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Abstract. A multiple-scales asymptotic analysis is used to describe the attenuation of

a water hammer pressure wave in the Brunone model of unsteady friction. The method is

applied to water hammer caused by sudden valve closure in water reservoir pipelines. The

analytical results explain the parametric dependence of the Brunone unsteady friction

pressure-wave attenuation. It is also found that viscous head in an extended steady

friction model may provide an alternative to the unsteady friction basis for increased

attenuation in cases where the attenuation has a weak spatial dependence and is primarily

time-dependent. All results are numerically verified using the method of characteristics.

1. Introduction. The development of the Brunone model of unsteady friction be-

gan from experimental studies ([5], [11], [9]) with the intention of understanding earlier

experimental results on oscillatory unsteady pipe flows. These studies were followed by

a discussion paper [6] where these results were summarized. The overall thrust of the

discussion in [6] was twofold: (i) Quasi-steady friction with the Reynolds number com-

puted as the flow velocity evolves was insufficient to describe pressure-wave attenuation

and other water hammer features. (ii) They empirically resolved this insufficiency by

including an unsteady friction proportional to local flow acceleration during the phase

of the flow when the kinetic energy is increasing. This unsteady friction model has a

natural jump discontinuity between the forward and backward flow phases, and this was

later smoothed through a physical argument [7].
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The objective of this paper is to develop an analytical pressure-wave attenuation

formula for the Brunone model of unsteady friction presented in [7] and studied elsewhere,

for example, in [12], [1] and [4]. The results found here explain the physical nature of the

increased pressure-wave attenuation according to the Brunone unsteady friction model

in comparison with the standard steady friction model.

The water hammer is assumed to be initiated by a sudden valve closure. The steady

friction component of the model considered here is an extended steady friction model

where the non-linear Darcy-Weisbach friction is generalized to include a linear viscous

friction term. A practically useful result predicted by the form of the analytical pressure-

wave attenuation and numerically verified is that the extended friction model may be

used to describe the pressure-wave attenuation.

2. Water hammer equations. The unsteady momentum equation [7] based on

experiments detailed in [6] and further modified to a form suitable for a wider range of

applications [12] (using subscripts for partial derivatives) is

ghx + vvx + vt′ +
g

L
(rv + sv|v|) + k

2
(vt′ + cpsign(v)|vx|) = 0. (1)

The head is h(x, t), fluid velocity is v(x, t), L is pipe length and r and s are constant

steady friction parameters proportional to the pipe length L [10]. The extended steady

friction term rv + sv|v| in (1) includes the linear term rv [10] which extends the steady

friction model to partially developed turbulent and laminar flow regimes. The steady

friction model rv + sv|v| is hereafter referred to as the ‘extended’ steady friction model.

The unsteady friction model [6] includes the term proportional to vt′ + cpsign(v)|vx|
where k is the Brunone friction coefficient and cp is the wave celerity detailed below.

The continuity equation (cf. [10]) is

c2p
g
vx + vhx + ht′ + v sin(θ) = 0 (2)

with wave celerity cp =
√
K/ρ, K = Ev/(1+DcEv/(wE), water bulk modulus Ev, pipe

material modulus E, pipe wall thickness w, and pipe slope θ.

The water hammer equations are considered here for water hammer initiated by a

valve closure and applied to the physical model of valve-closure water hammer described

in [1].

3. Water hammer application. An initial head h = h2 + (1 − x/L)(h1 − h2)

initially maintains a steady-state flow velocity v = v∞. After t = 0, the velocity at the

pipe downstream boundary x = L is zeroed by suddenly closing a valve, and this initiates

a water hammer wave at x = L that travels backward toward the upstream end x = 0.

The boundary and initial conditions are

h(x, t = 0) = h2 + (1− x/L)(h1 − h2), v(x, t = 0) = v∞

h(x = 0, t > 0) = h1, v(x = L, t > 0) = 0. (3)

At steady-state, the velocity is zero and the head is constant at h1.
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Water hammer initiated by valve closure was studied in [14] in the case of steady

friction and is generalized here to include the Brunone model of unsteady friction. A

physical application presented in [1] is considered after reduction to dimensionless form

in the following section is completed.

4. Nondimensionalization. The dimensional head and velocity of equations (1)

and (2) are rescaled to vary between zero and unity via H = (h−h2)/h12 and V = v/v∞
where h12 = h1−h2 is applied head. The pipe length L is rescaled to unity withX = x/L

and 0 ≤ X ≤ 1. An inertial time-scale v∞/g is scaled by the hydraulic gradient h12/L

yielding the dimensionless time-scale T = Lv∞/(gh12), and defining τ = t′/T yields the

dimensionless momentum and continuity equations

HX + C1V VX + Vτ + C2V + C3V |V |+B1Vτ +B1B2sign(V )|VX | = 0

VX + C1C4V HX + C4Hτ + C5V = 0 (4)

and dimensionless parameters

C1 =
v2∞
gh12

, C2 =
rv∞
h12

, C3 =
sv2∞
h12

, B1 =
k

2
, B2 =

cpv∞
gh12

(5)

C4 =

(
gh12

cpv∞

)2

, C5 =
gL sin θ

c2p
. (6)

The water hammer conditions are

H(X, τ = 0) = 1−X, V (X, τ = 0) = 1

H(X = 0, τ > 0) = 1, V (X = 1, τ > 0) = 0. (7)

An explanation of the dimensionless parameters, the Ci, i = 1, ..., 5, also appears in

[10] and [14], and is briefly restated here for completeness

• C1: Advection Effect. C1 may be written as (ρv2∞)/(ρgh12) and then is seen as

the ratio of a velocity head to a hydraulic head.

• C2: Viscous Effect. C2 is the kinematic ‘viscous head’ relative to the applied

hydraulic head h12 difference.

• C3: Inertial Effect. This ratio of an inertial head to applied hydraulic head

difference is more relevant as turbulence increases.

• C1C4: Advective Head. The product C1C4 may be recast in the form

[ρgh12/(ρc
2
p)], whereupon it is the ratio of hydraulic head difference (expressed

as a pressure) to the pressure from the propagating wave.

• C4: Local Velocity.
√
C4 = (ρgh12)/(ρcpv∞) is the applied hydraulic head differ-

ence relative to the ‘local’ pressure head.

• C5: Elevation Head. This is elevation head relative to propagating wave celerity

head.

In the applications considered here, C1, C2 and C3 are O(1) (‘O’ means ‘the order of’)

while the wave-speed celerity O(cp) � 1 so that C4 and C5 are small. If ε = O(1/
√
cp)

then C1C4 = C1c4ε
2, C4 = c4ε

2, and C5 = c5ε
2 with C1, c4 and c5 treated as order one.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



284 E. YAO, G. KEMBER, AND D. HANSEN

Using these definitions,

HX + C1V VX + Vτ + C2V + C3V |V |+B1Vτ +B1B2sign(V )|VX | = 0 (8)

VX + C1c4ε
2V HX + c4ε

2Hτ + c5ε
2V = 0. (9)

The boundary and initial conditions are unaffected because they do not contain any

dimensionless parameters.

5. Water hammer time scales. The water hammer is characterized in terms of two

time-scales: (i) a slowly evolving trend (rigid-column motion) operating at a time-scale

τ , and (ii) a superimposed wave whose amplitude attenuates over the long time-scale τ

and has a period of oscillation at the short time-scale t = τ/ε. The reduction in velocity

at the downstream end X = L, at time t = 0 from V = 1 to V = 0, initiates a backward

travelling pressure-wave. The head is proportional to
√
cp = 1/ε and, as ε → 0, the wave

celerity approaches infinity and the head necessarily becomes singular. The asymptotic

expansion of the head is regularized with respect to ε → 0 by setting H̃ = εH.

The multiple-scales analysis is simplified by noting that the water hammer equations

are invariant with respect to flow reversals. Specifically, this point can be observed under

the substitution Y = 1−X and W = −V [14], and we find that the invariance remains

true in the presence of unsteady friction.

Therefore, working in terms of τ and t, defining a regularized head H̃, and noting the

invariance of the momentum/continuity equations to flow direction, the multiple-scales

form of (8) and (9) is

H̃X + εC1V VX + εVτ + Vt + εC2V + εC3V
2 + εB1Vτ +B1Vt − εB1B2V VX = 0 (10)

VX + C1c4εV H̃X + c4εH̃τ + c4H̃t + c5ε
2V = 0 (11)

with conditions

H̃(X, τ = 0) = ε(1−X), V (X, τ = 0) = 1

H̃(X = 0, τ > 0) = ε, V (X = 1, τ > 0) = 0. (12)

Note that conditions satisfied here by the pressure-wave attenuation will be independent

of the flow direction, and thus reference to the invariant form in (10) and (11) will be

sufficient; however, more general conditions may violate this required invariance.

6. Multiple-scales expansion. Each of the head and velocity are written as the
superposition of an attenuating wave and a trend. The wave component [10] is written
in a generalized form required for the inclusion of unsteady friction. The attenuating
wave component for the head and velocity respectively is a series with terms of the form
Pj(τ )Fnj(αn(X − ct)) and Pj(τ )Gnj(αn(X − ct)). The Pj(τ ) are the long time-scale
pressure-wave attenuation functions while Fnj(βn(X − ct)) and Gnj(βn(X − ct)) are the

oscillatory wave components with dimensionless wave speed c = 1/
√
(1 +B1)c4. The

αn and βn are complex modes with imaginary part ni. The subscript j corresponds
to the order of expansion εj . The trending component [14] for the regularized head
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is H̃(X, τ ) = εH0(X) + ε2H1(X, τ ) + . . . while the velocity is V0(τ ) + εV1(X, τ ) + . . ..
Altogether these yield the multiple-scales expansion

H̃(X, t, τ) =

√
1 +B1

c4
P1(τ) (1 + εQ11(τ) + . . .) [F10(α1(X − ct)) + εF11(α1(X − ct)) + . . .]

+

√
1 +B1

c4
P2(τ) (1 + εQ21(τ) + . . .) [F20(α2(X − ct)) + εF21(α2(X − ct)) + . . .]

+ . . .

+εH0(X) + ε2H1(X, τ) + . . .

V (X, t, τ) = P1(τ)
(
1 + εQ̃11(τ) + . . .

)
[G10(β1(X − ct)) + εG11(β1(X − ct)) + . . .]

+P2(τ)
(
1 + εQ̃21(τ) + . . .

)
[G20(β2(X − ct)) + εG21(β2(X − ct)) + . . .]

+ . . .

V0(τ) + εV1(X, τ) + . . . . (13)

The first approximation to the trending head and velocity which depends upon X and

τ is found by substituting (13) to (10) and (11), and this yields

H0(X) = 1

V0(τ ) =
D̃e−C2τ

1− D̃C3/C2e−C2τ
(14)

where the constant D̃ is determined later. In the following section, the wave attenuation

function associated with the unsteady friction model is found using (13).

7. Attenuation function. The first-mode attenuation function P1(τ ) is found here,

and the numerics will show that this is the dominant mode of the wave attenuation.

Starting with ε0 and substituting (13) to each of (10) and (11) we see that the zeroth

approximation to the head and velocity of (13) must satisfy H̃X + (1 + B1)Vt=0 and

VX + c4H̃t = 0.

Continuing to first order in ε with the momentum equation (10) and continuity equa-

tion (11), we find respectively that

P1τ (τ ) +

[
α1C1V0(τ ) + 2C3V0(τ )− α1B1B2

1 +B1

]
P1(τ ) +

1√
c4(1 +B1)

α1P1(τ )ΔQ11 = 0 (15)

1√
c4(1 +B1)

α1P1(τ )ΔQ11 = α1C1V0(τ ) + P1τ (τ ) (16)

where ΔQ11 = Q11 − Q̃11 and V0(τ ) is in (14). Substituting (16) to (16) we eliminate

ΔQ11, and the first-mode attenuation satisfies

P1τ (τ ) + λ(τ )P1(τ ) = 0 (17)

where the complex rate is

λ(τ ) =

[
(α1C1(2 +B1) + 2C3)V0(τ ) + C2 − α1B1B2

2(1 +B1)

]
. (18)
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The magnitude of the first-mode attenuation P1(τ ) follows as

|P1(τ )| = Ãe−
∫ τ
0

�(λ(z))dz (19)

where Ã = |P1(0)| is a free constant.

The two free constants Ã and D̃ are found similarly to the approach used in [14] while

the real part of the third constant α1 is found numerically.

Firstly, the initial condition P1(0) = 1 ensures that the head does not exceed 1/
√
c4

at τ = 0 and this gives Ã = 1/P (0). Secondly, the constant D̃ would generally require a

numerical optimization involving a comparison of the numerical and analytic approxima-

tions to the attenuation function to obtain an optimal value of D, e.g. via least squares.

However, a nearly optimal choice of D̃ may be found by setting V (0) = 1/2. This choice

implies the first-order trend V0(τ ) approximates the periodic average of V (X, τ ).

Given Ã and D̃ we find, after approximating for (B1, C1) � 1 viz. Table 1, a somewhat

simplified form of the pressure-wave attenuation

|P1(τ )| = e�(α1)B1B2τ/2
e−C2τ/2

1 + C3/(2C2) (1− e−C2τ )
, (20)

and if the viscous head linear term in the extended steady friction model C2V + C3V
2

is zeroed, i.e. C2 = 0,

|P1(τ )| = e�(α1)B1B2τ/2
1

1 + C3τ/2
. (21)

Hence, the contribution made by unsteady friction in comparison to the steady fric-

tion model appears as the factor exp(�(α1)B1B2τ/2). The unknown constant �(α1) is

determined in the following section.

8. Results. The pressure-wave attenuation has a weak spatial dependence since its

first approximation only depends upon τ , and therefore it approximates the periodic-

average of the pressure-wave during a pseudo-period (the water hammer traverses the

pipe four times [13] during a pseudo-period). During a single period, the unsteady

friction shuttles between a nearly zero value when the flow kinetic energy is decreasing

(travelling upstream in our application) and a maximal value when the flow kinetic

energy is increasing (travelling downstream in our application). A nearly optimal choice

of �(α1) = −1 yields |P1(τ )| that approximates the periodic-average of the pressure-wave

during a pseudo-period.

All results are presented in Figure 1, and their derivation is described within the cap-

tion. The wave attenuation is numerically computed as the absolute difference |H̃(X, τ )−
H̃(X − 2ΔX, τ )| of the numerical solution. It is found at three dimensionless positions:

X = 0.1 (near upstream entrance), X = 0.5 (midway along the pipe) and X = 0.9

(near the downstream end). The same symbols are used for results at each position to

enable a comparison between the steady and unsteady friction models. In all cases, the

first-mode attenuation function |P1(τ )| is compared to the numerical solution for physi-

cal parameters given in Table 1 that were taken from a physical study [1] (more details

of the apparatus used in [1] are available in [3]). The Brunone coefficient k in Table 1

was estimated [1] from the Vardy-Brown decay shear coefficient [8] and a low Reynolds

number turbulent flow.
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Fig. 1. The numerically determined pressure-wave attenuation is
shown for three cases: (i) the steady friction model (crosses) with
zero viscous head (C2 = 0) and zero unsteady friction (B1 = 0, B2 =
0) in (4), (ii) the Brunone unsteady friction model (squares) with
zero viscous head (C2 = 0) and unsteady parameters B1 = 0.0123,
B2 = 207 from [1] (see Table 1), and (iii) the extended steady fric-
tion model (circles) with non-zero viscous head C2 = B1B2 and zero
unsteady friction terms. The wave attenuation is computed as the
absolute difference |H̃(X, τ)− H̃(X − 2ΔX, τ)| of the numerical so-
lution at dimensionless positions X = 0.1 (near upstream entrance),
X = 0.5 (midway along the pipe) and X = 0.9 (near the downstream
end). These three locations are not distinguished in the results pre-
sented in each of (i), (ii) and (iii) above. Note that absolute differ-

ences of head that remain relatively constant in time appear as the
heavier line of smaller values along the bottom of the figure while
rapid changes in head at each X location are the remaining values
that approximate the wave amplitude. The analytical pressure-wave
attenuation closely approximates the numerical results in case (ii) as
the solid line and in case (iii) as the dashed line.

Firstly, the attenuation found numerically for the unsteady friction model, and the

steady friction model with and without the viscous head term C2V is presented in the

figure. The numerical results for the steady friction model attenuation are found without

viscous head (C2 = 0) and without unsteady friction (B1 = 0, B2 = 0), and they appear

near the top (crosses). The numerical results for attenuation based on unsteady friction

parameters B1 = 0.0123, B2 = 207 and zero viscous head (C2 = 0) are shown as squares.
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Dimensional parameters

Conduit diameter Dc = 0.0221 m
Conduit length L = 37.23 m

Conduit roughness εc = 0.0003 m
Conduit wall thickness w = 0.0016 m

Applied head change at t = 0, h12 = h1 − h2 = 0.13 m
Young’s modulus of iron E = 2.0 · 1011 Pa
Water bulk modulus Ev = 2.27 · 109 Pa

Kinematic viscosity ν = μ/ρ = 10−6 m2/s
Brunone coefficient k = 0.0245

Computed dimensional parameters

Steady velocity v∞ = 0.2 m/s
Celerity cp = 1319m/s

Inertial constant s = 3.25 s2/m

Dimensionless parameters

C1 = 0.0318, C2 = 0, C3 = 1 (Momentum equation (8))
C1c4 = 7.15 · 10−4, c4 = 0.0228, c5 = −7.33 · 10−4, ε2 = 10−3 (Continuity equation (9))

B1 = 0.0123, B2 = 207 (Brunone unsteady friction (8))
Table 1. The set of parameters used for the valve-closure water
hammer. Dimensional, computed dimensional, and dimensionless
parameters are separated for clarity. These parameters are taken
from the physical model presented in [1] and studied further in [2].
Note that the Brunone coefficient k is estimated in [1] from Vardy-
Brown’s shear decay coefficient [8], and viscous constant r is de-
scribed within the figure caption and the results section in 8.

In both the steady and unsteady friction models the inertial head coefficient C3 = 1.

The increased pressure-wave attenuation predicted by the Brunone model of unsteady

friction over the steady friction model is apparent.

Secondly, the analytically computed wave attenuation of equation (21) (solid line) for

the unsteady friction model with C2 = 0, B1 = 0.0123 and B2 = 207 closely approxi-

mates the attenuation found numerically (squares). The analytical wave attenuation in

equations (20) and (21) shows that the increased attenuation due to unsteady friction

for weak spatial dependence where the first approximation to the attenuation depends

only on τ may be reduced to the factor exp(�(α1)B1B2τ/2).

An interesting possibility, raised by the analytical form of the wave attenuation in (20)

and (21), is the possibility of a viscous basis for the increased wave attenuation seen in the

unsteady friction results (squares). The form of (20) and (21) indicate that the Brunone

unsteady friction results (squares) may be approximated via the steady model if the

viscous head C2V is included as C2 = B1B2, followed by zeroing unsteady friction terms.

The attenuation |P1(τ )| (21) with C2 = B1B2 is shown in Figure 1, with details in the

inset, and it closely approximates the unsteady model wave attenuation. The numerical

computations show that the dynamics of the unsteady friction model (squares) are also

closely matched by the extended steady friction model (circles) to within a phase-shift

of τ ≈ 0.0004.

The link observed here between the extended steady friction and unsteady friction

models is possible when the pressure-wave attenuation has a weak spatial dependence
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and is only dependent upon τ to a first approximation. For example, in the presence of

cavitation ([6] and [7]) or a valve closed at a time-scale approaching the water hammer

transit time ([4]), such a link would not exist due to increased spatial dependence of the

pressure-wave attenuation.

9. Conclusions. A multiple-scales asymptotic analysis was developed for pressure-

wave attenuation in the Brunone model of unsteady friction. The analytical form showed

that the increased attenuation due to unsteady friction over the standard steady friction

model may be reduced to a single time-dependent exponential factor dependent on the

product of the Brunone unsteady friction parameters. The method was applied to wa-

ter hammer caused by sudden valve closure in water reservoir pipelines in [1]. The

analytical form of the pressure wave attenuation also predicted that viscous head in

an extended steady friction model may account for increased pressure-wave attenuation

seen in the unsteady friction model when the attenuation has a weak spatial dependence.

The approach used here should be useful to explain the physical basis of pressure-wave

attenuation predicted in other water hammer models.
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