
Provided by the author(s) and University College Dublin Library in accordance with publisher 

policies. Please cite the published version when available.

Title Analysis of virtual synchronous generator control and its response based on transfer 

functions

Authors(s) Chen, Junru; O'Donnell, Terence

Publication date 2019-09-18

Publication information IET Power Electronics, 12 (11): 2965-2977

Publisher IET

Item record/more information http://hdl.handle.net/10197/11479

Publisher's statement This paper is a postprint of a paper submitted to and accepted for publication in IET Power 

Electronics and is subject to Institution of Engineering and Technology Copyright. The copy 

of record is available at the IET Digital Library.

Publisher's version (DOI) 10.1049/iet-pel.2018.5711

Downloaded 2022-08-28T02:49:26Z

The UCD community has made this article openly available. Please share how this access 

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information, please see the item record link above.

https://twitter.com/intent/tweet?via=ucd_oa&text=DOI%3A10.1049%2Fiet-pel.2018.5711&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F11479


1 

 

Analysis of Virtual Synchronous Generator Control and its Response based on Transfer Functions.  

 

Junru Chen, Terence O’ Donnell 

 

University College Dublin, Dublin, Ireland 

junru.chen.1@ucdconnect.ie, terence.odonnell@ucd.ie 

 

 

Abstract: Virtual Synchronous Generator (VSG) control has been proposed as a means to control power electronics 

converter interfaced generation and storage which retains the dynamics of the conventional synchronous machine. This 

paper provides a comprehensive, transfer function based, analysis of VGS control, which can be used as the basis for the 

design of VSG transient and steady state performance. Based on a hardware validated, large signal model, a small signal 

model and associated transfer functions which describe the changes in real and reactive power in response to changes in 

references and grid frequency disturbances. The derived transfer functions are used to obtain insight into the correct design 

of VSG controllers. The small signal models, transfer functions and associated analysis are validated by comparison with 

measured results on a scaled hardware system.   

 

1. Introduction 

The increase in penetration of power electronics 

connected renewable generation into the power system 

raises issues of power system stability. These inertia-less 

renewable energy sources decrease the total inertia of the 

network and potentially pose transient stability issues. In 

relation to this problem, Beck and Hesse proposed the 

Virtual Synchronous Machine (VSM) method in 2007 [1]. 

Its basic strategy is to control the Voltage Source Converter 

(VSC) to mimic the synchronous generator by implementing 

the swing equation in the control loop, thus emulating the 

inertia of a conventional generator. In this way, the DC side 

of the converter incorporating electrical energy storage, 

mimics the virtual kinetic energy, [2] and the renewable 

energy source mimics the prime mover. Note both the terms 

virtual synchronous machine (VSM) and virtual 

synchronous generator (VSG) have since been used 

interchangeably in literature to denote this type of control 

approach, but for the sake of consistency in this work we 

use only the VSG terminology.  

Since the VSG concept had been proposed, different 

implementation methods have been designed [3]. Although 

some VSG control approaches have been applied to current 

source/grid feeding converters [4,5], here the focus is on 

voltage source/grid forming converters which become 

necessary in the scenario of increased converter interfaced 

generation. The synchronization of the grid forming VSG is 

analogous to the SG, relying on the filtered power 

synchronization [6][7], without the need for a PLL.  The 

Synchronverter [8] was proposed with a self-synchronizing 

method [9] to directly control the converter terminal voltage 

and this  method has been further investigated in wind and 

PV systems [10-12]. The synchronverter is essentially a 2
nd

 

order synchronous generator emulation with the swing 

equation to determine voltage angle and a reactive power 

controller to determine voltage amplitude. Alternatively, the 

higher-order self-synchronized VSM topology, based on the 

outer voltage, inner current controlled converter, presented 

by S. D’Arco et al. [13-16], applies power-to-frequency 

control to achieve synchronization and directly regulate the 

output voltage. This approach is one of the most general 

implementations [17-28] as it also features the inclusion of 

virtual impedance in the VSG which could help compensate 

the resistive line impedance. This method has also been 

investigated for wind generation [21,22], electric vehicle 

systems [23] and other distributed energy resources [24-26]. 

These VSG controls were typically applied to storage 

systems or systems where the DC link voltage was regulated 

by the storage system. On the other hand, many renewable 

generation systems operate with a grid side converter the 

main function of which is to control the DC link. 

Considering the application of VSG control to these 

converters, it has been shown that the dynamics of the DC 

side capacitor are similar to those of the kinetic energy or 

inertia of the synchronous generator [29], and references 

[30-31] proposed a VSG control method based on the DC 

link capacitor voltage dynamics. However, the VSG 

implementation of [13-16] has the strongest similarity with 

the conventional Synchronous Generator (SG), with their 

control settings characterized by virtual inertia, damping and 

droop settings which can be directly analogous to the SG 

and giving similar performance if set identically [27]. For 

that reason, this work is most relevant to those VSG 

implementations. 

An advantage of the virtual synchronous machine over 

the real synchronous machine is that the inertia and damping 

parameters are controller settings which can be easily varied 

(within the limits of ratings). Taking advantage of this, [34] 

suggested the use of varying inertia in order to rapidly 

reduce frequency oscillation after a contingency. Moreover, 

[35] utilized a self-adaptive inertia and damping 

combination control on VSG to improve performance on 

both oscillation and settling time, although the mathematic 

relationship between VSG parameters and the oscillation 

reduction is missing in that paper. Although adaptive 

controls are not directly addressed in this work, the 

relationships developed can be used to give insight into 

adaptive control settings. 

  A solid mathematical basis for investigating the 

interaction between the VSG and the power system is vital 

in order to understand the possibilities which might arise 

from it in terms of enhancing power system performance. In 

this regard, references [13-16] provide the overall small-
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signal modeling of VSG with full Jacobian matrix. Based on 

this, [36] applies Bifurcation Theory to synchronverter-

based microgrid stability analysis. Although the Jacobian 

matrix could be used to analyze parametric sensitivity, the 

decoupled parametric effect on output power performance 

can be more clearly presented by transfer functions. In this 

respect, [32,37] has provided a complex transfer function 

analysis with both VSG and VSC dynamics for frequency to 

active power, while [38,39] uses a simplified second-order 

transfer function for frequency to active power considering 

virtual inertia and droop. Reference [40] provides the 

transfer function for reference active power to actual power 

output and then analyzes the VSG stability constraints. In 

addition, [41] uses an angle to active power transfer function 

to analyze the influence of the virtual resistance on active 

power. The benefit of transfer function analysis over state 

space analysis, is its ability to provide a more intuitive  

insight into the parametric effects on the response. While the 

state space approach, is appropriate for stability analysis in 

complex multi-input-multi-output systems it is not so easy 

to understand the direct effects of each parameter on the 

transient response. In the other words, the transfer analysis 

put more emphasis on the device level analysis, although 

this analysis is limited to the single-input-single output, 

while the state space approach is more appropriate for the 

system-level analysis. Therefore before studying the  

incorporation of the VSG in larger power systems, a more 

insightful analysis at the device level is required which 

adequately captures the VSG terminal characteristics, their 

interaction with the grid and  the influence of the VSG 

settings on its characteristics. However, to the author’s 
knowledge, there is no paper which provides the complete 

coupled analysis for voltage angle and magnitude and grid 

frequency to active and reactive power using transfer 

functions. Therefore the novel contributions of this paper are 

1) to propose a VSG large signal model, which is simplified 

compared with models in [13-16] and mainly focuses on the 

VSG parameters; 2) to provide not only frequency to active 

power transfer function, but also the comprehensive transfer 

functions from the all possible inputs, references and grid 

state changes, to the outputs, real and reactive powers, 

including the cross couplings between them.; 3) to make use 

of the transfer functions to clearly relate VSG terminal 

performance (power overshoot and damping, settling time, 

oscillation frequency) to its settings and the grid 

characteristics. Furthermore, the analysis is used as a basis 

for exploring the influence of the settings on the terminal 

characteristics with simplified equations providing a basis 

for VSG design. The developed models are validated with 

hardware experiments.  Under the parametric analysis, the 

VSG transient performance, including the overshoot, 

settling time and steady state error can be predicted from the 

mathematic computation, this is verified also by the 

hardware experiments.  

This paper first introduces the large signal model of VSG 

in section 2. From this model, the transfer functions relating 

active and reactive power outputs to reference changes and 

grid frequency changes are developed.  In section 3, based 

on the transfer functions, the effects of VSG settings on its 

output performance will be analyzed. Finally, the VSG 

parametric effects are validated in a hardware experiment in 

Section 5. 

2. VSG Large Signal Model  

VSG control is implemented into grid-connected 

inverters, which typically interface the DC bus voltage from 

renewable generation or storage to the AC grid. The 

structure of the VSG consists of an active power regulation 

block, reactive power regulation block, virtual impedance 

and a conventional voltage source converter (VSC) as 

shown in Fig. 1. The blocks highlighted in blue form is the 

core of VSG control, which aims to compute the reference 

output voltage 𝑢𝑜,𝑟𝑒𝑓  for the VSC according to the required 

power; the blocks highlighted in red form is the 

conventional voltage controlled VSC with output voltage  𝑢𝑜 tracking 𝑢𝑜,𝑟𝑒𝑓 . In this work it is assumed that the DC 

link voltage is maintained constant, e.g. by the action of the 

controller for the storage system. It is also assumed that the  

response time of the VSG control  is similar to that of the 

SG, i.e. in the range of seconds, while the VSC voltage 

controller response time is  less than 10 ms. Considering this 

separation in response times, the large signal model neglects 

the fast-response VSC and only models the VSG (i.e. it 

essentially assumes that 𝑢𝑜 = 𝑢𝑜,𝑟𝑒𝑓) . The specific 

conditions under which this assumption remains valid have 

been verified in [40]. It is also assumed that the VSG is 

connected to an infinite bus, with voltage, 𝑢𝑔⃑⃑⃑⃑ , through a line 

impedance, 𝑍𝑔. Since the VSC acts as a voltage controlled 

converter, the electric potential 𝐸∠𝛿 is the controlled VSC 

voltage after the filter. Due to the implementation of a 

virtual impedance, E can be considered a virtual voltage and 

the actual output voltage of the VSG after the virtual 

impedance is 𝑢𝑜 as shown in Fig. 2. 

 
Fig. 1. Virtual synchronous generator control structure 

2.1 Active Power Regulation 
The active power exchanged between the VSG and the 

grid is determined by the angle δ of the virtual electric 

potential, 𝑒  , relative to the grid voltage angle. This angle is 

composed of a contribution from the reference active power 

setpoint which can also include a droop component for 

steady state frequency support, and a contribution from 

inertia during transients. The inertia part is determined from 

the swing equation (1) while the droop part is determined 

from active power-frequency droop (2).  𝑑∆𝜔𝑉𝑆𝐺𝑑𝑡 = 𝑃∗𝐽 − 𝑃𝐽 − 𝐷(𝜔𝑉𝑆𝐺 − 𝜔𝑔)𝐽            (1) 𝑃∗ = 𝑃 + 𝐾𝑑(𝜔𝑔 − 𝜔∗)                           (2) 

Where 𝐽 is virtual inertia, 𝐷 is damping gain, 𝐾𝑑 is droop 

gain, 𝜔𝑉𝑆𝐺  is VSG frequency, 𝜔𝑔  is grid frequency, 𝜔∗  is 

reference frequency, 𝑃  is VSG output active power, 𝑃∗  is 

VSG reference active power. 

If the damping gain 𝐷 is made equal to droop gain 𝐾𝑑, (1) 

and (2) can be combined as following: 
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𝑑∆𝜔𝑉𝑆𝐺𝑑𝑡 = 𝑃∗𝐽 − 𝑃𝐽 − 𝐾𝑑(𝜔𝑉𝑆𝐺 − 𝜔∗)𝐽           (3) 

The constraints for the parameters 𝐽  and 𝐾𝑑 to ensure 

stability have been analysed in [40]. Compared with the use 

of different damping and droop parameters, this approach  

has a narrower scope, since one parameter serves the 

purpose of damping during transients and droop during 

steady state. It does have the advantage of eliminating the 

need for a PLL. Although the analysis in this paper is based 

on (3), nevertheless, it would be possible to extend the 

analysis to the method with separate damping and droop 

with (2). This possibility is discussed later in section 6. 

2.2 Reactive Power Regulation 
The reactive power exchanged between the VSG and the 

grid is determined by the electric potential magnitude E and 

can incorporate a reactive power-voltage droop term as in 

(4) [42].  𝐸 = 𝑈∗ + 𝐾𝑞(𝑄∗ − 𝑄)                          (4) 

Where 𝐾𝑞  is the reactive power droop gain, 𝑈∗  is the 

voltage reference, 𝑄∗ is the reactive power reference, and 𝑄 

is the VSG output reactive power. 

2.3 Virtual Impedance 
The virtual impedance [37] 𝑅𝑣 + 𝑗𝑋𝑣 plays a similar role 

to the stator impedance of a synchronous machine. Thus, the 

virtual impedance connects the VSG to the transmission line 

in series as shown in Fig. 2. Hence, the current through the 

virtual impedance is the VSG output current 𝑖 . Thus, the 

VSG output voltage 𝑢𝑜⃑⃑⃑⃑  can be obtained as the electric 

potential minus the voltage drop on the virtual impedance: 𝑢𝑜⃑⃑⃑⃑ = 𝑒 − (𝑅𝑣 + 𝑗𝑋𝑣)𝑖                       (5) 

2.4 Electrical System Model 
In steady state, the reactive power and active power 

references determine the virtual electric potential and its 

phase angle respectively. Assuming the transmission line 

impedance between the VSG and grid is  𝑅𝑔 + 𝑗𝑋𝑔, and the 

grid voltage is 𝑢𝑔⃑⃑⃑⃑  and taking the grid voltage as the 

reference as defined by (8), then the resulting phase angle 

from the active power regulation is equal to the phase 

difference between the grid and the VSG potential. Then the 

electric potential can be defined as (6) in the static dq frame, 

where the angle is the integral of the frequency change in 

both VSG and grid (7). e⃑ = 𝑒𝑑 + 𝑗𝑒𝑞 = 𝐸𝑐𝑜𝑠(𝛿) + 𝑗𝐸𝑠𝑖𝑛(𝛿)                (6) 𝑑𝛿𝑑𝑡 = ∆𝜔𝑉𝑆𝐺 + ∆𝜔𝑔                    (7) 𝑢𝑔⃑⃑⃑⃑ = 𝑢𝑔𝑑 + 𝑗𝑢𝑔𝑞 = 𝑈𝑔                          (8) 

Where 𝑈𝑔  is the magnitude of the grid voltage and ∆𝜔𝑔 = (𝜔∗ − 𝜔𝑔). 

Fig. 2 presents the electrical system model of the VSG 

connected to the grid. 

 
Fig. 2. The electrical system model of VSG connecting to the 

grid 

From Fig. 2, the output current or line current can be 

easily computed as: 𝑅 = 𝑅𝑣 + 𝑅𝑔                                 (9) 𝑋 = 𝑋𝑣 + 𝑋𝑔 = 2𝜋𝑓𝑉𝑆𝐺𝐿𝑣 + 2𝜋𝑓𝑔𝐿𝑣                 (10) i = 𝑖𝑑 + 𝑗𝑖𝑞 = e⃑ − 𝑢𝑔⃑⃑⃑⃑ 𝑅 + 𝑗𝑋                      (11) 

The current in dq-frame would be: 

{ 𝑖𝑑 = 𝑅𝑅2 + 𝑋2 (𝑒𝑑 − 𝑢𝑔𝑑) + 𝑋𝑅2 + 𝑋2 (𝑒𝑞 − 𝑢𝑔𝑞)𝑖𝑞 = − 𝑋𝑅2 + 𝑋2 (𝑒𝑑 − 𝑢𝑔𝑑) + 𝑅𝑅2 + 𝑋2 (𝑒𝑞 − 𝑢𝑔𝑞)   (12) 

Substituting (6) into (5) gives the output voltage in the 

dq-frame: {𝑢𝑜𝑑 = 𝐸𝑐𝑜𝑠𝛿 − 𝑖𝑑𝑅𝑣 + 𝑖𝑞𝑋𝑣𝑢𝑜𝑞 = 𝐸𝑠𝑖𝑛𝛿 − 𝑖𝑑𝑋𝑣 − 𝑖𝑞𝑅𝑣                   (13) 

Equation (12) and (13) give the output current and voltage 

from the VSG. and its power output can be computed as: 𝑃 = 32 (𝑢𝑜𝑑𝑖𝑑 + 𝑢𝑜𝑞𝑖𝑞)                     (14) 𝑄 = 32 (−𝑢𝑜𝑑𝑖𝑞 + 𝑢𝑜𝑞𝑖𝑑)                   (15) 

The active power P computed from (14) can be viewed as 

the feedback for active power regulation in (3), while the 

reactive power Q computed from (15) can be viewed as the 

feedback for reactive power regulation in (4). Then (3~15) 

describe the closed loop VSG large signal model. Fig. 3 

depicts the VSG large signal model where each part from 

the above section is indicated in the figure. The input is the 

references (𝑃∗ , 𝑄∗ ,  𝑈∗)  and grid information (𝑈𝑔, ∆𝜔𝑔) , 

while the output is the VSG generated power or VSG output 

voltage and current. 

 
Fig. 3. VSG large signal model 

2.5 VSG Large Signal Model Validation 
In order to validate the accuracy of large signal model, we 

compare the VSG large signal model (Fig. 3) result to 

measurements obtained from a hardware in the loop test of a 

VSG controlled converter. The hardware uses two 100 V, 2 

kVA, three-phase AC/DC converter with control and 

measurement implemented via an OPAL-RT platform as 

shown in Fig. 4. Two converters are used, with one 

converter implementing VSG control while the other 

converter models the grid. These two converters use an LC 

filter and connect through an inductance emulating a 

transmission line. The parameters of the system and settings 

for the VSG are summarized in Table 1. The large signal 
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model is implemented in Matlab/Simulink with the same 

VSG settings as given in Table 1. 

 
Fig. 4. Hardware experimental set-up 

Table 1 Hardware VSG settings 
Parameter Value Parameter Value 

PWM/Sampling 

time 

1350/14.81e-

6 s 

Filter 

inductance 
0.033 H 

Rated Voltage 𝑈𝑔  100 V 
Filter 

resistance 
0.1266 Ω 

Reference voltage 𝑈∗ 100 V Filter 

capacitance 
80 µF 

Reference angular 

frequency 𝜔∗ 2π*50 Hz 
Line 

inductance 
0.033 H 

VSG Inertia J 20 W/rad-1 s2 Line resistance 1.44 Ω 

VSG 

damping/droop 𝐾𝑑 
80 W/rad-1s 

Virtual 

inductance 
0.011 H 

VSG reactive 

power droop 𝐾𝑞 
0.01 VA/V 

Virtual 

resistance 
0.1 Ω 

Current controller 

P/I 
66/339.8 

Voltage 

controller P/I 
0.0535/11.987 

Initially both reference active power and reactive power 

are set to be 0 and the grid operates at 50 Hz. At 27.5 s, the 

reference active power step increases to 300 W, while at 

27.5 s, the reference reactive power step increases to 300 

Var. At 37.5 s, the grid frequency decreases to 49 Hz with 1 

Hz/s ramp.  

 
Fig. 5. Comparison results between hardware and large 

signal model (a) output active power; (b) output reactive 

power 

Fig. 5 (a) is the output active power, while Fig. 5 (b) is 

the output reactive power. From these results, the large 

signal model gives the same performance as the hardware 

experiment. This hardware validation gives confidence that 

the large signal model can be validly used to analyze the 

effect of VSG settings on steady state, settling time and 

overshoot when the system is subject to changes about the 

operating point. 

3. Development of Transfer Functions  

The aim of this section is to develop transfer functions, 

based on the large signal model, which relate the VSG 

inputs to outputs. The inputs to the VSG are reference active 

power 𝑃∗, reference reactive power 𝑄∗ and grid frequency 𝜔𝑔 , while the outputs from VSG are active power P and 

reactive power Q. Therefore, the transfer functions of 

interest are:   

 𝐺𝑃_𝑃 reference active power to output active power  

 𝐺𝑄_𝑃 reference active power to output reactive power 

 𝐺𝑃_𝑄 reference reactive power to output active power   

 𝐺𝑄_𝑄 reference reactive power to output reactive power 

 𝐺𝑃_𝜔 grid frequency to output active power 

 𝐺𝑄_𝜔 grid frequency to output reactive power.  

The analysis starts by using the electrical system model 

equations to derive the relationships between angle, δ  and 

potential E, to real and reactive power outputs. Since we 

neglect the fast VSC dynamics, these relationships are a set 

of gains, 𝐻𝑑𝑃/𝑑𝛿 , 𝐻𝑑𝑄/𝑑𝛿which relate a change in angle to 

the resulting change in real and reactive powers, and 𝐻𝑑𝑃/𝑑𝐸 ,  𝐻𝑑𝑄/𝑑𝐸  which relate a change in potential to the 

resulting change in real and reactive power. Subsequently, 

from the active power regulation part, the transfer function 

from reference active power and frequency to angle δ  can 

be determined. Similarly, from the reactive power part the 

function from reference reactive power to potential E can be 

determined. These can be combined with the gains to derive 

the overall transfer functions of interest as listed above.   

3.1 Small Signal Model and Transfer Functions 
This section presents the development of the relationship 

of phase angle to output real and reactive power (𝐻𝑑𝑃/𝑑𝛿 , 𝐻𝑑𝑄/𝑑𝛿 ) and the potential to real and reactive power 

(𝐻𝑑𝑃/𝑑𝐸 , 𝐻𝑑𝑄/𝑑𝐸). 

3.1.1 Initial Operating Point: Assuming in pre-disturbance 

the VSG operates at phase angle  𝛿0 , and its electric 

potential is 𝐸0 then substituting (6) into (12) we obtain the 

initial current: 

{  
  𝑖𝑑0 = (𝐸0𝑐𝑜𝑠𝛿0 − 𝑈𝑔)𝑅 + 𝐸0𝑋𝑠𝑖𝑛𝛿0𝑅2 + 𝑋2𝑖𝑞0 = −(𝐸0𝑐𝑜𝑠𝛿0 − 𝑈𝑔)𝑋 + 𝐸0𝑅𝑠𝑖𝑛𝛿0𝑅2 + 𝑋2            (16) 

Substituting (16) into (13) we obtain the initial output 

voltages as shown in (17). 

3.1.2 Small signal change in angle ∆𝛿 : Assuming a 

small signal disturbance in angle, Δ𝛿,  and in 

currents,  Δ𝑖𝑑 , Δiq , substituting into (16), expanding and 

assuming, cos(Δ𝛿) ≈ 1,  and sin(Δ𝛿  )≈  Δ𝛿  then we obtain 

(18) and (19).  

{∆𝑖𝑑∆𝛿 = −𝑅𝑠𝑖𝑛𝛿0 + 𝑋𝑐𝑜𝑠𝛿0𝑅2 + 𝑋2 𝐸0∆𝑖𝑞∆𝛿 = 𝑋𝑠𝑖𝑛𝛿0 + 𝑅𝑐𝑜𝑠𝛿0𝑅2 + 𝑋2 𝐸0              (18) 

(a) 

(b) 
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With a similar approach using (13) and (18) in (14)(15), 

we can derive the transfer functions from small signal angle 

change to real and reactive power change 𝐻dP/𝑑𝛿 = ∆𝑃∆𝛿 = 3(𝐸0𝑈𝑔𝑅𝑠𝑖𝑛𝛿0 + 𝐸0𝑈𝑔𝑋𝑐𝑜𝑠𝛿0)2(𝑅2 + 𝑋2)  −3(𝐸0𝑈𝑔𝑅2𝑅𝑣𝑠𝑖𝑛𝛿0 + 𝐸0𝑈𝑔𝑋2𝑅𝑣𝑠𝑖𝑛𝛿0)(𝑅2 + 𝑋2)2     (20) 𝐻𝑑𝑄/𝑑𝛿 = ∆𝑄∆𝛿 = 3(𝐸0𝑈𝑔𝑋𝑠𝑖𝑛𝛿0 − 𝐸0𝑈𝑔𝑅𝑐𝑜𝑠𝛿0)2(𝑅2 + 𝑋2)  −3(𝐸0𝑈𝑔𝑅2𝑋𝑣𝑠𝑖𝑛𝛿0 + 𝐸0𝑈𝑔𝑋2𝑋𝑣𝑠𝑖𝑛𝛿0)(𝑅2 + 𝑋2)2      (21) 
 

3.1.3 Small signal change in Potential, ∆𝐸:  Following a 

similar procedure for the change in currents due to a change 

in VSG potential gives (22) and (23): 

{∆𝑖𝑑∆𝐸 = 𝑋𝑠𝑖𝑛𝛿0 + 𝑅𝑐𝑜𝑠𝛿0𝑅2 + 𝑋2∆𝑖𝑞∆𝐸 = 𝑅𝑠𝑖𝑛𝛿0 − 𝑋𝑐𝑜𝑠𝛿0𝑅2 + 𝑋2                       (22) 

Then the gains for potential to power can be obtained: 𝐻𝑑𝑃/𝑑𝐸 = ∆𝑃∆𝐸 = 3(2𝐸0𝑅 − 𝑈𝑔𝑅𝑐𝑜𝑠𝛿0 + 𝑈𝑔𝑋𝑠𝑖𝑛𝛿0)2(𝑅2 + 𝑋2)  +3(𝑈𝑔𝑋2𝑅𝑣𝑐𝑜𝑠𝛿0 + 𝑈𝑔𝑅2𝑅𝑣𝑐𝑜𝑠𝛿0 − 𝐸0𝑋2𝑅𝑣 − 𝐸0𝑅2𝑅𝑣)(𝑅2 + 𝑋2)2 (24) 𝐻𝑑𝑄/𝑑𝐸 = ∆𝑄∆𝐸 = 3(2𝐸0𝑋 − 𝑈𝑔𝑋𝑐𝑜𝑠𝛿0 − 𝑈𝑔𝑅𝑠𝑖𝑛𝛿0)2(𝑅2 + 𝑋2)  +3(𝑈𝑔𝑋2𝑋𝑣𝑐𝑜𝑠𝛿0 + 𝑈𝑔𝑅2𝑋𝑣𝑐𝑜𝑠𝛿0 − 𝐸0𝑋2𝑋𝑣 − 𝐸0𝑅2𝑋𝑣)(𝑅2 + 𝑋2)2  (25) 

Now considering the above relationships, the closed loop 

transfer function diagram can be formed as shown in Fig. 6. 

The inputs are reference active power change ∆𝑃∗ , grid 

frequency change  ∆ω𝑔 and reference reactive power change ∆𝑄∗ . The outputs are output active power change ∆𝑃 and 

output reactive power change ∆𝑄. 

 
Fig. 6. VSG small signal closed loop transfer function 

3.2 Transfer functions 
3.2.1 Reference active power step change: With 

reference to Fig. 6 we can now find the transfer functions 

from reference active power change to output active power 

and reactive power, assuming the grid frequency and 

reference reactive power are invariant i.e. ∆𝑄∗ = 0 , ∆ω𝑔 = 0. The transfer functions are 𝐺𝑃_𝑃 and 𝐺𝑄_𝑃 as in (26) 

and (27). 
3.2.2 Reference reactive power step change: Again, 

with reference to Fig. 6, the transfer functions from 

reference reactive power change to reactive 𝐺𝑃_𝑄 and active 

power output 𝐺𝑄_𝑄 , assuming the grid frequency and 

reference active power is invariant ( ∆𝑃∗ = 0, ∆ω𝑔 = 0) are 

given by (28) and (29). 
3.2.3 Grid frequency step change: The transfer function 

for grid frequency change to active and reactive power, 

assuming the reference reactive and reference active power 

is invariant or ∆𝑃∗ = 0 , ∆𝑄∗ = 0 , are given by 𝐺𝑃_𝜔  and 𝐺𝑄_𝜔 as (30) and (31). 

Note that all of above transfer functions (26~31) are 

second order, which arises from the fact that the work 

ignored the dynamics of the VSC itself on the assumption 

that they are much faster than the VSG controls.   

3.3 Steady State Values 
It is interesting to examine the steady state value of the 

active and reactive powers, after a change in inputs or grid 

frequency. These steady state values can easily be obtained 

from (26-31). by setting 𝑠 = 0 and are summarized in Table 

2. From Table 2, it is obvious that in steady state the output 

active power can fully follow the reference active power, is 

decoupled from the reference reactive power and droops the 

active power according to the frequency change. However, 

the output reactive power is coupled with the reference 

active power and does not even fully follow the reference 

reactive power. Essentially this is because the active power 

control loop has an integrator as part of the swing equation 

thus forcing zero steady state error, while the reactive power 

control loop only has a proportional gain or droop term.  

3.4 Damping Ratios and Natural Oscillation 
For the second order transfer functions, the damping 

ratios and natural oscillation frequency can be computed, 

which can then further be used to determine settling times 

and overshoot.   

{  
  𝑢𝑜𝑑0 = 𝐸0𝑐𝑜𝑠𝛿0 + −(𝐸0𝑐𝑜𝑠𝛿0 − 𝑈𝑔)𝑅𝑅𝑣 − 𝐸0𝑋𝑅𝑣𝑠𝑖𝑛𝛿0 − (𝐸0𝑐𝑜𝑠𝛿0 − 𝑈𝑔)𝑋𝑋𝑣 + 𝐸0𝑅𝑋𝑣𝑠𝑖𝑛𝛿0𝑅2 + 𝑋2𝑢𝑜𝑞0 = 𝐸0𝑠𝑖𝑛𝛿0 + (𝐸0𝑐𝑜𝑠𝛿0 − 𝑈𝑔)𝑋𝑅𝑣 − 𝐸0𝑅𝑅𝑣𝑠𝑖𝑛𝛿0 − (𝐸0𝑐𝑜𝑠𝛿0 − 𝑈𝑔)𝑅𝑋𝑣 − 𝐸0𝑋𝑋𝑣𝑠𝑖𝑛𝛿0𝑅2 + 𝑋2               (17) 

{∆𝑢𝑜𝑑∆𝛿 = −𝐸0𝑠𝑖𝑛𝛿0 + 𝐸0𝑅𝑅𝑣𝑠𝑖𝑛𝛿0 − 𝐸0𝑋𝑅𝑣𝑐𝑜𝑠𝛿0 + 𝐸0𝑋𝑋𝑣𝑠𝑖𝑛𝛿0 + 𝐸0𝑅𝑋𝑣𝑐𝑜𝑠𝛿0𝑅2 + 𝑋2∆𝑢𝑜𝑞∆𝛿 = 𝐸0𝑐𝑜𝑠𝛿0 + −𝐸0𝑋𝑅𝑣𝑠𝑖𝑛𝛿0 − 𝐸0𝑅𝑅𝑣𝑐𝑜𝑠𝛿0 + 𝐸0𝑅𝑋𝑣𝑠𝑖𝑛𝛿0 − 𝐸0𝑋𝑋𝑣𝑐𝑜𝑠𝛿0𝑅2 + 𝑋2                             (19) 

{∆𝑢𝑜𝑑∆𝐸 = 𝑐𝑜𝑠𝛿0 + −𝑅𝑅𝑣𝑐𝑜𝑠𝛿0 − 𝑋𝑅𝑣𝑠𝑖𝑛𝛿0 − 𝑋𝑋𝑣𝑐𝑜𝑠𝛿0 + 𝑅𝑋𝑣𝑠𝑖𝑛𝛿0𝑅2 + 𝑋2∆𝑢𝑜𝑞∆𝐸 = 𝑠𝑖𝑛𝛿0 + 𝑋𝑅𝑣𝑐𝑜𝑠𝛿0 − 𝑅𝑅𝑣𝑠𝑖𝑛𝛿0 − 𝑅𝑋𝑣𝑐𝑜𝑠𝛿0 − 𝑋𝑋𝑣𝑠𝑖𝑛𝛿0𝑅2 + 𝑋2                                       (23) 
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Table 3 gives the damping ratio and natural oscillation 

frequency for all the transfer functions. 

In 𝐺𝑃_𝑃 and 𝐺𝑃_𝜔 , since reactive power is always 

positively associated to electric potential, 𝐻𝑑𝑄/𝑑𝐸 > 0, thus, 𝐾𝑞1+𝐾𝑞𝐻𝑑𝑄/𝑑𝐸 < 𝐾𝑞 . Actually, according to (4), 𝐾𝑞 <𝑈𝑚𝑎𝑥−𝑈𝑚𝑖𝑛𝑃𝑚𝑎𝑥−𝑃𝑚𝑖𝑛 , so that 𝐾𝑞  would typically be a small value. The 

effect of angle to reactive power and voltage to active power 

is normally small, assuming large inductance to resistance 

ratio. Thus 𝐻𝑑𝑃/𝑑𝛿 ≫ 𝐻𝑑𝑄/𝑑𝛿𝐻𝑑𝑃/𝑑𝐸𝐾𝑞 . Therefore, the 

damping ratio of 𝐺𝑃_𝑃 and 𝐺𝑃_𝜔  can be simplified as 𝐾𝑑2√𝐽𝐻𝑑𝑃/𝑑𝛿. 

In 𝐺𝑄_𝑃and 𝐺𝑄_𝜔, similarly, 
𝐻𝑑𝑄/𝑑𝛿𝐻𝑑𝑃/𝑑𝐸𝐻𝑑𝑄/𝑑𝐸 ≪ 𝐻𝑑𝑃/𝑑𝛿 . Thus, 

the damping ratio of 𝐺𝑄_𝑃 and 𝐺𝑄_𝜔  can be simplified as 𝐾𝑑2√𝐽𝐻𝑑𝑃/𝑑𝛿. 

In 𝐺𝑃_𝑄 , 𝐻𝑑𝑃𝑑𝛿 ≫ 𝐻𝑑𝑄/𝑑𝛿  and as mentioned above, 𝐾𝑞  is 

small enough that 𝐾𝑞𝐻𝑑𝑃/𝑑𝐸 ≈ 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸 . Thus, 𝐻𝑑𝑃/𝑑𝛿 +(𝐻𝑑𝑃𝑑𝛿 − 𝐻𝑑𝑄/𝑑𝛿)𝐾𝑞𝐻𝑑𝑃/𝑑𝐸 ≈ 𝐻𝑑𝑃/𝑑𝛿(1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸) . 

Therefore, 𝐺𝑃_𝑄 can be simplified as 
𝐾𝑑2√𝐽𝐻𝑑𝑃/𝑑𝛿. 

In 𝐺𝑄_𝑄 , 𝐻𝑑𝑃/𝑑𝛿 ≫ 𝐻𝑑𝑄/𝑑𝛿𝐻𝑑𝑃/𝑑𝐸𝐾𝑞 , and 𝐾𝑞𝐻𝑑𝑃/𝑑𝐸 ≈𝐾𝑞𝐻𝑑𝑄/𝑑𝐸 . Thus, 𝐻𝑑𝑃/𝑑𝛿 + 𝐻𝑑𝑃/𝑑𝛿𝐾𝑞𝐻𝑑𝑄/𝑑𝐸 −𝐻𝑑𝑄/𝑑𝛿𝐾𝑞𝐻𝑑𝑃/𝑑𝐸 ≈ 𝐻𝑑𝑃/𝑑𝛿(1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸) . Therefore, 𝐺𝑄_𝑄 can be simplified as 
𝐾𝑑2√𝐽𝐻𝑑𝑃/𝑑𝛿. 

In total, the damping ratio for all of the mentioned second 

order transfer functions can be uniformly simplified as 𝐾𝑑2√𝐽𝐻𝑑𝑃/𝑑𝛿 , under the assumption that 𝐻𝑑𝑃/𝑑𝛿 ≫𝐻𝑑𝑄/𝑑𝛿𝐻𝑑𝑃/𝑑𝐸𝐾𝑞 , 
𝐻𝑑𝑄/𝑑𝛿𝐻𝑑𝑃/𝑑𝐸𝐻𝑑𝑄/𝑑𝐸 ≪ 𝐻𝑑𝑃/𝑑𝛿  and 𝐾𝑞𝐻𝑑𝑃/𝑑𝐸 −𝐾𝑞𝐻𝑑𝑄/𝑑𝐸 ≈ 0 or in the case of a largely inductive line. 

Similar terms occur in the expressions for the natural 

oscillation frequency and thus, the simplification used for 

the damping ratio analysis can directly be applied also to the 

natural oscillation frequency analysis. Therefore, the natural 

oscillation frequency of all of the mentioned second order 

transfer function can be reduced to  √𝐻𝑑𝑃/𝑑𝛿/𝐽. 

Considering that the damping ratio and natural oscillation 

frequency have now been defined, the system stability 

condition, settling time and overshoot can be computed. 

3.4.1 System stability condition: For a second order 

transfer function, the stable condition is that the damping 

ratio ξ  must be greater than zero, i.e.  in this case: 𝐾𝑑2√𝐽𝐻𝑑𝑃/𝑑𝛿 > 0                               (32) 

Since damping/droop gain 𝐾𝑑 and inertia J are always 

positive, the system would be stable as long as 𝐻𝑑𝑃/𝑑𝛿  is 

positive i.e. (20) is greater than zero, which depends on 

initial equilibrium point, line and virtual impedance. To 

ensure a positive value of 𝐻𝑑𝑃/𝑑𝛿 , the angle 𝛿0 should not 

exceed 90° and the total impedance 𝑋 should  not be less 

than zero. 

3.4.2 Settling time: When the system stability condition is 

satisfied, the settling time can be calculated based on the 

damping ratio ξ. 
When 0 < ξ < 1 , the system is underdamped. The 

settling time 𝑡𝑠 to 2% steady state error is: 𝑡𝑠 = 1𝜔𝑛𝜉 log ( 10.02√1 − 𝜉2)                  (33𝑎) 

𝑡𝑠 = 2𝐽𝐾𝑑 log ( 10.02√1 − 𝐾𝑑2/4𝐽𝐻𝑑𝑃/𝑑𝛿)           (33𝑏) 

 

When ξ > 1, the system is overdamped. The settling time 𝑡𝑠 to 2% steady state error is: 𝑡𝑠 = 4√𝑇12 + 𝑇22                                  (34) 

Where 𝑇1 and  𝑇2 are the time constant of the real roots of 

overdamped second order transfer function. 

𝐺𝑃_𝑃 = 𝐻𝑑𝑃/𝑑𝛿 − 𝐻𝑑𝑄/𝑑𝛿𝐻𝑑𝑃/𝑑𝐸 𝐾𝑞1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸𝐽𝑠2 + 𝐾𝑑𝑠 + 𝐻𝑑𝑃/𝑑𝛿 − 𝐻𝑑𝑄/𝑑𝛿𝐻𝑑𝑃/𝑑𝐸 𝐾𝑞1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸
                                            (26) 

𝐺𝑄_𝑃 = 𝐻𝑑𝑄/𝑑𝛿𝐽(1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸)𝑠2 + 𝐾𝑑(1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸)𝑠 + 𝐻𝑑𝑄/𝑑𝛿𝐻𝑑𝑃/𝑑𝐸𝐻𝑑𝑄/𝑑𝐸 + 𝐻𝑑𝑃/𝑑𝛿(1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸)                  (27) 

𝐺𝑃_𝜔 = 𝐽𝐾𝑞𝐻𝑑𝑃/𝑑𝐸𝑠2 + 𝐾𝑑𝐾𝑞𝐻𝑑𝑃/𝑑𝐸𝑠𝐽(1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸)𝑠2 + 𝐾𝑑(1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸)𝑠 + 𝐻𝑑𝑃/𝑑𝛿 + (𝐻𝑑𝑃/𝑑𝛿 − 𝐻𝑑𝑄/𝑑𝛿)𝐾𝑞𝐻𝑑𝑃/𝑑𝐸                     (28) 

𝐺𝑄_𝜔 = 𝐽𝐾𝑞𝐻𝑑𝑄/𝑑𝐸𝑠2 + 𝐾𝑑𝐾𝑞𝐻𝑑𝑄/𝑑𝐸𝑠 + 𝐻𝑑𝑃/𝑑𝛿𝐾𝑞𝐻𝑑𝑄/𝑑𝐸 − 𝐻𝑑𝑄/𝑑𝛿𝐾𝑞𝐻𝑑𝑃/𝑑𝐸𝐽(1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸)𝑠2 + 𝐾𝑑(1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸)𝑠 + 𝐻𝑑𝑃/𝑑𝛿 + 𝐻𝑑𝑃/𝑑𝛿𝐾𝑞𝐻𝑑𝑄/𝑑𝐸 − 𝐻𝑑𝑄/𝑑𝛿𝐾𝑞𝐻𝑑𝑃/𝑑𝐸               (29) 

𝐺𝑃_𝑓 = (𝐻𝑑𝑃/𝑑𝛿 − 𝐻𝑑𝑄/𝑑𝛿𝐻𝑑𝑃/𝑑𝐸 𝐾𝑞1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸)(𝐽𝑠 + 𝐾𝑑)𝐽𝑠2 + 𝐾𝑑𝑠 + 𝐻𝑑𝑃/𝑑𝛿 − 𝐻𝑑𝑄/𝑑𝛿𝐻𝑑𝑃/𝑑𝐸 𝐾𝑞1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸
                                           (30) 

𝐺𝑄_𝑓 = 𝐻𝑑𝑄/𝑑𝛿1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸 (𝐽𝑠 + 𝐾𝑑)𝐽𝑠2 + 𝐾𝑑𝑠 + 𝐻𝑑𝑃/𝑑𝛿 − 𝐾𝑞𝐻𝑑𝑃/𝑑𝐸 1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸𝐻𝑑𝑄/𝑑𝛿
                                               (31) 
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𝑇1, 𝑇2 = − 1−𝜔𝑛𝜉 ± 𝜔𝑛√𝜉2 − 1                      (35a) 𝑇1, 𝑇2 = 2𝐽𝐾𝑑 ∓ √𝐾𝑑2 − 4𝐽𝐻𝑑𝑃/𝑑𝛿                       (35b) 

3.4.3 Overshoot: When the system is underdamped, it 

gives rise to overshoot during transients. The transfer 

function (26) is in the standard second order format and 

(27)(30)(31) can be transformed to standard second order 

format by multiplying by its steady state value S. However, 

(28) and (29) cannot be transformed to standard second 

order format. For those transfer functions in standard second 

order format, the overshoot can be easily computed, while 

for those nonstandard transfer function, the overshoot can be 

calculated from the definition (detailed in Appendix A). 
Table 2 presents the result of overshoot for all the 

considered transfer functions. 

3.5 Transfer function validation 
In order to validate the transfer function, the results 

obtained from the transfer function are compared to those 

obtained from the previously validated large signal model 

by the means of Matlab based simulations. Fig. 6 shows the 

results for a step change in reference active power (Fig.6a), 

reference reactive power (Fig.6b), and frequency (Fig.6c) 

where the frequency changes by 0.01 Hz (0.02π rad) with 1 
Hz/s slope. The system parameters and settings are the same 

as in Table 1. The results of output active and reactive 

power are shown in Fig. 7. 

From the results, the transfer function is accurate. The 

output active power can precisely follow the reference, 

while the output reactive power as expected, couples with 

input reference active power and mismatches its reference.  

The following validation is to confirm the calculation of 

steady state value S and overshoot PO, and compare the 

settling time 𝑡𝑠  damping ratio ξ and natural oscillation 
frequency ω𝑛 obtained from each transfer function to the 

simplified values. The results are shown in Table 4. 

Comparing the results in Table 4 (steady state S, 

overshoot PO and settling time 𝑡𝑠 ) and Fig. 7, the 

expressions used in Table 2 and 3 are validated. Comparing 

the calculation using the simplified expressions with the full 

expressions, the simplified expression for damping ratio 

Table 2 Steady state value and overshoot 
Transfer 

function 

Steady state value S Overshoot PO 𝐺𝑃_𝑃 1 (exp(− 𝜉𝜋√1 − 𝜉2) + 1) 𝐺𝑄_𝑃 𝐻𝑑𝑄/𝑑𝛿𝐻𝑑𝑄/𝑑𝛿𝐻𝑑𝑃/𝑑𝐸𝐻𝑑𝑄/𝑑𝐸 + 𝐻𝑑𝑃/𝑑𝛿(1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸) (exp(− 𝜉𝜋√1 − 𝜉2) + 1) ∗ 𝐻𝑑𝑄/𝑑𝛿𝐻𝑑𝑄/𝑑𝛿𝐻𝑑𝑃/𝑑𝐸𝐻𝑑𝑄/𝑑𝐸 + 𝐻𝑑𝑃/𝑑𝛿(1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸) 

𝐺𝑃_𝑄 0 𝐾𝑞𝐻𝑑𝑃/𝑑𝐸1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸 𝐺𝑄_𝑄 𝐻𝑑𝑃/𝑑𝛿𝐾𝑞𝐻𝑑𝑄/𝑑𝐸 − 𝐻𝑑𝑄/𝑑𝛿𝐾𝑞𝐻𝑑𝑃/𝑑𝐸𝐻𝑑𝑃/𝑑𝛿 + 𝐻𝑑𝑃/𝑑𝛿𝐾𝑞𝐻𝑑𝑄/𝑑𝐸 − 𝐻𝑑𝑄/𝑑𝛿𝐾𝑞𝐻𝑑𝑃/𝑑𝐸 
𝐾𝑞𝐻𝑑𝑄/𝑑𝐸1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸  𝐺𝑃_𝜔 𝐾𝑑 𝑐1𝜔𝑃_𝜔 𝑒−𝑎𝑃_𝜔∙𝑡𝑃_𝜔 sin(𝜔𝑃_𝜔 ∙ 𝑡𝑃_𝜔) + 𝐾𝑑(1 − 𝑒−𝑎𝑃_𝜔∙𝑡𝑃_𝜔 cos(𝜔𝑃_𝜔 ∙ 𝑡𝑃_𝜔)− 𝑎𝑃_𝜔𝜔𝑃_𝜔 𝑒−𝑎𝑃_𝜔∙𝑡sin (𝜔𝑃_𝜔 ∙ 𝑡𝑝_𝜔)) 𝐺𝑄_𝜔 𝐻𝑑𝑄/𝑑𝛿𝐾𝑑(1+𝐾𝑞𝐻𝑑𝑄/𝑑𝐸)𝐻𝑑𝑃/𝑑𝛿−𝐾𝑞𝐻𝑑𝑃/𝑑𝐸(1+𝐾𝑞𝐻𝑑𝑄/𝑑𝐸)2𝐻𝑑𝑄/𝑑𝛿   

𝑐2𝜔𝑄_𝜔 𝑒−𝑎𝑄_𝜔∙𝑡𝑄_𝜔sin (𝜔𝑄_𝜔 ∙ 𝑡𝑄_𝜔) +𝐾𝑑𝑐2𝑐3 (1 − 𝑒−𝑎𝑄_𝜔∙𝑡𝑝_𝜔 cos(𝜔𝑄_𝜔 ∙ 𝑡𝑄_𝜔) − 𝑎𝑄_𝜔𝜔𝑄_𝜔 𝑒−𝑎𝑄_𝜔∙𝑡𝑄_𝜔 sin(𝜔𝑄_𝜔 ∙ 𝑡𝑄_𝜔))  

Table 3 Damping ratio and natural oscillation frequency 
Transfer 

function 
Damping ratio ξ Natural oscillation frequency ω𝑛 

𝐺𝑃_𝑃 

𝐾𝑑2√𝐽(𝐻𝑑𝑃/𝑑𝛿 − 𝐻𝑑𝑄/𝑑𝛿𝐻𝑑𝑃/𝑑𝐸 𝐾𝑞1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸) √(𝐻𝑑𝑃/𝑑𝛿 − 𝐻𝑑𝑄/𝑑𝛿𝐻𝑑𝑃/𝑑𝐸 𝐾𝑞1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸)/𝐽 
𝐺𝑄_𝑃 

𝐾𝑑(1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸)2√𝐽(1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸)(𝐻𝑑𝑄/𝑑𝛿𝐻𝑑𝑃/𝑑𝐸𝐻𝑑𝑄/𝑑𝐸 + 𝐻𝑑𝑃/𝑑𝛿(1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸)) √(𝐻𝑑𝑄/𝑑𝛿𝐻𝑑𝑃/𝑑𝐸𝐻𝑑𝑄/𝑑𝐸 + 𝐻𝑑𝑃/𝑑𝛿(1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸))/(𝐽(1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸)) 

𝐺𝑃_𝑄 

𝐾𝑑(1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸)2√𝐽(1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸)(𝐻𝑑𝑃/𝑑𝛿 + (𝐻𝑑𝑃/𝑑𝛿 − 𝐻𝑑𝑄/𝑑𝛿)𝐾𝑞𝐻𝑑𝑃/𝑑𝐸) √(𝐻𝑑𝑃/𝑑𝛿 + (𝐻𝑑𝑃/𝑑𝛿 − 𝐻𝑑𝑄/𝑑𝛿)𝐾𝑞𝐻𝑑𝑃/𝑑𝐸)/(𝐽(1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸)) 
𝐺𝑄_𝑄 

𝐾𝑑(1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸)2√𝐽(1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸)(𝐻𝑑𝑃/𝑑𝛿 + 𝐻𝑑𝑃/𝑑𝛿𝐾𝑞𝐻𝑑𝑄/𝑑𝐸 − 𝐻𝑑𝑄/𝑑𝛿𝐾𝑞𝐻𝑑𝑃/𝑑𝐸) √(𝐻𝑑𝑃/𝑑𝛿 + 𝐻𝑑𝑃/𝑑𝛿𝐾𝑞𝐻𝑑𝑄/𝑑𝐸 − 𝐻𝑑𝑄/𝑑𝛿𝐾𝑞𝐻𝑑𝑃/𝑑𝐸)/(𝐽(1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸)) 

𝐺𝑃_𝜔 

𝐾𝑑2√𝐽(𝐻𝑑𝑃/𝑑𝛿 − 𝐻𝑑𝑄/𝑑𝛿𝐻𝑑𝑃/𝑑𝐸 𝐾𝑞1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸) √(𝐻𝑑𝑃/𝑑𝛿 − 𝐻𝑑𝑄/𝑑𝛿𝐻𝑑𝑃/𝑑𝐸 𝐾𝑞1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸)/𝐽 

𝐺𝑄_𝜔 

𝐾𝑑(1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸)2√𝐽(1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸)(𝐻𝑑𝑄/𝑑𝛿𝐻𝑑𝑃/𝑑𝐸𝐻𝑑𝑄/𝑑𝐸 + 𝐻𝑑𝑃/𝑑𝛿(1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸)) √(𝐻𝑑𝑄/𝑑𝛿𝐻𝑑𝑃/𝑑𝐸𝐻𝑑𝑄/𝑑𝐸 + 𝐻𝑑𝑃/𝑑𝛿(1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸))/(𝐽(1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸)) 
 



8 

 

𝐾𝑑2√𝐽𝐻𝑑𝑃/𝑑𝛿 , natural oscillation frequency √𝐻𝑑𝑃/𝑑𝛿/𝐽  and 

settling time (33~35) are a good approximation. 

 

 
Fig. 7. Response from Transfer function analysis compared 

to results from large signal model.  

Table 4 System performance parameters obtained from the 

transfer functions and comparison with values from 

simplified expressions.  
Transfer 

function 
S PO ξ ω𝑛 𝑡𝑠 𝐺𝑃_𝑃 1 1.41 0.2730 7.3251 1.9754 𝐺𝑄_𝑃 -0.1018 -0.1432 0.2747 7.2795 1.9756 𝐺𝑃_𝑄 0 0.0108 0.2856 7.0033 1.9773 𝐺𝑄_𝑄 0.0979 0.0968 0.2730 7.3251 1.9754 𝐺𝑃_𝜔 5.0265 10.5201 0.2730 7.3251 1.9754 𝐺𝑄_𝜔 -0.5055 -1.0530 0.2747 7.2795 1.9756 

Simplified \ \ 0.2732 7.3207 1.9754 

With the understanding gained from the analysis of the 

VSG input-output transfer functions, the behavior of VSG 

can be fully predicted.  

4. Analysis of Effects of VSG settings 

 Clearly the VSG parameters determine its performance, 

and now based on the derived transfer functions we can 

fully analyse the effects of the various VSG settings on the 

performance. From the above performance parameter 

analysis of steady state value, settling time and overshoot, 

the gains of power to angle and electric potential 𝐻𝑑𝑃/𝑑𝛿 , 𝐻𝑑𝑄/𝑑𝛿 , 𝐻𝑑𝑃/𝑑𝐸 , 𝐻𝑑𝑄/𝑑𝐸 , the inertia J, 

damping/droop gain 𝐾𝑑  and reactive power droop gain 𝐾𝑞  

are critical. For any given VSG, we will assume that the line 

impedance is fixed. The design variables are therefore the 

VSG settings, i.e. virtual impedance, inertia and 

damping/droop. To illustrate the effects of the various 

settings, the paper uses the example used in Table 1 to 

illustrate the relationships. 

4.1 Virtual Impedance Effects 
The virtual impedance essentially emulates the existence 

of an extra impedance in series with the line impedance. 

Due to the fact that it is implemented via a control algorithm, 

the virtual impedance can be positive (increase the 

impedance between potential and grid) or negative. The 

virtual impedance directly influences the values of 𝐻𝑑𝑃/𝑑𝛿 , 𝐻𝑑𝑄/𝑑𝛿 , 𝐻𝑑𝑃/𝑑𝐸 , 𝐻𝑑𝑄/𝑑𝐸  in (20)(21)(24)(25) 

respectively. These values subsequently determine the 

steady state value, settling time and overshoot and it will be 

shown that  after simplification, 𝐻𝑑𝑃/𝑑𝛿  dominates the 

settling time and overshoot. Thus it is important to firstly 

analyse the effect of the virtual impedance on the gains, 𝐻𝑑𝑃/𝑑𝛿 , 𝐻𝑑𝑄/𝑑𝛿 , 𝐻𝑑𝑃/𝑑𝐸 , 𝐻𝑑𝑄/𝑑𝐸  as shown in Fig. 8. 

Although, these value are also dependent on the initial angle 𝛿0 and initial potential 𝐸0, the effect of both 𝛿0 and 𝐸0 are to 

scale (20)(21)(24)(25) so that they would not change the 

shape of curves  in Fig. 8. 

 
Fig. 8. Virtual impedance effects on H, Zbase=10 Ω, 
Xg=1.038 pu and Rg=0.144 pu 

From Fig.8, it can be seen that all of the gains are 

sensitive to the virtual inductance. Moreover, reducing the 

virtual inductance can increase all the gains. This result has 

already been verified in [43] and accords with the well-

known power exchange equations. P = 𝐸𝑈𝑔(𝑅𝑐𝑜𝑠𝛿 + 𝑋𝑠𝑖𝑛𝛿) − 𝑅𝑈𝑔2𝑅2 + 𝑋2                   (36) Q = 𝐸𝑈𝑔(𝑋𝑐𝑜𝑠𝛿 − 𝑅𝑠𝑖𝑛𝛿) − 𝑋𝑈𝑔2𝑅2 + 𝑋2                   (37) 

Where from (36) and (37) it is clearly seen that the 

inductance reduction would increase both active and 

reactive power flow. 

4.1.1 Virtual impedance effect on steady state value： 
Damping and inertia only affects the transient behavior, 

while the steady state performance is only related to the 

impedance and droop. From Table 2, it can be seen that the 

output active power is fully controllable i.e. its transfer 

function has zero steady state error. Thus, its steady state 

value is independent of the VSG settings. In contrast the 

output reactive power is only partially controllable, and its 

transfer function has a certain steady state error. Its steady 

state value is dependent on the virtual impedance as well as 

line impedance. Therefore, in steady state analysis, we focus 

on reactive power or S𝐺𝑄_𝑃 , S𝐺𝑄_𝑄 (S𝐺𝑄_𝑓 ≈ 𝐾𝑑S𝐺𝑄_𝑃). Fig. 9 

illustrates the steady state reactive power with reference 

active power change.  
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Fig. 9. Virtual impedance effects on 𝑆𝐺𝑄_𝑃 , , Zbase=10 Ω, 
Xg=1.038 pu and Rg=0.144 pu 

From Fig. 9, it can be seen that the virtual inductance 

increase and virtual resistance reduction could reduce the 

absolute value of  S𝐺𝑄_𝑃. This reflects the fact that increased 

X/R ratio helps decouple the reactive and active powers [44].  

Similarly, we can obtain the steady state reactive power 

change with reference reactive power change as shown in 

Fig. 10. Impedance reduction can increase reactive power 

output as can be deduced in (37), while the increased 

reactive power would result in a reduced electric potential 

according to (4). Consequently, this will reduce the reactive 

power in (37). Hence, the reactive power has a maximum 

value as shown in Fig. 10 (b).  

 
Fig. 10. Virtual impedance effects on 𝑆𝐺𝑄_𝑄 , , Zbase=10 Ω, 
Xg=1.038 pu and Rg=0.144 pu 

4.1.2 Virtual impedance effect on settling time：The 

settling time can be calculated from (33~35) and is only 

related to 𝐻𝑑𝑃/𝑑𝛿  . Settling time is calculated by two 

different methods, depending on the damping ratio value.  
When 0 < ξ < 1 , the settling time is computed from 

(33b). For √1 − 𝐾𝑑24𝐽𝐻𝑑𝑃/𝑑𝛿 ≤ 1, (33b) becomes: 𝑡𝑠 = 2𝐽𝐾𝑑 log ( 10.02√1 − 𝐾𝑑2/(4𝐽𝐻𝑑𝑃/𝑑𝛿)) ≥ 2𝐽log50𝐾𝑑    (38) 

The increased 𝐻𝑑𝑃/𝑑𝛿makes damping ratio √1 − 𝐾𝑑24𝐽𝐻𝑑𝑃/𝑑𝛿 

approach 1, which makes  𝑡𝑠 approach 
2𝐽log50𝐾𝑑  and increased 𝐻𝑑𝑃/𝑑𝛿  reduces settling time. 

When ξ > 1 , the settling time is computed from 

(34)(35b). In order to satisfy ξ > 1, 𝐾𝑑 should greater than 2√𝐽𝐻𝑑𝑃/𝑑𝛿 . Thus, in (35b), 𝑡𝑠 is dominated by  𝑇1, where 𝑡𝑠 ≈ 4𝑇1 = 8𝐽𝐾𝑑 − √𝐾𝑑2 − 4𝐽𝐻𝑑𝑃/𝑑𝛿                    (39) 

The decreased 𝐻𝑑𝑃/𝑑𝛿  makes √𝐾𝑑2 − 4𝐽𝐻𝑑𝑃/𝑑𝛿  approach 𝐾𝑑, which makes 𝑡𝑠 approach infinity and decreased 𝐻𝑑𝑃/𝑑𝛿  

increases settling time. 

In summary, whatever ξ  is, as long as it is stable 

increasing 𝐻𝑑𝑃/𝑑𝛿  would reduce settling time. 

4.1.4 Overshoot：  When the system is damped with 0 < ξ < 1 , overshoot arises during the transient. This 

overshoot may damage the converters, due to the overload. 

For the second order transfer function, its overshoot is only 

related to its damping ratio. As mentioned before, increasing  𝐻𝑑𝑃/𝑑𝛿  reduces damping ratio, which will increase the 

overshoot. Thus, reducing virtual inductance will result in 

overshoot increasing. 

4.2 Virtual Inertia and Droop/damping Effects 
As mentioned in section 2, it is common in VSG design, 

to make droop and damping gain (in swing equation) equal, 

thus 𝐾𝑑  has both a droop feature and damping feature. 

Droop only influences VSG steady state performance, such 

as the steady state, while damping only influences VSG 

dynamic performance, such as the damping ratio of the 

second order transfer function, the settling time and 

overshoot. It is obvious that increasing 𝐾𝑑 can increase the 

power output after grid frequency changes arising from the 

droop feature of 𝐾𝑑. However, the transient response of the 

VSG associated with 𝐾𝑑  and inertia J is complex. This 

section will focus on the damping feature of  𝐾𝑑 as well as 

its coordination with inertia J. 

4.2.1 Effect of 𝐾𝑑 and J on Damping ratio and natural 

oscillation frequency：The inertia J and the damping 

feature of 𝐾𝑑  only has effects on the VSG transient 

performance. The critical factors for the VSG transient 

performance based on the second order model are the 

damping ratio and natural oscillation frequency. Both 

damping ratio and natural oscillation frequency can be 

simplified to 
𝐾𝑑2√𝐽𝐻𝑑𝑃/𝑑𝛿  and √𝐻𝑑𝑃/𝑑𝛿/𝐽  respectively. This 

makes it clearer that the damping ratio is proportional to 𝐾𝑑 , 

while both damping ratio and natural oscillation frequency 

are inversely related to the square root of inertia J . 
As usual for a second order system, the value of damping 

ratio ξ has important impacts on the VSG transient behavior, 

i.e. ξ>1 overdamped, 1>ξ>0 underdamped, 0>ξ unstable. 
From ξ = 𝐾𝑑2√𝐽𝐻𝑑𝑃/𝑑𝛿 , since the active power to angle gain 𝐻𝑑𝑃/𝑑𝛿  is normally positive as aforementioned, as long as 

both 𝐾𝑑 > 0 and 𝐽 > 0, the system is stable. The effect of 𝐾𝑑 and J on damping ratio ξ is shown by the yellow surface 

in Fig. 11, where the red plane represents critical damping, 

ξ=1. For this plot, 𝐻𝑑𝑃/𝑑𝛿 = 1059  as calculated from the 

settings in Table 1 and equation (20) with initial angle 𝛿0 = 0.2793 and initial potential 𝐸0 = 100. As expected, ξ, 
is proportional to 𝐾𝑑  while ξ is inverse proportional to J . 

Note as the inertia J approaches to 0, ξ approaches to 
infinity. However it should be noted that  when J equals zero, 

all the transfer functions (see (26-31)) become 1
st
 order 

where only the droop part is of relevance. 

4.2.2 Settling time： Settling time is sensitive to the 

damping ratio, where as shown, the damping ratio depends 

on the interaction between the droop/damping gain 𝐾𝑑 and 

inertia J. Thus, we separately analyze the effect of 𝐾𝑑 and J 

on settling time.  
Firstly, consider the effect of 𝐾𝑑  on settling time 𝑡𝑠 

assuming J is fixed. When the system is underdamped 

(1>ξ>0), according to (38), 𝐾𝑑  is inversely proportional to 𝑡𝑠. Thus, increasing droop/damping gain results in settling 

time reduction.  
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Fig. 11. Effects of droop/damping gain 𝐾𝑑and inertia J on 

settling time on damping ratio ξ 

However, when the system is overdamped (ξ>1), 

according to (39), the effect of 𝐾𝑑 is more complex. Taking 

the derivative of 𝐾𝑑 − √𝐾𝑑2 − 4𝐽𝐻𝑑𝑃/𝑑𝛿: (𝐾𝑑 − √𝐾𝑑2 − 4𝐽𝐻𝑑𝑃/𝑑𝛿)′ = 1 − 2𝐾𝑑(𝐾𝑑2 − 4𝐽𝐻𝑑𝑃/𝑑𝛿)−12 (40𝑎) 1 − 2𝐾𝑑(𝐾𝑑2 − 4𝐽𝐻𝑑𝑃/𝑑𝛿)−12 < 1 − 2𝐾𝑑(𝐾𝑑2)−12 = −1   (40𝑏) 

Since the derivative of 𝐾𝑑 − √𝐾𝑑2 − 4𝐽𝐻𝑑𝑃/𝑑𝛿  is negative, 

increasing 𝐾𝑑  leads to 𝐾𝑑 − √𝐾𝑑2 − 4𝐽𝐻𝑑𝑃/𝑑𝛿  decreasing, 

thus, settling time 𝑡𝑠 increases according to (39) under the 

ξ>1 condition. 
Similarly, the effect of inertia J on settling time 𝑡𝑠  is 

directly proportional from (38) when the system is 

underdamped. 

However, when the system is overdamped, inertia J 

appears in both denominator and numerator part in (39). 

Thus, making use of L’Hôpital ’s rule considering the 

derivative of the denominator and numerator part separately: (8𝐽)′(𝐾𝑑 − √𝐾𝑑2 − 4𝐽𝐻𝑑𝑃/𝑑𝛿)′ = 84𝐻𝑑𝑃/𝑑𝛿/√𝐾𝑑2 − 4𝐽𝐻𝑑𝑃/𝑑𝛿      (41) 

In (41), the derivative of the denominator and numerator 

are both positive, however increasing inertia J will increase 

the derivative of the denominator. In other words, when 

increasing inertia J, the denominator part of (39) increases 

faster than its numerator part. Thus, the settling time will 

reduce with increasing inertia J . 

4.2.3 Overshoot: In Table 2, when the system is 

underdamped, the overshoot associated with droop/damping 

gain 𝐾𝑑 and inertia J follows from the standard second order 

transfer function overshoot expression (exp (− 𝜉𝜋√1−𝜉2) +1)where a reduction in damping ratio ξ increases overshoot. 
Therefore, increasing droop/damping gain 𝐾𝑑  or reducing 

inertia J can help decrease the overshoot.  

4.3 Reactive Power Droop Gain Effects 
Reactive power droop gain 𝐾𝑞   has a similar effect on the 

potential to reactive power as the active power droop gain 𝐾𝑑 has on the angle to real power. Therefore, the main 

effects of 𝐾𝑞  are on the steady state value and overshoot. 

4.3.1 Reactive power droop gain effect on Steady state: 
In Table 2, only the steady state value of 𝐺𝑄_𝑃 (or 𝐺𝑄_𝜔) and 𝐺𝑄_𝑄 are related to the reactive power droop gain 𝐾𝑞 . 

Due to 𝐻𝑑𝑄/𝑑𝐸 > 0, increasing 𝐾𝑞  leads to a reduction in  𝑆𝐺𝑄_𝑃 , while it results in an increase in 𝑆𝐺𝑄_𝑄 . Hence, 

increasing  𝐾𝑞  helps to decouple reactive power from active 

power. 

4.3.3 Reactive power droop gain effect on Overshoot:  
Increasing 𝐾𝑞  makes PO𝐺𝑃_𝑄  approach  𝐻𝑑𝑃/𝑑𝐸𝐻𝑑𝑄/𝑑𝐸, and makes PO𝐺𝑄_𝑄 approach 1, while decreasing 𝐾𝑞  

makes PO𝐺P_𝑄  approach 𝐾𝑞𝐻𝑑𝑃/𝑑𝐸 , and makes PO𝐺𝑄_𝑄 

approach 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸 . Therefore, decreasing 𝐾𝑞  helps reduce 

overshoot. 

4.4 Summary 
The above analysis gives some useful insight in how VSG 

control might be designed when applied to, for example, a 

storage system. Table 5 summarizes the parametric effects 

on the transient responses. The design of such a system 

might start from the requirement to achieve a given droop 

response, thus fixing 𝐾𝑑 , as this determines steady state 

output in reaction to a frequency change and therefore 

largely impacts the storage capacity. As regards dynamic 

response, another requirement might be that the response be 

close to critically damped so as to limit overshoot and 

oscillatory response after a disturbance. The simplified 

relationship expression for the damping ratio therefore 

highlights that the virtual inertia must be chosen in order to 

obtain the damping ratio thus limiting its choice. It can also 

be seen that the role of virtual impedance is largely to affect 

the angle and potential to power gains. Again the simplified 

expression for damping ratio highlights that for a fixed 

damping ratio and droop, virtual inertia could be increased if 

the angle to real power gain is reduced, which could be 

achieved by an increase in virtual inductance. The increase 

in virtual inductance can also help decouple the effect of an 

active power reference change on reactive power output, i.e. 

reduce 𝐻𝑑𝑄/𝑑𝛿  (see Fig. 8(b)).  

As regards reactive power, the reactive power droop gain, 𝐾𝑞  can be chosen larger in order to decouple the reactive 

power from active power, although on the other hand this 

increases overshoot so that there is clearly a trade-off 

involved.   

Table 5 Increased parameter effects on VSG transient 

responses.  
Parameter 
Increasing 

ξ = 𝐾𝑑2√𝐽𝐻𝑑𝑃/𝑑𝛿 
0<ξ<1 1<ξ 
Settling 
time 𝑡𝑠 Overshoot 𝑃𝑂𝐺  

Settling 
time 𝑡𝑠 

Virtual 
Impedance 

Increase Increase Reduce Increase 

Virtual 
inertia J 

Reduce Increase Increase Reduce 

Virtual 
damping 𝐾𝑑 

Increase Reduce Reduce Reduce 

voltage 
droop 𝐾𝑞 

- - Increase - 

Comments Increase X/R ratio and 𝐾𝑞 help decouple the reactive 

and active power. 

5. Hardware Validation 

In order to further validate the above analysis and also to 
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provide an example, results from a small-scaled hardware 

experiment are presented. The design requirements are 

reference voltage 𝑉∗ = 100 𝑉 , reference frequency 𝜔∗ =100𝜋 rad/s, the converter capacity S=800VA, the DC source 

power  𝑃𝐷𝐶 =300 W, the storage rate of discharge   𝑃𝑠 =250 𝑊, the settling time 𝑡𝑠 < 2 𝑠, and the line impedance 𝑅𝑔 + 2𝜋𝑓𝑔𝐿𝑔 = 1.44 + 100𝜋 × 0.033 Ω. 

 Designing for a grid frequency deviation, ∆𝑓 = 0.1 𝐻𝑧, 

substituting into (42) gives the droop/damping gain 𝐾𝑑: 𝐾𝑑 = 𝑃𝑠2𝜋∆𝑓 = 3002𝜋 × 0.1 = 400 𝑊/𝐻𝑧              (43) 

The initial grid voltage 𝑈𝑔 = 100 𝑉  and frequency 𝜔𝑔 =  100𝜋  rad/s and we assume that the initial electric 

potential 𝐸0 = 100 𝑉 , and there is no virtual impedance. 

Then, according to (37), the initial angle difference 𝛿0 can 

be calculated:     𝛿0 = sin−1 (𝑃𝐷𝐶 + 𝑃𝑆)2𝜋𝑓𝑔𝐿𝑔𝐸0𝑈𝑔 = 0.6739 𝑟𝑎𝑑 

For illustration purposes, we consider two values of 

virtual impedance,  , 2𝜋𝑓𝑔𝐿𝑣 = 100𝜋 × 0.011 Ω , and 2𝜋𝑓𝑔𝐿𝑣 = 100𝜋 × 0.011 Ω  which decreases and increases 

the actual line inductance by 33.3%, respectively. 

Substituting these values of virtual impedance and 𝛿0 =0.6739 into (20)(21)(24)(25) gives: when virtual impedance 

is negative, 𝐻𝑑𝑃/𝑑𝛿 = 1867 and when virtual impedance is 

positive, 𝐻𝑑𝑃/𝑑𝛿 = 902. 
The damping ratio ξ is given by: ξ = 𝐾𝑑2√𝐽𝐻𝑑𝑃/𝑑𝛿 = 4002√𝐽𝐻𝑑𝑃/𝑑𝛿  

and we present both underdamped case with 𝐽 = 20 and ξ ∈ [1.04, 1.49] , and overdamped case with 𝐽 = 80  and ξ ∈ [0.52, 0.74]. 
The reactive power droop gain 𝐾𝑞  considering its 

constraint is given by: 𝐾𝑞 < 𝑈𝑚𝑎𝑥 − 𝑈𝑚𝑖𝑛𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛 = (110 − 90)650 = 0.031 

and the experiment tests values of 𝐾𝑞 = 0.01  and 𝐾𝑞 = 0.03 conditions.  

The design of the voltage source converter follows the 

design approach for a dq frame voltage controlled VSC as 

given in  [45], with controller settings as given in Table 1. 

For the tests the VSG experiences a reference active 

power step change from 0 to 300 W at 1 s, and a grid 

frequency ramp change from 50 Hz to 49.9 Hz with 1 Hz/s 

slope at 4 s. The designed VSGs has been validated on the 

hardware in the loop OPAL-RT platform. The VSG 

transient response, i.e.  the steady state value, overshoot and 

settling time is predicted from the mathematical 

computation in Table 2 and Table 3 with the above settings 

are given in Table 6. Fig. 12 depicts the measured output 

power results from the hardware tests.  

In comparison with the hardware result, the predicted 

steady state values, settling times and overshoot are 

accurate. Furthermore, these results follow the analysis from 

section 4.1.2. For example, reducing the virtual inductance 

can reduce the settling time (compare C1 and C3, C2 and 

C4). When the other settings are identical, the overdamped 

situation with smaller inertia settles faster than the 

underdamped situation (compare C1 and C2, C3 and C4).  

Moreover, the reactive droop gain has no effect on settling 

time (compare C4 and C5). 

TABLE 6 VSG Transient Response Prediction 

Transfer 

function 

C1: 

Lv= -0.011 

J= 20 

Kq= 0.01 

C2: 

Lv= -0.011 

J= 80 

Kq= 0.01 

C3: 

Lv= 0.011 

J= 20 

Kq= 0.01 

C4: 

Lv= 0.011 

J= 80 

Kq= 0.01 

C5: 

Lv= 0.011 

J= 80 

Kq= 0.03 

Damping 

ratio 
1.01 0.492 1.366 0.683 0.683 

Steady 

State at 3s 
P=300 

Q=-20 

P=300 

Q=-20 

P=300 

Q=-11 

P=300 

Q=-11 

P=300 

Q=-9 

Steady 

State at 6s 
P=551 

Q=19 

P=551 

Q=19 

P=551 

Q=11 

P=551 

Q=11 

P=551 

Q=9 

Overshoot 

at 1s 
\ 

P=351 

Q=-36 
\ 

P=316 

Q=-16 

P=315 

Q=-15 

Overshoot 

at 4s 
\ 

P=625 

Q=43 
\ 

P=565 

Q=14 

P=565 

Q=13 

Settling 

Time 
0.55 1.62 1.3 1.69 1.69 

 
Fig. 12. Hardware experiment result for designed VSG 

From Fig. 12 (a), as expected, in the underdamped 

situation with inertia J=80, reducing the virtual inductance 

results in an increase in overshoot.  

Under the active power variation, the reactive power 

output Fig. 12 (b) illustrates the degree of coupling. Since 

the reference reactive power is zero, the curves which are 

closest to the zero value represent the lower degree of 

coupling. The results serve to validate the analysis that 

increasing the virtual inductance or increasing the reactive 

power droop gain helps to decouple the reactive power 

output from active power operation. 

6. Discussions 

The analysis in the paper is applied to the VSG scheme 

where droop and damping are combined in a single 

parameter with equivalent droop and damping [7-

12][19,20,22,27,28,36,40,41], and simple reactive power to 

voltage droop control [13-16,23,28,38]. The analysis can 

however be extended to other schemes such as the use of 

separate droop and damping parameters [13-

18,21,23,34,35,38] or other reactive power regulation 

approaches such as voltage regulation [17-18,21,22,28] or 

reactive power control [19,20]. The diagram in fig. 13 

indicates how such schemes could be added to the scheme 

analyzed in the paper. For the scheme using separate droop 
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and damping the droop contribution could be added as an 

outer loop which adjusts the power setpoint according to the 

deviation in frequency, measured by a PLL with transfer 

function 𝐻(𝑠). The transfer function from power reference 

change to output power, 𝐺𝑃_𝑃, 𝐺𝑃_𝑄, 𝐺𝑄_𝑄 , 𝐺𝑄_𝑃  remain 

identical to those derived above. However the transfer 

function from grid frequency change to output power  

becomes more complex in this case. Specifically there now 

exists three components to this transfer function. One 

component is the same 𝐺𝑃_𝜔  transfer function as derived in 

this paper, the second is associated with the power setpoint 

change from the droop which is given by 𝐾𝑑𝐻(𝑠)𝐺𝑃_𝑃, and 

the third is associated with the separate damping term, a full 

discussion of which is beyond the scope of this paper.  

As regards the other reactive power controls these can be 

easily accommodated by the modification of the outer loop 

associated with determining 𝐸. These additions required to 

accommodate these different schemes  are  indicated by the 

blocks enclosed within the sections marked by broken lines 

in fig. 13. 

 
Fig. 13. Different VSG implementation methods 

7. Conclusions 

The paper introduced the large signal model for VSG 

control of a voltage controlled converter, and based on this 

develops a complete set of transfer functions which can be 

used to analyze the output real and reactive power in 

response to changes in real and reactive power references 

and grid frequency disturbances. Using these transfer 

functions the effect of various VSG design parameters such 

as inertia, droop/damping and virtual inertia on the VSG 

performance has been analyzed.  Moreover the transfer 

functions can provide the basis for VSG controller design 

taking into account transient and steady state performance 

and cross coupling effects between real and reactive powers. 

The choice of droop gain and virtual inertia are clearly 

linked through the requirement to satisfy transient 

performance criteria such as damping, overshoot and setting 

time. The inclusion of virtual impedance does give another 

degree of freedom in the choice of these parameters. 

Although the analysis in the paper is based on the VSG 

scheme with equivalent droop and damping, and simple 

reactive power to voltage droop control, it is possible to 

adapt to the analysis to schemes with separate droop and 

damping settings, or with other reactive power regulations. 
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10. Appendices  

The appendix will give the detailed computation for the 

overshoot 𝐺𝑃_𝜔 and 𝐺𝑄_𝜔. 

Defining 𝑐1 = 𝐻𝑑𝑃/𝑑𝛿 − 𝐻𝑑𝑄/𝑑𝛿𝐻𝑑𝑃/𝑑𝐸 𝐾𝑞1+𝐾𝑞𝐻𝑑𝑄/𝑑𝐸 

 

𝐺𝑃_𝜔 = (𝐻𝑑𝑃𝑑𝛿 − 𝐻𝑑𝑄𝑑𝛿𝐻𝑑𝑃𝑑𝐸 𝐾𝑞1 + 𝐾𝑞𝐻𝑑𝑄𝑑𝐸)(𝐽𝑠 + 𝐾𝑑)
𝐽𝑠2 + 𝐾𝑑𝑠 + 𝐻𝑑𝑃/𝑑𝛿 − 𝐻𝑑𝑄/𝑑𝛿𝐻𝑑𝑃/𝑑𝐸 𝐾𝑞1 + 𝐾𝑞𝐻𝑑𝑄/𝑑𝐸 

          =  𝑐1 𝑠 + 𝐾𝑑𝐽𝑠3 + 𝐾𝑑𝐽 𝑠2 + 𝑐1𝐽 𝑠 

= 𝑐1 𝑠𝑠3 + 𝐾𝑑𝐽 𝑠2 + 𝑐1𝐽 𝑠 + 𝑐1 𝐾𝑑𝐽𝑠3 + 𝐾𝑑𝐽 𝑠2 + 𝑐1𝐽 𝑠            (A1) 

Defining 𝜔𝑃_𝜔 = √𝑐1𝐽 − 𝐾𝑑24𝐽2  and 𝑎𝑃_𝜔 = 𝐾𝑑2𝐽 , and 

computing each part in (A1) separately: 𝑐1 𝑠𝑠3 + 𝐾𝑑𝐽 𝑠2 + 𝑐1𝐽 𝑠 = 𝑐1 𝜔𝑃_𝜔(𝑠 + 𝑎𝑃_𝜔)2 + 𝜔𝑃_𝜔2 ∙ 1𝜔𝑃𝑓= 𝑐1𝜔𝑃_𝜔 𝑒−𝑎𝑃_𝑓∙𝑡sin (𝜔𝑃_𝜔 ∙ 𝑡)             (A2) 

𝑐1 𝐾𝑑𝐽𝑠3 + 𝐾𝑑𝐽 𝑠2 + 𝑐1𝐽 𝑠 = 𝐾𝑑 (1𝑠 − 𝑠 + 𝐾𝑑𝐽𝑠2 + 𝐾𝑑𝐽 𝑠 + 𝑐1𝐽 ) 

  = 𝐾𝑑 (1𝑠 − 𝑠 + 𝑎𝑃_𝜔(𝑠 + 𝑎𝑃_𝜔)2 + 𝜔𝑃_𝜔2 − 𝑎𝑃_𝜔(𝑠 + 𝑎𝑃_𝜔)2 + 𝜔𝑃_𝜔2 ) 

= 𝐾𝑑(1 − 𝑒−𝑎𝑃_𝜔∙𝑡 cos(𝜔𝑃_𝜔 ∙ 𝑡) − 𝑎𝑃_𝑓𝜔𝑃𝑓 𝑒−𝑎𝑃_𝜔∙𝑡sin (𝜔𝑃_𝜔 ∙ 𝑡)) (A3) 
Inverse Laplace transform on (A1): c(t) = 𝐾𝑑 − 𝑒−𝑎𝑃_𝜔∙𝑡𝐾𝛼sin (𝜔𝑃_𝜔 ∙ 𝑡 + 𝛼)           (A3) 𝑑𝑐(𝑡)𝑑𝑡 = 𝑎𝑃_𝜔𝑒−𝑎𝑃_𝜔∙𝑡𝐾𝛼 sin (𝜔𝑃𝑓 ∙ 𝑡 + 𝛼)− 𝜔𝑃_𝜔𝑒−𝑎𝑃_𝜔∙𝑡𝐾𝛼 cos(𝜔𝑃_𝜔 ∙ 𝑡 + 𝛼)= 𝑒−𝑎𝑃_𝜔∙𝑡𝐾𝛼𝐾𝛽sin (𝜔𝑃_𝜔 ∙ 𝑡 + 𝛼 − 𝛽) (𝐴4) 
When (A4) equals to 0 could compute the time for 

overshoot (raising time): 

𝑡𝑝_𝜔 = tan−1 𝜔𝑃_𝜔𝑎𝑃_𝜔 − tan−1 𝐾𝑑𝜔𝑃_𝜔𝐾𝑑𝑎𝑃_𝜔 − 𝑐1𝜔𝑃_𝜔     (A5) 

Then overshoot is: 𝑂𝑃𝑃_𝜔 = 𝑐1𝜔𝑃_𝜔 𝑒−𝑎𝑃_𝜔∙𝑡 sin(𝜔𝑃_𝜔 ∙ 𝑡𝑃_𝜔) + 𝐾𝑑(1− 𝑒−𝑎𝑃_𝜔∙𝑡 cos(𝜔𝑃_𝜔 ∙ 𝑡𝑃_𝜔)− 𝑎𝑃_𝜔𝜔𝑃_𝜔 𝑒−𝑎𝑃_𝜔∙𝑡sin (𝜔𝑃_𝜔 ∙ 𝑡𝑃_𝜔))            (A6) 
Similarly, it could obtain 𝑂𝑃𝑄_𝑓  by defining 𝑐2 =
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𝐻𝑑𝑄/𝑑𝛿1+𝐾𝑞𝐻𝑑𝑄/𝑑𝐸 ,  𝑐3 = −𝐾𝑞𝐻𝑑𝑃/𝑑𝐸 1+𝐾𝑞𝐻𝑑𝑄/𝑑𝐸𝐻𝑑𝑄/𝑑𝛿 + 𝐻𝑑𝑃/𝑑𝛿 , 𝑎𝑄_𝜔 = 𝐾𝑑2𝐽 , 𝜔𝑄_𝜔 = √𝑐3𝐽 − 𝐾𝑑24𝐽2. 

𝐺𝑄_𝜔 = 𝐻𝑑𝑄/𝑑𝛿1 + 𝐾𝑞𝐻𝑑𝑄𝑑𝐸 (𝐽𝑠 + 𝐾𝑑)
𝐽𝑠2 + 𝐾𝑑𝑠 − 𝐾𝑞𝐻𝑑𝑃/𝑑𝐸 1 + 𝐾𝑞𝐻𝑑𝑄𝑑𝐸𝐻𝑑𝑄/𝑑𝛿 + 𝐻𝑑𝑃/𝑑𝛿

 

         = 𝑐2 𝑠 + 𝐾𝑑𝐽𝑠3 + 𝐾𝑑𝐽 𝑠2 + 𝑐3𝐽 𝑠 

         = 𝑐2 𝑠𝑠3 + 𝐾𝑑𝐽 𝑠2 + 𝑐3𝐽 𝑠 + 𝑐2 𝐾𝑑𝐽𝑠3 + 𝐾𝑑𝐽 𝑠2 + 𝑐3𝐽 𝑠       (A7) 

𝑐2 𝑠𝑠3 + 𝐾𝑑𝐽 𝑠2 + 𝑐3𝐽 𝑠 = 𝑐2𝜔𝑄_𝑓 𝑒−𝑎𝑄_𝜔∙𝑡sin (𝜔𝑄_𝜔 ∙ 𝑡)        (A8) 

𝑐2 𝐾𝑑𝐽𝑠3 + 𝐾𝑑𝐽 𝑠2 + 𝑐3𝐽 𝑠= 𝐾𝑑𝑐2𝑐3 (1 − 𝑒−𝑎𝑄_𝜔∙𝑡 cos(𝜔𝑄_𝜔 ∙ 𝑡)− 𝑎𝑄_𝜔𝜔𝑄_𝜔 𝑒−𝑎𝑄_𝜔∙𝑡 sin(𝜔𝑄_𝜔 ∙ 𝑡))              (A9) c(t) = 𝐾𝑑𝑐2𝑐3 − 𝑐2𝑒−𝑎𝑄_𝜔∙𝑡𝐾𝛼sin (𝜔𝑄_𝜔 ∙ 𝑡 + 𝛼)          (A10) 𝑑𝑐(𝑡)𝑑𝑡 = 𝑒−𝑎𝑄_𝜔∙𝑡𝑐2𝐾𝛼𝐾𝛽sin (𝜔𝑄_𝜔 ∙ 𝑡 + 𝛼 − 𝛽)   (A11) 𝑡𝑄_𝜔 = 1𝜔𝑄_𝜔 (tan−1 𝜔𝑄_𝜔𝑎𝑄_𝜔 − tan−1 𝐾𝑑/𝑐3𝐾𝑑𝑎𝑄_𝜔𝑐3𝜔𝑄_𝜔 − 1𝜔𝑄_𝜔
) (A12) 

𝑂𝑃𝑄_𝜔 = 𝑐2𝜔𝑄_𝑓 𝑒−𝑎𝑄_𝜔∙𝑡sin (𝜔𝑄_𝜔 ∙ 𝑡)+ 𝐾𝑑𝑐2𝑐3 (1 − 𝑒−𝑎𝑄_𝜔∙𝑡 cos(𝜔𝑄_𝜔 ∙ 𝑡)− 𝑎𝑄_𝜔𝜔𝑄_𝜔 𝑒−𝑎𝑄_𝜔∙𝑡 sin(𝜔𝑄_𝜔 ∙ 𝑡))          (A13) 
 


