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Abstract

We study the spaces of Poisson, compound Poisson and Gamma
noises as special cases of a general approach to non-Gaussian white
noise calculus, see [KSS97]. We use a known unitary isomorphism
between Poisson and compound Poisson spaces in order to transport
analytic structures from Poisson space to compound Poisson space.
Finally we study a Fock type structure of chaos decomposition on
Gamma space.
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1 Introduction

The present paper elaborate the L2 structure of compound Poisson spaces;
we note that for all of this compound Poisson processes the results of [KSS97]
immediately produce Gel’fand triples of test and generalized functions as well
their characterizations and calculus.

The Analysis on pure Poisson spaces was developed in [CP90], [IK88],
[NV95], [P95] and many others from different points of view. In [KSS97]
we have developed methods for non Gaussian analysis based on generalized
Appell systems. In the case of Poisson space, this coincide with the sys-
tem of generalized Charlier polynomials, however the desirable extensions to
compound Poisson and for example Gamma processes are trivial.

Let us describe this construction more precisely. We recall that the Pois-
son measure πσ (with intensity measure σ which is a non-atomic Radon
measure on Rd) is defined by its Laplace transform as

lπσ(ϕ) =

∫
D′

exp (〈γ, ϕ〉) dπσ(γ) = exp

(∫
Rd

(eϕ(x) − 1)dσ(x)

)
, ϕ ∈ D,

where D′ is the dual of D := D(Rd) = C∞
0 (Rd) (C∞-functions on Rd with

compact support). An additional analysis shows that the support of the
measure πσ consists of generalized functions of the form

∑
x∈γ εx, γ ∈ ΓRd ,

where εx is the Dirac measure in x and ΓRd is the configuration space over
Rd, i.e.,

ΓRd := {γ ⊂ Rd | |γ ∩K| <∞ for any compact K ⊂ Rd}.

The configuration space ΓRd can be endowed with its natural Borel σ-algebra
B(ΓRd) and πσ can be considered as a measure on ΓRd .

Let us choose a transformation α on D given by

α(ϕ)(x) = log(1 + ϕ(x)), −1 < ϕ ∈ D, x ∈ Rd.

Then the normalized exponential or Poisson exponential

eσπσ
(ϕ; γ) = exp (〈γ, log(1 + ϕ)〉 − 〈ϕ〉σ) , γ ∈ ΓRd

is a real holomorphic function of ϕ on a neighborhood of zero Uα on D. Its
Taylor decomposition (with respect to ϕ) has the form

eσπσ
(ϕ; γ) =

∞∑
n=0

1

n!

〈
Cσ
n(γ), ϕ⊗n

〉
, ϕ ∈ U ′

α ⊂ Uα, γ ∈ ΓRd ,
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where Cσ
n : ΓRd → D′b⊗n. It follows from the above equality that for any

ϕ(n) ∈ Db⊗n, n ∈ N0 the system of functions

ΓRd 3 γ 7→
〈
Cσ
n(γ), ϕ(n)

〉
is a polynomial of order n on ΓRd . This is precisely the system of generalized
Charlier polynomials for the measure πσ, see Subsection 2.3 for details.

This system can be used for a Fock realization. L2(πσ) has a Fock real-
ization analogous to Gaussian analysis, i.e,

L2(πσ) '
∞⊕
n=0

ExpnL
2(σ) = ExpL2(σ),

where ExpnL
2(σ) denotes the n-fold symmetric tensor product of L2(σ).

The “Poissonian gradient”5P on functions f : ΓRd → R which has specific
useful properties on Poisson space, is introduced on a specific space of “nice”
functions as a difference operator

(5Pf)(γ;x) = f (x+ εx)− f(x), γ ∈ ΓRd , x ∈ Rd.

The gradient5P appears from different points of view in many papers on con-
ventional Poissonian analysis, see e.g. [IK88], [NV95], [KSS97] and references
therein. We note also that the most important feature of the Poissonian gra-
dient is that it produces (via a corresponding integration by parts formula)
the orthogonal system of generalized Charlier polynomials on (ΓRd ,B(ΓRd),
πσ), see Remark 2.14. In addition we mention here that as a tangent space
to each point γ ∈ ΓRd we choose the same Hilbert space L2(Rd, σ).

We conclude Section 2 with the expressions for the annihilation and cre-
ation operators on Poisson space. In terms of chaos decomposition Nualart
and Vives [NV95] proved the analogous expression of the creation operator,
in this paper we give an independent proof which is based on the results on
absolute continuity of Poisson measures, see e.g. [Sk57] and [T90], details
can be found in Subsection 2.5.

The analysis on compound Poisson space can be done with the help of
the analysis derived from Poisson space described above. That possibility is
based on the existence of an unitary isomorphism between compound Poisson
space and Poisson space which allows us to transport the Fock structure from
the Poisson space to the compound Poisson space. The above isomorphism
has been identified before by K. Itô, [I56] and A. Dermoune, [De90]. All this
is developed is Subsection 3.2.
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The images of the annihilation and creation operators under the above
isomorphism on compound Poisson space are worked out in Subsection 3.3.

The aim of Section 4 is to study in more details the previous analysis in
a particular case of compound Poisson measure, the so called Gamma noise
measure. Its Laplace transform is given by

lµσ
G
(ϕ) = exp (−〈log(1− ϕ)〉σ) , 1 > ϕ ∈ D.

This measure can be seen as a special case of compound Poisson measure
µCP for a specific choice of the measure ρ used in the definition of µCP, see
Section 4 - (36) for details. From this point of view, of course, all structure
may be implemented on Gamma space. The question that still remains is to
find intrinsic expressions for all these operators on Gamma space as found in
Poisson space.

The most intriguing feature of Gamma space we found is its Fock type
structure. As in the Poisson case it is possible to choose a transformation α
on D such that the normalized exponentials eσµσ

G
(ϕ; ·) produce a complete sys-

tem of orthogonal polynomials, the so called system of generalized Laguerre
polynomials. It leads to a Fock type realization of Gamma space as

L2(µσG ) '
∞⊕
n=0

ExpG
nL

2(σ) = ExpGL2(σ),

where ExpG
nL

2(σ) ⊂ ExpnL
2(σ) is a quasi-n-particle subspace of ExpGL2(σ).

The point here is that the scalar product in ExpG
nL

2(σ) turns out to be dif-

ferent of the standard one given by L2(σ)b⊗n. As a result the space ExpGL2(σ)
has a novel n-particle structure which is essentially different from traditional
Fock picture.
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2 Poisson analysis

Throughout this section we consider the measure space (Rd,B(Rd), σ) where
σ ∈ M(Rd) (the set of all positive Radon measures on B(Rd)) with density
τ (x) with respect to the Lebesgue measure m on B(Rd), moreover we assume
that τ > 0 m-a.e. and τ ∈ L1

loc(Rd,m). We denote the classical Schwartz
space by D := D(Rd) = C∞

0 (Rd) (C∞-functions on Rd with compact sup-
ports).

2.1 The configuration space over Rd

The configuration space ΓRd =: Γ over Rd is defined as the set of all locally
finite subsets (configurations) in Rd, i.e.,

Γ :=
{
γ ⊂ Rd | |γ ∩K| <∞ for any compact K ⊂ Rd

}
.

Here |A| denotes the cardinality of a set A.
We can identify any γ ∈ Γ with the corresponding sum of Dirac measures,

namely

Γ 3 γ →
∑
x∈γ

εx (dy) =: dγ (y) ∈Mp(Rd) ⊂M(Rd), (1)

where Mp(Rd) denotes the set of all positive integer valued measures (or
Radon point measures) over B(Rd).

The space Γ can be endowed with the relative topology as a closed subset
of the space Mp(Rd) on B(Rd) with the vague topology, i.e., a sequence of
measures (µn)n∈N converge in the vague topology to µ if and only if for any
f ∈ C0(Rd) (the set of all continuous functions with compact support) we
have ∫

Rd

f (x) dµn (x) −→
n→∞

∫
Rd

f (x) dµ (x) .

Then for any f ∈ C0(Rd) we have a continuous functional

Γ 3 γ 7→ 〈γ, f〉 := 〈f〉γ =

∫
Rd

f (x) dγ (x) =
∑
x∈γ

f (x) ∈ R.

Conversely, such functionals generate the topology of the space Γ.
Hence we have the following chain

Γ ⊂M(Rd) ⊂ D′ := D′ (Rd
)
.
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The Borel σ-algebra on Γ, B(Γ), is generated by sets of the form

CΛ,n = {γ ∈ Γ | |γ ∩ Λ| = n} , (2)

where Λ ∈ B(Rd) bounded, n ∈ N, see e.g. [GGV75] and for any Λ ∈ B(Rd)
and all n ∈ N the set CΛ,n is a Borel set of Γ. Sets of the form (2) are called
cylinder sets.

For any B ⊂ Rd we introduce a function NB : Γ → N such that

N(B)(γ) = |γ ∩B| , γ ∈ Γ.

Then B(Γ) is the minimal σ-algebra with which all the functions {NB |B ∈
B(Rd) bounded} are measurable.

2.2 The Poisson measure and its properties

The Poisson measure πσ (with intensity measure σ) on (Γ,B(Γ)) may be
defined in different ways, here we give two convenient characterizations of
πσ.

Definition 2.1 (Laplace transform) The Laplace transform of πσ is given
by

lπσ (ϕ) =

∫
Γ

exp (〈ϕ, γ〉) dπσ (γ) = exp

(∫
Rd

(
eϕ(x) − 1

)
dσ (x)

)
, (3)

where ϕ ∈ D, see e.g. [KMM78] and [GV68, Chap. III Sec. 4].

Remark 2.2 The right hand side of (3) defines, via Minlos’ theorem, the
measure πσ on (D′, Cσ(D′)), but an additional analysis shows that the support
of the measure πσ is Γ ⊂ D′, see e.g. [Ka74], [Ka75] and [KMM78], hence
πσ can be considered as a measure on Γ.

Let f : Rd × Γ → R be such that f ≥ 0 and measurable. Define

F (γ) := 〈γ, f (·, γ)〉

=

∫
Rd

f (x, γ) dγ (x)

=
∑
x∈γ

f (x, γ) .
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Then πσ is characterized by∫
Γ

F (γ) dπσ (γ) :=

∫
Γ

∫
Rd

f (x, γ) dγ (x) dπσ (γ)

=

∫
Rd

∫
Γ

f (x, γ + εx) dπσ (γ) dσ (x) . (4)

Equality (4) is known as Mecke identity, see e.g. [Me67] and [NZ76].

2.3 The Fock space isomorphism of Poisson space

Let us consider the following transformation on D, α : D → D defined by

α (ϕ) (x) = log (1 + ϕ (x)) , −1 < ϕ ∈ D, x ∈ Rd.

As easily can be seen α (0) = 0 and α is holomorphic in some neighborhood Uα
of zero. Using this transformation we introduce the normalized exponential
eαπσ

(·, ·) which is holomorphic on a neighborhood of zero U ′
α ⊂ Uα ⊂ D. For

ϕ ∈ U ′
α, γ ∈ Γ we set

eαπσ
(ϕ, γ) :=

exp (〈γ, α (ϕ)〉)
lπσ (α (ϕ))

= exp (〈γ, log (1 + ϕ)〉 − 〈ϕ〉σ) , (5)

where 〈ϕ〉σ :=
∫

Rd ϕ (x) dσ (x) .
We use the holomorphy of eαπσ

(·, γ) on a neighborhood of zero to expand
it in power series which, with Cauchy’s inequality, polarization identity and
kernel theorem, give us the following result

eαπσ
(ϕ, γ) =

∞∑
n=0

1

n!

〈
P πσ ,α
n (γ) , ϕ⊗n

〉
, ϕ ∈ U ′

α ⊂ Uα, γ ∈ Γ, (6)

where P πσ ,α
n : Γ → D′b⊗n. {P πσ ,α

n (·) =: Cσ
n (·) |n ∈ N0} is called the system

of generalized Charlier kernels on Poisson space (Γ,B(Γ), πσ). From (6)

it follows immediately that for any ϕ(n) ∈ Db⊗n, n ∈ N0 the function

Γ 3 γ 7→
〈
Cσ
n (γ) , ϕ(n)

〉
is a polynomial of the order n on Γ. The system of functions{

Cσ
n

(
ϕ(n)

)
(γ) :=

〈
Cσ
n (γ) , ϕ(n)

〉
, ∀ϕ(n) ∈ Db⊗n, n ∈ N0

}
is called the system of generalized Charlier polynomials for the Poisson
measure πσ.
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Proposition 2.3 For any ϕ(n) ∈ Db⊗n and ψ(m) ∈ Db⊗m we have∫
Γ

〈
Cσ
n (γ) , ϕ(n)

〉 〈
Cσ
m (γ) , ψ(m)

〉
dπσ (γ) = δnmn!

(
ϕ(n), ψ(n)

)
L2(σ⊗n)

.

Proof. Let ϕ(n), ψ(m) be given as in the proposition and such that ϕ(n) =
ϕ⊗n, ψ(m) = ψ⊗m. Then for z1, z2 ∈ C, and taking into account (3) and (5)
we have∫

Γ

eαπσ
(z1ϕ, γ)e

α
πσ

(z2ψ, γ)dπσ (γ)

= exp (−〈z1ϕ+ z2ψ〉σ)
∫

Γ

exp (〈γ, log ((1 + z1ϕ) (1 + z2ψ))〉) dπσ (γ)

= exp (−〈z1ϕ+ z2ψ〉σ)

· exp

(∫
Rd

(exp (log ((1 + z1ϕ) (1 + z2ψ)))− 1) dσ

)
= exp

(
z1z2 (ϕ, ψ)L2(σ)

)
=

∞∑
n=0

1

n!
zn1 z

n
2

(
ϕ⊗n, ψ⊗n

)
L2(σ⊗n)

. (7)

On the other hand∫
Γ

eαπσ
(z1ϕ, γ)e

α
πσ

(z2ψ, γ)dπσ (γ)

=
∞∑

n,m=0

zn1 z
m
2

n!m!

∫
Γ

〈
Cσ
n (γ) , ϕ⊗n

〉 〈
Cσ
m (γ) , ψ⊗m

〉
dπσ (γ) . (8)

Then a comparison of coefficients between (7) and (8), with polarization
identity and linearity, gives the above result.

Remark 2.4 This proposition gives us the possibility to extend - in the
L2(πσ) sense - the class of 〈Cσ

n (γ) , ϕ⊗n〉-functions to include kernels from
the so-called n-particle Fock space over L2 (σ) .

We define the Fock space as the Hilbert sum

ExpL2 (σ) :=
∞⊕
n=0

ExpnL
2 (σ)
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where ExpnL
2 (σ) := L2 (σ)

b⊗n
C and we put by definition Exp0L

2 (σ) := C.
For any F ∈ L2 (πσ) there exists a sequence (f (n))∞n=0 ∈ ExpL2 (σ) such

that

F (γ) =
∞∑
n=0

〈
Cσ
n (γ) , f (n)

〉
(9)

and moreover

‖F‖2
L2(πσ) =

∞∑
n=0

n!
∣∣f (n)

∣∣2
L2(σ⊗n)

, (10)

where the r.h.s. of (10) coincides with the square of the norm in ExpL2 (σ) .
And vice versa, any series of the form (9) with coefficients (f (n))∞n=0 ∈
ExpL2 (σ) gives a function from L2 (πσ) . As a result we have the well-known
isomorphism Iσ between L2 (πσ) and ExpL2 (σ) .

Now we introduce the action of the annihilation and creation operators
in the Fock space ExpL2(σ), see e.g. [HKPS93, Appendix A.2] and [RS75].
Consider f (n) ∈ ExpnL

2 (σ) of the form

f (n) = ⊗̂n

i=1fi, fi ∈ L2 (σ) , i = 1, . . . , n. (11)

Then the action of the annihilation operator a−(ϕ), ϕ ∈ D, on f (n) is defined
as follows:

a− (ϕ) f (n) :=
n∑
j=1

〈ϕ, fj〉 ⊗̂
n
i=1
i6=j
fi ∈ Expn−1L

2 (σ) .

This definition is independent of the particular representation of f (n) in (11),
hence a−(ϕ)f (n) is well-defined. Moreover this definition can be extended
by linearity to a dense subspace of ExpnL

2 (σ) consisting of finite linear
combinations of elements of the form (11). One easily finds the following
inequality for such elements

a− (ϕ) f (n) ≤
√
n |ϕ|

∣∣f (n)
∣∣ , (12)

which shows that the extension of a−(ϕ) to ExpnL
2 (σ) as a bounded oper-

ator exists. Consider the dense subspace Exp0L2 (σ) of ExpL2 (σ) consist-
ing of those sequences {f (n), n ∈ N0} which only have a finite numbers of
non-vanishing entries. The bound (12) allow us to extend a−(ϕ), ϕ ∈ D,
component-wise to Exp0L2 (σ) which, therefore, give us a densely defined
operator on ExpL2 (σ) denoted again by a−(ϕ). So the adjoint operator of
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a−(ϕ) exists, which we denote by a+(ϕ), and call creation operator. The
action of the creation operator on elements f (n) ∈ ExpnL

2 (σ) is given by

a+(ϕ)f (n) = ϕ⊗̂f (n) ∈ Expn+1L
2 (σ) .

For the creation operator we also have an estimate∣∣a+(ϕ)f (n)
∣∣ ≤ √

n+ 1 |ϕ|
∣∣f (n)

∣∣ .
As before, this estimate give us the possibility to deduce that in the same
a+(ϕ) is densely defined on ExpL2 (σ) .

For latter use we introduce a vector Expψ, ψ ∈ L2(σ) as

Expψ =

(
1

n!
ψ⊗n

)∞

n=0

which is called the coherent state corresponding to the one-particle state ψ.
For any set L ⊂ L2(σ) which is total in L2(σ) the set of coherent states
{Expψ |ψ ∈ L} ⊂ ExpL2(σ) is also total in ExpL2(σ), see e.g. [BK88]. We
note that eαπσ

(ψ, ·) is nothing as the coherent state in the Fock space picture,
for any ψ ∈ D, ψ > −1, we have

L2 (πσ) 3 eαπσ
(ψ, ·) =

∞∑
n=0

1

n!

〈
Cσ
n (·) , ψ⊗n

〉
7→ Expψ ∈ ExpL2 (σ) .

The action of the annihilation operator a−(ϕ) on Expψ is given by

a− (ϕ) Expψ =

(
1

(n− 1)!
(ϕ, ψ)L2(σ) ψ

⊗(n−1)

)∞

n=1

.

2.4 Annihilation operator on Poisson space

Let us introduce a set of smooth cylinder functions FC∞
b (D,Γ) (dense in

L2(πσ)) which consists of all functions of the form

f (γ) = F (〈γ, ϕ1〉 , . . . , 〈γ, ϕN〉) , γ ∈ Γ,

where the generating directions ϕ1, . . . , ϕN ∈ D, and F (generating function
for f) is from C∞

b (RN).
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Definition 2.5 We define the Poissonian gradient ∇P as a mapping

∇P : FC∞
b (D,Γ) −→ L2 (πσ)⊗ L2 (σ)

given by (
∇Pf

)
(γ, x) = f (γ + εx)− f (γ) , γ ∈ Γ, x ∈ Rd.

Let us mention that the operation

Γ 3 γ 7→ γ + εx ∈ Γ

is well-defined because of the property:

πσ {γ ∈ Γ |x ∈ γ} = 0, ∀x ∈ Rd.

The fact that FC∞
b (D,Γ) 3 f 7→ ∇Pf ∈ L2 (πσ)⊗L2 (σ) arises from the use

of the Hilbert space L2 (σ) as a tangent space at any point γ ∈ Γ.

Remark 2.6 To produce differential structure we need linear structure where
the measure have support Γ. If we consider πσ on D′ then πσ(ξ+ϕ) ⊥ πσ(ξ),
see e.g. [GGV75], therefore integration by parts and adjoint of operators are
not available. This is the reason why we embed Γ in D′.

Proposition 2.7 For any h ∈ Dom((∇P)∗) the following equality holds((
∇P
)∗
h
)
(γ) =

∫
Rd

h (γ − εx, x) dγ (x)−
∫

Rd

h (γ, x) dσ (x) . (13)

Proof. Let f ∈ Dom(∇P) be given. Then we use the Mecke identity (4) to
compute (∇Pf, h)L2(πσ)⊗L2(σ) as follows:(

∇Pf, h
)
L2(πσ)⊗L2(σ)

=

∫
Rd

∫
Γ

(f (γ + εx)− f (γ))h (γ, x) dπσ (γ) dσ (x)

=

∫
Rd

∫
Γ

f (γ + εx)h (γ, x) dπσ (γ) dσ (x)

−
∫

Rd

∫
Γ

f (γ)h (γ, x) dπσ (γ) dσ (x)

=

∫
Γ

f (γ)

[∫
Rd

h (γ − εx, x) dγ (x)−
∫

Rd

h (γ, x) dσ (x)

]
︸ ︷︷ ︸

((∇P)∗h)(γ)

dπσ (γ) .
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Now we are going to give an internal description of the annihilation op-
erator.

The directional derivative is then defined as(
∇P
ϕf
)
(γ) =

((
∇Pf

)
(γ, ·) , ϕ (·)

)
L2(σ)

=

∫
Rd

(f (γ + εx)− f (γ))ϕ (x) dσ (x) (14)

for any ϕ ∈ D. Of course the operator

∇P
ϕ : FC∞

b (D,Γ) −→ L2 (πσ)

is closable in L2 (πσ) .

Proposition 2.8 The closure of ∇P
ϕ coincide with the image under Iσ of the

annihilation operator a−(ϕ) in ExpL2 (σ) , i.e., Iσa
−(ϕ)I−1

σ = ∇P
ϕ.

Proof. To prove this proposition it is enough to show this equality of oper-
ators in a total set in the core of the annihilation operator. Let ψ ∈ U ′

α be
given, then having in mind (14) and (5) it follows that

(
∇P
ϕe

α
πσ

(ψ; ·)
)
(γ) =

∫
Rd

(
eαπσ

(ψ; γ + εx)− eαπσ
(ψ; γ)

)
ϕ (x) dσ (x)

= eαπσ
(ψ; γ)

∫
Rd

(exp (〈εx, log (1 + ψ)〉)− 1)ϕ (x) dσ (x)

= (ψ, ϕ)L2(σ) e
α
πσ

(ψ; γ) . (15)

On the other hand since I−1
σ eαπσ

(ψ; γ) = Expψ it follows that

a−(ϕ)Expψ =

(
1

(n− 1)!
(ϕ, ψ)L2(σ) ψ

⊗(n−1)

)∞

n=1

.

Hence if we apply Iσ to this vector we just obtain the same result as (15)
which had to be proven.
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2.5 Creation operator on Poisson space

Proposition 2.9 For any ϕ ∈ D, g ∈ Dom(Iσa
+(ϕ)I−1

σ ), where a+(ϕ) is the
creation operator in ExpL2(σ), the following equality holds

((
∇P
ϕ

)∗
g
)
(γ) =

∫
Rd

g (γ − εx)ϕ (x) dγ (x)− g (γ)

∫
Rd

ϕ (x) dσ (x)

= (g (γ − ε·) , ϕ (·))L2(γ) − g (γ) 〈ϕ〉σ (16)

Remark 2.10 In terms of chaos decomposition of g ∈ Dom((∇P
ϕ)

∗) the
equality (16) was established in [NV95]. We give an independent proof of
(16), which is based on the results on absolute continuity of Poisson mea-
sures, see e.g. [Sk57] and [T90].

Proof. 1. First we give a version of the proof of (16) which uses the Mecke
identity.

It follows from (14) that

(
∇P
ϕf, g

)
L2(πσ)

=

∫
Γ

((
∇Pf

)
(γ, ·) , ϕ (·)

)
L2(σ)

g (γ) dπσ (γ)

=
((
∇Pf

)
(·, ·) , g (·)ϕ (·)

)
L2(πσ)⊗L2(σ)

. (17)

Whence using Proposition 2.7 we obtain((
∇P
ϕ

)∗
g
)
(γ) =

((
∇P
)∗
gϕ
)
(γ)

=

∫
Rd

g (γ − εx)ϕ (x) dγ (x)− g (γ)

∫
Rd

ϕ (x) dσ (x)

= (g (γ − ε·) , ϕ (·))L2(γ) − g (γ) 〈ϕ〉σ ,

which proves (16).
2. Alternatively we give an independent prove of (16) based on absolute
continuity of Poisson measure.

Let η ∈ D be such that η (x) > −1, ∀x ∈ Rd. Denote by ση the measure
on Rd having density with respect to σ,

dση
dσ

(x) = 1 + η (x) . (18)
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Lemma 2.11 The Poisson measure πσ and πση on (Γ,B(Γ)) are mutually

absolutely continuous and the Radon-Nikodym derivative
dπση

dπσ
(γ) coincides

with the normalized exponential, i.e.,

dπση

dπσ
(γ) = eαπσ

(η; γ) = exp (〈γ, log (1 + η)〉 − 〈η〉σ) .

Proof. Let η ∈ D be such that η (x) > −1, ∀x ∈ Rd. Then the Laplace
transform of πση , given by (3),∫

Γ

exp (〈γ, ϕ〉) dπση (γ)

= exp

(∫
Rd

(
eϕ(x) − 1

)
(1 + η (x)) dσ (x)

)
= e−〈η〉σ exp

(∫
Rd

(
eϕ(x)+log(1+η(x)) − 1

)
dσ (x)

)
=

∫
Γ

exp (〈γ, ϕ〉) exp (〈γ, log (1 + η)〉 − 〈η〉σ) dπσ (γ)︸ ︷︷ ︸
dπση (γ)

.

In order to proof (16) it suffices to verify the equality(
∇P
ϕf, g

)
L2(πσ)

=

∫
Γ

f (γ)
[
(g (γ − ε·) , ϕ (·))L2(γ) − g (γ) 〈ϕ〉σ

]
dπσ (γ) (19)

for f(γ) = eαπσ
(ψ; γ), g(γ) = eαπσ

(η; γ), ψ, η belong to a neighborhood of zero
U ⊂ D, because the coherent states Expψ, ψ ∈ U span a common core for
the annihilation and creation operators.

Lemma 2.12 For any ϕ ∈ D and for all ψ, η in a neighborhood of zero
U ′
α ⊂ D, the following equality holds(

∇P
ϕe

α
πσ

(ψ; ·), eαπσ
(η; ·)

)
L2(πσ)

= (ψ, ϕ)L2(σ) exp
(
(ψ, η)L2(σ)

)
. (20)

Proof. Taking in account (15) we compute the right hand side of (20) to be(
∇P
ϕe

α
πσ

(ψ; ·), eαπσ
(η; ·)

)
L2(πσ)

= (ψ, ϕ)L2(σ) exp (−〈ψ + η〉σ)
∫

Γ

exp (〈γ, log ((1 + ψ) (1 + η))〉) dπσ (γ)
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= (ψ, ϕ)L2(σ) exp (−〈ψ + η〉σ)

· exp

(∫
Rd

(ψ (x) + η (x) + ψ (x) η (x)) dσ (x)

)
= (ψ, ϕ)L2(σ) exp

(
(ψ, η)L2(σ)

)
, (21)

which proves the statement of the lemma.
Further, the r.h.s. of (19) can be rewritten as follows∫

Γ

eαπσ
(ψ; γ)

(∑
x∈γ

exp (〈γ − εx, log (1 + η)〉 − 〈η〉σ)ϕ (x)

−eαπσ
(η; γ) 〈ϕ〉σ

)
dπσ (γ)

=

∫
Γ

eαπσ
(ψ; γ) eαπσ

(η; γ)

〈
ϕ

1 + η

〉
γ

dπσ (γ)

−〈ϕ〉σ exp
(
(ψ, η)L2(σ)

)
. (22)

Let us state the following useful lemma.

Lemma 2.13 1. 〈ψ〉ση
= 〈ψ〉σ + (ψ, η)L2(σ) , ∀ψ, η ∈ D.

2. eαπση
(ψ; γ) = exp

(
− (ψ, η)L2(σ)

)
eαπσ

(ψ; γ), ∀ψ ∈ U ⊂ D.

3.
〈
γ, ψ

1+η

〉
=
〈
C
ση

1 (γ) , ψ
1+η

〉
+
〈

ψ
1+η

〉
ση

.

Proof. The non-trivial step is 3. Let us denote for simplicity ψ
1+η

=: ξ

〈
C
ση

1 (γ) , ξ
〉

=
d

dt
eαπση

(tξ; γ)

∣∣∣∣
t=0

=
d

dt
exp

(
〈γ, log (1 + tξ)〉 − 〈tξ〉ση

)∣∣∣∣
t=0

=
d

dt

∑
x∈γ

log (1 + tξ (x))− 〈tξ〉ση

∣∣∣∣∣
t=0

= 〈γ, ξ〉 − 〈ξ〉ση
.
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Now the rest of the proof follows from the previous lemma and (22), i.e.,∫
Γ

eαπσ
(ψ; γ) eαπσ

(η; γ)

〈
ϕ

1 + η

〉
γ

dπσ (γ)− 〈ϕ〉σ exp
(
(ψ, η)L2(σ)

)
= exp

(
(ψ, η)L2(σ)

)(∫
Γ

eαπσ
(ψ; γ)

〈
ϕ

1 + η

〉
γ

dπση (γ)− 〈ϕ〉σ

)

= exp
(
(ψ, η)L2(σ)

)(∫
Γ

eαπσ
(ψ; γ)

〈
C
ση

1 (γ) ,
ϕ

1 + η

〉
dπση (γ)

+

〈
ϕ

1 + η

〉
ση

∫
Γ

eαπση
(ψ; γ) dπση (γ)− 〈ϕ〉σ

)

= exp
(
(ψ, η)L2(σ)

)(
ψ,

ϕ

1 + η

)
L2(ση)

= (ψ, ϕ)L2(σ) exp
(
(ψ, η)L2(σ)

)
,

which is the same as (21). This completes the proof.

Remark 2.14 The operator (∇P
ϕ)

∗ plays the role of creation operator since
a+(ϕ)n1 = ϕ⊗n, i.e., ((

∇P
ϕ

)∗n
1
)
(γ) =

〈
Cσ
n (γ) , ϕ⊗n

〉
. (23)
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3 Compound Poisson measures

3.1 Definition and properties

This section is devoted to study the compound Poisson measures µCP on
(D′,B(D′)). Having in mind the full description of Lévy-Khinchine represen-
tation of all possible generalized white noise measures on (D′,B(D′)), see
e.g. [GV68] and [AW95], we take into account that such a measure is in
general the convolution of a Gaussian and non Gaussian measures. We will
be interested in the non Gaussian part of this class.

Let ρ be a measure on R\{0} (finite or σ-finite) having all moments finite
and satisfying the analyticity property

∃C > 0 : ∀n ∈ N
∫

R\{0}
|s|n dρ (s) < Cnn! (24)

and σ a σ-finite non-atomic measure on Rd.
We denote

ψρ (u) :=

∫
R

(esu − 1) dρ (s) , s ∈ R.

Definition 3.1 A measure µCP on (D′,B(D′)) is called a compound Pois-
son measure with Lévy characteristic ψρ if its Laplace transform is given
by, as e.g. [GGV75]

lµCP (ϕ) =

∫
D′

exp (〈ω, ϕ〉) dµCP (ω)

= exp

(∫
Rd

ψρ (ϕ (x)) dσ (x)

)
= exp

(∫
R

∫
Rd

(
esϕ(x) − 1

)
dσ (x) dρ (s)

)
, ϕ ∈ D. (25)

Proposition 3.2 1. µCP has an analytic Laplace transform.

2. Let ρ(R\{0}) <∞. Then

µCP (Ω) := µCP

({∑
xk∈γ

skεxk
∈ D′|sk ∈ suppρ, γ ∈ Γ

})
= 1.
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3. Let ρ(R\{0}) = ∞. Then

µCP (Ω) := µCP

∑
xk∈eγ skεxk

∈ D′|sk ∈ suppρ, γ̃ ∈ Γ̃


 = 0, (26)

where γ̃ is locally countable configuration in Rd and Γ̃ stands for the
set of all locally countable configurations in Rd.

Proof. 1. By (24) the Lévy characteristic ψρ is holomorphic on some neigh-
borhood of 0 ∈ C. Then by (25) the Laplace transform lµCP of µCP is holo-
morphic in some neighborhood of zero U ⊂ DC.
2, 3. Let d = 1. Then µCP is generated by a compound Poisson process
and statements 2, 3 follow immediately from the properties of the paths of
this process. Namely, almost every paths ξt of compound Poisson process
is right continuous step function with the jumps from suppρ. If ρ is finite
measure, then any finite interval contains only finite number of the points of
discontinuities of ξt; for infinite measure ρ the set of discontinuities of ξt is
locally countable, see e.g. [Ta67].

For d > 1 the statements 2, 3 follow from the analogous results of the
theory of random measures, see e.g. [Ka74], [Ka75] and [KMM78].

3.2 The isomorphism between Poisson and compound
Poisson spaces

Let us define the measure σ̂ on (Rd+1,B(Rd+1)) as the product of the measures
ρ and σ, i.e.,

dσ̂ (x̂) := dρ (s) dσ (x) , x̂ = (s, x) ∈ R× Rd.

Denote by Γ̂ the set of the locally finite configurations γ̂ ⊂ Rd+1 such that

γ̂ =
∑
bxi∈bγ εbxi

, x̂i = (si, xi) ∈ R× Rd, xi 6= xj, i 6= j

and define the Poisson measure πbσ with intensity measure σ̂ on (Γ̂,B(Γ̂)) via
its Laplace transform

lπbσ (ϕ̂) =

∫
bΓ exp (〈γ̂, ϕ̂〉) dπbσ (γ̂)

= exp

(∫
Rd+1

(
ebϕ(bx) − 1

)
dσ̂ (x̂)

)
, ϕ̂ ∈ D

(
Rd+1

)
. (27)
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It follows from (24) that the Laplace transform lπbσ is well defined for
ϕ̂ (s, x) = p (s)ϕ (x) where p (s) =

∑m
k=0 pks

k (p0 6= 0 for finite ρ and p0 = 0
for infinite ρ) is a polynomial and ϕ ∈ D (cf. [LRS95]). Let us put ϕ̂ (s, x) =
sϕ (x) , ϕ ∈ D in (27). Then by (25) we obtain

lµCP (ϕ) = lπbσ (sϕ) , ϕ ∈ D.

Then using (26) it follows that the compound Poisson measure µCP is the

image of πbσ under the transformation Σ : Γ̂ → ΣΓ̂ = Ω ⊂ D′ given by

Γ̂ 3 γ̂ 7→ (Σγ̂) (·) = Σ

∑
bxi∈bγ εbxi

 (·) :=
∑

(si,xi)∈bγ siεxi
(·) ∈ Ω ⊂ D′, (28)

i.e., ∀B ∈ B(D′)

µCP (B) = µCP (B ∩ Ω) = πbσ (Σ−1 (B ∩ Ω)
)
,

where Σ−1∆ is the pre-image of the set ∆.
The latter equality may be rewritten in the following form∫

D′
11B (ω) dµCP (ω) =

∫
Ω

11B (ω) dµCP (ω) =

∫
bΓ 11B (Σγ̂) dπbσ (γ̂) ,

which is analogous to the well known change of variable formula for the
Lebesgue integral. Namely, for any h ∈ L1(D′, µCP) = L1(Ω, µCP) the function

h ◦ Σ ∈ L1(Γ̂, πbσ) and∫
Ω

h (ω) dµCP (ω) =

∫
bΓ h (Σγ̂) dπbσ (γ̂) . (29)

Remark 3.3 It is worth noting that there exists on Ω an inverse map Σ−1 :
Ω → Γ̂. And we obtain that πbσ on Γ̂ is the image of µCP on Ω under the map
Σ−1, i.e., ∀Ĉ ∈ B(Γ̂), πbσ(Ĉ) = µCP(ΣĈ) or after rewriting∫

bΓ 11 bC (γ̂) dπbσ (γ̂) =

∫
Ω

11Σ bC (ω) dµCP (ω) =

∫
Ω

11 bC (Σ−1ω
)
dµCP (ω) .

As before we easily can write the corresponding change of variables formula,
namely ∀f̂ ∈ L1(Γ̂, πbσ) the function f̂ ◦ Σ−1 ∈ L1(Ω, µCP) and∫

bΓ f̂ (γ̂) dπbσ (γ̂) =

∫
Ω

f̂
(
Σ−1ω

)
dµCP (ω) .
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So we construct a unitary isomorphism UΣ between the Poisson space
L2(πbσ) = L2(Γ̂, πbσ) and the compound Poisson space L2(µCP) = L2(Ω, µCP).
Namely,

L2 (Ω, µCP) 3 h 7→ UΣh := h ◦ Σ ∈ L2
(
Γ̂, πbσ

)
and

L2
(
Γ̂, πbσ

)
3 f̂ 7→

(
U−1

Σ f̂
)

(ω) = f̂ ◦ Σ−1 ∈ L2 (Ω, µCP) .

The isometry of UΣ and U−1
Σ follows from (29).

As a result we have established the following proposition.

Proposition 3.4 The map UΣ is a unitary isomorphism between the Poisson
space and the compound Poisson space.

Remark 3.5 In the space L2(πbσ) we have a basis of generalized Charlier
polynomials, annihilation and creation operators etc. Now we can use the
unitary isomorphism UΣ in order to transport the Fock structure from L2(πbσ)
to L2(µCP).

3.3 Annihilation and creation operators on compound
Poisson space

Let 5Pbϕ, (5Pbϕ)∗, ϕ̂ ∈ D(Rd+1) be the annihilation and creation operators on
Poisson space L2(πbσ). Their images under UΣ

U−1
Σ 5Pbϕ UΣ, U−1

Σ

(
5Pbϕ)∗ UΣ (30)

play the role of annihilation and creation operators in compound Poisson
space L2(µCP). Let us calculate the actions of (30).

The set of smooth cylinder functions FC∞
b (D,Ω), (dense in L2(µCP)) con-

sists of all functions of the form

h (ω) = H (〈ω, ϕ1〉 , . . . , 〈ω, ϕN〉)
= H

(〈
Σ−1ω, sϕ1

〉
, . . . ,

〈
Σ−1ω, sϕN

〉)
, (31)

where (generating directions) ϕ1, . . . , ϕN ∈ D and H (generating function
for h) is from C∞

b (RN). Whence it follows that

FC∞
b (D,Ω) = U−1

Σ FC∞
b

(
D
(
Rd+1

)
, Γ̂
)
.
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By (14) for any f̂ ∈ FC∞
b (D(Rd+1), Γ̂) we have(

∇Pbϕf̂
)

(γ̂) =

∫
Rd+1

(
f̂ (γ̂ + εbx)− f̂ (γ̂)

)
ϕ̂ (x̂) dσ̂ (x̂) . (32)

Proposition 3.6 For any h ∈ FC∞
b (D,Ω) the operator U−1

Σ 5Pbϕ UΣ has the
following form(

U−1
Σ 5Pbϕ UΣh

)
(ω) =

∫
Rd

∫
R

(h (ω + sεx)− h (ω)) ϕ̂ (s, x) dρ (s) dσ (x) .

Proof. Let h ∈ FC∞
b (D,Ω) be given and denote UΣh = h ◦ Σ =: ĥ and

Σ−1w =: γ̂. Taking into account (30) and (31) we obtain(
U−1

Σ 5Pbϕ UΣh
)
(ω) =

(
5Pbϕĥ

)
(γ̂)

=

∫
Rd+1

(
ĥ (γ̂ + εbx)− ĥ (γ̂)

)
ϕ̂ (x̂) dσ̂ (x̂) . (33)

Now we use the definition of ĥ, the additivity of the map Σ and the obvious
equality Σεbx = sεx for x̂ = (s, x); with this (33) turns out to be∫

Rd+1

(h (Σ (γ̂ + εbx))− h (Σγ̂) ϕ̂ (x̂)) dσ̂ (x̂)

=

∫
Rd+1

(h (ω + sεx)− h (ω)) ϕ̂ (x̂) dσ̂ (x̂) . (34)

The result of the proposition follows then by definition of σ̂.
Putting ϕ̂ (x̂) = φ (s)ϕ (x) in (34) we obtain(

U−1
Σ 5P

φϕ UΣh
)
(ω)

=

∫
Rd

(∫
R

(h (ω + sεx)− h (ω))φ (s) dρ (s)

)
ϕ (x) dσ (x) .

Let us note that by (24) we can admit not only bounded functions φ (s) but
also polynomials. For finite ρ and φ ≡ 1 we have the following formula for
the annihilation operator 5CP

ϕ in compound Poisson space L2(Ω, µCP) :(
5CP
ϕ h
)
(ω) :=

(
U−1

Σ 5P
ϕ UΣh

)
(ω)

=

∫
Rd

(∫
R

(h (ω + sεx)− h (ω)) dρ (s)

)
ϕ (x) dσ (x) . (35)
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Example 3.7 1. Let ρ = ε1, then µCP = πbσ and, of course, (35) coincides
with (14).

2. Let ρ = 1
2
(ε−1 + ε1) (for d = 1 µCP is generated by the so called telegraph

process) then the annihilation operator 5CP
ϕ has the form

(
5CP
ϕ h
)
(ω) =

∫
R

(
1

2
h (ω + εx) +

1

2
h (ω − εx)− h (ω)

)
ϕ (x) dσ (x) .

Example 3.8 Let h ∈ FC∞
b (D,Ω) be given by

h (ω) = exp

(
〈ω, log (1 + η)〉 − 〈η〉σ

∫
R
sdρ (s)

)
= exp (〈ω, log (1 + η)〉 − 〈η〉σm1 (ρ))

for D 3 η > −1. Then the annihilation operator 5CP
ϕ applied to h can be

computed to be(
5CP
ϕ h
)
(ω) =

(
5P
ϕĥ
)

(γ̂)

=

∫
Rd+1

(
ĥ
(
γ̂ + ε(s,x)

)
− ĥ (γ̂)

)
ϕ (x) dσ̂ (s, x)

=

∫
Rd+1

(h (ω + sεx)− h (ω))ϕ (x) dσ̂ (s, x)

= h (ω)

∫
Rd+1

((1 + η (x))s − 1)ϕ (x) dσ̂ (s, x)

= 〈((1 + η)· − 1)ϕ〉bσ h (ω) .

Now we proceed to compute an expression for the creation operator on
compound Poisson space.

Proposition 3.9 Let g ∈ L2(Ω, µCP) be such that UΣg ∈ Dom(Ibσa+(ϕ̂)I−1bσ )
and ϕ̂ ∈ D(Rd+1). Then the operator U−1

Σ (5Pbϕ)∗UΣ has the following repre-
sentation(

U−1
Σ (5Pbϕ)∗UΣg

)
(ω) =

∫
Rd+1

g (ω − sεx) ϕ̂ (s, x) dγ̂ (s, x)− g (ω) 〈ϕ̂〉bσ .
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Proof. We know from (16) that for any ĝ ∈ Dom(Ibσa+(ϕ̂)I−1bσ ) the creation

operator (5Pbϕ)∗ on Poisson space L2(Γ̂, πbσ) has the form

((
5Pbϕ)∗ ĝ) (γ̂) =

∫
Rd+1

ĝ (γ̂ − εbx) ϕ̂ (x̂) dγ̂ (x̂)− ĝ (γ̂) 〈ϕ̂〉bσ .
On the other hand,(

U−1
Σ (5Pbϕ)∗UΣg

)
(ω) =

(
(5Pbϕ)∗ĝ) (γ̂)

=

∫
Rd+1

ĝ (γ̂ − εbx) ϕ̂ (x̂) dγ̂ (x̂)− ĝ (γ̂) 〈ϕ̂〉bσ
=

∫
Rd+1

g (ω − sεx) ϕ̂ (s, x) dγ̂ (s, x)− g (ω) 〈ϕ̂〉bσ ,
which proves the result of the proposition.

As before if we choose ϕ̂ = 1ϕ, in the case when ρ is finite, then we have
the following form for the creation operator (5CP

ϕ )∗ in compound Poisson
space L2(Ω, µCP):((

5CP
ϕ

)∗
g
)
(ω) :=

(
U−1

Σ

(
5P
ϕ

)∗
UΣg

)
(ω)

=

∫
Rd+1

g (ω − sεx)ϕ (x) dγ̂ (s, x)− g (ω) ρ(R) 〈ϕ〉σ .

Remark 3.10 The generalized Charlier polynomials in L2(πbσ), according to
(23), have the following representation((

∇Pbϕ)∗n 1
)
(γ̂) =

〈
Cbσ
n (γ̂) , ϕ̂⊗n

〉
.

Their images under U−1
Σ have the following form(

U−1
Σ

〈
Cbσ
n (·) , ϕ̂⊗n

〉)
(ω) =

〈
Cbσ
n

(
Σ−1ω

)
, ϕ̂⊗n

〉
=

(
U−1

Σ

(
∇Pbϕ)∗n UΣ1

)
(ω) .

In particular for finite measure ρ and ϕ̂ = ϕ we obtain((
∇CP
ϕ

)∗n
1
)
(ω) =

〈
Cbσ
n

(
Σ−1ω

)
, ϕ⊗n

〉
.
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4 Gamma analysis

4.1 Definition and properties

In this section we consider the classical (real) Schwartz triple

D
(
Rd
)

=: D ⊂ L2
(
Rd
)
⊂ D := D′ (Rd

)
.

Definition 4.1 We call Gamma noise the measure µσG on the measure
space (D′,B(D′)) determined via its Laplace transform

lµσ
G
(ϕ) =

∫
D′

exp (〈ω, ϕ〉) dµσG (ω)

= exp (−〈log (1− ϕ)〉σ) , 1 > ϕ ∈ D.

Remark 4.2 In order to apply the Minlos’ theorem we must verify that lµσ
G

define a positive definite functional on D. Indeed µσG is a special case of µCP
for the choice of ρ as follows

ρ (∆) =

∫
∆∩]0,∞[

e−s

s
ds, ∆ ∈ B (R) . (36)

Whence by Minlos’ theorem µσG is well-defined and, of course lµσ
G

is an analytic
function.

Remark 4.3 Let us explain the term “Gamma noise”. If d = 1, then for
any t > 0 the value of the Laplace transform

lµσ
G

(
λ11[0,t]

)
= exp (−t log (1− λ)) , λ < 1

coincides with the Laplace transform lξ(t) (λ) of a random variable ξ (t) having
Gamma distribution, i.e., the density of ξ (t) has the form

pt (x) =
1

2

|x|t−1 e−|x|

Γ (t)
, t > 0.

The process {ξ (t) , t > 0; ξ (0) := 0} is known as Gamma process, see e.g.
[Ta67, Section 19]. Thus the triple (D′,B(D′), µσG ) is a direct representation
of the generalized stochastic process {ξ̇ (t) , t ≥ 0} (detailed information on
generalized stochastic process can be found in [GV68]) which is a distribu-
tional derivative of the Gamma process {ξ (t) , t ≥ 0}. So the term “Gamma
noise” is natural for µσG .
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4.2 Chaos decomposition of Gamma space

Let us now consider a function α : D −→ D defined by

α (ϕ) (x) =
ϕ (x)

ϕ (x)− 1
, ϕ ∈ D, x ∈ Rd.

We stress that α is a holomorphic function on a neighborhood of zero Uα ⊂ D,
in other words α ∈ Hol0(D,D).

Because of the holomorphy of lµσ
G
and lµσ

G
(0) = 1, there exists a neigh-

borhood of zero U ′
α ⊂ Uα such that the normalized exponential eαµσ

G
(ϕ;ω) is

holomorphic for any ϕ ∈ U ′
α and ω ∈ D′. Then

eαµσ
G
(ϕ;ω) :=

exp (〈ω, α (ϕ)〉)
lµσ

G
(α (ϕ))

= exp

(〈
ω,

ϕ

ϕ− 1

〉
− 〈log (1− ϕ)〉σ

)
, ϕ ∈ U ′

α. (37)

We use the holomorphy of ϕ 7→ eαµσ
G
(ϕ;ω) to expand it in a power series

which, with Cauchy’s inequality, polarization identity and kernel theorem,
give us

eαµσ
G
(ϕ;ω) =

∞∑
n=0

1

n!

〈
P µσ

G ,α
n (ω) , ϕ⊗n

〉
, ϕ ∈ U ′

α, ω ∈ D′, (38)

where P
µσ
G ,α

n : D′ → D′b⊗n. {P µσ
G ,α

n (·) =: Lσn (·) |n ∈ N0} is called the system
of generalized Laguerre kernels on Gamma space (D′,B(D′), µσG ). From

(38) it follows immediately that for any ϕ(n) ∈ Db⊗n, n ∈ N0 the function

D′ 3 ω 7→
〈
Lσn (ω) , ϕ(n)

〉
is a polynomial of the order n on D′. The system of functions{

Lσn
(
ϕ(n)

)
(ω) :=

〈
Lσn (ω) , ϕ(n)

〉
, ∀ϕ(n) ∈ Db⊗n, n ∈ N0

}
is called the system of generalized Laguerre polynomials1 for the Gamma
measure µσG .

1In one-dimensional case this system coincides with the system of Laguerre polynomials,
see e.g. [Boas64].
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Now we proceed establishing the following result. Let ϕ, ψ ∈ U ′
α be given,

then using (37) follows that for λ1, λ2 ∈ R∫
D′
eαµσ

G
(λ1ϕ;ω) eαµσ

G
(λ2ψ;ω) dµσG (ω)

= exp (〈− log (1− λ1ϕ)− log (1− λ2ψ)〉σ)

·
∫
D′

exp

(〈
ω,

λ1ϕ

λ1ϕ− 1
+

λ2ψ

λ2ψ − 1

〉)
dµσG (ω)

= exp (〈− log (1− λ1ϕ)− log (1− λ2ψ)〉σ)

· exp

(
−
〈

log

(
1− λ1ϕ

λ1ϕ− 1
− λ2ψ

λ2ψ − 1

)〉
σ

)
= exp (−〈log (1− λ1ϕλ2ψ)〉σ)
= lµσ

G
(λ1λ2ϕψ) . (39)

Since lµσ
G
∈ Ma(D′), then (39) turns out to be an analytic function on λ1

and λ2, hence

lµσ
G
(λ1λ2ϕψ) =

∞∑
n=0

1

n!
(λ1λ2)

n (ϕ⊗n, ψ⊗n)
ExpG

nL
2(σ)

, (40)

where the coefficients (ϕ⊗n, ψ⊗n)ExpG
nL

2(σ) are given by

(
ϕ⊗n, ψ⊗n

)
ExpG

nL
2(σ)

=
dn

dtn
exp (−〈log (1− tϕψ)〉σ)

∣∣∣∣
t=0

and ExpG
nL

2 (σ) stands for a quasi-n-particle subspace of ExpGL2(σ) defined
by (44) below.

By using the formula, see e.g. [B58] and [GR81],

dn

dtn
ef(t)

=
∑

i1+2i2+···+kik=n
i1,i2,...,ik∈N0

n!

i1! . . . ik!

(
f (1) (t)

1!

)i1 (
f (2) (t)

2!

)i2
· · ·
(
f (k) (t)

k!

)ik
ef(t)

follows
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(
ϕ⊗n, ψ⊗n

)
ExpG

nL
2(σ)

=
∑

i1+2i2+...+kik=n
i1,i2,...,ik∈N0

n!

i1!i2! . . . ik!

1

2i2 . . . kik

·
(∫

Rd

ϕ (x)ψ (x) dσ (x)

)i1 (∫
Rd

ϕ2 (x)ψ2 (x) dσ (x)

)i2
· · · ·

(∫
Rd

ϕk (x)ψk (x) dσ (x)

)ik
. (41)

On the other hand∫
D′
eαµσ

G
(λ1ϕ;ω) eαµσ

G
(λ2ψ;ω) dµσG (ω)

=
∞∑

n,m=0

λn1λ
m
2

n!m!

∫
D′

〈
Lσn (ω) , ϕ⊗n

〉 〈
Lσm (ω) , ψ⊗m

〉
dµσG (ω) . (42)

Then a comparison of coefficients between (40) and (42) gives us∫
D′

〈
Lσn (ω) , ϕ⊗n

〉 〈
Lσm (ω) , ψ⊗m

〉
dµσG (ω) = δnmn!

(
ϕ⊗n, ψ⊗n

)
ExpG

nL
2(σ)

,

which shows the orthogonality property of the system {Lσn (·) |n ∈ N0}.
Since (·, ·)ExpG

nL
2(σ) is n-linear we can extend it by polarization, linearity

and continuity to general smooth kernels ϕ(n), ψ(n) ∈ ExpG
nL

2 (σ) . To this
end we proceed as follows.

First we consider a partition of the numbers In := {1, 2, . . . , n} in

In =
⋃
α

Iα =: I(n).

Then for each such partition I(n), we define ik by

ik := # {Iα| |Iα| = k} , 1 ≤ k ≤ n.

Finally we define the contraction of the kernel ϕ(n) w.r.t. I(n) as

ϕ
(n)

I(n) (x1, x2, . . . , xn) := ϕ(n) (xi1 , xi2 , . . . , xik) ,

where xim = (xm, xm, . . . , xm) m-times, 1 ≤ m ≤ k.
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Hence the inner product is given by(
ϕ(n), ψ(n)

)
ExpG

nL
2(σ)

=
∑
I(n)

n!

(
n∏
k=1

1

ik!kik

)(
n!

n∏
k=1

1

(k!)ik ik!

)−1

·
∫

Rdn

ϕ
(n)

I(n) (x1, . . . , xn)ψ
(n)

I(n) (x1, . . . , xn) dσ
⊗n (~x)

=
∑
I(n)

n∏
k=1

((k − 1)!)ik
∫

Rdn

ϕ
(n)

I(n) (x1, . . . , xn)ψ
(n)

I(n) (x1, . . . , xn) dσ
⊗n (~x) ,(43)

where the sum extends over all possible partition I(n) of In.
Hence we have established the proposition.

Proposition 4.4 Let ϕ, ψ ∈ D be given. Then the system of generalized
Laguerre polynomials verifies the following orthogonality property∫

D′

〈
Lσn (ω) , ϕ(n)

〉 〈
Lσm (ω) , ψ(m)

〉
dµσG (ω) = δnmn!

(
ϕ(n), ψ(n)

)
ExpG

nL
2(σ)

,

where (ϕ(n), ψ(n))ExpG
nL

2(σ) is defined by (43) above.

As a consequence of the last proposition we have established the following
isomorphism

I : L2 (µσG ) −→
∞⊕
n=0

ExpG
nL

2 (σ) =: ExpGL (σ) . (44)

Therefore for any F ∈ L2(µσG ) there is a sequence (f (n))∞n=0 ∈ ExpGL2(σ) such
that

F (ω) =
∞∑
n=0

〈
Lσn (ω) , f (n)

〉
,

moreover

‖F‖L2(µσ
G ) =

∞∑
n=0

n!
∣∣f (n)

∣∣2
ExpG

nL
2(σ)

.

Remark 4.5 Hence we see that the Gamma noise does not produce the stan-
dard Fock type isomorphism since the inner product (·, ·)ExpG

nL
2(σ) do not co-

incide with the inner product in the n-particle subspace, L2(Rd)b⊗n.
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