sampling vol-

ume differences, limitations in radar measurements

(e.g., contamination, sampling error, and miscalibra-

tion), limitations in disdrometer measurements (e.g.,

undersampling, splashing, and wind effects), and non-

stationary rain processes (e.g., drop sorting, clustering,
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and evaporation). If radar-measured reflectivity and

differential reflectivity are close to calculations from

disdrometer observations, radar retrievals based on a

disdrometer-derived DSD model generally agree with

in situ measurements. However, when radar measure-

ments deviate greatly from disdrometer observations,

especially for cases involving a relatively small reflec-

tivity but large differential reflectivity, DSD retrievals

by radar are not satisfactory. This demonstrates that, in

some cases, an adjustment to the constrained gamma

(C-G) DSD model is needed.

In this paper, we present data analyses and results of

a joint disdrometer and polarimetric radar study. In

section 2, disdrometer sampling errors are quantified

by analyzing measurements from two instruments

placed side-by-side. A sorting and averaging procedure

based on two parameters (SATP) is introduced to miti-

gate the effects of sampling errors on DSD fitting. The

C-G DSD model is then refined, and the microphysical

properties of rains in Oklahoma are determined. In sec-

tion 3, an adjustment of the disdrometer-derived �–�

relation is introduced. The refined DSD model is used

to retrieve DSDs from polarimetric radar measure-

ments. The validity of the refined �–� relation is veri-

fied in sections 2 and 3. Conclusions are presented in

section 4.

2. Disdrometer data analysis

Assuming that DSDs can be represented by the

gamma distribution (1), rain microphysics can be char-

acterized by finding the governing parameters of the

distribution. The moment fit is widely used to retrieve

DSD parameters (e.g., Kozu and Nakamura 1991; Ul-

brich and Atlas 1998). In practice, because of the finite

sample volume and sample time, only a finite number

of raindrops are measured over a size interval (Dmin,

Dmax). The nth moment of the DSD is calculated as

Mn � �
Dmin

Dmax

DnN�D� dD. �2�

This paper utilizes the second, fourth, and sixth mo-

ments to fit three gamma distribution parameters. This

procedure uses the same equations that appear as Eqs.

(3) and (6)–(8) in Vivekanandan et al. (2004) and is

referred to as the truncated moment fit (TMF) in the

following sections.

The disdrometer data analyzed in this study came

from three 2DVDs operated by the University of Okla-

homa (OU), the National Center for Atmospheric Re-

search (NCAR), and the National Severe Storms Labo-

ratory (NSSL), respectively. Radar data were collected

with a polarimetric WSR-88D (KOUN) operated by

NSSL. All measurements were made in Oklahoma

from May 2005 to May 2007. At times, the 2DVDs were

placed at the Southern Great Plains site [Kessler Farm

Field Laboratory, (KFFL)] of the Atmospheric Radia-

tion Measurement Program, which is located approxi-

mately 28 km south of KOUN. This site was chosen for

radar–disdrometer comparisons. Up to two 2DVDs

were also deployed for periods at NSSL and near the

town of Cement (about 76 km southwest of KOUN).

The NCAR 2DVD was placed next to the NSSL 2DVD

for a number of rain events (Brandes et al. 2005) and

the OU 2DVD was also placed next to the NSSL

2DVD for one rain event. In all, 14 200 1-min drop

spectra with drop counts greater than 50 were collected

(March–May, 5297 min; June–August, 2681 min; Sep-

tember–November, 2753 min; December–February,

3469 min). The dataset also includes 435 min of side-

by-side 2DVD measurements, which are used in this

study to quantify sampling error.

a. Observed DSD and sampling errors

Disdrometer observations contain sampling errors

that arise from a limited sampling volume. An example

is shown in Fig. 1. Drop size distribution, mass distri-

bution, and reflectivity distribution are shown in the

subplots. A total of 525 drops were sampled. Although

there were only four drops larger than 2.1 mm, those

drops significantly contribute to the reflectivity. The

measured DSD is fitted to the gamma distribution using

the TMF method (solid line). Obviously, poor sampling

of relatively large drops causes errors in high moment

estimation and, subsequently, in the fitted DSD param-

eters. Poor sampling of large drops can clearly be a

problem for 2DVDs, which have a sampling area of

�0.01 m2 and a typical sampling volume of �3 m3

within 1 min.

In practice, it is difficult to separate sampling errors

from physical variation for single disdrometer measure-

ments. Measurements by two similar disdrometers de-

ployed side-by-side, however, can be treated as two re-

alizations x1, x2 of the same process having the same

expected value. That is,

� x1 � �x	 
 �1

x2 � �x	 
 �2,
�3�

where the notation “� 	” denotes the expected value

and �1, �2 are errors. Assuming that two disdrometers

measure the same DSD, any differences between two

measurements would result from statistical fluctua-

tions. The physical variation can be cancelled by sub-

tracting one measurement from the other. Assuming

that the sampling errors of the two disdrometers are

independent, the sampling error can be quantified by
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�|x1 � x2|
2	 � �|�1 � �2|

2	 � 2�x

2, �4�

where �x is the standard deviation of sampling errors.

The error can also be represented by the fractional

standard deviation (FSD) as

FSDx �
�x

�x	
. �5�

The expected value of x is not known in practice. How-

ever, if the rain process is assumed to be a stationary

random process, then the expected value of x could be

estimated using the time-average of all available data

based on ergodic theorem. In this paper, the expected

value was estimated by taking the time-averaged value

of 14 200 1-min samplings for Eqs. (4) and (5) and the

formulas hereinafter. It is worthwhile to note that this

kind of estimation introduces some uncertainties be-

cause in practice the rain process is not an ergodic pro-

cess. Nevertheless, the uncertainty attributed to the

time average is not the emphasis of this paper. Using

this procedure, we processed the side-by-side 2DVD

data to estimate the FSD.

Differences between two 2DVD measurements arise

from spatial inhomogeneity in rain and slight differ-

ences in the spatial and temporal resolutions between

the two units. Measurement bias is reduced by calibra-

tion. Measured number concentrations within each bin

were averaged for both 2DVDs. For each bin, the dif-

ference between two mean number concentrations was

regarded as a measurement bias. The measurement

bias was then subtracted from the NSSL 2DVD mea-

surements. Although the measurement bias cannot be

perfectly tuned for bins with a size less than 0.6 mm,

bias effects are insignificant for integral parameters.

FSDs of physical parameters, such as drop count, mass,

and reflectivity distributions, had similar error charac-

teristics. Taking drop count measurements as an ex-

ample, FSDs estimated using Eqs. (4) and (5) are de-

noted as “side-by-side” and are shown as a function of

bin size (solid line) in Fig. 2. If only measurements of a

single 2DVD are used, the standard deviation �x in Eq.

(5) is calculated by �2
x � �|x � �x	|2	. The dashed line

represents the result of the NCAR 2DVD measure-

ments, and the dashed–dotted line represents the result

of the NSSL 2DVD measurements. The dashed and

dashed–dotted lines agree well for the medium-sized

drops. Based on the assumption that the observed rain-

drops obey the Poisson process, the theoretical FSDs,

shown by the dotted–solid line, are derived by �Ni	
�0.5,

where Ni is the total number of drops within the ith bin.

As shown in Fig. 2, FSDs estimated from single

2DVD measurements (dashed and dashed–dotted

lines) give an overestimation for sampling errors. Con-

sidering that side-by-side 2DVD measurements elimi-

FIG. 1. Example of a 1-min DSD with poor sampling (0922 UTC

13 May 2005). A total of 525 drops were sampled. The asterisks

represent data points; the solid lines represent fitted distributions

by TMF fit. (a) Drop size distribution; (b) mass distribution; (c)

reflectivity distribution.
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nate the physical variation, the sampling errors esti-

mated this way are more accurate than from single

2DVD estimates. The difference between the solid and

the dashed or dashed–dotted lines in Fig. 2 demon-

strates the DSD’s physical variability, which is large

compared to the Poisson error (within bin sizes less

than 3.5 mm). The solid line also shows that the sam-

pling error increases with decreasing drop size for drops

smaller than 0.6 mm. This is mainly attributed to the

2DVD’s inability to accurately measure small drops.

The dotted–solid line represents the Poisson error,

which increases considerably when drop sizes are larger

than 3 mm because of the undersampling of large rain-

drops. It is also noticed that the sampling error indi-

cated by the solid line is close to the Poisson error for

raindrop sizes greater than 3 mm. It implies that the

sampling error is associated primarily with the under-

sampling for these sizes.

FSDs of DSD moments were estimated by applying

Eqs. (4) and (5), in which the variable x represents the

DSD moment (not bin drop counts). The results for

moments from the 0th order to the 6th order are given

in the columns of Table 1 (M0, M1, . . . , M6). The first

row contains the result estimated from the side-by-side

comparison. The second row, labeled “Theoretical,”

contains the result estimated from the same dataset but

based on the Poisson statistical model (Schuur et al.

2001, their appendix). Because the theoretical result

assumes both that raindrop counts obey the Poisson

distribution within a 1-min sampling interval and that

the random process is independent, it gives a lower

limit to the actual FSDs. The theoretical result indicates

that moment errors are generally larger for higher mo-

ments. This can be explained by moment estimation;

that is, because large drops carry more weight in the

calculation of the higher moments, their sampling er-

rors are greater contributors to the total error. The

estimate from the side-by-side comparison generally

agrees with this tendency except that the errors are a

little larger. The difference between the side-by-side

and theoretical results might be explained by (i) depen-

dent measurement errors (i.e., samples from two adja-

cent times or bins have correlated errors), (ii) instru-

mental bias, and/or (iii) non-Poisson-distributed rain-

drops. Because error estimates in Table 1 were

obtained directly from disdrometer measurements

without any assumption regarding DSD shape, they are

more realistic than results of simulations.

Correlations exist not only between DSD moments

(e.g., Jameson and Kostinski 1998) but also between

sampling errors of DSD moments (e.g., Zhang et al.

2003). Because the sampling errors have been quanti-

fied by a side-by-side comparison in this paper, the cor-

relation between sampling errors can be quantified as

well. The correlation coefficient is formulated by

� �
��m�n	


��m

2 	��n

2	
, �6�

where m and n represent two moments (m, n � 0, . . . ,

6) and � denotes the error of observed moments. In

practice, the ��m�n	 is estimated from two 2DVDs mea-

surements by (1/N)�N

k�10.5[x(m)
1,k � x

(m)
2,k ][x(n)

1,k � x
(n)
2,k],

where x denotes the measured moment, subscript 1, 2

represents two 2DVDs, and N is the number of side-

by-side samples. Correlation coefficients between sam-

pling errors for DSD moments ranging from the 0th to

the 6th order are given in Table 2. It is obvious that

sampling errors are less correlated if two moments are

widely spaced. The correlation will be less than 10% if

TABLE 1. FSD of different rain moments.

Moment M0 M1 M2 M3 M4 M5 M6

Side-by-side 0.1029 0.0965 0.0906 0.0901 0.1025 0.1311 0.1746

Theoretical 0.0379 0.0350 0.0408 0.0550 0.0767 0.1045 0.1372

FIG. 2. FSD of observed drop counts over bin spectrum. The

solid line represents the calculation based on side-by-side com-

parison; The dashed (dashed–dotted) line represents the result of

NCAR (NSSL) 2DVD. The solid–dotted line represents the cal-

culation based on Poisson assumption.
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the order difference is larger than 6. Given the same

order difference (e.g., correlation of M0 and M3 versus

correlation of M3 and M6), the correlation tends to be a

little larger for higher moments, which is caused by

sampling errors. As for the second, fourth, and sixth

moments, which were chosen to retrieve DSD param-

eters, the correlation coefficients for pairs M2–M4, M4–

M6, and M2–M6 are 0.74, 0.82, and 0.40, respectively. It

is important to know these FSDs and correlation coef-

ficients because they determine the standard errors of

DSD parameter estimates (Zhang et al. 2003).

b. DSD sorting and averaging based on two

parameters

As shown in the previous subsection, sampling error

is an unavoidable problem for 2DVD measurements,

resulting in the degradation of the DSD fitting (Zhang

et al. 2003). Because the DSD models are based on

2DVD observations (e.g., the C-G DSD model depends

on fitted shape and slope parameters), the challenge is

to reduce the sampling errors so that fitted shape and

slope parameters are less affected by errors. Here, we

suggest a sorting and averaging method based on two

parameters. The SATP method is proposed because

numerous 2DVD measurements are available with

which to develop the constraining shape–slope relation

of the C-G DSD model. Unlike the SIFT method in-

troduced by Lee and Zawadzki (2005), SATP is applied

to a whole dataset rather than a single event. With

SATP, two parameters are used to characterize the

DSD, and physical variability is therefore preserved

much better than with SIFT. The SATP procedure is

briefly described as follows:

(i) Select two characteristic parameters to build two-

dimensional grids,

(ii) Calculate both characteristic parameters based on

1-min DSD measurements,

(iii) Sort the whole dataset and find DSDs with similar

physical characteristics according to their two

characteristic parameters,

(iv) Average the observed DSDs located in the same

grid to obtain a new DSD, and

(v) Process the averaged DSDs (i.e., fit them to a

gamma distribution) to develop the shape–slope

relation of the C-G DSD model.

The characteristic parameters can be any two rain

variables (e.g., DSD moments, characteristic sizes of

DSD, etc.). In general, the high moments, which have

relatively larger measurement errors, and the low mo-

ments, which are determined by small drops and sus-

ceptible to disdrometer measurement uncertainty, do

not represent rain physics well. On the other hand, the

middle moments are both more representative of rain

physics and more accurately measured. In this study,

the middle moment–related parameters, rain rate (R)

and median volume diameter (D0), are therefore cho-

sen for processing.

The sorting grids used in this study are shown in Fig.

3. Each grid in the R–D0 plane is defined by variations

of �5% for R and �0.025 mm for D0. The bar length

indicates the number of observed DSDs. DSDs within

each grid pixel are characterized by small variations of

R and D0 and are assumed to represent similar rain

physics. For example, Fig. 4 shows three groups of ob-

served DSDs (thin solid lines) within three different

grids. The dashed, bold solid, and dashed–dotted lines

represent three mean DSDs. For the three groups of

DSDs in Fig. 4, FSDs of R are 5.58%, 11.82%, and

5.1%, FSDs of D0 are 1.53%, 1.86%, and 0.76%, FSDs

of total number concentration (NT) are 1.75, 1.73, and

1.46 dB, and FSDs of ZH are 1.57, 1.85, and 0.72 dB,

respectively. These FSDs imply that SATP has the po-

tential to identify similar DSDs. If we assume that the

sorted DSDs within each grid pixel have the same DSD

(expected value) and similar sampling error, the latter

can surely be reduced by averaging the sorted DSDs.

The fit to the averaged DSD is therefore less affected

by errors and represents the physics better than the fit

to nonaveraged DSDs. Compared to one-parameter fil-

tering methods, SATP better preserves the physical

variation.

A comparison of SATP with SIFT is shown in Fig. 5.

The rain data were recorded by the OU 2DVD on 11

March 2007. The values of ZH, R, D0, and NT, calcu-

TABLE 2. Correlation coefficient of sampling errors for different moments.

M0 M1 M2 M3 M4 M5 M6

M0 1 0.8927 0.6805 0.4996 0.3385 0.1927 0.0531

M1 0.8927 1 0.9142 0.7202 0.5116 0.3449 0.2058

M2 0.6805 0.9142 1 0.9160 0.7371 0.5594 0.3988

M3 0.4996 0.7202 0.9160 1 0.9346 0.7927 0.6215

M4 0.3385 0.5116 0.7371 0.9346 1 0.9493 0.8244

M5 0.1927 0.3449 0.5594 0.7927 0.9493 1 0.9570

M6 0.0531 0.2058 0.3988 0.6215 0.8244 0.9570 1
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lated from observed DSDs, are plotted as dots in Fig. 5.

The solid lines represent SATP results. For every 1-min

observation, SATP processes the entire dataset to iden-

tify DSDs that are similar to the observed DSD and

averages them to create a substitute for the observa-

tion. This averaged DSD is believed to reduce sampling

errors because SATP combines useful information

from other similar DSDs. The dashed lines represent

variables calculated by SIFT, which sorts ZH (within a

time period of 4.5 h) by an increasing sequence and

averages 10 adjacent DSDs to obtain the mean DSD.

As shown in Fig. 5, the SATP results match observa-

tions well for all rain variables and maintain the physi-

cal variations, whereas for SIFT only ZH (a high mo-

ment) preserves the observational variability. Other

variables, especially the zero moment NT, deviate con-

siderably from observations.

SATP is a strategy for processing large amounts of

raw data that contain errors. Because it is hard to ex-

actly quantify the error reduction of each individual

grid, we do not intend to use SATP to analyze “instan-

taneous” integral rain parameters as shown in Fig. 5.

FIG. 4. Example of sorted DSDs and their mean DSDs. Thin

solid lines represent the observed DSDs, which are sorted into

three grids using SATP method. DSDs within one grid have a

similar distribution. Three mean DSDs are denoted with the thick

dashed, thick solid, and thick dashed–dotted lines; they represent

rains with (R, D0) � (1.1 mm h�1, 1.04 mm), (5.57 mm h�1, 1.19

mm), and (86.58 mm h�1, 1.38 mm), respectively.

FIG. 3. Occurrence frequency of sorted rain data based on rain rate (step 10%) and median

volume diameter (step 0.05 mm). Each pixel of the R–D0 plane represents a specific DSD. The

bar over the pixel denotes the number of observed DSDs sorted for one specific DSD.

Observed DSDs within a pixel are averaged to obtain the specific DSD.
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SATP is designed to provide the mean property of the

DSD (i.e., the mean �–� relation) rather than to im-

prove on the individual observation. Because the phys-

ics is preserved with less error, the mean �–� relation

processed by SATP is obviously better than that ob-

tained directly from error-contaminated measure-

ments. Determining the error reduction for a specific

DSD is not the major concern. On the other hand,

the frequency distribution (Fig. 3) shows that rain data

(R � 3 mm h�1) account for a large portion of the

dataset. The �–� relation derived from the data prior

to SATP filtering will be largely controlled by those

data. Fitted DSDs of light rains always have large � and

�, and unfiltered results will raise the slope of the mean

�–� relation and cause the retrieval using the �–� re-

lation to deteriorate. SATP reduces the effects of light

rain events and represents other rain events well. It is

worthwhile to note that the SATP could be improved if

more parameters (e.g., three parameters) were used to

sort the similar DSDs. In this study, the dataset was not

sufficient to do that, so only two parameters were ap-

plied. In the next section, we apply SATP to derive a

constrained �–� relation.

c. Refined shape–slope relation

The shape–slope relation of the C-G DSD model

may vary in different climate regions. Our previous

studies (e.g., Zhang et al. 2001; Brandes et al. 2004a,b)

have shown that the relation for the southern Great

Plains (i.e., Oklahoma) is a little different than the one

for a subtropical region (i.e., Florida). Using the SATP

method, 2DVD data were processed to refine the �–�

relation for rains in Oklahoma. First, the data were

grouped on an R–D0 grid and averaged. Averaged

DSDs were then fitted to a gamma distribution by the

TMF method. After that, the second-order polynomial

least-square fit was used to obtain the mean �–� rela-

tion. The fitted � and � for the sorted and averaged

DSDs are plotted in Fig. 6. The solid line is the fitted

curve of circle points, and a dashed line depicts the

Florida �–� relation from Zhang et al. (2001). The

dashed line generally has larger values for � than the

FIG. 5. Comparison of SATP and SIFT methods on reflectivity ZH, rain rate R, median

volume diameter D0, and total number concentration NT. Dots denote the data point ob-

served at KFFL by OU 2DVD on 11 Mar 2007. Solid (dashed) lines denote calculations using

the SATP (SIFT) method.
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solid line, given the same �, which implies that DSDs in

Florida tend to have a narrower shape than DSDs in

Oklahoma. The solid line in Fig. 6 is the refined �–�

relation of C-G DSD model used for DSD retrieval and

is given by

� � �0.0201�2 
 0.902� � 1.718. �7�

Equation (7) is applicable for a � within a range from

0 to 20. Larger � values are thought to result from

measurement errors rather than storm physics (Zhang

et al. 2003).

To verify the refined �–� relation, we examine the

mean mass-weighted diameter (Dm) and standard de-

viation of the mass-weighted diameter distribution (�m)

because both can be directly derived from observations

and are independent of sorting and fitting procedures.

If relation (7) represents rain physics, the Dm–�m rela-

tion derived from observations and from relation (7)

should be consistent. Figure 7a shows the result of these

FIG. 7. (a) Scatterplots of Dm vs �m. Circles denote that Dm and �m are calculated from

observed DSDs of 14 200 min. The solid line denotes that Dm and �m are calculated from

gamma DSDs with �–� constrained by Eq. (7). (b) One-to-one plot of retrieved Dm vs

observed Dm using Eq. (7). Crosses denote the data points and the solid line corresponds to

the unit slope. The bias is �2.18% and the correlation coefficient is 0.915. (c) As in (b) but

for retrieved and observed �m. The bias is �1.15% and the correlation coefficient is 0.985.

FIG. 6. Scatterplots of �–� with DSD sorting. Circles denote

DSD data fitted by TMF method. The solid line is the mean curve

fitted to circle points by two-order polynomial fit; the dashed line

corresponds to the Florida relation (Zhang et al. 2001).
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calculations. Crosses denote calculations of Dm and �m

from observed 1-min DSDs. The solid line, derived

from relation (7), agrees with observations.

Further verification was done by combining calcu-

lated ZH and ZDR and (7) and then retrieving Dm and

�m. One-to-one plots of the retrieved and observed

Dm and �m are shown in Figs. 7b,c. Some data points

deviate substantially from the solid line (e.g., observed

�m larger than 2.4 mm). These data points typically

are DSDs with long and poorly sampled tails (not

shown). However, the outliers are few in number and

do not contaminate the result. The bias between

retrieval values and observed values is calculated by

�y	 – �x	, where x is the observation and y is the retrieval

value. The correlation coefficient is calculated by

Cov(x, y)/
Cov(x, x) � Cov(y, y), where Cov is the

covariance. The bias of retrieved Dm using relation (7)

is only �0.03 mm (or �2.18%) and the correlation co-

efficient is 0.915 (Fig. 7b), whereas the bias of retrieved

�m is only �0.007 mm (or �1.15%) and the correlation

coefficient is 0.985 (Fig. 7c). The same comparison pro-

cedure can be applied for rain variables of liquid water

content (W), R, D0, and NT. For observations with R �

100 mm h�1, Table 3 lists bias and correlation values of

retrievals versus observations for several rain variables.

Except for NT, all these variables have a small bias and

a correlation coefficient close to 1. These results show

that the refined �–� relation in Eq. (7) is valid for the

rain DSD retrieval.

d. Parameterization of rain microphysics

Using the constraining �–� relation in Eq. (7), rela-

tions between rain variables and radar variables can be

derived following the procedure described by Brandes

et al. (2004b) and Zhang et al. (2006). Errors, however,

may propagate through this procedure. Fitting directly

with observations (without using the constraining �–�

relation) should reduce error propagation. Based on

DSD data processed with the SATP method, rain vari-

ables [liquid water content (g m�3), rainfall rate (mm

h�1), total number concentration (m�3), and median

volume diameter (mm)] were calculated for each data

point. Radar reflectivity (in linear units of mm6 m�3)

and differential reflectivity (dB) were calculated as

well. Using a polynomial fit for all data points, rain

variables were expressed in terms of radar variables as

(see also Figs. 8a–c)

NT � ZH � 10��0.0837ZDR
3


0.702ZDR
2

�2.062Z
DR


0.794�,

�8�

R � ZH � 10��0.0363ZDR
3


0.316ZDR
2

�1.178Z
DR

�1.964�,

�9�

W � ZH

� 10��0.0493ZDR
3


0.430ZDR
2

�1.524Z
DR

�3.019� and

�10�,

D0 � 0.0436ZDR
3 � 0.216ZDR

2 
 1.076Z
DR


 0.659.

�11�

Rain microphysical processes can be estimated if the

DSD is known. Following the procedure described by

Zhang et al. (2006), the evaporation rate (Re, g m�3

s�1), accretion rate (Ra, g m�3 s�1), and mass-weighted

terminal velocity (Vtm, m s�1) were calculated (Figs.

8d–f). Using the polynomial least-square fit with

weights of the rainwater content, mean curves (solid

lines) for each parameter were derived in terms of liq-

uid water content (g m�3) and median volume diameter

(mm) as follows:

Re � W�0.0923D0
�3 � 0.309D0

�2 
 1.056D0
�1

� 0.0082� � 10�3, �12�

Ra � W��0.014D0
3 
 0.211D0

2 � 1.50D
0


 7.04�

� 10�3, and �13�

Vtm � 0.0916D0
3 � 1.088D0

2 
 4.754D
0


 0.525. �14�

As Fig. 8 shows, Eqs. (9)–(11) represent rain variables

well for ZDR ranging from 0.15 to 4 dB and Eqs. (12)–

(14) are good empirical relations for Re, Ra, and Vtm

with D0 less than 4 mm. To evaluate these empirical

relations, we compare their results with observations.

DSDs with a calculated ZDR of 0.15–4 dB were used to

validate Eqs. (8)–(11), and DSDs with a D0 of 0.5–4 mm

were used for Eqs. (12)–(14). Similar to Table 3, the

bias and correlation coefficient values between empiri-

cal values and observed values were calculated and are

listed in Table 4. One-to-one plots of these results (Fig.

9) reveals that Eqs. (13) and (14) for estimates of Ra

(proportional to the 2.67th moment of the DSD) and

Vtm have very small bias (�1%). Equations (9)–(11) for

estimates of R, W, and D0 have biases of less than 10%,

and Eqs. (8) and (12) have biases of larger than 10%.

This implies that empirical relations for low moments

NT (zero moment) and Re (�1.6th moment) are not as

good as relations for high moments. This is probably

TABLE 3. Bias and correlation coefficient for retrieved rain

variables vs observations.

Dm �m W R D0 NT

Bias (%) �2.18 �1.15 2.52 3.37 8.73 14.16

Correlation

coef

0.915 0.985 0.967 0.986 0.819 0.763
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because the control variables (ZH, ZDR, W, and D0) are

mainly determined by middle-sized or large drops and

they are not good at representing low moments. Middle

moments (e.g., Ra and Vtm), on the other hand, are well

represented. It is worth noting that the D0–ZDR plot

(Fig. 8c) has large scatter. This likely results from the

fact that the main contributor to D0 is the large number

of median-size drops, but ZDR is mainly determined by

a small number of large drops. This is also the reason

why the D0 estimated from ZDR, when compared with

the observed D0, only has a correlation coefficient of

approximately 0.8.

TABLE 4. Bias and correlation coefficient for rain variables using Eqs. (8)–(14) vs observations.

NT R W D0 Re Ra Vtm

Bias (%) 20.24 9.09 9.63 7.18 13.80 �0.52 �0.026

Correlation coef 0.625 0.970 0.937 0.809 0.972 0.977 0.984

FIG. 8. Scatterplots of rain variables and radar variables calculated from 2DVD data. Solid

lines are mean curves, which are fitted to data points by three-order polynomial fit. (a) Ratio

of R to ZH vs ZDR [Eq. (9)], (b) ratio of W to ZH vs ZDR [Eq. (10)], (c) D0 vs ZDR [Eq. (11)],

(d) ratio of Re to W vs D0 [Eq. (12)], (e) ratio of Ra to W vs D0 [Eq. (13)], and (f) Vtm vs D0

[Eq. (14)].
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3. Radar data analysis

a. Adjustment of disdrometer-based relation

The refined �–� relation in section 2 enables the

retrieval of the gamma DSD distribution parameters

(N0, �, and �) from the measurements of radar reflec-

tivity and differential reflectivity. A ZH–ZDR scatter-

plot calculated from disdrometer measurements is pre-

sented in Fig. 10. Solid and dashed lines denote poly-

nomial fits for Oklahoma and Florida (Zhang et al.

2006), respectively. There is little difference between

these two curves for ZH � 30 dBZ. The mean ZH–ZDR

relation for Oklahoma is given by the equation

ZDR � 10��2.6857�10�4ZH
2


0.04892ZH�1.4287�, �15�

where both ZH and ZDR are expressed on a logarithmic

scale. This ZH–ZDR relation (15) is consistent with the

�–� relation (7) in that both were derived from the

same 2DVD measurements.

Previous studies (e.g., Schuur et al. 2001; Brandes et

al. 2002, 2004a; Vivekanandan et al. 2004; Zhang et al.

FIG. 9. One-to-one plots of empirical values vs observations. Crosses denote the data points,

and solid lines correspond to the unit slope. Empirical relations are Eqs. (8)–(14). (a) Ratio

of R to ZH [Eq. (9)], (b) D0 [Eq. (11)], (c) ratio of NT to ZH [Eq. (8)], (d) ratio of Re to W

[Eq. (12)], (e) ratio of Ra to W [Eq. (13)], and (f) Vtm [Eq. (14)].
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2006) have shown that disdrometer observations are

generally consistent with radar observations and that

DSD models derived from disdrometer observations

generally work well when applied to radar retrieval.

However, the sampling volume of a radar is much

larger than that of a disdrometer. The KOUN, for ex-

ample, has a sampling volume of �0.07 km3 at a 30-km

range. Consequently, its sampling volume can be 107 or

more than that of 2DVDs. The difference between ra-

dar measurements and 2DVD measurements might be

large, especially for inhomogeneous rains (e.g., at the

leading edge of convection). The radar retrieval may

not work well if ZH and ZDR measurements depart

significantly from the disdrometer-based mean relation.

Figure 11a shows a plan position indicator (PPI) image

of radar reflectivity measured by KOUN on 13 May

2005. A solid square isolates a strong convective cell at

the leading edge of the squall line. The dashed region

includes portions of the leading and trailing convective

line. The scatterplots of ZH and ZDR within these two

regions are plotted in Fig. 11b. The disdrometer-based

mean ZH–ZDR relation in Eq. (15) is plotted for refer-

ence. Most ZH–ZDR pairs from the rectangular box

cluster well around the line described by Eq. (15) ex-

cept for the measurements corresponding to the iso-

lated convective cell, where relatively high ZDR are as-

sociated with relatively low ZH. According to the hy-

drometeor classification algorithm described by

Ryzhkov et al. (2005), these points are identified as rain

dominated by “big drops” (BDs). In the BD region, the

DSD tends to be narrower and the total concentration

of drops tends to be much lower than in stratiform rain

with the same intensity. Retrievals based on Eq. (7)

may result in errors in the BD regions. For example,

such a retrieval would result in broadly estimated DSDs

and an unreasonably large total number concentration.

To solve this problem, the disdrometer-based relation

is adjusted to

� � ����� 
 C�ZDR, �16�

FIG. 10. Plot of ZDR vs ZH from 2DVD measurements in Okla-

homa (using 14 200 1-min DSD data). Cross points denote 2DVD

measurements. The solid line is the mean curve, which is fitted to

all data points in logarithmic domain by two-order polynomial fit.

The dashed line is the Florida relation (Zhang et al. 2001).

FIG. 11. (a) PPI of KOUN radar-measured reflectivity (0659:55

UTC 13 May 2005). A solid square isolates a strong convective

storm at the leading edge of this rain event. The dashed rectan-

gular region is a multiple precipitation-type region that includes

portions of the convective leading edge, thunderstorm core, and

trailing stratiform precipitation. (b) Scatterplot of ZDR vs ZH.

Dots denote measurements within the multiple precipitation-type

region [dashed-line region of (a)]. Asterisks denote measure-

ments within leading edge region [solid-line square of (a)]. The

solid line is the mean curve of disdrometer observations (solid line

of Fig. 10). The region within the dashed line includes BD cases.
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where the ��(�) is the disdrometer-based relation in

Eq. (7) derived in the previous section, �ZDR is the

difference between the radar-measured ZDR and the

ZDR estimated from the measured ZH according to Eq.

(15), and C is an adjustment parameter. It is reasonable

to consider that the adjustment term C�ZDR is related

to ZH and ZDR because ZH and ZDR give useful infor-

mation about rain type, intensity, and the DSD. Intu-

itively, the adjustment parameter C should be positive

and dependent on ZH and ZDR. For a given �ZDR, C

should increase when ZDR increases or ZH decreases. It

is hard, however, to determine a good adjustment term

that fully represents the variability of rain physics. In

this study, we focus on the adjustment of BD regions,

where the �ZDR has a maximum dynamic range of 3.

We expect the adjusted � to fall into the normal dy-

namic range of 6; accordingly, the value of C was cho-

sen to be 2 for this study. No adjustment is made if

�ZDR � 0.5 dB. The adjustable �–� relation could

improve the retrieval of NT and D0 at the leading edges

of convective squall lines, which are often characterized

by BD regions. On the other hand, the effect of the

adjustment is minor outside of the BD regions.

b. Radar retrieval

The radar retrieval was applied to the rain event il-

lustrated in Fig. 11a. The retrieval was performed over

the whole storm area (including the BD region) using

radar-measured ZH and ZDR and a refined �–� relation

with adjustment [i.e. Eq. (16)]. The retrieval without

adjustment was also performed as a comparison. The

retrieval procedure is similar to that described in pre-

vious studies (e.g., Zhang et al. 2001; Brandes et al.

2004a) except for the numerical method used to solve

the nonlinear equations and the procedure to estimate

the maximum diameter. The regression method used

here is the two-dimensional Newton–Raphson method

(Press et al. 2001, 355–361). The maximum diameter in

previous studies was estimated from an empirical rela-

tion fitted to disdrometer observations (e.g., Brandes et

al. 2004a), which remains as an issue in radar retrieval.

When the �–� relation is used with the adjustment, the

impact of the maximum diameter is minimal. There-

fore, we set the maximum diameter to a constant of 8

mm, which works for most rain events (ZH � 60 dBZ).

The PPI fields of radar measurements and retrieval

results are shown in Fig. 12. The fields of ZH and ZDR

and the results of hydrometer classification [no rain

echo (NR), light and moderate rain (R), heavy rain

(HR), rain–hail mixture (RH), and big drops (BD);

Ryzhkov et al. (2005)] are shown in column A. Mea-

surements of ZH and ZDR classified as NR or RH were

filtered out before the rain retrievals were performed.

Column B contains retrieval results based on the �–�

relation without adjustment [Eq. (7)], and Column C

represents retrieval results based on the �–� relation

with adjustment [Eq. (16)]. These two approaches give

similar and reasonable retrievals for most of the dura-

tion of the storm. It is noted that retrieved rain rates

through two approaches show little difference. In gen-

eral, the �–� adjustment mainly reduces the number

concentration of small drops while causing less change

for median and large drops. Consequently, lower mo-

ments are affected more than higher moments. The rain

rate, which is mainly determined by drops of median

sizes, is approximated by the 3.67th moment. In addi-

tion, the two-parameter retrieval already yields accu-

rate rain estimation; hence, the retrieved rain rate is

less affected by the adjustment. In BD regions with low

ZH, however, retrievals without �–� adjustment pro-

duce much higher NT and smaller D0. According to

retrievals without adjustment, a large number of small

drops exist in the area where a small number of big

drops should be. Thus, retrievals with adjustments give

more reasonable results for developing convective cells.

The refined �–� relation in Eq. (7) has already been

verified by disdrometer data in section 2 (Fig. 7 and

Table 3). In the next section, comparisons between ra-

dar retrievals and disdrometer observations are made

to demonstrate the utility of the radar data. The rain

event analyzed was a precipitation system that passed

over central Oklahoma on 2 May 2005, when the

NCAR 2DVD was deployed 28 km south of KOUN.

Figure 13 shows the time series of ZH and ZDR from

1100 to 1330 UTC. The asterisks denote radar measure-

ments. To reduce error, radar measurements have been

averaged over five range gates. To eliminate a system-

atic bias between radar and disdrometer, the radar-

measured ZDR was adjusted by subtracting 0.3 dB. Pos-

sible contamination from a low melting layer and

ground targets was mitigated by removing data points

with a cross correlation coefficient of less than 0.9. The

solid lines denote ZH and ZDR calculated from dis-

drometer observations. Figure 13 shows that disdrom-

eter calculations match the radar measurements quite

well. The discrepancy between radar measurements

and disdrometer calculations during some short periods

(e.g., at 1140 and 1320 UTC) is attributed to the inho-

mogeneity in the rain’s spatial distribution.

Using the C-G DSD model, rain parameters were

retrieved from dual-polarization radar measurements.

Figure 14 shows the comparison of R, D0, and NT be-

tween radar retrievals and disdrometer calculations.

The asterisks denote radar retrievals and the solid lines

denote disdrometer calculations from observed DSDs.

Referring to Fig. 13, if the radar-measured ZH and ZDR
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agree with the disdrometer measurements, the re-

trieved rain variables in Fig. 14 match the disdrometer

measurements. Compared to retrieval results in a pre-

vious study (Cao et al. 2006, their Fig. 7), the retrieval

of the median volume diameter has improved, espe-

cially for periods of light rain. The values of NT for light

rain are also close to disdrometer observations. Con-

sidering the sampling volume difference between radar

and disdrometer, the refined disdrometer-based �–�

relation (7) is believed to give a satisfactory retrieval

from polarimetric radar measurements. In addition, the

adjustment of the �–� relation [Eq. (15)] gives a rea-

sonable retrieval for rains of BD cases.

4. Conclusions and discussion

In this paper, 2D-video disdrometer and polarimetric

radar data are used to characterize rain microphysics in

Oklahoma. The 2DVD measurement errors are inves-

tigated and quantified through a side-by-side compari-

son with two instruments and then minimized using a

sorting and averaging method (SATP). Based on

FIG. 12. Comparison of radar retrievals based on adjusted and unadjusted �–� relation. Column A shows radar-measured reflectivity

and differential reflectivity (0659:55 UTC 13 May 2005), and classifications of rain [no rain echo (NR), light and moderate rain (R),

heavy rain (HR), rain–hail mixture (RH), and big drops (BD)]. Reflectivity and differential reflectivity measurements classified as NR

and RH were filtered out before the rain retrievals were performed. Column B (C) shows radar retrieval results of rain rate, median

volume diameter, and total number concentration based on the refined �–� relation without (with) adjustment; Eqs. (7) and (16),

respectively.
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SATP, the �–� relation of the C-G DSD model is re-

fined and verified by disdrometer data. An adjustment

of the �–� relation is introduced to solve the problem

of radar retrieval for BD cases. The refined �–� rela-

tion is then applied to polarimetric radar retrieval and

evaluated by comparison with the disdrometer obser-

vations.

In 2DVD measurements, sampling errors of large

drops have been found to be substantial and dominated

by statistical errors and sampling errors of very small

drops are mainly attributed to system limitations.

Middle DSD moments (e.g., the third moment), on the

other hand, have comparatively smaller sampling errors

than the outer moments (e.g., the zero moment or the

sixth moment). Although two adjacent moments have

highly correlated sampling errors, there is little corre-

lation if the order difference of the two moments is

larger than 3. The sampling error may also affect mo-

ment-based empirical relations. For example, TMF uses

the second, fourth and sixth moments to fit DSD shape

and slope. The combination of these three moments,

however, may not be optimal. Carefully choosing dif-

ferent moments may help to reduce the effect of sam-

pling errors, which is worth further investigation.

The SATP method was introduced to reduce statis-

tical errors of 2DVD observations and improve the

C-G DSD model. Compared to other filtering methods

applied to disdrometer observations (Lee and

Zawadzki 2005; Sauvageot and Lacaux 1995), SATP

has the following advantages: (i) It identifies (or iso-

lates) similar DSDs; (ii) statistical errors of observed

DSDs can be reduced while physical variations are pre-

served; (iii) it is applicable to more than one rain event;

and (iv) the performance of SATP improves as the size

of the dataset increases. There are also limitations to

the application of SATP: (i) Two parameters are not

accurate enough to characterize some extreme cases

(e.g., nongamma distributions); (ii) different combina-

tions of two parameters may affect the retrieved DSD;

(iii) averaging the DSDs may reduce the physical varia-

tion if the grid pixels are not small enough; and (iv) the

dataset is small for extremely heavy rain, which limits

the utility of SATP. In spite of these limitations, SATP

is a promising method for processing disdrometer data.

Possibly SATP can be improved if more parameters

(e.g., three parameters) are used to characterize DSDs.

However, the size of the current dataset is not sufficient

for sorting based on more than two parameters.

FIG. 13. Comparison of radar measurements and disdrometer

calculations for (a) reflectivity and (b) differential reflectivity.

Asterisks denote radar measurements on 2 May 2005. Solid lines

denote that reflectivity and differential reflectivity are calculated

from observed DSDs by 2DVD. FIG. 14. Comparisons of (a) rain rate, (b) median volume di-

ameter, and (c) total number concentration from radar retrievals

(asterisks) and disdrometer observations (solid lines) for 2 May

2005.
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In this study, the C-G DSD model was further proved

to be valid for DSD retrieval by the analysis of dis-

drometer observations collected in Oklahoma. The re-

fined �–� relation in Eq. (7) gives better representa-

tion of rain characteristics. The relation can be used

within the range of 0 to 20 for �. It is suggested that

Eqs. (8)–(11) be used for ZDR ranging from 0.15 to 4 dB

and Eqs. (12)–(14) for D0 less than 4 mm. The relations

should be useful for model parameterization and data

assimilation.

The principal limitation of the C-G DSD model is

that it only has 2 degrees of freedom with which to

characterize DSDs. Nevertheless, the model should

yield satisfactory retrievals of rain variables (R and D0)

and microphysical processes (Re and Ra) for most rain

events. However, in cases with bimodal DSDs, long

tails, and BD, the retrievals may not match the obser-

vations and the retrieved rain variables will have large

deviations. For BD cases, retrievals based on Eq. (7)

will overestimate NT and underestimate D0. Adjust-

ment of the �–� relation according to Eq. (16) is pro-

posed to give better retrievals of NT and D0. Although

the adjustment is coarse, it is believed to improve the

retrieval for the leading edge of convection. The C-G

model might be further improved by combining addi-

tional information such as temporal and spatial corre-

lations, more observations, and prior statistical infor-

mation.
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