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Abstract—Ultra-wide Band (UWB) technology is a new, useful and
safe technology in the field of wireless body networks. This paper
focuses on the feasibility of estimating vital signs — specifically
breathing rate and heartbeat frequency — from the spectrum of
recorded waveforms, using an impulse-radio (IR) UWB radar. To
this end, an analytical model is developed to perform and interpret
the spectral analysis. Both the harmonics and the intermodulation
between respiration and heart signals are addressed. Simulations have
been performed to demonstrate how they affect the detection of vital
signs and also to analyze the influence of the pulse waveform. A filter
to cancel out breathing harmonics is also proposed to improve heart
rate detection. The results of the experiments are presented under
different scenarios which demonstrate the accuracy of the proposed
technique for determining respiration and heartbeat rates. It has been
shown that an IR-UWB radar can meet the requirements of typical
biomedical applications such as non-invasive heart and respiration rate
monitoring.

1. INTRODUCTION

Ultra-wide band (UWB) is a technology that has distinct features
because of its extremely wide bandwidth. UWB wireless systems are
generally based on the transmission and reception of sub-nanosecond
pulses without carriers or modulated short pulses with carriers. It is
claimed that such wireless systems can provide low system complexity,
low cost, low power consumption and a high data rate [1–5].

There are also many advantages of using UWB for biomedical
applications because it radiates and consumes little power, coexists well
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with other instruments, and is robust to interference and multipath.
The aim of this study is to use wireless sensing devices based on UWB
technology to detect vital signs for health care, emergency rescue, and
security. Impulse Radio (IR) is a type of UWB signalling which uses
very short baseband pulses, typically in the order of a nanosecond,
which has also been proposed in health applications such as the ones
presented in [6–9]. UWB monitoring of respiration and heart rate has
been studied in [7, 9–13]. An alternative for the non-invasive detection
of vital signs is microwave Doppler radar [14]. However, Doppler
radar techniques present two problems: 1) The difficulty they have
in penetrating material and 2) the null point problem [15]. On the
other hand, one of the main advantages of the UWB signal is that it
can be propagated through objects, so through-the-wall measurements
can be made [11, 14, 16, 17]. This feature is especially important in
rescue applications.

In this paper, the breathing rate and heartbeat frequency are
estimated using an IR-UWB Radar. Typically, in relaxed human
beings the heart can cause chest displacements of 0.08 mm, and
respiration displacements of between 0.1 mm and several millimeters,
depending on the person [18]. As theoretical formulation and
experimental results will show below, the spectrum of the detected
signal contains several harmonics of the breathing signal that can
be much stronger than the frequency component of the heartbeat.
These harmonics can be a serious problem if their frequency is close
to that of the heart frequency that is to be estimated. Although
the breathing signal has been studied in [12], no studies of breath
and heart harmonics have been reported in the literature. Since real
systems use approximations to ideal Gaussian pulses, it is shown that
the pulse waveform has a considerable influence on the breath harmonic
level. This influence is studied here. Finally, a simple canceller filter
is proposed to suppress breath harmonics in order to better detect the
weak fundamental heart frequency.

The paper is organized as follows. Section 2 presents and discusses
the proposed measurement setup. The mathematical formulation of
the problem is described in Section 3. The signal processing techniques
used to estimate the respiration and heart rates are presented in
Section 4. Results from real-time measurements are presented and
discussed in Section 5. Concluding remarks are given in Section 6.

2. MEASUREMENT SETUP

The UWB remote measurement setup is shown in Figure 1. Two UWB
antennas, one for transmission and the other for reception, are pointed
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Figure 1. UWB-radar test setup.
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Figure 2. Normalized time waveform. Generated (-), received (-.),
and reference (- -) obtained from differentiation of the pulse generator
waveform.

directly towards the subject. The GZ1120ME-50EV pulse generator
(Geozondas) is used to generate a monocycle pulse with a central
frequency of 5 GHz, an amplitude of ±5 V and a pulse repetition rate
(PRI) of 250 kHz. It is connected to the UWB transmitter antenna
(3.1–10.6GHz frequency range). The radiated pulse is reflected by
the person and detected by the receiver antenna. Sampling is done
with the GZ6E sampler converter (Geozondas), which triggers the
pulse generator. Figure 2 shows the transmitted, the differentiated
transmitted and the received pulse waveforms. Figure 3 shows a
comparison between the FCC masks [3] for indoor and outdoor UWB
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Figure 3. Emission mask of UWB radar for medical imaging. Power
density measured from Fourier transform of received signal. The FCC
indoor and outdoor limits are also shown.

emissions and the power density measured from the Fourier transform
of the received signal, after the output power level had been adjusted
(except in the mobile wireless frequency bands because of interference
in the measurements). The fidelity between the received pulse and the
ideal differentiated transmitted pulse is about 90%.

In the experimental results, 64 waveforms are acquired, sampled
and averaged to improve the signal-to-noise ratio. The averaged
waveform is stored and time gated to avoid antenna coupling signals.
The waveforms are sampled using 512 points and the recorded duration
is 2.5 ns (although this can depend on the distance between the sampler
and the subject). The time-axis associated to range along each
received waveform (τ) is usually addressed as “fast-time”, and is in
the order of nanoseconds. The interval between successive received
waveforms is Ts = 0.0371 s. The time-axis along the measurement
interval (t) is usually addressed as “slow-time”, and is in the order
of seconds. This means that the sampling frequency in slow-time,
Fs = 1/Ts = 26.93Hz, is greater than the Nyquist sampling rate for
the heart (signal bandwidth < 3Hz) and respiration signals (signal
bandwidth < 0.7Hz). The measurement interval T is typically chosen
to be about 35 s.

3. MATHEMATICAL MODEL

One of the goals is to estimate the breathing rate and heartbeat
frequency. For this purpose, a mathematical model is developed so that
the spectrum of the detected signal can be obtained and understood.
This model is an extension of the one proposed in [12] and its main
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novelty is that it includes not only breathing but also heart motion.
This permits a deep analysis of both harmonics and cross products
(intermodulation). The sections below demonstrate that it is very
important to make this complete analysis, since the large amplitude
of breath harmonics and sometimes of cross products make heart rate
measurement a challenge, especially when they are close to the heart
frequency range.

When the transmitted pulse hits the human target, part of it is
reflected due to the high reflectivity of the body [6, 8]. The time-of-
flight or arrival (ToA) of this pulse is denoted by τ0, and depends
on the antenna distance, d0. Due to respiration and heart motion,
the chest cavity expands and contracts periodically, so the distance
travelled, d(t), varies periodically around the nominal distance d0. For
vital signs monitoring, the body movement caused by both respiration
and heartbeat must be detected:

d(t) = d0 + m(t) = d0 + mb sin (2πfbt) + mh sin (2πfht) (1)

where mb and mh are the respiration and heartbeat displacement
amplitudes, and fb and fh are the respiration and heartbeat
frequencies, respectively.

In this situation, the received signal can be represented as the sum
of the responses of the channel, and the variation due to the respiration
and heartbeat:

r(t, τ) =
∑

i

Aip (τ − τi) + Ap (τ − τd(t)) (2)

where p(t) is the normalized received pulse, Ai is the amplitude of
each multipath component, τ i its delay, and A is the amplitude of the
pulse reflected on the body. From (2) it is evident that respiration
and heart movements modulate the received signal. The time delay τd

associated with the vital sign is modeled as the sum of the time-of-flight
τ0 plus two sinusoidal delays associated to respiration and heartbeat
displacements:

τd(t) = 2d(t)/c = τ0 + τb sin (2πfbt) + τh sin (2πfht) (3)

where c is the light velocity, and τb and τh are the respiration and
heartbeat displacements, respectively.

The received waveforms are measured at discrete instants in slow
time t = nTs (n = 1, 2 . . . , N). N discrete-time sequences are stored
after the received signal is sampled and these values are stored in a
matrix R, the elements of which are:

R[n,m] = r(τ = nTf , t = mTs) (4)

where Tf is the sampling period in fast-time.
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In a static environment, the resulting clutter can be considered as
a DC-component in the slow-time direction. In consequence, the only
movement is caused by the person’s respiration and heart activity,
from (2) it is clear that background clutter does not depend on slow-
time t. Thus, the background clutter can be removed by filtering the
signal. This can be done by subtracting the average of all received
waveforms from the original signal (a new matrix X can be obtained
by subtracting the average of all the rows in R from each row).

x(t, τ) = r(t, τ)− lim
T→∞

1
T

T∫

0

r(t, τ)dt = Ap (τ − τd(t))− r0(τ) (5)

The DC component r0(τ) is blocked by subtracting the average
of all samples in fast-time (the result is saved in a new matrix Y that
is obtained by subtracting the average of all columns in X from each
column). The signal of interest is:

y(t, τ) = x(t, τ)− x0(τ) = Ap(τ − τd(t)) (6)

The goal is to obtain the breathing frequency fb and heart rate fh.
To this end, the Fourier transform is performed in slow-time Y (f, τ).

Y (f, τ) =

+∞∫

−∞
y(t, τ)e−j2πftdt (7)

The Fourier transform in slow-time Y (f, τ) can be obtained from
the 2D Fourier transform of y(t, τ), Y (f, ν):

Y (f, τ) =

+∞∫

−∞
Y (f, ν)ej2πντdν (8)

The 2D Fourier transform is given by:

Y (f, ν) =

+∞∫

−∞

+∞∫

−∞
y(t, τ)e−j2πfte−j2πντdtdτ (9)

Y (f, ν) =

+∞∫

−∞
AP (ν)e−j2πντd(t)e−j2πftdt

= AP (ν)e−j2πντ0

+∞∫

−∞
e−j2πνmb sin(2πfbt)e−j2πνmh sin(2πfht)e−j2πftdt (10)
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where P (ν) is the Fourier transform (in fast-index) of the received
pulse. Using the following expansion of a series of Bessel functions:

e−jz sin(2πf0t) =
+∞∑

k=−∞
Jk(z)e−j2πkf0t (11)

Y (f, ν) can be expressed as:

Y (f, ν) = AP (ν)e−j2πντ0

+∞∫

−∞

(
+∞∑

k=−∞
Jk(βbν)e−j2πkfbt

)

·
(

+∞∑

l=−∞
Jl(βhν)e−j2πlfht

)
e−j2πftdt (12)

where βb = 2πmb and βh = 2πmh. Replacing (12) in (8), the spectrum
in slow-time is expressed as:

Y (f, τ) = A
+∞∑

k=−∞

+∞∑

l=−∞
Gkl(τ)δ (f − kfb − lfh) (13)

where the functions Gkl(τ) are given by the integrals:

Gkl(τ) =

+∞∫

−∞
P (ν)Jk (βbν) Jl (βhν) ej2πν(τ−τ0)dν (14)

It can be proved that |Gkl(τ)| is maximized at τ= τ0:

Ckl ≡ Gkl(τ0) =

+∞∫

−∞
P (ν)Jk(βbν)Jl(βhν)dν (15)

Consequently:

Y (f, τ0) = A
+∞∑

k=−∞

+∞∑

l=−∞
Cklδ (f − kfb − lfh) (16)

From (16), it is clear that the spectrum is a discrete function,
consisting of a train of delta functions centred at the frequencies of the
harmonics of fb, fh and their intermodulation products. The amplitude
of each intermodulation product for a frequency of f = kfb + lfh is
controlled by the coefficient Ckl.
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The harmonic components of breathing can be obtained for the
index l=0:

Ck0 =

+∞∫

−∞
P (ν)Jk(βbν)J0(βhν)dν ≈

+∞∫

−∞
P (ν)Jk(βbν)dν (17)

The approximation is valid when βbfc ¿ 1 (fc is the central
frequency of the pulse), so J0(βhν) ≈ 1. This result coincides with
the development given in [12] for the harmonics of breathing. An
analogous result can be obtained for the harmonics of the heartbeat:

C0l =

+∞∫

−∞
P (ν)J0(βbν)Jl(βhν)dν ≈

+∞∫

−∞
P (ν)Jl(βhν)dν (18)

The approximation holds when βhfc ¿ 1.
Note that the integrals (15) can be numerically calculated, but

they can also be expressed as a function of the Hankel transform.
Efficient methods for computing these transformations can be found in
the literature [19]. Moreover, a coarse evaluation of the integrals (17)
can be obtained with the mean value theorem:

Ckl ≈ ∆f · Jk(βbfc)Jl(βhfc)P (fc) (19)

where ∆f is the pulse bandwidth.
Although the approximation obtained in (19) is coarse, it can be

used to make a qualitative interpretation of the spectrum. For typical
UWB pulses that comply with the FCC spectral mask, fc is about 4–
6GHz. In the case of the heartbeat βhfc ¿ 1, Jl(βhfc) is close to zero.
Therefore, this term vanishes rapidly when index l increases. However,
when breathing is strong (mb = 5 mm), βbfc ≈ 1, and Jk(βbfc) may
be important. Thus, Jk(βbfc) À Jl(βhfc), so the harmonics of the
breathing signal may be strong and may mask the components of the
heartbeat. To help to understand this, Figure 4 shows the products
of the Bessel functions that are involved in the integral (15) for the
first, second and third harmonics of the respiration and the heartbeat
frequency, when mb = 5 mm and mh = 0.08mm. For a pulse that
complies with the FCC mask (Figure 3) the main contribution to the
integral is in the range of frequencies between 3.1 and 10.6 GHz. If the
time waveform of the pulse is an odd function, then the even harmonics
of respiration frequency are zero. Figure 4 reinforces this interpretation
and shows that the heartbeat components are attenuated considerably
more than the respiration components.

Typically, the frequency range of the breathing signal is between
0.2 and 0.7Hz, and the heartbeat frequency is between 0.8 and 3Hz. As
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Figure 5. Harmonics of breathing (2fb, 3fb, 4fb, 5fb) as a function
of breath frequency. The frequencies higher than minimum heartbeat
frequency can interfere with heartbeat components (fh > 0.8Hz).

shown in Figure 5, the first harmonics of the breathing signal (and also
some intermodulation products) fall within the heartbeat frequency
range. As the level of the heartbeat component is very small, it can be
difficult to identify. Therefore the heart beat estimation observed from
the spectrum peaks can be erroneous Consequently, it is important to
evaluate the level of these harmonics and intermodulation components.

In order to investigate the effect of the pulse waveform on
the spectrum components, Figure 6 shows the first, second and
third harmonics of respiration, the heartbeat component and the
intermodulation product at f = −2fb + fh as a function of breathing
amplitude, for an ideal Gaussian monocycle (first derivative of
Gaussian function) with a central frequency of 5 GHz and a heartbeat
amplitude mh = 0.08mm. The spectral components were calculated
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Figure 6. Heartbeat component, respiration harmonics (2fb, 3fb and
4fb) and intermodulation product (−2fb + fh) as a function of breath
amplitude mb for a Gaussian monocycle with a central frequency of
5GHz. Heartbeat amplitude mh = 0.08mm.

using (15). The results were checked by means of numerical Fourier
transform of (6). The Fourier coefficients were normalized with
respect to the fundamental breathing component (C10). The Gaussian
monocycle is an odd function, so the even harmonics (C20 and C40)
of the breathing signal are zero. For this typical value of heartbeat
displacement, the level of the heartbeat signal (C01) is between 18 and
40 dB below the respiration component. For breathing displacement
amplitudes higher than about 2.3 mm, the third harmonic (C30)
is higher than the heartbeat component (C01). This component
can prevent the heartbeat frequency from being identified if their
frequencies are close. Similar levels were found for other odd order
Gaussian pulses (n = 3 or 5). The reason is that the pulse spectrum
has the same shape if the pulses have the same central frequency and
bandwidth. However, the pulse is often not a symmetric function
(odd or even function), and some ripples can appear due to antenna
distortion. It should also be noted that the amplitude of the third-order
intermodulation product (−2fb +fh) is considerable (C−21), especially
when the breath amplitude mb is large, and that its value is comparable
to the heart rate amplitude (C01). Figure 7 shows the harmonics
of the breathing components and intermodulation components for
the real pulse received in the experimental setup (Figure 2). The
differences between this case and the case of the Gaussian monocycle
are considerable. The pulse waveform (Figure 2) is no longer an
odd function, so the second respiration harmonic is high (−10 dB
with respect to the fundamental breathing component). The third
harmonic increases with the breathing amplitude and reaches the same
level as the heartbeat component for a breath amplitude mb of about
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Figure 7. Heartbeat component, respiration harmonics (2fb, 3fb and
4fb) and intermodulation product (−2fb + fh) as a function of breath
amplitude mb for the received pulse waveform of Figure 2. Heartbeat
amplitude mh = 0.08mm.

2.4mm, and the maximum level is about the same value. However,
the heartbeat fundamental component (C01) has the same levels as
for the Gaussian monocycle. It is very important to note that the
fourth harmonic and the third-order intermodulation products are
comparable to the heartbeat component for high breathing amplitudes.
This means that in such situations a complete spectral analysis is
essential if the heart rate component is to be correctly detected and
confusion with other spectral components avoided. It can be concluded
that the pulse’s waveform shape does not influence the level of the
heartbeat fundamental (C01), but it has an important role in the level
of the harmonic components of breathing and heartbeat, and also in
the level of the intermodulation products.

4. HARMONIC CANCELLER

Our study shows that all the harmonics of breathing frequency need
to be removed, insofar as this is possible, if the heartbeat frequency is
to be detected. To this end, a trap filter is designed. The breathing
signal is the highest spectrum component, so the breathing rate can be
determined by finding the maximum peak of the Fourier transform of
the signal y(t). An alternative to Fast Fourier Transform (FFT) is the
Chirp Z-Transform (CZT). The Chirp Z-Transform is a generalization
of a Z-Transform that improves the resolution without increasing
the number of samples [20]. Since both breath harmonics and
intermodulation products are located near the heartbeat component,
frequency resolution is an important issue. The ripple in the spectrum



276 Lazaro, Girbau, and Villarino

is associated to the time window used and can be reduced with a
Hamming window.

The breathing harmonics can be attenuated with a filter based
on the Moving Target Indicator (MTI), although it does not
separate static clutter from Doppler signals in this case. The basic
implementation of a single-delay MTI canceler is shown in Figure 8.
The output signal is the difference between the input signal and the
same signal delayed one period T . In this case, T is the inverse
of the breathing rate, T = 1/fb. It is clear that all the harmonic
components of the breathing signal are periodic with period T , so the
output at each frequency is canceled by the filter. To minimize error,
a cascade of single-delay filters (such as the one shown in Figure 8)
can be used. Although the canceler filter can be implemented using
a standard Finite Impulse Response (FIR) filter, we are interested
in the output spectrum, which is obtained from the product of the
filter transfer function by the spectrum of the input signal. The filter
transfer function of a K section filter canceler is given by:

H(ω) =
(
1− e−jωT

)K
= (2j sin(ωT ))K ejωKT/2 (20)

Figure 9 shows the normalized frequency response of a multiple
delay canceler as a function of normalized frequency f · T . It can be
shown that the filter cancels the frequencies that are multiples of 1/T .
Moreover, increasing the order of the canceler, K, also increases the
canceler bandwidth.

T

+

-

x(t) y(t)=x(t)-x(t-T)

Figure 8. Implementation of a single-delay canceller.
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Figure 9. Normalized transfer function of a multiple-delay canceller
as a function of normalized frequency f · T for order K = 1, 2, 3, 4.
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5. EXPERIMENTAL RESULTS

This section shows some experimental results. Different breathing rates
were considered so that the influence of the harmonics of the breathing
signal and of intermodulation products could be determined. In the
first case, a human target with moderate breathing and heartbeat rates
is located 1 m away from the instrument. Figure 10 shows the measured
signal as a function of the fast and slow indexes before and after the
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Figure 10. Received signal from a man located 1 m away from the
radar and after moderate exercise, as a function of fast and slow
indexes. (a) Raw data, and (b) signal after clutter removal.
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Figure 11. (a) Breathing and heart signal in time domain, and (b)
its normalized spectrum, for a man located 1 m away from the radar
and after moderate exercise.
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Figure 12. (a) Spectrum of the breathing signal in Figure 11,
computed using Chirp Z-Transform, and (b) spectrum of the heart
signal computed from Chirp Z-Transform before and after the MTI
harmonic canceller is applied.

clutter is removed. Figure 11(a) shows the detected signal (which
includes breath and heart) in the slow-time domain. The breathing
rate is clearly visible; however, the heart signal is masked by harmonics
and noise. Figure 11(b) shows the Fourier transform (computed using
the Chirp Z-Transform algorithm) of the detected signal, in which the
breath harmonics are clearly observed. The breathing rate is detected
by finding the maximum peak in the spectrum obtained by means of the
Chirp Z-Transform (Figures 11(b) and 12(a)). The estimated value is
0.507Hz (or 30.46 breath/min). Figure 11(b) shows that the heartbeat
signal is 30 dB below the fundamental breathing frequency component.
This is in agreement with previous simulations. It is difficult to detect
the heart component from the signal in Figure 11(b), since the second
and third harmonics are 15 dB and 5 dB higher than the heart level,
respectively. However, after the harmonic canceller (MTI canceller)
has been applied the heart signal is easily detected. As shown in
Figure 12(b), the frequency detected is 1.775Hz or 106.5 beat/min,
and the frequency measured with an electrocardiograph (ECG) is
105 beat/min.

A second case is shown in Figures 13 and 14. The breathing
and heartbeat rates are for the same person, located at the same
distance (1 meter away from the radar), but in a relaxed situation.
The measured heartbeat component is now about 25 dB below the
breathing signal. In this case, the third and fourth harmonics of
the breathing signal and third order intermodulation products fall in
the heart frequency range. As the magnitude of these harmonics is
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Figure 13. (a) Breathing and heart signal in time domain, and (b)
its normalized spectrum, for a man located 1 m away from the radar
and in repose.
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Figure 14. (a) Spectrum of the breathing signal in Figure 13
computed using the Chirp Z-Transform, and (b) spectrum of the heart
signal computed from Chirp Z-Transform before and after the MTI
harmonic canceller has been applied.

smaller than in the previous case, the heart frequency can be found
and detected directly; however, the harmonic canceller suppresses the
breathing harmonics and intermodulation products, and helps to find
and detect the heart rate. Although it is difficult to estimate breathing
displacement, the level of the first harmonics shows that it is higher
in the first case, after moderate exercise. The breathing frequency
detected is 0.32 Hz (19.27 breath/min) and the heart frequency is
1.138Hz (68.31 beat/min); the heartbeat measured using an ECG is
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70 beat/min.
Finally, the third case is a non-line-of-sight (NLOS) case. The

same person is located 1m away from the radar, but now with a brick
wall in the middle. The wall is 20 cm thick and has a mean attenuation
of 10 dB at the UWB FCC band. As is pointed out in [16, 17], the
received pulse is attenuated and distorted after propagation through
the wall due to material dispersion. These effects can be modelled
as a filter, the transfer function of which can be derived from Fabry-
Perot interferometer theory [16, 17]. In addition to the attenuation,
which depends on the type of material and the thickness of the wall,
the received pulse is no longer symmetrical due to dispersion and the
superposition of multiple reflections on the wall. As a result of the
pulse distortion, the level of breath harmonics is expected to increase
or vary, which can make heart rate detection difficult. Figure 15 shows
the raw data and the data after the clutter has been removed. The
interesting signal is the second pulse received, since the first one is
the direct reflection on the wall. It is independent of breathing, as
can be seen in Figure 15(b) where it is practically eliminated even
though the reflection on the wall is much more intense than the pulse
reflected on the body. Figure 16 shows the detected signal in slow-
time and its spectrum. It can be seen that the signal is noisier than
in the previous cases due to wall attenuation. The heart signal level
is about 20 dB below the breathing signal. Now, the third and fourth
harmonics of breath fall in the heart frequency range and are higher
than the heart component. Again, after the harmonic canceller has
been applied the heart frequency can be determined. In this case, the
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Figure 15. Received signal from a man located 1 m away from the
radar with a wall in the middle, as a function of fast and slow indexes.
(a) Raw data, and (b) signal after clutter removal.
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Figure 16. (a) Breathing and heart signal in time domain and its
normalized spectrum, and (b) for a man located 1m away from the
radar and with a wall in the middle.
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Figure 17. (a) Spectrum of the breathing signal in Figure 16
computed using the Chirp Z-Transform, and (b) spectrum of the heart
signal computed from the Chirp Z-Transform before and after the MTI
harmonic canceller has been applied.

breathing frequency is measured to be 0.465 Hz (27.92 breath/min) and
the heartbeat is 1.148 Hz (68.87 beat/min) which is in agreement with
the 69 beat/min measured with the ECG.
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6. CONCLUSION

In this paper, the use of impulse-radio ultra-wide band (IR-UWB)
signals in the non-invasive monitoring of breathing and heartbeat
rates has been analyzed. A comprehensive analytical study of the
spectrum has been made. The breathing rate can be easily estimated
from the experimental results presented. However, the level of breath
displacement is one order of magnitude larger than heart displacement.
In our analysis and experimental observation, estimating the weak
heart signal in both the time and frequency domains was hindered
not only by noise but also by the harmonics of the breath signal
and intermodulation products between breath and heart. As the
breath rate and its intensity can depend on the person and the
situation, in some cases the frequency of first breath harmonics
and/or intermodulation products is close to the frequency of the
heart signal, which makes it difficult to locate and detect, leading
to possible confusion. It has been theoretically demonstrated that
for breath displacements greater than about 2.5 mm, these harmonics
have the same magnitude as the heart component. It has also been
demonstrated that the shape of the pulse waveform has an important
role in harmonic content. This is an important drawback, since
the shape of real pulses is far from the shape of an ideal Gaussian
monocycle and pulses can be distorted when they cross obstacles such
as a wall. On the other hand, it has been shown that the ratio between
the fundamental frequency components of breathing and heartbeat is
fairly independent of the pulse shape for a given central frequency and
bandwidth. To overcome these problems, a harmonic canceller (MTI
canceller) has been proposed to automatically remove the harmonics
from the breath signal (and, therefore, also to remove intermodulation
products).

Experiments have been conducted on a UWB radar prototype
operating within an FCC mask (3.1 to 10.6GHz). Three examples
have been described and analyzed: A person after moderate exercise,
a person in a relaxed situation and, finally, a person behind a wall. It
is concluded that a complete spectrum analysis needs to be made to
correctly estimate the usually weak heart signal, which is often hidden
by respiration harmonics and third-order intermodulation products. It
has been empirically demonstrated that the harmonic canceller and
the use of the Chirp Z-Transform help to reliably locate and detect
the heartbeat rate, especially when harmonics and intermodulation
products fall around the heart frequency range.
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