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ABSTRACT 

We investigate Wiener filtering of wavelet coefficients for signal 
denoising. Empirically designed wavelet-domain Wiener filters 
outperform many other denoising algorithms based on wavelet 
thresholding. However, up to now, it has not been clear how to 
choose the signal model used to design the filter, because the ef- 
fect of model selection on the filter performance is difficult to un- 
derstand. By analyzing the error involved in the Wiener filter de- 
signed with an empirically obtained signal model, we show that 
hard thresholding is typically outperformed by a Wiener filter de- 
signed in an alternate wavelet domain. Our analysis furthermore 
provides a method for selecting the various parameters involved in 
a wavelet-domain Wiener filtering scheme. 

1. INTRODUCTION 

Denoising algorithms attempt to recover a signal corrupted by ad- 
ditive white noise. The signal we consider can be modeled as a 
vector in RN space.’ The noisy signal can be written as s = x + n, 
where x and n model signal and noise, respectively. Let s( i )  de- 
note the i-th sample of s, and define ~ ( i )  and n(i)  similarly. Let 
W denote a wavelet transform [l] that is well matched to the sig- 
nal under consideration. By transforming the observed noisy sig- 
nal into the W wavelet domain, we obtain wavelet coefficients 
y = 6 + z, where y = Ws, 6 = W x  and z = Wn, respectively. 
Thanks to the compaction and decorrelation properties of wavelet 
transforms [l], we can devise many filtering algorithms that esti- 
mate the true signal from the noisy observation. Many algorithms 
that threshold or shrink the wavelet coefficients and then inverse 
transform to the time domain have been proposed [2,3]. 

The idea of Wiener filtering of individual wavelet coefficient 
arises from the fact that wavelet transforms tend to decorrelate 
real-world signals. That is, the wavelet transform approximates 
the Karhunen-Lokve transform. To recover 6 from y, Wiener fil- 
tering of individual wavelet coefficients is optimal in the sense of 
minimizing the mean-square error (MSE) (assuming perfect decor- 
relation of noisy wavelet coefficients). The Wiener filtering of each 
wavelet coefficient is given as e(i) = * g ( i ) ,  where u2 is 
the variance of z ( i )  [ 1,4]. Because the 6(z)’s are unknown, we use 
estimated values 8 ( i )  instead, and we obtain the empirical Wiener 
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Figure 1 illustrates the improved wavelet-domain Wiener de- 
noising technique (Wienerchop) of [SI. The Wiener filtering is 
applied in the Wz domain, and the signal model (8) needed to de- 
sign the filter is obtained by hard-threshold denoising the signal in 
the W1 domain. It was shown in [SI that this empirical Wiener 
filtering algorithm outperforms many denoising algorithms using 
thresholding or shrinkage. In this paper, we will analyze this and 
related denoising algorithms in terms of optimal filtering of noisy 
wavelet coefficients. 

Many other wavelet thresholding and shrinkage schemes can 
be shown to be approximate forms of Wiener filtering. Thus, it is 
worthwhile to consider these wavelet denoising algorithms from 
the viewpoint of Wiener filtering. In this way, we can analyze 
many wavelet denoising algorithms with a unified approach. 

We aim to analyze the errors involved in the Wiener filter- 
ing of wavelet coefficients using a filter designed based on specific 
signal models obtained through other methods. In particular, our 
main contribution is the analysis of the denoising mechanism of 
the WienerChp of [5]. Although the Wienerchop algorithm is 
superior to many other denoising algorithms, the behavior of the 
algorithm is not clearly understood. Our analysis will clearly in- 
dicate the main source of improvement in the performance of the 
empirical Wiener filtering over other denoising algorithms using 
thresholding. We will show that the superiority of the WierzerChop 
algorithm is mainly due to the reduction of the error that results 
from the mismatch between the empirical signal model and the 
true signal. The success of the algorithm comes from the proper 
reconditioning of the signal model by an orthonormal transforma- 
tion to a different domain. Our analysis will furthermore suggest 
methods to design good wavelet-domain Wiener filters. 

2. ERRORS IN EMPIRICAL WIENER FILTERING 

The signal estimation error when we use an approximate Wiener 
filter in (1) warrants further consideration. We can obtain the ex- 
pression for the MSE as MSE = Eopt(6) + Emi,(6, e),  where 
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The term E,,t represents the MSE of the Wiener filter when we 
have 6( i )  = 6( i )  for all i; Emis is the error resulting from the 
mismatch of the signal model to the true signal. 

Once we fix the wavelet transform, EOpt is determined for a 
given signal. E,,t attains its minimum value when the signal en- 
ergy is concentrated on a single wavelet coefficient 8 ( j )  for some 
j and 8 ( i )  = 0 for i # j .  In other words, the optimal Wiener fil- 
ter performs well when the wavelet transform compacts the signal 
well. 

The term Emis(8, 8) represents the error resulting from mis- 
match of the signal model 8 with the signal 8. When the signal 
model is perfect, Emis = 0, and we obtain the performance of the 
optimal Wiener filter. However, in practice we do not know the ex- 
act values of O(i)'s,  and this error term is not zero. To see how this 
error term varies as 6( i )  changes, consider the behavior of each 
term in the expression for Emis(8, e) in (3). Figure 2 shows the 
plot of a term in the summation for U = 0.1, B ( i )  E [-0.5,0.5], 
and 8(i)  E [-0.5,0.5]. Emis is the summation of N such terms. 
In this figure, we see that a relatively large error can result if 
8(i) = 0 when 8 ( i )  is not small. For a fixed 8 ( i ) ,  the error is 
minimized when 6 = 8. When 8 is clo2e to zero, misestimation of 
8 has little effect on the MSE. Also, if 8 increases away from zero, 
then the MSE decreases rapidly even when 8 is not small. In these 
two cases, the value approaches u2.  

3. INTERPRETATION OF HARD THRESHOLDING 

We can interpret many wavelet-domain denoising algorithms as 
special cases of Wiener filters designed with some signal model in 
the wavelet domain. As a preparation for the arguments in the fol- 
lowing sections, we consider the hard thresholding scheme [3] in 
view of the error analysis of Section 2. With the model of the noisy 
wavelet coefficients after transforming the signal by W1 given by 
y(i) = e( i )  + z(i) ,  i = 1, . . . , N ,  hard thresholding of wavelet 
coefficients can be viewed as an approximate form of Wiener fil- 
tering: 

03 if Iy(i)l > T 

0 otherwise, 
(4) 

y(i), with 8 ( i )  = P(i) 
&(i) + u2 S ( i )  = 

where r is a threshold determined according to the noise variance. 
In other words, 6( i )  in (4) is the signal model used to design the fil- 
ter, and under this model, the Wiener filter is the hard thresholding 
algorithm. 

To see how much error would result from hard thresholding, 
we use the formulas for MSE derived in Section 2. The term EOpt 
is fixed once the underlying wavelet transform is determined. In 
view of Fig. 2, we see that E,,, mainly consists of the error result- 
ing from d ( i )  # e ( i )  for those wavelet coefficients le(i)l N T and 
I y ( i ) l  < T.  Such coefficients are removed by hard thresholding, 
and we have 6 ( i )  = 0, making the corresponding error term in 
Emis (see (3)) large. Hard thresholding has a poor performance in 
this sense. 

Other wavelet thresholding or shrinkage algorithms can be 
interpreted as Wiener filters in a similar way. In particular, we ex- 
pect similar behavior of Emis for many algorithms, including soft 
thresholding, where small wavelet coefficients are also removed. 

In [l, pp. 425-4641, a similar comparison between hard threshold- 
ing and the optimal Wiener filtering (ideal attenuation of wavelet 
coefficients) was made by analyzing the errors involved in each 
algorithm. 

4. ANALYSIS OF THE WIENERCHOP ALGORITHM 

Although wavelet-domain denoising using hard thresholding can 
be used to estimate a signal, this estimated signal can also be used 
as a signal model to design a$lter as in (1). Then, we can process 
the original noisy signal using this filter to obtain a better estimate 
of the signal, because the signal model used to design the filter 
(obtained by hard thresholding the wavelet coefficients in Wl) 
may be better matched to the signal than the model in (4). How- 
ever, using the signal model obtained by hard thresholding in W1 
to design a Wiener filter in the same domain experiences similar 
problems (large Emis) as simple hard thresholding. Rather, we can 
think of Wiener filtering in an altemate domain by an orthonormal 
transformation. 

The Wienerchop algorithm of [5 ]  follows from this idea. The 
signal model is again provided by wavelet-domain hard threshold- 
ing using the wavelet transform W1. Although an orthonormal 
transformation does not change the mean-square error of signal 
model E ( @  - 81') in the new domain, the signal model in the 
transformed domain may be more suitable for designing a Wiener 
filter, reducing the error Emis due to model mismatch in the de- 
sign. In particular, we can avoid the type of model mismatch that 
can cause large errors (as in hard thresholding) by a coordinate 
transformation, and this may significantly reduce the overall error. 

Let W1 be the wavelet transform used to obtain the sig- 
nal model using hard thresholding, and let K be an orthonor- 
mal transformation from the W1 domain to a different one. 
Let H be the hard thresholding operator defined as H = 
diag[h(l), h(2), . . . , h(N)] ,  where h(z) = 1 if Iy(i)l > T and 
h(i) = 0 otherwise, and T is the threshold. Then, the sig- 
nal model obtained by hard thresholding in the W1 domain is 
Yh = Hy = HWls. The estimated signal in the time domain 
can be written as Sh = w;lyh = WTIHW1s. 

Suppose K is an orthonormal transformation from W1 co- 
ordinates to a new coordinates. Depending on the choice of this 
transformation, we can expect that the unfavorable mismatches of 
the signal model may be mitigated, rendering a more favorable sig- 
nal model so that the Wiener filter designed in the new domain can 
have significant reduction of error. The noisy signal and the sig- 
nal model in the new domain are given by Yk = Ky = KWls 
and Yhk = Kyh = KHWls. We can design a Wiener filter in 
the new domain based on the signal model Yhk, and then the filter 
can be applied to yk. We obtain the final time-domain signal by 
inverse transforming back to the time domain. 

When choosing K, we should be careful that the resulting 
transform of the signal in the new domain (Yk) is as compact as 
possible, so that the inherent Wiener filtering error (Eopt) is small. 
In this respect, it is desirable to choose K so that the resulting new 
domain is another wavelet domain. Let WZ denote this wavelet 
domain. Then, K has the form K = Wz W; I. In terms of WZ , 
the signal is represented as yz = WZS in the WZ domain, and we 
have thesignal model Yh2 = W2W;'HWls. This corresponds 
to having W1 # W2 in the algorithm of [5] .  When W1 # WZ, 
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the error Emis incurred by Wiener filtering in the WZ domain de- 
pends on the ability of the transform K = W2WL1 to spread the 
model mismatches in the W1 domain by transforming into the 
WZ domain. This makes the model more suitable for designing a 
Wiener filter in the W2 domain, assuming that the signal is com- 
pactly represented in both WZ and WI. 

In view of the idea of mitigation of signal modeling error to 
reduce Emis, we can pick a good pair of wavelet transforms W1 
and WZ for a given signal. However, because the original signal 
is unknown, it is hard to characterize the influence of these wavelet 
bases on the estimation error. 

When we have more than two wavelet bases under which the 
signal has compact representations, we can consider an iterative 
scheme of choosing a pair of wavelets at a time. The signal esti- 
mated from the Wiener filter can again be used as a signal estimate 
to design yet another Wiener filter in different wavelet domain. 
However, because the estimation error of the empirical Wiener fil- 
tering varies very nonlinearly as the signal model changes, we are 
not guaranteed to improve performance. Our analysis has shown 
that we can obtain improvement in estimation error compared with 
hard thresholding when we use the hard thresholded signal es- 
timate to design the Wiener filter. Thus, iterating the empirical 
Wiener filtering for multiple wavelet bases is not guaranteed to 
converge to a good signal estimate. 

Wi D2 D12 D2 

W2 D2 D12 D12 

E+ 2.2165 2.0610 2.0610 
Emis 3.4443 2.6966 0.7748 

5. DENOISING EXAMPLE 

0 1 2  

D2 
2.2165 
0.5843 

This idea of mitigating the effect of unfavorable model errors by an 
orthonormal transformation is well illustrated by an example. Fig- 
ure 3 shows the test signal (obtained by concatenating Donoho’s 
Doppler and Blocks signals [3]) and the same signal corrupted by 
white Gaussian noise with variance U = 0.1. Figure 4 shows 
the estimated signals using wavelet-domain denoising obtained by 
hard thresholding in the Haar (D2) wavelet domain and by em- 
pirical Wiener filtering (using W1 = the Haar wavelet transform 
and WZ = the Daubechies length-12 (012) wavelet transform). 
In terms of W1 and WZ, we expect that the compaction of the 
wavelet coefficients of our test signal will be almost same, because 
each of these wavelet bases compacts half of the signal very well. 

Table 1 shows the error term Eopt for different choices of 
wavelet bases. We note that the values of EOpt are similar for both 
the D2 and 0 1 2  bases, because the compaction of the wavelet 
coefficients is almost the same in each domain. To see how the 
estimates of the wavelet _coefficients and the actual coefficients 
distribute, we computed 8 = HWly and 0 = Wlx. Figure 5 
show the distribution of ( B ( i ) ,  &i)) for i  = 1, . . . , N .  We see that 
the coefficients with small magnitudes concentrate around the line 
8 = 0, which results in large Emis according to the plot Fig. 2. 
Other coefficients are gathered along the line 8 = 8. 

To see the distribution of the coefficients and estimates-after 
transforming into the WJ! domain, we computed W Z W ; ~ ~  and 
WZX. In Fig. 6 we see that there are many fewer points falling 
around the line 8 = 0, resulting in much lower Emis. This is be- 
cause the model mismatches in WI domain, which are distributed 
very unfavorably, were transformed to Wa domain where they 
distribute much more favorably. By actually computing Emis with 
the model obtained in the WI domain by hard thresholding and 
the signal in the same domain, we obtained the values shown in 

Table 1 for different choices of wavelet bases. We observe a sig- 
nificant reduction in Emis when we choose W1 # WZ. This 
reduction in Emi, explains the superiority of the algorithm in [5] 
over the simple hard thresholding algorithm. 

6. CONCLUSIONS 

In this paper, we have analyzed the errors involved in wavelet- 
domain empirical Wiener filtering, including the WienerChop al- 
gorithm of [5]. We showed that errors due to the mismatch of sig- 
nal model can be significant. Fortunately, this error can be reduced 
by transforming both the signal and model to another wavelet do- 
main where the Wiener filter will yield a smaller error. 

The difficulty in the analysis of the wavelet-domain Wiener 
filters arises from the signal dependence of the processing. The 
influence of the choice of W1 and WZ on the overall performance 
is hard to analyze in general. The development of an algorithm to 
design the wavelet transforms for a given signal remains a task for 
future research. 

We have recently leamed about another method for denois- 
ing using multiple wavelet domains [6]. Currently, we are inves- 
tigating filtering algorithms to incorporate more than two wavelet 
transforms to obtain improved performance. 
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Table 1: Error terms depending on the choice of wavelet bases W1 
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Figure 1: Wavelet-based empirical Wiener filtering. In the upper 
path, w:velet transform W1 is used to produce a signal model 
yhk(= 6). This model is then used to design an empirical Wiener 
filter H, that is applied to the original noisy signal in the Wa 
domain. 
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Figure 2: Error due to model mismatch. 
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Figure 3: Above: DoppleBlock test signal. Below: signal cor- 
rupted by additive white Gaussian noise with (T = 0.1. 
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Figure 4: Denoised signals. Above: hard thresholding in Dz do- 
main, MSEd.6608. Below: Wienerchop using W1 = D2 and 
Wz D ~ z ,  MSE=2.8358. 
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Figure 5: Model mismatch in the W1 domain. 
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Figure 6: Model mismatch in the Wa domain. 
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