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Analysis of volume expansion data for periclase, lime, corundum
and spinel at high temperatures
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Abstract. We have presented an analysis of the volume expansion data for periclase (MgO), lime (CaO), corundum
(Al2O3) and spinel (MgAl2O4) determined experimentally by Fiquet et al (1999) from 300K up to 3000K. The ther-
mal equation of state due to Suzuki et al (1979) and Shanker et al (1997) are used to study the relationships between
thermal pressure and volume expansion for the entire range of temperatures starting from room temperature up to
the melting temperatures of the solids under study. Comparison of the results obtained in the present study with the
corresponding experimental data reveal that the thermal pressure changes with temperature almost linearly up to
quite high temperatures. At extremely high temperatures close to the melting temperatures thermal pressure devi-
ates significantly from linearity. This prediction is consistent with other recent investigations. A quantitative analysis
based on the theory of anharmonic effects has been presented to account for the nonlinear variation of the thermal
pressure at high temperatures.
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1. Introduction

The volume–temperature data under isobaric conditions par-
ticularly at P = 0 are of basic importance for investiga-
ting the thermoelastic properties of minerals at high tempe-
ratures and high pressures (Petukhov and Chekovskoi 1972;
Anderson and Masuda 1994; Anderson et al 1995a,b). The
high temperature cell parameters of periclase (MgO), lime
(CaO), corundum (Al2O3) and spinel (MgAl2O4) at room
pressure have been determined from 300K up to 3000K by
Fiquet et al (1999) with the help of X-ray diffraction experi-
ments using synchrotron radiation. The volume–temperature
data measured by Fiquet et al are considered to be more
accurate and have been found to agree closely within 0·1 %
with the thermal expansion data reported by Dubrovinsky
and Saxena (1997) in case of MgO (Jacobs and Oonk 2001).
In order to understand the variation of volume with tempera-
ture for various minerals, we need a thermal equation of state
based on the concept of thermal pressure.

Recently, Singh (2002) studied the relationships between
thermal pressure and volume expansion with temperature
using three different forms of phenomenological equations
(Suzuki et al 1979; Shanker et al 1997; Shanker and
Kushwah 2001). A critical test of these equations can be per-
formed with the help of volume–temperature data reported
by Fiquet et al (1999). In the present study, we consider the
four minerals studied by Fiquet et al for a wide range of tem-
peratures. For performing the calculations conveniently, we
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assume that the thermal pressure changes linearly with tem-
perature. However, the results obtained in the present study
would indicate that the thermal pressure starts to deviate
from linearity at very high temperatures approaching melt-
ing temperatures for the minerals under study. The nonli-
near variation of thermal pressure at high temperatures can be
explained by taking into account the effect of anharmonicity.

2. Thermal equation of state

According to Anderson (1995), the equation of state can be
expressed in terms of thermal pressure as follows

P(V, T ) = P(V, T0) + �Pth, (1)

where P(V ,T0) represents the isothermal pressure–volume
relationship at T = T0, the initial temperature. �Pth is the
difference in the values of thermal pressure at two tempera-
tures, i.e.

�Pth = Pth(T ) − Pth(T0). (2)

At zero pressure, i.e. at P (V, T ) = 0, (1) can be written in
the following forms

−�Pth = P(V, T0), (3)

−
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where V0 is the volume at T = T0 and P = 0. The right hand
sides of (3)–(5) can be expanded in powers of (V – V0) in
a Taylor series. We can expand f , a function of volume, as
follows:

f = f0+
(

d f

dV

)
0

(V − V0)+ 1

2

(
d2 f
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)
0

(V − V0)
2+. . .

(6)

Terms up to quadratic in (V –V0) are retained. The subscript
0 represents the values of derivatives at V = V0 and T =
T0. Three functions for f given by the right hand sides of
(3)–(5) are considered here. Using the expansion given by (6)
we get the following expressions
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where K0 and K ′
0 are isothermal bulk modulus and its

pressure derivative both at P = 0. Equations (7)–(9) corre-
spond to (3)–(5), respectively and are quadratic equations in
[(V /V0) – 1]. On solving these equations we get the follow-
ing expressions for volume expansion in terms of thermal
pressure
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where A1 = K0 − �Pth and A2 = K0
(
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where B1 = K0 − 2�Pth, and B2 = K0 (K ′
0−3) + 2�Pth.

Equations (7) and (10) were derived by Shanker et al
(1997) by expanding the lattice potential energy in pow-
ers of (V – V0) in the form of Taylor series expansion.
Equations (8) and (11) have been obtained by Singh (2002)
using the method of expanding the product of pressure and

volume in power series of (V – V0) originally due to Suzuki
et al (1979). Equations (9) and (12) have been obtained
by Shanker and Kushwah (2001) by expanding the product
P(V )2 in the powers of (V – V0). In fact, (10)–(12) can be
obtained, respectively from the Taylor Series expansion for
P, PV, and P(V )2 in powers of change in volume (V − V0)

due to the rise in temperature. At P = 0, the expansion
of volume is controlled by thermal pressure and therefore,
(7)–(12) represent different forms of relationship between
volume expansion (V /V0) and thermal pressure.

3. Thermal pressure and anharmonicity

Now we can calculate the values of volume expansion, V /V0,
with the help of (10)–(12) provided the values of thermal
pressure are known. It is evident from (1) that P (V , T0) is a
function of volume only along an isotherm T = T0, we can
write

(
dP

dT

)
V

=
(

dPth

dT

)
V

(13)

where P = P(V , T ). Now using the thermodynamic identity

(
dP

dT

)
V

= αKT, (14)

where α is thermal expansivity and KT the isothermal bulk
modulus. From (13) and (14), we have

(
dPth

dT

)
V

= αKT. (15)

It is known that the product αKT remains nearly constant for
most of the solids at higher temperatures T ≥ θD, the Debye
temperature (Anderson 1995). We can, therefore, integrate
(15) to obtain

�Pth =
T∫

θD

αKTdT

= αKT (T − θD) , (16)

As an empirical finding, �Pth is linear in T down to much
lower temperatures than θD, and we usually find empirically
that the data satisfy (Anderson and Isaak 1995)

�Pth = α KT (T − T0) , (17)

where T0 = 300K. Equation (17) can be used to calculate the
values of �Pth at different temperatures starting from room
temperature provided the values of α and KT corresponding
to Debye temperature are taken for each solid as input. The
values of α and KT for the four solids under study at tempe-
ratures close to θD are given in table 1. The calculated values
of �Pth are given in tables 2–5. Values of volume expan-
sion V /V0 are calculated with the help of (10)–(12) using the
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values of �Pth. The input data on K0 and K ′
0 at T = 300K

are also given in table 1. The results for MgO, CaO, Al2O3

and MgAl2O4 are given in tables 2–5. We note from these
tables that the values of volume expansion V /V0 calculated
in the present study are in good agreement with the experi-
mental data reported by Fiquet et al (1999) for the four min-
erals under study. In case of MgO and CaO, (10) of Shanker
et al (1997) yields imaginary values at very high tempe-

Table 1. Values of input data (Anderson 1995) for MgO, CaO, Al2O3 and MgAl2O4. Thermal expansivity, α

and isothermal bulk modulus, KT both are taken at T = θD, the Debye temperature.

MgO CaO Al2O3 MgAl2O4

K0 (GPa) 161·6 110·6 252 207·9
(T = 300 K)
K0‘ (T = 300 K) 4·15 4·85 3·99 4·18
α (10−5/GPa) 4·38 (T = 900 K) 3·92 (T = 700 K) 2·73 (T = 1000 K) 2·85 (T = 900 K)
KT (GPa) 144·3 (T = 900 K) 102·3 (T = 700 K) 231·4 (T = 1000 K) 187·3 (T = 900 K)

Table 2. Values of thermal pressure based on (16) and values of
V /V0 calculated from (a) (10), (b) (11), (c) (12) and (d) (16) of
experimental data (Fiquet et al 1999).

MgO
�Pth(GPa) V/V0

T(K) (16) (a) (b) (c) (d)

300 0 1 1 1 1
421 0·777 1·0049 1·0049 1·0049 1·0044
505 1·308 1·0083 1·0083 1·0083 1·0088
591 1·852 1·0118 1·0118 1·0118 1·0119
694 2·503 1·0162 1·0161 1·0161 1·0163
790 3·110 1·0203 1·0203 1·0203 1·0193
874 3·641 1·0240 1·0240 1·0239 1·0245
964 4·209 1·0281 1·0280 1·0280 1·0279
1052 4·766 1·0321 1·0321 1·0320 1·0343
1120 5·195 1·0353 1·0352 1·0352 1·0369
1211 5·770 1·0398 1·0396 1·0395 1·0412
1281 6·213 1·0432 1·0430 1·0429 1·0479
1446 7·256 1·0518 1·0514 1·0511 1·0522
1664 8·634 1·0639 1·0631 1·0626 1·0609
1738 9·101 1·0683 1·0672 1·0666 1·0682
1773 9·323 1·0704 1·0692 1·0686 1·0674
1873 9·955 1·0767 1·0751 1·0743 1·0709
1901 10·13 1·0785 1·0768 1·0759 1·0803
2036 10·98 1·0878 1·0852 1·0839 1·0853
2153 11·72 1·0965 1·0929 1·0912 1·0930
2262 12·41 1·1053 1·1004 1·0982 1·0982
2373 13·11 1·1154 1·1085 1·1056 1·0998
2473 13·75 1·1257 1·1162 1·1126 1·1075
2573 14·38 1·1379 1·1244 1·1198 1·1169
2673 15·01 1·1535 1·1332 1·1274 1·1248
2773 15·64 1·1826 1·1427 1·1353 1·1360
2873 16·22 - 1·1521 1·1428 1·1420
2973 16·85 - 1·1633 1·1515 1·1456

ratures close to the melting temperature Tm. This point has
already been noted earlier by Shanker et al (1999) and found
it useful for developing a criterion of melting. The Singh–
Suzuki (11) and Shanker – Kushwah (12) yield the results
for V /V0 in fair agreement with the experimental data. Equa-
tions (7)–(9) provide a method for calculating the values of
thermal pressures, �Pth, at different temperatures using the
experimental data on V /V0 reported by Fiquet et al (1999).

Table 3. Values of thermal pressure based on (16) and values of
V /V0 calculated from (a) (10), (b) (11), (c) (12) and (d) (16) of
experimental data (Fiquet et al 1999).

CaO
�Pth(GPa) V/V0

T(K) (16) (a) (b) (c) (d)

300 0 1 1 1 1
398 0·392 1·0036 1·0036 1·0036 1·0055
500 0·800 1·0074 1·0074 1·0074 1·0075
585 1·140 1·0106 1·0106 1·0106 1·0113
688 1·552 1·0147 1·0147 1·0146 1·0163
778 1·912 1·0183 1·0182 1·0182 1·0195
875 2·300 1·0223 1·0222 1·0222 1·0265
1001 2·804 1·0276 1·0275 1·0275 1·0328
1116 3·264 1·0326 1·0325 1·0324 1·0385
1222 3·688 1·0375 1·0373 1·0371 1·0423
1289 3·956 1·0406 1·0403 1·0402 1·0456
1390 4·360 1·0455 1·0451 1·0449 1·0500
1427 4·508 1·0473 1·0469 1·0467 1·0522
1485 4·740 1·0503 1·0498 1·0495 1·0553
1548 4·992 1·0535 1·0529 1·0526 1·0573
1573 5·092 1·0549 1·0542 1·0538 1·0598
1673 5·492 1·0603 1·0594 1·0589 1·0600
1773 5·892 1·0661 1·0648 1·0641 1·0655
1873 6·292 1·0721 1·0705 1·0696 1·0717
1973 6·692 1·0786 1·0763 1·0752 1·0767
2073 7·092 1·0856 1·0825 1·0810 1·0835
2173 7·492 1·0931 1·0890 1·0871 1·0879
2273 7·892 1·1015 1·0959 1·0934 1·0974
2373 8·292 1·1111 1·1032 1·0999 1·1009
2473 8·692 1·1225 1·1111 1·1068 1·1058
2573 9·092 1·1376 1·1195 1·1141 1·1130
2673 9·492 - 1·1288 1·1217 1·1193
2773 9·892 - 1·1392 1·1297 1·1274
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Table 4. Values of thermal pressure based on (16) and values of
V /V0 calculated from (a) (10), (b) (11), (c) (12) and (d) (16) of
experimental data (Fiquet et al 1999).

Al2O3
�Pth(GPa) V/V0

T(K) (16) (a) (b) (c) (d)

300 0 1 1 1 1
382 0·504 1·0020 1·0020 1·0020 1·0009
407 0·654 1·0026 1·0026 1·0026 1·0039
583 1·710 1·0069 1·0069 1·0069 1·0063
637 2·034 1·0082 1·0082 1·0082 1·0084
694 2·376 1·0097 1·0097 1·0097 1·0099
731 2·598 1·0106 1·0106 1·0106 1·0109
787 2·934 1·0120 1·0120 1·0120 1·0116
884 3·516 1·0145 1·0145 1·0145 1·0128
919 3·726 1·0154 1·0154 1·0154 1·0136
988 4·140 1·0172 1·0172 1·0171 1·0176
1089 4·746 1·0198 1·0198 1·0198 1·0217
1217 5·514 1·0232 1·0232 1·0232 1·0248
1351 6·318 1·0269 1·0268 1·0268 1·0300
1457 6·954 1·0298 1·0297 1·0297 1·0323
1579 7·686 1·0333 1·0332 1·0331 1·0375
1656 8·148 1·0355 1·0353 1·0353 1·0383
1821 9·138 1·0403 1·0401 1·0400 1·0429
1890 9·552 1·0424 1·0422 1·0420 1·0446
1976 10·07 1·0450 1·0447 1·0446 1·0488
2080 10·69 1·0482 1·0479 1·0477 1·0509
2242 11·66 1·0534 1·0529 1·0527 1·0593

Table 5. Values of thermal pressure based on (16) and values of
V /V0 calculated from (a) (10), (b) (11), (c) (12) and (d) (16) of
experimental data (Fiquet et al 1999).

MgAl2O4
�Pth(GPa) V/V0

T(K) (16) (a) (b) (c) (d)

300 0 1 1 1 1
408 0·583 1·0028 1·0028 1·0028 1·0028
492 1·028 1·0050 1·0050 1·0050 1·0039
585 1·521 1·0075 1·0075 1·0075 1·0079
715 2·210 1·0109 1·0109 1·0109 1·0095
877 3·069 1·0154 1·0154 1·0154 1·0128
986 3·646 1·0184 1·0184 1·0184 1·0175
1114 4·325 1·0221 1·0220 1·0220 1·0213
1257 5·083 1·0262 1·0262 1·0261 1·0257
1363 5·645 1·0294 1·0293 1·0293 1·0293
1497 6·355 1·0335 1·0334 1·0333 1·0316
1589 6·842 1·0363 1·0362 1·0361 1·0357
1691 7·383 1·0395 1·0394 1·0393 1·0382
1791 7·913 1·0428 1·0426 1·0424 1·0409
1889 8·432 1·0460 1·0457 1·0456 1·0429
1927 8·634 1·0473 1·0470 1·0468 1·0442
2056 9·317 1·0517 1·0513 1·0510 1·0510
2191 10·03 1·0565 1·0559 1·0556 1·0566
2288 10·55 1·0600 1·0593 1·0589 1·0573

4. Conclusions

Values of �Pth thus calculated for MgO, CaO, Al2O3 and
MgAl2O4 are compared in figures 1–4 along with the va-
lues of �Pth estimated from (17) according to which �Pth

varies linearly with temperature. In case of Al2O3 (figure 3)
and MgAl2O4 (figure 4), the variations of �Pth with tem-
perature are quite linear. The range of temperatures consi-
dered for these two solids is only up to 2300K. However, in
case of MgO and CaO for which the maximum tempera-
ture goes up to about 3000K, the plots showing the varia-
tions of �Pth with T become nonlinear at temperatures T >

2000K (figures 1 and 2). It is evident from these figures
that the thermal pressure deviates substantially from linearity
at very high temperatures approaching the melting tempera-
tures (Tm = 3073K for MgO and Tm = 2853K for CaO).
This deviation from linearity is such that the actual values of
thermal pressures become considerably less than the corre-
sponding values predicted from the linear relationship. This
prediction is consistent with the recent studies (Wang and
Reeber 1996; Jacobs and Oonk 2001; Taravillo et al 2002;
Popov and Borodai 2005). Wang and Reeber, have found that(
∂ Pth

/
∂T

)
V does not remain constant, i.e. the thermal pre-

ssure does not change linearly with T at high temperatures.
They have shown that

[
∂ (PthV ) /∂T

]
V remains almost con-

stant with temperature at high T . This is related to the obser-
vation that the product of thermal expansivity, α and isother-
mal bulk modulus, KT, decreases slowly but significantly at
high T (Shanker et al 1999; Jacobs and Oonk 2001). Accord-
ing to Wang and Reeber (1996), the product αKTV remains
nearly constant at high T . Since the volume, V , increases
by about 10–15% in case of MgO and CaO (tables 2
and 3) in the temperature range 2500–3000K, the values of
αKT should decrease by the same amount for this tempera-
ture range. This would imply from (17) that the actual val-
ues of thermal pressure should be smaller by about 10–15%.
It is worth mentioning here that when we use the smaller
values of �Pth in the temperature range 2500–3000K, the
Shanker (10) yields real values for V /V0 up to the tempera-
tures approaching Tm. At T ≈ Tm, (10) yields imaginary val-
ues for V /V0. Equation (10) has been used by Shanker et al
(1999) and Wang et al (2000, 2001) for studying the high
pressure melting of ionic solids and geophysical minerals.

An analysis of the non-linearity of thermal pressure at
high T can be presented by taking into account the effect
of anharmonicity. The first three anharmonic terms arising
from the strong temperature-induced motions contribute to
the Helmholtz energy as follows (Landau and Lifshitz 1958;
Wallace 1972)

Fanh = A1 (V ) T 2 + A0 (V ) + A−2 (V ) T −2, (18)

where the coefficients A1, A0 and A−2 are the functions of
volume only. The anharmonic contribution to the thermal
pressure is found by using the relationship

P = −
(

∂ F

∂V

)
T

, (19)
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which gives the following additional terms to thermal
pressure

(Pth)anh = −
[
∂ A1

∂V
T 2 + ∂ A0

∂V
+ ∂ A−2

∂V
T −2

]
. (20)

These additional terms should be added in the linear relation-
ship for thermal pressure given by (17) to obtain �Pth at high
T . The last term in (20) is negligibly small at high T and the
second term is independent of T . Only the first term in (20)
contributes to the non-linearity of thermal pressure at high
T . This quadratic dependence of �Pth on T has been found
by Wallace (1972). The following quadratic expression is

obtained in the high temperature limit of the quasi-harmonic
approximation (Anderson and Isaak 1995)

�Pth = α KT (T − T0) [1 − α (T − T0)] , (21)

where αKT is the value of product taken at temperature close
to the Debye temperature (table 1). Equation (21) can be used
to estimate the values of �Pth provided we know the values
of thermal expansivity, α, at high temperatures. Values of α

in case of MgO and CaO have been reported by Singh and
Chauhan (2002) up to very high temperatures close to their
melting temperatures. Values of �Pth calculated from (21)
are shown in figures 1 and 2 for MgO and CaO, respectively.
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Figure 1. Plots between thermal pressure, �Pth and temperature, T . Values of thermal pressure are
obtained from (7)–(9) using experimental data on V /V0, and compared with the values based on (16)
(straight line).
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Figure 2. Plots between thermal pressure, �Pth and temperature, T . Values of thermal pressure are
obtained from (7)–(9) using experimental data on V /V0, and compared with the values based on (16)
(straight line).
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Al2O3
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Figure 3. Plots between thermal pressure, �Pth and temperature, T . Values of thermal pressure are
obtained from (7)–(9) using experimental data on V /V0, and compared with the values based on (16)
(straight line).
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Figure 4. Plots between thermal pressure, �Pth and temperature, T . Values of thermal pressure are
obtained from (7)–(9) using experimental data on V /V0, and compared with the values based on (16)
(straight line).

It is revealed from these figures that the nonlinear variation
of thermal pressure, �Pth, predicted in (21) is very similar
to that obtained from the thermal equation of state (7). This
provides strong evidence that the non-linearity of thermal
pressure at high T originated from the anharmonic effects.
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