
Analysis of XACML Policies with SMT

Fatih Turkmen1, Jerry den Hartog1, Silvio Ranise2, and Nicola Zannone1

1 Eindhoven University of Technology, Eindhoven, The Netherlands
2 Fondazione Bruno Kessler (FBK) Trento, Italy

Abstract. The eXtensible Access Control Markup Language (XACML)
is an extensible and flexible XML language for the specification of ac-
cess control policies. However, the richness and flexibility of the language
(along with the verbose syntax of XML) come with a price: errors are
easy to make and difficult to detect when policies grow in size. If these er-
rors are not detected and rectified, they can result in serious data leakage
and/or privacy violations leading to significant legal and financial conse-
quences. To assist policy authors in the analysis of their policies, several
policy analysis tools have been proposed based on different underlying
formalisms. However, most of these tools either abstract away functions
over non-Boolean domains (hence they cannot provide information about
them) or produce very large encodings which hinder the performance. In
this paper, we present a generic policy analysis framework that employs
SMT as the underlying reasoning mechanism. The use of SMT does not
only allow more fine-grained analysis of policies but also improves the
performance. We demonstrate that a wide range of security properties
proposed in the literature can be easily modeled within the framework.
A prototype implementation and its evaluation are also provided.

1 Introduction

Access rules governing sensitive data such as patient health records or financial
transactions are usually encoded in a policy that is enforced by the authoriza-
tion system. Correctness of access control policies is crucial for organizations to
prevent authorization violations or fraud which can result in serious data leakage
and/or privacy violations leading to significant legal and financial consequences
(e.g., financial and reputation loss). In this work, we consider policies expressed
in eXtensible Access Control Markup Language (XACML) [20]. XACML pro-
vides an extensible and flexible language that allows the specification of struc-
tured policies in which policies specified by different authorities can be combined
together. However, policy specification in XACML is known to be a difficult and
error-prone task [10,13]. This richness and flexibility along with its verbose syn-
tax make it difficult to determine whether policies work as intended. Therefore,
automated tools are needed to assist policy authors in analyzing their policies
to detect and correct errors before policies are deployed.

This need has spurred the development of several methods and tools for
the verification of policy specifications at design time using formal reasoning
[5,8,10,12,13]. The security properties being verified can express requirements

c© Springer-Verlag Berlin Heidelberg 2015
R. Focardi and A. Myers (Eds.): POST 2015, LNCS 9036, pp. 115–134, 2015.
DOI: 10.1007/978-3-662-46666-7_7

116 F. Turkmen et al.

on the policies but also on relations between policies. A requirement on a policy
could specify (types of) access requests that should (not) be granted by the pol-
icy. An updated policy being compared with the original to ensure the update
is ‘safe’ is an example of a requirement on the relation between policies. Here
‘safe’ could be expressed in being as permissive/restrictive as another policy as
is done in policy refinement [5] and subsumption [13]. Despite a large variety
in security properties that one may need to check, existing policy analysis tools
often support only a restricted set of properties due to the (lack of) expressive-
ness of the formalization employed by the tool and the capabilities offered by
the underlying reasoner.

Advances in propositional satisfiability (SAT) research [11] make SAT solvers
an attractive underlying reasoner in policy analysis [13]. SAT allows efficient rea-
soning about propositional logic formula and many access control policies and
security properties can be naturally modeled in propositional logic. However,
SAT solvers do not natively support reasoning on predicates over non-Boolean
variables and functions which frequently appear in access control policies and,
in particular, in XACML policies. For instance, SAT does not allow a straight-
forward reasoning on temporal constraints such as request -time > 13:20, which
can play an important role in the correctness of a policy and thus in the security
of the system. Such non-Boolean expressions are usually left uninterpreted [13]
which restricts analysis capabilities. Alternatives that support fine-grained pol-
icy analysis can lead to excessively large encodings of the policy. The analyst is
forced to choose a trade-off between performance and accuracy by introducing
bounds on the domains.

In this paper, we consider SAT modulo theories (SMT) [6] as the underlying
reasoning method for the analysis of XACML policies. SMT enables the use of
theories, such as linear arithmetic and equality, to reason about the satisfiability
of first order formulas. SMT is a natural extension to SAT in which SMT solvers
employ tailored reasoners when solving non-Boolean predicates in the input for-
mula. The use of SMT makes it possible to perform a more fine-grained analysis
than existing SAT-based policy analysis tools allow.

The contributions of this paper are thus as follows:

– A novel policy analysis framework which makes it possible to verify access
control policies against a large range of security properties.

– A fine-grained analysis of access control policies by performing reasoning on
non-Boolean predicates, e.g. arithmetic functions on numeric attributes.

– A prototype implementation of the framework and its extensive evaluation
using a number of well-known security properties taken from the literature.

The remainder of the paper provides an overview of XACML and SMT in Sec-
tion 2, and an encoding of XACML policies in SMT in Section 3. Our analysis
framework that uses this encoding for policy analysis is given in Section 4. Sec-
tion 5 presents a prototype of our framework with experimental results. Section 6
discusses related work, and Section 7 provides conclusions.

Analysis of XACML Policies with SMT 117

2 Preliminaries

In this section we shortly recall key points of XACML and SMT.

2.1 XACML

XACML [20] is an OASIS standard for the specification of access control policies.
It provides an attribute-based language that allows the specification of composite
policies. In this work, we focus on the core specification of XACML v3 [20]
(without obligations).

Three policy elements are provided by XACML: policy sets, policies and rules.
A policy set consists of policy sets and policies; policies in turn consist of rules.
If policy element p1 is nested in policy element p2 we say that p1 is a child policy
element of p2 and that p2 is the parent policy element of p1. Each policy element
has a (possibly empty) target which defines (restricts) the applicability of the
policy element in terms of attributes characterizing the subject, the resource,
the action to be performed on the resource, and the environment. Intuitively,
the target identifies the set of access requests that the policy element applies to.
In addition, rules specify an effect element that defines whether the requested
actions should be allowed (Permit) or denied (Deny), and can be associated
with conditions to further restrict their applicability.

If an access request matches both the target and conditions of a rule, the
rule is applicable to the request and yields the decision specified by its effect
element. Otherwise, the rule is not applicable, and a NotApplicable decision is
returned. If an error occurs during evaluation, an Indeterminate decision is re-
turned. XACML v3 also introduces an extended set of Indeterminate values
to allow a fine-grained combination of decisions: Indeterminate{P}, Indetermi-
nate{D} and Indeterminate{PD}. Intuitively, these Indeterminate decisions in-
dicate the evaluation result of a policy element if the error not occurred.

To combine decisions obtained from the evaluation of different applicable pol-
icy elements, XACML provides a number of combining algorithms [20]: permit-
overrides, deny-overrides, deny-unless-permit, permit-unless-deny, first-applicable
and only-one-applicable.1 Intuitively, these algorithms define procedures to eval-
uate composite policies based on the order of the policy elements and priorities
between decisions.

Next we present a sample XACML policy in a concise form that we will use
as a running example through the paper.

Example 1. A user is allowed to create an object of type “transaction” only if
his credit balance (credit) is higher than the value of the transaction itself (value)
and banking costs (cost). Transactions can only be created during working days
(ı.e., Monday, Tuesday, Wednesday, Thursday, Friday) within the time interval

1 Combining algorithms permit-overrides and deny-overrides are defined over the Inde-
terminate extended set, while the other algorithms are defined over a single Inde-
terminate decision value. Combining algorithm only-one-applicable can only be used
to combine policy sets and policies.

118 F. Turkmen et al.

08:00-18:00. One way to model this policy is to represent (the negation of) these
constraints as Deny rules and then to combine the resulting rules using deny-
overrides (dov):

p[dov] : resource-type = “transaction” ∧ action-id = “create”
r1[Deny] : value+ cost > credit
r2[Deny] : current-day /∈ {Mo, Tu,We, Th, Fr}∨

current-time < 08:00 ∨ current-time > 18:00
r3[Permit] : true

where true is used to indicate that the target of the policy element matches every
access request. We assume that attributes value, cost, credit, current-time and
current-day are further constrained with function one-and-only so that a policy
element returns Indeterminate if multiple values are provided for them.

2.2 Satisfiability Modulo Theories

SMT [6] is a generalization of SAT in which Boolean variables can be replaced
by constraints from a variety of theories. To specify SMT formulas, we follow
an extended version of the SMT-LIB (v2) standard (http://www.smtlib.org)
which is based on many-sorted first order logic. In the remainder, we assume
the usual syntactic (e.g., sort, constant, predicate and function symbols, terms,
atoms, literals, Boolean connectives, quantifiers, and formulas) and semantic
(e.g., structure, satisfaction, model, and validity) notions of many-sorted first
order logic; see [9] for formal definitions.

A theory T consists of a signature and a class of models. Intuitively, the
signature fixes the vocabulary to build formulas and the class of models gives
the meaning of the symbols in the vocabulary. As an example, consider the
theory of an enumerated data-type: the signature consists of a single sort symbol
and n constants corresponding to the elements in the enumeration; the class of
models contains all structures interpreting the sort symbol as a set of cardinality
n. For Linear Arithmetic over the Integers (LAI), the signature consists of the
numerals (corresponding to the integers), binary addition, and the usual ordering
relations; the class of models contains the standard model of the integers in
which only linear constraints are considered. For the theory of uninterpreted
functions, the signature consists of a finite set of symbols and the equality sign;
the class of models contains all those structures interpreting the equality sign
as a congruence relation and the other symbols in the signature as arbitrary
constants, functions, or relations.

A formula ϕ is T -satisfiable (or satisfiable modulo T) iff there exists a structure
M in the class of models of T and a valuation φ (i.e., a mapping from the
variables that are not in the scope of a quantifier in the formula to the elements
in the domains of M) satisfying ϕ (in symbols, M, φ |= ϕ). A formula ϕ is
T -valid (or valid modulo T) iff for every structure M in the class of models of
T and every valuation φ, we have that M, φ |= ϕ. Notice that a formula ϕ is
T -valid iff the negation of ϕ (i.e., ¬ϕ) is T -unsatisfiable.

http://www.smtlib.org

Analysis of XACML Policies with SMT 119

Checking the satisfiability of conjunctions of literals (i.e., atoms or their nega-
tions) modulo certain theories – e.g., the theory of uninterpreted functions, the-
ories of enumerated data-types, and Linear Arithmetic over the Integers – is
well-known to be decidable [6]. These results imply the decidability of checking
the satisfiability of quantifier-free formulas modulo the same theories. This is so
as it is always possible to transform arbitrary Boolean combinations of atoms into
disjunctive normal form (DNF), i.e. in a disjunction of conjunctions of literals.
Unfortunately, the transformation to DNF may be computationally expensive
and generate an exponentially larger formula [9]. For this reason, even if checking
the satisfiability of conjunctions of literals modulo certain theories is polynomial
(as it is the case for the theory of uninterpreted functions), checking the satis-
fiability of quantifier-free formulas modulo the same theories becomes NP-hard.
While these theoretical limitations are unavoidable, modern SMT solvers have
developed a wealth of heuristics to scale and handle very large formulas with ar-
bitrary Boolean structures. The interested reader is pointed to [6] for a thorough
introduction.

The situation is further complicated by two possible sources of problems.
First, several verification problems (such as the XACML policy analysis prob-
lems considered in this paper) require to consider more than one theory to model
various aspects of the situation under scrutiny. Under suitable assumption on
the component theories, it is possible to build theory solvers capable of check-
ing the satisfiability of conjunctions of literals in combinations of theories by
modularly re-using the theory solvers of the component theories. However, the
complexity of checking the satisfiability of conjunctions of literals in the com-
bination can be much higher than that of modulo the individual theories. For
instance, there exists a combination of two theories with polynomial satisfiabil-
ity problem whose combination becomes NP-complete [22]. The second source
of problems is the presence of quantifiers in the proof obligations generated by
certain verification tools (as it is the case of some of the policy analysis problems
considered in this work). In fact, the decidability of quantifier-free formulas does
not extend to quantified formulas. For instance, checking the satisfiability of
quantified formulas modulo the theory of uninterpreted functions is undecidable
since one can encode the satisfiability problem for arbitrary first-order formulas
whose undecidability is well-known [9]. Despite this and other negative results,
several efforts have been put in identifying classes of quantified formulas whose
satisfiability is decidable by integrating instantiation or quantifier-elimination
procedures in SMT solvers; see, e.g., [6] for pointers to relevant work.

3 Encoding XACML Policies in SMT

In this section, we first present our formalization of XACML policies that allows
us to represent policies in terms of predicates. We then show how the obtained
predicates can be used to define SMT formulas.

120 F. Turkmen et al.

3.1 XACML Formalization

An access control schema 〈Att,Dom〉 defines the vocabulary used for specify-
ing access control policies. Here Att is a set of attributes a1, . . . , an, Dom gives
the corresponding attribute domains Doma1 , . . . , Doman and we refer to set
2Doma1 × . . . × 2Doman as the policy space specified within the schema. The
elements of the policy space are called attribute assignments. An attribute as-
signment maps attributes to a (possibly empty) set of values in their domains. An
access request 〈a1 = v1i , . . . , an = vnk

〉 (with v1i ∈ Doma1 , . . . , vnk
∈ Doman)

specifies an attribute assignment, provided the values for those attributes are not
assigned the empty set (multiple attribute/value pairs with the same attribute
indicate multiple values are assigned to that attribute). Hereafter, R denotes the
set of all possible access requests, i.e. the policy space.

Each policy element in XACML has a target that specifies applicability con-
straints in terms of attribute assignments. Applicability constraints are used
to divide the policy space in three disjoint sub-spaces: the Applicable space
ASA, the Indeterminate space ASIN , and the NotApplicable space ASNA. These
sub-spaces respectively represent access requests for which the policy’s target
matches the request, checking whether the target matches the request produces
an error, and the target does not match the request. We represent the appli-
cability space of a policy element as 〈ASA, ASIN 〉 with an access request req
in the set ASNA (in symbols, req ∈ ASNA) iff req /∈ ASA ∪ ASIN . An access
request is evaluated against a policy element only if it matches the target of
policy element’s parent. Based on this observation, we flatten a XACML policy
by propagating its applicability constraints in a top-down fashion from the root
policy element to rules.

Definition 1. Let p be a policy where 〈AST
A , AS

T
IN 〉 is the applicability space

induced by its target. The applicability space of p is inductively given by:

〈ASp
A, AS

p
IN 〉 =

{
〈AST

A, AS
T
IN 〉 if p is a root policy

〈AST
A ∩ ASq

A, (AS
T
IN ∩ ASq

A) ∪ASq
IN 〉 if q is the parent of p

For the root policy (i.e., the policy that does not have a parent policy element),
the applicability space is that induced by its target. For policies that do have
a parent the applicability space of the parent is also taken into account so the
parents applicability is iteratively propagated to all its child policies. Thus, a rule
has an applicability space which is determined by the applicability constraints
in its target and by the applicability constraints in the target of all its ancestor
policy elements. Note that, as for any target AST

A and AST
IN are disjoint, a

straightforward inductive arguments shows that ASp
A and ASp

IN are also disjoint.

Example 2. Consider the policy in Example 1. Below we represent the appli-
cability constraints aci defined from the target of every policy element:

Analysis of XACML Policies with SMT 121

ac0 : “transaction” ∈ resource-type
ac1 : “create” ∈ action-id
ac2 :

∧
d∈{Mo,Tu,We,Th,Fr} d /∈ current-day

ac3 : ∀v ∈ current-time v > 18:00
ac4 : ∀v ∈ current-time v < 8:00
ac5 : ∀v1 ∈ credit, v2 ∈ cost, v3 ∈ value (v1 < v2 + v3)
ac6, ..., ac10 : att = ∅ ∨ ∃v1, v2 ∈ att.(v1 �= v2 ∧ v1 ∈ att ∧ v2 ∈ att)

where att is current-day, current-time, credit, cost, and value in ac6, ac7, ac8,
ac9, and ac10, respectively. Constraints ac6, ..., ac10 address Indeterminate cases
by requiring att to be either empty or to contain at least two distinct elements
(denoted by v1 and v2). The applicability space induced by the target of rule
ri, 〈ASTi

A , ASTi

IN 〉, can be represented as follows (for the sake of simplicity, we
represent sets of access requests as the applicability constraints that render them):

T1 : 〈ac5 ∩ (ac8 ∪ ac9 ∪ ac10), ac8 ∪ ac9 ∪ ac10〉
T2 : 〈(ac2 ∪ ac3 ∪ ac4) ∩ (ac6 ∪ ac7), ac6 ∪ ac7〉
T3 : 〈R, ∅〉
Policy p has applicability space 〈ac0 ∩ ac1, ∅〉; this space has to be propagated to
rules. Thus, the applicability space 〈ASri

A , ASri
IN 〉 of rule ri is:

r1 : 〈ac0 ∩ ac1 ∩ ac5 ∩ (ac8 ∪ ac9 ∪ ac10), (ac8 ∪ ac9 ∪ ac10) ∩ (ac0 ∩ ac1)〉
r2 : 〈ac0 ∩ ac1 ∩ (ac2 ∪ ac3 ∪ ac4) ∩ (ac6 ∪ ac7), (ac6 ∪ ac7) ∩ (ac0 ∩ ac1)〉
r3 : 〈ac0 ∩ ac1, ∅〉

Based on the possible decisions in XACML, the policy space can be parti-
tioned into four disjoint subsets DSP , DSD , DS IN and DSNA by using rule
effects and applicability constraints. These subsets represent the classes of ac-
cess requests that evaluate to same access decision: Permit, Deny, Indetermi-
nate and NotApplicable, respectively. We denote the decision space of a policy
as 〈DSP ,DSD ,DS IN 〉. If an access request does not fall in DSP ∪DSD ∪DS IN ,
then it falls in DSNA. The decision space of a rule can be derived from its effect
and applicability constraints.

Definition 2. Let 〈ASA, ASIN 〉 be the applicability space of a rule r and Effect
its effect. The decision space of r, denoted 〈DSP ,DSD ,DS IN 〉, is

DSP =

{
ASA if Effect = Permit
∅ otherwise

DSD =

{
ASA if Effect = Deny
∅ otherwise

DS IN = ASIN

In order to obtain the decision space of the root policy element, the decision
space of child policy elements have to be recursively combined in a bottom-up
fashion according to specified combining algorithms. As noted in Section 2.1
some combining algorithms use an extended decision set in which the Inde-
terminate space is subdivided into three parts. For these we extend the de-
cision space accordingly. Here, we show the decision space of a policy with
respect to deny-overrides as an example. The other combining algorithms can
be defined in a similar way. Let 〈DSp1

P ,DSp1

D ,DSp1

IN (P),DS p1

IN (D),DS p1

IN (PD)〉 and

122 F. Turkmen et al.

〈DSp2

P ,DSp2

D ,DSp2

IN (P),DSp2

IN (D),DSp2

IN (PD)〉 be the (extended) decision spaces of

policy elements p1 and p2, respectively. We are interested in the decision space
〈DSp

P ,DS p
D ,DSp

IN 〉 of a policy p which combines policy elements p1 and p2 using
deny-overrides. The decision spaces induced by deny-overrides can be defined as
follows:
DSp

D = DS p1

D ∪DSp2

D

DSp
IN (PD) =

(
(DS p1

IN (PD) ∪DSp2

IN (PD)) ∪
(
DSp1

IN (D) ∩ (DS p2

IN (P) ∪DS p2

P)
)

∪
(
DS p2

IN (D) ∩ (DSp1

IN (P) ∪DSp1

P)
))

\DS p
D

DSp
IN (D) = (DSp1

IN (D) ∪DS p2

IN (D)) \ (DS p
D ∪DSp

IN (PD))

DSp
P = (DSp1

P ∪DS p2

P) \ (DS p
D ∪DSp

IN (PD) ∪DSp
IN (D))

DSp
IN (P) = (DS p1

IN (P) ∪DSp2

IN (P)) \ (DS p
D ∪DSp

IN (PD) ∪DS p
IN (D) ∪DSp

P)

Intuitively, the representation above defines the priorities between decision
spaces. The Deny space of the parent policy element is the union of the Deny
space of child policy elements, i.e. the former evaluates to Deny if at least one
child policy element evaluates to Deny. Then, Indeterminate{PD} has prior-
ity over Indeterminate{D}; in turn Indeterminate{D} has priority over Per-
mit, which has priority over Indeterminate{P}. The overall Indeterminate space
can be obtained as the union of the three Indeterminate spaces, i.e. DSp

IN =
DSp

IN (PD) ∪DS p
IN (D) ∪DSp

IN (P).

Example 3. Consider the policy in Example 1 and the applicability space of the
rules forming it in Example 2. Decision space of rule ri 〈DS ri

P ,DS ri
D ,DS ri

IN 〉 is
r1 : 〈∅, ac0 ∩ ac1 ∩ ac5 ∩ (ac8 ∪ ac9 ∪ ac10), (ac8 ∪ ac9 ∪ ac10) ∩ (ac0 ∩ ac1)〉
r2 : 〈∅, ac0 ∩ ac1 ∩ (ac2 ∪ ac3 ∪ ac4) ∩ (ac6 ∪ ac7), (ac6 ∪ ac7) ∩ (ac0 ∩ ac1)〉
r3 : 〈ac0 ∩ ac1, ∅, ∅〉
The decision space of the overall policy 〈DSP ,DSD ,DS IN 〉 can be obtained by

combining the decision space of the rules as shown above (by derivation order):
DSp

D = ac0 ∩ ac1∩((
ac5 ∩ (ac8 ∪ ac9 ∪ ac10)

)
∪
(
(ac2 ∪ ac3 ∪ ac4) ∩ (ac6 ∪ ac7)

))
DSp

IN =
(
ac0 ∩ ac1 ∩ (ac8 ∪ ac9 ∪ ac10 ∪ ac6 ∪ ac7)

)
\DS p

D

DS p
P = (ac0 ∩ ac1) \ (DSp

D ∪DSp
IN)

where notation S is used to denote the complement of set S.

3.2 Policies as SMT Formulas

The expressions presented in the previous section can be straightforwardly trans-
lated to many-sorted first-order formulas over the attributes in Att and a theory
T specifying the algebraic structures of the values of Att in Dom. This allows
us to encode the decision space of a policy using SMT formulas.

Definition 3. Given an XACML policy p and a background theory T , the rep-
resentation of p in SMT is a tuple 〈FP ,FD,FIN 〉 where FP , FD and FIN are
many sorted first-order formulas encoding Permit, Deny, Indeterminate decision
spaces of p respectively with some of their terms interpreted in T .

Analysis of XACML Policies with SMT 123

When talking about deciding satisfiability of a policy p in SMT, we refer to T -
satisfiability of the formulas FP , FD and FIN . Since decision spaces DSP , DSD

and DS IN are pair-wise disjoint, their satisfiability is mutually exclusive.
The background theories needed for the analysis of a policy are determined

from the policy’s applicability constraints. In order to do this, we map classes of
common XACML functions to certain background theories that can be used to
encode the applicability constraints constructed from them.

Most of the logical functions of XACML (i.e., or, and, not) do not require
any specific background theory. Some applicability constraints involving equal-
ity predicates of attributes with finite domains can be modeled by the theory
of enumerated data types in which attribute values are represented as 0-ary
function symbols within an appropriate signature Σ. Other constraints involv-
ing equality predicates require the theory of equality with uninterpreted func-
tions. This theory does not impose any constraint on the way the symbols in
the signature are interpreted. Thus, the predicates that are not supported by
any theory can be left uninterpreted and analyzed using the theory of “uninter-
preted functions”. The theory of equality with uninterpreted functions can be
used to support XACML functions for which a dedicated theory is not available
such as XPath-based functions. Constraints defined using arithmetic and nu-
meric comparison functions (e.g., ac3, . . . , ac5 in Example 2) require the theory
of linear arithmetic. Applicability constraints defined over strings, bag and sets
may require dedicated theories. For instance, constraints defined using compar-
ison functions over strings and string conversion functions can be modeled with
the theory of strings [26]; constraints defined over bag and set functions (e.g.,
ac6, . . . , ac10) can be modeled with the theories of arrays [15] and cardinality
constraints on sets [24].

Finally, observe that a background theory can be a combination of different
theories as it is the case of Example 2 in which the cost of a transaction depends
on its value. This dependence can be represented by a function f which is left
uninterpreted since we are not interested in specifying exactly how the cost
must be derived from the value of the transaction. By abstracting the actual
details of f , the applicability constraint ac5 can be represented as (credit <
f(value)+ value) and interpreted within a combined background theory of linear
arithmetic and uninterpreted functions.

4 XACML Policy Analysis

The previous section describes an encoding of XACML policies as SMT formulas.
In this section we use this encoding to represent policies analysis problems, i.e. for
a collection of policies checking various properties expressed in so called queries.
We first introduce the query language and then give example query formulas for
different policy properties from the literature.

Definition 4. Let 〈Att,Dom〉 be the access control scheme and T a background
theory with signature Σ. A policy analysis problem is a tuple 〈Q, (p1, . . . , pn)〉

124 F. Turkmen et al.

where p1, . . . , pn are policies expressed in SMT with respect to T and Q is a
(policy) query. A query Q is a formula of the form

Q = Pi | Di | IN i | g(t1, . . . , tk) | ¬Q | Q1 ∨Q2 | . . .
| (∀x : σ Q) | (∃x : σ Q) | νx.Q | Q〈a1 = v1j , . . . , an = vnk

〉

where Pi, Di and IN i (for i = 1, . . . , n) are new symbols representing the Permit,
Deny and Indeterminate spaces of policy pi (they thus represent Fpi

P , Fpi

D and
Fpi

IN respectively, see also query semantics below), g is a Σ-atom over terms
t1, . . . , tk such that each term t is either a variable denoting attributes from Att
or built using function symbols in Σ, and logical operators are defined as usual
where Q1 and Q2 are also queries. In quantified formulas, i.e. (∀x : σ Q) and
(∃x : σ Q), σ ranges over sort symbols in the theory T . νx.Q represents the
restriction of a variable x in Q (i.e., νx.Q ≡ Q[x/y] with y a fresh variable),
Q〈a1 = v1j , . . . , an = vnk

〉 represents the instantiation of a policy with a request
with v1j ∈ Doma1 , . . . , vnk

∈ Doman .

Note that construct νx.Q is used to restrict the scope of the substitution of a
variable x to a subformula Q of the query. This construct allows us to encode
properties comparing a number of policies, in which some policies are instanti-
ated with a request while other policies are instantiated with a different request
(see below for examples of such properties). Q〈a1 = v1j , . . . , an = vnk

〉 is logi-
cally equivalent to Q ∧ v1j ∈ a1 ∧ . . . ∧ vnk

∈ an.
The basic query Pi encodes (inclusion in) the Permit space of policy pi; it is

satisfiable if any request is permitted by pi. Similarly, Di and IN i represent the
Deny and Indeterminate spaces of pi respectively. Constraints such as Alice ∈
subject-id, ∀v ∈ current-time v < 18:00 etc., are used to instantiate the subject or
the time of the query. The predicates can also capture relations between different
policies (see examples below).

Example 4. Let p1, p2 be two policies, and 〈P1, D1, IN 1〉 and 〈P2, D2, IN 2〉
their SMT representation, respectively. Below we present some example queries.

– (P1 → P2): any request permitted by p1 is also permitted by p2.
– ν subject-id.(P1〈subject-id = Alice〉) ∧ ν subject-id.(D1〈subject-id = Bob〉):

some request is permitted by p1 for Alice but denied for Bob.
– (P1 ∧D2)〈subject-id = Alice〉: some request of Alice is permitted by p1 but

denied by p2.
– P1〈subject-id = Alice, resource-type = transaction, action-id = create〉:

policy p1 allows Alice to create a transaction.

Definition 5. Let 〈Q, (p1, . . . , pn)〉 be a policy analysis problem, T a background
theory with signature Σ, and M a structure for signature Σ. Let 〈Fpi

P ,Fpi

D ,Fpi

IN 〉
be the encoding of policy pi in SMT with some or all terms interpreted in T . We
say that 〈Q, (p1, . . . , pn)〉 is satisfiable with respect to T if the formula

Q ∧
n∧

i=1

(Pi ↔ Fpi

P) ∧ (Di ↔ Fpi

D) ∧ (IN i ↔ Fpi

IN)

is T -satisfiable. Otherwise, we say that it is unsatisfiable.

Analysis of XACML Policies with SMT 125

In the remainder of this section, we demonstrate that our framework can
model various types of policy properties proposed in the literature.

Policy Refinement and Subsumption Organizations often need to update their
security policies to comply with new regulations or to adapt changes in their
business model. Nonetheless, they might have to ensure that the new policies
preserve (refine) the intention of the original policies. Different definitions of
policy refinement have been proposed in the literature. Backes et al. [5] propose
a notion of policy refinement based on the idea that “one policy refines another
if using the first policy automatically also fulfills the second policy”. Intuitively,
a policy refines another policy if whenever the latter returns Permit (or Deny)
the first policy returns the same decision. This can be formalized in our frame-
work as follows. Let p1, p2 be two policies with decision space 〈P1, D1, IN 1〉 and
〈P2, D2, IN 2〉 respectively. Policy p2 is a refinement of p1 iff the following formula
is T -valid

(P1 → P2) ∧ (D1 → D2) (1)

Hughes and Bultan [13] present a stronger notion of policy refinement called
policy subsumption. In addition to constraining Permit and Deny spaces as in
refinement, subsumption also imposes constraints on the Indeterminate space.
Formally, policy p1 subsumes policy p2 iff the following formula is T -valid

(P1 → P2) ∧ (D1 → D2) ∧ (IN 1 → IN 2) (2)

Note that our framework is general enough to express other notions of policy
refinement, for instance imposing constraints only on the Permit space or on the
Deny space. In the next example, we demonstrate the notion of policy refinement
presented in [5] with respect to background theory linear arithmetic.

Example 5. Consider the XACML policy in Example 1. Suppose that the policy
is updated by omitting the cost of the transaction in rule r1:

r′1[Deny] : value > credit

We want to check whether the new policy is a refinement of the original policy.
It is easy to verify that (1) does not hold if the cost of the transaction is higher
than the credit minus the value of the service. Therefore, the new policy is not a
refinement of the original policy.

Change-impact Change-impact analysis [10] aims to analyze the impact of
changes to policies. Intuitively, change-impact analysis is the counterpart of
policy refinement, in which the goal is to extract the differences between two
policies. Differently from policy refinement, changes of the NotApplicable space
should also be considered in change-impact analysis. Let p1, p2 be two policies
with decision space 〈P1, D1, IN 1〉 and 〈P2, D2, IN 2〉 respectively. We are inter-
ested in finding the access requests for which the decisions returned by p1 and

126 F. Turkmen et al.

p2 are different. This policy analysis problem consists of finding access requests
that satisfy the following formula:

(P1 → ¬P2) ∨ (D1 → ¬D2) ∨ (IN 1 → ¬IN 2) (3)

∨(¬(P1 ∨D1 ∨ IN 1) → (P2 ∨D2 ∨ IN 2))

where ¬(P1 ∨D1 ∨ IN 1) represents the NotApplicable space.

Attribute Hiding An attribute hiding attack is a situation in which a user is able
to obtain a more favorable authorization decision by hiding some of her attributes
[8]. Attribute hiding attack is a threat exploiting the non-monotonicity of access
control systems such as XACML. Differently from the previous policy properties
that can be expressed solely in terms of Permit, Deny and Indeterminate spaces
of the policies, attribute hiding is about changing the request: a request that
is previously denied is permitted by hiding some attributes or attribute-value
pairs. In particular, we call partial attribute hiding attack the situation in which
a user hides a single attribute-value pair. Let req = 〈a1 = v1i , . . . , an = vnk

〉 with
v1i ∈ Doma1 , . . . , vnk

∈ Doman be a request denied by a policy p (i.e., a solution
of Dp), and ajm = vjm an attribute-value pair occurring in req (1 ≤ j ≤ n)
and vjm ∈ Domaj . A policy is vulnerable to partial attribute hiding attack if
the request obtained by suppressing aj = vjm from req is permitted by p (i.e., a
solution of Pp). The property representing the absence of partial attribute hiding
attack can be encoded as follows:

νa.(Dp〈a = v〉) → ¬Pp (4)

where we use restriction to ensure that the request is only applied to the left
part of the formula. A more generalized version of attribute hiding attack is
general attribute hiding where a user completely suppresses information about
one attribute. The property representing the absence of general attribute hiding
attack can be encoded as follows:

νa.(Dp〈a = v1, . . . , a = vn〉) → ¬Pp (5)

We use an example policy from [8] to discuss the analysis of attribute hiding.

Example 6. Consider two competing companies, A and B. To protect confiden-
tial information from competitors, company A defines the following policy:

p[dov] : true

r1[Deny] : confidential = true ∧ employer = B

r2[Permit] : true

The first rule (r1) of the policy denies employees of company B to access con-
fidential information while the second rule (r2) grants access to every requests.

Analysis of XACML Policies with SMT 127

The two rules are combined using deny-overrides combining algorithm (dov).
Now consider the following access requests:

req1 =〈employer = A, confidential = true〉
req2 =〈employer = A, employer = B, confidential = true〉
req3 =〈confidential = true〉

Rule r1 is only applicable to request req2 and thus the request is denied. Rule r2 is
applicable to the remaining requests and thus access is granted for requests req1
and req3. However, if the subject can hide some information from the request,
for instance, reducing req2 to req1 by suppressing element employer = B from
the request (partial attribute hiding) or to req3 by suppressing attribute employer
from the request (general attribute hiding), then she would be allowed to access
confidential information leading to a violation of the conflict of interest require-
ment. Note that we assume that attribute confidential is under the control of the
system and cannot be hidden by the user.

Scenario-finding Scenario finding queries [10,19] aim to find attribute assign-
ments that represent scenarios in which a sought behavior occurs. They are es-
pecially useful to obtain request instances of certain decision types (e.g., permit)
which are otherwise difficult to obtain manually. Examples of scenario finding
queries include checking whether a policy ever permits (some) users to perform
certain actions or denies certain actions under given circumstances. Scenario
finding can also be used to check whether a policy is compliant with well-known
security principles. For instance, a XACML policy implementing role-based ac-
cess control can be checked for the separation of duty principle or a XACML
policy implementing Chinese Wall policy can be checked if it correctly imple-
ments conflict of interest classes.

Scenario finding does not have a fixed form of encoding as the previous prop-
erties since it is formulated by the user according to selected decision space.

Example 7. In the context of Example 2 a policy author may want to check
whether the policy permits any access request before 18:00 on Saturday. We can
encode this query as follows:

P ∧ current-day = Saturday ∧ time < 18:00

Many types of scenario finding queries can be formulated and analyzed within
existing XACML analysis tools. However, most of these tools leave non-Boolean
functions (i.e., Σ-terms of form f(t1, . . . , tn)) uninterpreted. In contrast, SMT
enables to reason on those attributes using a suitable underlying background
theory. For instance, an SMT solver can find an assignment for an attribute
“age” that satisfies a Linear Arithmetic constraint age < 18.

5 Evaluation

In this section we evaluate our SMT-based policy analysis framework by means
of a prototype implementation. In the evaluation we use two sets of experiments,

128 F. Turkmen et al.

one comparing our SMT-based solution to SAT-based techniques and one showing
our prototype can be used on realistic policies. Our experimental testbed consists
of a 64-bit (virtual) machine with 16GB of RAM and 3.40GHz quad-core CPU
running Ubuntu.

5.1 Prototype Implementation

To support the analysis of XACML policies described in the previous section, we
have implemented X2S [25], a formal policy analysis tool. X2S employs Z3 [18],
an SMT-LIB v2 compliant tool that supports efficient reasoning in a wide range
of background theories, as the underlying solver. X2S accepts both XACML v2
and v3 policies and supports a large fraction of standard XACML functions.
It consists of two main components. The first component, the SMT Translator,
first translates XACML policies provided by the user into SMT formulas using
the encoding presented in Section 3. Next the user is prompted to enter a query
expressed in the language defined in Section 4 which is also translated and added
to SMT specification. The second component, the Report Generator, presents the
results of the analysis by providing an interface to the SMT solver.

Our prototype can enumerate models as required for certain queries such as
change impact. We perform this by incrementally adding a new constraint rep-
resenting the negation of the obtained model to the original formula. However,
there may be infinitely many models satisfying a formula with certain expression
types. To help alleviate this problem, we try to avoid models that do not “signif-
icantly” differ from those already considered with respect attribute assignments.
In particular, we do this in the treatment of arithmetic expressions by fixing the
assignments of (arithmetic) variables in a model to the first values found. For
instance, if the first solution of the arithmetic expression att1 < att2 assigns 4
and 5 to the attributes respectively, then we fix these assignments by adding
new (conjunctive) constraints att1 = 4 and att2 = 5 to the original formula.

5.2 Experiments 1: SAT vs. SMT

Consider a user wanting to validate and possibly update a set of policies collected
over time and from different contributors. For example, a building manager wants
to verify the policy governing the access to a certain building in which right to
enter depend on the current time and date and/or membership of a group; or a
bank manager wants to verify the bank policy for transfers which depend on the
balance of accounts, size of the transfer, etc. The main advantage of our SMT
approach over a SAT based solution is that it allows direct reasoning with non-
Boolean values. For example, one can use the background theories for basic sets
(i.e., the theory of arrays) and linear arithmetic (LAI). To perform this analysis
in SAT one has to encode everything in Boolean terms. With some limitations
we can encode LAI constraints in SAT using order encoding [21] where each
expression of the form x ≤ c is represented by a different Boolean variable.
Membership expressions in the set theory can be encoded in SAT using a similar

Analysis of XACML Policies with SMT 129

approach where the relation between a variable and a value from its domain is
represented with a different Boolean variable for each value.

Ideally, the user’s validation tool would be able to give real-time feedback on
their edits, or at the very least, respond promptly to a validation query. When
analyzing with SAT, users needs to find a suitable trade-off between the precision
and the efficiency as well as the scalability of the analysis; for example instead
of the time only distinguishing ‘morning’ from ‘afternoon’ or hour of the day.
Choosing what granularity is suitable for what attribute is a difficult, laborious
and error-prone task requiring the user to closely investigate all constraints. Too
low granularity may lead to missing errors in the policies. Yet, the more fine
grained the analysis is, the larger the SAT encoding. Our experiments below
confirm that increasing the granularity quickly become very costly performance
wise. Our SMT-based approach does not need to restrict the granularity.

To illustrate the effect of granularity on the analysis we distinguish course
grained analysis using a ‘small’ domain (e.g., morning/afternoon for time, and
day of the week for date), an analysis with some detail through a ‘medium’ (M)
size domain (e.g., minutes in an hour, days in a month) and a detailed analysis
using a ‘large’ (L) domain (e.g., minute in a day, day of a year). We analyze
policies and properties from the examples in Section 4. We check policy refine-
ment (PR), policy subsumption (PS), change-impact (CI) analysis, both partial
(P-AH) and global (G-AH) Attribute Hiding, and finally scenario finding (SF).
We analyze each with our prototype and three different SAT solvers; zchaff [17],
lingeling [7] and Z3 itself to obtain a fair comparison as certain solvers are opti-
mized for certain types of problems. We use size 10 to represent small domains,
100 for medium domains and 500 for large domains (they may need to be much
larger but this size already shows the clear advantage of our SMT solution). Note
that we aim at a comparison in orders of magnitude rather than an in-depth and
comprehensive performance analysis. For small domains all solutions are able to
complete the analysis quickly with limited resources; they are fast enough for
real-time feedback during editing. For the medium and large domains the results
are provided in Table 1. The first column specifies the property (P) analyzed.
The second column (Q) gives the class of formula used; finding a counter-example
(¬F) or a satisfying assignment (F). The other columns present the results in
terms of number of variables used in the encoding, memory allocation2 and re-
quired computation time for the SAT solvers with M(edium) and L(arge) domain
size, and SMT.

Compared to the number of many-sorted first order variables in SMT encod-
ing, the number of Boolean variables in SAT encoding is quite large due to the
mapping of non-Boolean domains to Boolean variables. For instance, the SMT
encoding of the policy query for verifying policy refinement requires 12 variables.
These variables are used to specify the attributes defined in the policy as well
as the Boolean variables representing one-and-only constraints on the arithmetic
variables (Example 1). In contrast, 591 Boolean variables are needed to encode
the same policy query in SAT when a medium size domain is considered. The

2 We used a memory profiler for measuring the memory usage.

130 F. Turkmen et al.

Table 1. Evaluation Results of Example Properties with SAT vs SMT Encoding

#Vars Memory(MB) Time(s)

SAT SMT Z3-SAT zchaff lingeling SMT Z3-SAT zchaff lingeling SMT

P Q M L M L M L M L M L M L M L

PR ¬F 591 2191 12 84 459 99 340 23 555 0.3 1.6 99.7 ∼0 3.3 20.5 >100 ∼0

PS ¬F 909 2509 12 303 240 377 1159 82 2054 0.3 3.9 6.1 ∼0 12.4 65.5 >100 ∼0

CI F 1409 3009 12 88 231 650 1087 133 1513 0.5 0.3 9.1 ∼0 19.1 36.5 45.5 ∼0

P-AH ¬F 24 15 3 0.1 0.1 0.1 0.1 ∼0 ∼0 0.3 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0

G-AH ¬F 12 12 4 ∼0 ∼0 0.1 0.1 ∼0 ∼0 0.3 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0

SF F 511 1718 12 13 328 92 409 14 356 0.3 ∼0 1.2 ∼0 13.4 0.2 7.3 ∼0

memory allocated by the SMT solver needed in analyzing the example policies
was always less than 1MB for all properties while SAT solver requires several
orders of magnitude more memory. The time necessary to prove (or disprove)
that the property holds was negligible (∼10ms) for all SMT cases. Analysis with
SAT solvers performs far worse with the growth of the domain size as can be
noted from the table. For instance, for scenario finding analysis with a large do-
main, the best performing SAT solver (Z3) took ∼1.2s which is several orders of
magnitude slower than the analysis with SMT (which took 7ms). The exception
is the case of attribute hiding analysis where the SAT solvers offer performance
similar to SMT. This is expected since our example policy for attribute hid-
ing does not include complicated predicates and the available predicates can be
easily represented in propositional logic. Note that in our experiments for the
case of change-impact analysis, we obtained only one model since we prune the
uninteresting assignments of arithmetic variables (i.e. value, credit and cost). Fi-
nally, we also observe a performance variation between different SAT solvers. We
believe this is due to the fact that certain solvers are better tailored to certain
types of problems.

In conclusion, even with these relatively simple policies, performance quickly
becomes impractical using SAT based solvers while the SMT approach could
even be used for real-time feedback while editing a policy. In the next section,
we test our approach with some more complex and realistic policies.

5.3 Experiments 2: Real-World Policies

In this second set of experiments, we analyze four realistic policies with our
prototype in order to obtain insights about its performance in real-world settings.
The policy GradeMan is a simplified version of the access control policy used to
regulate access to grades at Brown university and the Continue-a policy is used
to manage a conference management system. Both policies are from [10] and
consist mainly of string equality predicates. IN4STARS is an in-house policy
defined in the context of a project on intelligence interoperability. It contains
various user-defined functions that are used to determine the privileges of users
according to their clearance. All these three policies are XACML v2 policies.
Our final test policy, KMarket, is a sample policy to manage authorizations in

Analysis of XACML Policies with SMT 131

Table 2. Evaluation Results for Real-world Policies

Policy #PSet #Policy #Rule
Time(ms)

PR PS CI P-AH G-AH SF

IN4STARS 3 4 11 24 28 1717 7 7 10

KMarket 1 3 12 36 12 2525 13 12 10

GradeMan 11 5 5 40 30 2424 10 9 17

Continue-a 111 266 298 91 87 2929 33 21 43

an on-line trading application from [1]. It contains simple arithmetic operations
such as less-than and is written in XACML v3.

We performed policy refinement, subsumption and change-impact analysis by
modifying the value of a single, randomly chosen attribute in the original policy.
The number of models has been limited to 100 during change-impact analysis.
For scenario finding, we look for an assignment of attributes (i.e. model) that is
permitted by the input policy. Our findings are summarized in Table 2 in which
we report the characteristics of policies (e.g., the number of policy elements in
the XACML policy) and the time taken by our prototype to answer queries.

Analyzing the policies included in our experiments takes less than 100ms for
all properties except Change-impact which makes feedback during policy editing
feasible. Change-impact analysis, however, brings the time up to 3s as it requires
the enumeration of models in the SMT formula. Another important observation
in the experiments is the efficiency of dealing with expressions with non-Boolean
attributes; we have not observed a significant performance difference between
the analysis of KMarket which contains linear arithmetic expressions and Grade-
Man which consists of very simple expressions. Finally, the result of Continue-a
analysis (a policy with around 300 rules) indicates that the time needed for
analysis with SMT of larger policies increases but not necessary as quickly as
the policy grows. This result is not surprising since the analysis of a policy with
our approach not only depends on the size of the policy but also the type of
expressions contained in them.

We believe the experimental results of this and the previous section demon-
strate that our approach can be used in practice to analyze realistic policies at
a more fine-grained level than the one permitted by the use of SAT solvers with
no significant performance penalty.

6 Related Work

When XACML policies grow in number and size, or are updated to address new
security requirements, it is difficult to verify their correctness due to XACML’s
rich and verbose syntax. To assist policy authors in the analysis of XACML poli-
cies, several policy analysis tools have been proposed. One of the most promi-
nent tools for policy analysis is Margrave [10]. Margrave uses multi-terminal bi-
nary decision diagrams (MTBDDs) as the underlying representation of XACML

132 F. Turkmen et al.

policies. The nodes of an MTBDD represent Boolean variables encoding the
attribute-values pairs in the policy. The terminal nodes represent the possible
decisions (i.e., NotApplicable, Permit or Deny). Given an assignment of Boolean
values to the variables, a path from the root to a terminal node according to the
variable values indicates the result of the policy under that assignment. Mar-
grave uses MTBDDs to support two types of analysis: policy querying, which
analyzes access requests evaluated to a certain decision, and change-impact anal-
ysis, which is used to compare policies. Another policy analysis tool that employs
BDDs for the encoding of XACML policies is XAnalyzer [12]. XAnalyzer uses a
policy-based segmentation technique to detect and resolve policy anomalies such
as redundancy and conflicts. Compared to our approach, BDD-based approaches
allow the verification of XACML policies against a limited range of properties.
In addition, these approaches encode only a fragment of XACML with simple
constraints [13].

An alternative to Margrave, and in general to BDD-based approaches, is pre-
sented in [13] where policies and properties are encoded as propositional formulas
and analyzed using a SAT solver. However, SAT solvers cannot handle non-
Boolean variables; most XACML functions are thus left uninterpreted limiting
the capability of the analysis. EXAM [16] combines the use of SAT solvers and
MTBDD to reason on various policy properties. In particular, EXAM supports
three classes of queries: metadata (e.g., policy creation date), content (e.g., num-
ber of rules) and effect (e.g., evaluation of certain requests). Policies and queries
are expressed as Boolean formulas. These formulas are converted to MTBDDs
and then combined into a single MTBDD for analysis.

Other formalisms have also been used for the analysis of XACML policies. For
instance, Kolovski et al. [14] use description logic (DL) to formalize XACML poli-
cies and employs off-the-shelf DL reasoners for policy analysis. The use of DL
reasoners enables the analysis on a wide subset of XACML in a more expressive
manner but also hinders the performance. Ramli et al. [23] and Ahn et al. [2]
present a formulation of policy analysis problems similar to ours in answer set
programming (ASP). However, these approaches have drawbacks due to intrinsic
limitations of ASP. Unlike SMT, ASP does not support quantifiers, and cannot
easily express constraints such as Linear Arithmetic. Indeed, in ASP the ground-
ing (i.e., instantiation of variables with values) of Linear Arithmetic constraints
either yield very large number of clauses (integers) or is not supported (reals).

In summary, the approaches discussed above lack the inherent benefits of
SMT: either background theories are not supported so that the attributes in-
volved in most XACML functions cannot be analyzed at a finer level, or the
performance of analysis deteriorates very quickly.

While the use of SMT for the analysis of XACML policies is new to our knowl-
edge, there are few recent proposals that exploit SMT solvers for the analysis of
policies specified in different access control models. The work in [3] shares with
our approach the use of SMT solvers to support the analysis of polycies. The
main difference is in the input language: instead of using XACML, Arkoudas
et al. [3] adopts a sophisticated logical framework, which can handle XACML

Analysis of XACML Policies with SMT 133

policies (such as Continue) indirectly by translating them to expressions of the
logical framework to which the available analyses (such as those considered in
this paper) can be applied. In contrast, our technique generates proof obliga-
tions to be discharged by SMT solvers directly from XACML policies. Another
example of SMT techniques supporting the analysis of policies is [4] in which
SMT solvers are used to detect conflicts and redundancies in RBAC. Here, rules
specifying constraints on the assignment/activation of roles are encoded as SMT
formulas with certain background theories such as enumerated data types and
Linear Arithmetic over the reals/integers. Although these proposals show the
potentiality of SMT for policy analysis, the policy specifications considered in
such proposals are rather simple. In this work we make an additional step by
showing that SMT is able to deal with real world XACML policies.

7 Conclusions

In this paper, we presented an SMT-based analysis framework for policies speci-
fied in XACML. The use of SMT does not only enable wider coverage of XACML
compared to existing analysis tools but also presents significant performance
gains in terms of allocated memory and computational time. As demonstrated
in the paper, several security policy properties found in the literature can be
easily encoded and checked within our framework. In our prototype, we use
various background theories to encode a large fraction of XACML functions,
allowing a fine-grained analysis of XACML policies. SMT function symbols en-
coding XACML functions for which a specific background theory is not avail-
able (e.g., XPath-based and regular-expression-based functions) are left unin-
terpreted. With the development of new background theories, policy analysis
problems using those predicates can be represented and solved efficiently. Our
experiments show that our framework enables efficient policy analysis and can
be used in practice. As future work, we plan to extend the performance analysis
of our prototype against a larger set of real-world policies.

Acknowledgments. This work has been partially funded by the EDA project
IN4STARS2.0, the EU FP7 project AU2EU, the ARTEMIS project ACCUS,
and the Dutch national program COMMIT under the THeCS project.

References

1. Balana: Open source xacml 3.0 implementation (January 2013),
http://xacmlinfo.org/category/balana/

2. Ahn, G.J., Hu, H., Lee, J., Meng, Y.: Representing and reasoning about web access
control policies. In: COMPSAC, pp. 137–146 (2010)

3. Arkoudas, K., Chadha, R., Chiang, C.J.: Sophisticated access control via SMT and
logical frameworks. ACM TISSEC 16(4), 17 (2014)

4. Armando, A., Ranise, S.: Automated and efficient analysis of role-based access
control with attributes. In: Cuppens-Boulahia, N., Cuppens, F., Garcia-Alfaro, J.
(eds.) DBSec 2012. LNCS, vol. 7371, pp. 25–40. Springer, Heidelberg (2012)

http://xacmlinfo.org/category/balana/

134 F. Turkmen et al.

5. Backes, M., Karjoth, G., Bagga, W., Schunter, M.: Efficient comparison of enter-
prise privacy policies. In: SAC, pp. 375–382 (2004)

6. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-
ries. In: Handbook of Satisfiability, pp. 825–885. IOS Press (2008)

7. Biere, A.: Lingeling essentials, A tutorial on design and implementation aspects of
the the SAT solver lingeling. In: POS, p. 88 (2014)

8. Crampton, J., Morisset, C.: PTaCL: A Language for Attribute-Based Access Con-
trol in Open Systems. In: Degano, P., Guttman, J.D. (eds.) POST 2012. LNCS,
vol. 7215, pp. 390–409. Springer, Heidelberg (2012)

9. Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press (1972)
10. Fisler, K., Krishnamurthi, S., Meyerovich, L.A., Tschantz, M.C.: Verification and

change-impact analysis of access-control policies. In: ICSE, pp. 196–205 (2005)
11. Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability Solvers. In: Hand-

book of Knowledge Representation, Foundations of Artificial Intelligence, vol. 3,
pp. 89–134. Elsevier (2008)

12. Hu, H., Ahn, G.J., Kulkarni, K.: Discovery and Resolution of Anomalies in Web
Access Control Policies. TDSC 10(6), 341–354 (2013)

13. Hughes, G., Bultan, T.: Automated verification of access control policies using a
SAT solver. STTT 10(6), 503–520 (2008)

14. Kolovski, V., Hendler, J.A., Parsia, B.: Analyzing web access control policies. In:
WWW, pp. 677–686 (2007)

15. Kröning, D., Weissenbacher, G.: A Proposal for a Theory of Finite Sets, Lists, and
Maps for the SMT-Lib Standard. In: Pro. International Workshop on Satisfiability
Modulo Theories (2009)

16. Lin, D., Rao, P., Bertino, E., Li, N., Lobo, J.: Exam: A comprehensive environment
for the analysis of access control policies. Int. J. Inf. Sec. 9(4), 253–273 (2010)

17. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an efficient SAT solver. In: DAC, pp. 530–535 (2001)

18. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

19. Nelson, T.: First-order Models For Configuration Analysis. Ph.D. thesis, Worcester
Polytechnic Institute (2013)

20. OASIS XACML Technical Committee: eXtensible Access Control Markup Lan-
guage (XACML) (2013)

21. Petke, J., Jeavons, P.: The Order Encoding: From Tractable CSP to Tractable
SAT. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 371–372.
Springer, Heidelberg (2011)

22. Pratt, V.R.: Two easy theories whose combination is hard. Tech. rep. MIT (1977)
23. Kencana Ramli, C.D.P., Nielson, H.R., Nielson, F.: XACML 3.0 in Answer Set

Programming. In: Albert, E. (ed.) LOPSTR 2012. LNCS, vol. 7844, pp. 89–105.
Springer, Heidelberg (2013)

24. Suter, P., Steiger, R., Kuncak, V.: Sets with cardinality constraints in satisfiability
modulo theories. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538,
pp. 403–418. Springer, Heidelberg (2011)

25. Turkmen, F., den Hartog, J., Zannone, N.: Analyzing Access Control Policies with
SMT. In: Proceedings of the ACM Conference on Computer and Communications
Security, pp. 1508–1510. ACM (2014)

26. Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: A Z3-based string solver for web appli-
cation analysis. In: ESEC/SIGSOFT FSE, pp. 114–124 (2013)

	Analysis of XACML Policies with SMT
	1 Introduction
	2 Preliminaries
	2.1 XACML
	2.2 Satisfiability Modulo Theories

	3 Encoding XACML Policies in SMT
	3.1 XACML Formalization
	3.2 Policies as SMT Formulas

	4 XACML Policy Analysis
	5 Evaluation
	5.1 Prototype Implementation
	5.2 Experiments 1: SAT vs. SMT
	5.3 Experiments 2: Real-World Policies

	6 Related Work
	7 Conclusions
	References

