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Abstract 

Zeigler’s DEVS formalism supports an unified mod- 
eling and simulation framework for discrete event sys- 
tems, but it lacks of an analytic means for reasoning 
about system behavior. To provide both analytic and 
simulation means f o r  the formalism, this paper pro- 
poses an approach t o  analyze the steady state behavior 
of DEVS models without simulation experiments. By 
establish correspondence between a DEVS model and 
a continuous time Markov chain in steady state, the 
approach transforms the given DEVS model into an 
equivalent continuous time Markov chain. By  ana- 
lyzing the Markov chain, various steady state proba- 
bilities, such as mean sojourn time and mean waiting 
tame, are obtained. We validate the proposed approach 
b y  comparing the results from the approach with those 
from simulation experiments. 

1 Introduction 

Two types of models, analytic and simulation, have 
been applied in system analysis and performance eval- 
uation. Analytic models are cost effective when the 
model of a system is tractable with efficient numer- 
ical algorithms. To make an analytic model numer- 
ically tractable, a certain degree of simplification of 
system’s details is inevitable. However, this simplifi- 
cation limits the modeling power of an analytic model. 
Though any level of details can be specified in a simu- 
lation model, the computation cost for simulating the 
system behavior grows rapidly as the model becomes 
more complex[3]. 

In recent, many research efforts have focused on the 
hybrid simulation/analytic models to conibine both 
models into a cost efficient model[6]. To combine the 
advantages from both models in an unified framework, 
it is highly desirable to have both analytic and simula- 
tion means within a specification formalism. However, 

little results has been presented in the literature in our 
knowledge. 

Zeigler’s DEVS formalism supports specification 
of discrete event models in a hierarchical, modular 
manner[8]. It also provides a powerful modeling and 
simulation framework by giving the abstract simulator 
concepts. Thus, it can be widely applicable in many 
areas of system design such as manufacturing systems 
design, communication networks design, and realtime 
systems design[l]. While providing the powerful ex- 
pressive power for simulation modeling, the formalism 
lacks of an analytic means for the behavior reasoning 
of the DEVS models. 

This paper presents an approach to analyze the 
steady state behavior of DEVS models without time- 
consuming simulation experiments. The approach 
is based on the idea of behavioral equivalence be- 
tween a DEVS model and a continuous time Markov 
chain(CTMC) in steady state. The approach proceeds 
in two steps. First, it transforms each component 
DEVS model into an equivalent CTMC and then an- 
alyzes the CTMC’s using coupling information of the 
DEVS model. Using the CTMC’s various steady state 
probabilities are obtained. 

The outline of this paper is as follows. Section 2 
presents a brief review of the DEVS formalism. Sec- 
tion 3 describes behavioral characteristics of DEVS 
models in steady state and identifies the behavioral 
equivalence between a steady state DEVS model and 
a CTMC. This section also provides details on the 
transformation procedure. In section 4, an example 
of application and results are given. We conclude this 
paper in section 5.  

2 The DEVS Formalism 

A set-theoretic formalism, the DEVS formalism 
specifies discrete event models in a hierarchical, modu- 
lar form. Within the formalism, two classes of models, 
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namely atomic and coupled models, are to be speci- 
fied. An atomic DEVS model is one that can not be 
decomposed into components while a coupled one can 
be decomposed in to component models. 

A basic model, called an atomic model (or atomic 
DEVS), has specifications for the dynamics of the 
model. An atomic model M is specified as: 

X : input events set; 
S : sequential states set; 
Y : output events set; 
hint : S + S : internal transition function; 
6 e z t  : Q x X + S : external transition function; 
Q = ((s,e) I s E S,O 5 e 5 ta (s ) } ;  

A : S -+ Y : output function; 
tu : S + Real : time advance function. 

An atomic model interprets the behavior of a sys  
tem as a state transition machine. The set S includes 
all possible states of the system and ta(s) maps s to a 
non-negative real with infinity, which is the time dur- 
ing which the system is allowed to stay in state s if no 
external event occurs. Atomic DEVS model employs 
two types of state transitions, internal transition and 
external transition. The internal transition function 
6int defines the next state when no external event oc- 
curs during current state. If an external event occurs 
in the middle of a state, the next state of system is 
determined by the external transition function best. 

The second form of the model, called a coupled 
model (or coupled DEVS), tells how to couple (con- 
nect) several component models together to form a 
new model. This latter model can be employed as a 
component in a larger coupled model, thus giving rise 
to the construction of complex models in a hierarchical 
fashion. A coupled model DN is defined as: 

DN =< D, {Mi} ,  { I i } ,  (Zi,j}, SELECT > 

D : component names set; 
for each i in D, 

Mi : DEVS for component i in D; 
Ii : set of influencees of i; 

for each j in I,, 

SELECT : subsets of D -, D. 
zi,j : 5 -* xj; 

The activities of a component model affect the state 
of the influencees by the output translation function 
Zi,j. As proven in [8], the result of coupling DEVS 

components in a coupled model is itself a atomic 
DEVS whose state set and input set are Cartesian 
products of all input sets and all total state sets of 
component models, respectively. Detail descriptions 
for the definitions of the atomic and coupled DEVS 
can be found in [8, 91. 

3 Steady State Behavior of DEVS 
Models 

To analyze the steady state behavior of a DEVS 
model without time-consuming simulation experi- 
ments, we need to transform the DEVS model into a 
behaviorally equivalent analytic model. In the steady 
state transition view point of a system, two models are 
said to have a behavioral equivalence if (1) there exists 
a one-to-one correspondence between each state, and 
(2) transition probabilities between states of a model 
are preserved in the other model, and (3) two mod- 
els have the same sojourn time distribution for each 
state. Thus, two equivalent models represent the same 
behavior with different specifications. 

By observing the steady state behavior of a DEVS 
model, we can represent it as an equivalent CTMC. 
Since the state transitions in a DEVS model are 
caused by the external and internal events, event oc- 
currence rates correspond to the transition probabil- 
ities of CTMC. To set up the behavioral equivalence 
between a CTMC and a steady state DEVS model, 
we make the followings assumptions on atomic DEVS 
models : 

1) the state space of the model is finite; 

2) all event types, including internal events, are Pois- 

3) external and internal transition functions are time- 

son process; 

invariant; 

4) every state of S is reachable from any other states. 

To satisfy assumption 1, we may employ some sim- 
plification procedures. One of possible simplification 
procedure is to drop one or more descriptive, continu- 
ous state variables[’l]. We will introduce examples of 
simplified models in the next section. Assumption 2 
requires that all state variables and events be random 
variables and random process, respectively. More- 
over, it requires that all events have exponentially dis- 
tributed interarrival rates to ensure the Markov prop- 
erty of the model. Assumption 3 and 4 make the 
CTMC irreducible and erogodic, thereby solving the 
CTMC using numerical algorithms. 
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The transformation process proceeds in two steps. 
In the first step, we extract states and transition prob- 
ability matrix for each atomic model with which a 1~ 
cal CTMC is constructed. After constructing the local 
CTMC's, the external events rates for the component 
models of a coupled model are fixed using coupling 
information. 

3.1 Atomic Model Transformation 

We can represent a CTMC using a structure < 
S,Q >, where S is the state set and Q is the tran- 
sition rate matrix. Let < X, s, Y, 6intj best, A, ta > be 
an atomic DEVS model to be transformed. 

The state space of an equivalent CTMC is the same 
as that of the D E W  model and the transition matrix 
Q can be partitioned into two matrices : 

Q = U + V .  

The elements of matrix V are transition rates caused 
by the internal events. If a pair of states (si, si) satisfy 
the internal transition function such that 

Sint(si) -+ sj 1 

we set 

ta'(si) is the randomized sojourn time distribution 
from the original time advance function. 

An element vi j  of the matrix V corresponds to the 
transition rate from state i to state j ,  which is caused 
by the external events. Thus, 

uij = l/ta'(si). 

vij = $zr 
S E E . ,  

where Eij is the set of all external events which cause 
the transition from state i to state j and & is the 
occurrence rate of event x. An event x is included in 
Eij if there exists a pair of state satisfying the external 
transition function, that is, 

6ezt(si, e, 2) -+ sj. 

We associate a variable with each external event in 
this step. 

Figure 1 summarizes the above procedure for the 
transformation of an atomic DEVS model into an 
equivalent CTMC. In this step, the occurrence rates of 
external events are unknown, so we associated a vari- 
able with each external event. We resolve these un- 
known variables in the next step using the coupljng in- 
formation between atomic models. Solving the CTMC 
constructed, the steady state probability distribution 
and mean recurrence time for each state are obtained. 

input : < X,S,Y,Sint,6eSt,A,ta >; 
output : a CTMC < S', Q >; 
1)initialize S' to S; 
2) initialize qij, 1 5 i , j  5 IS(, to 0; 
3) for each external event and (si , sj) pair 

such that Be=t(Si, e, X) + S j  

qij = Q i j  + e=; 
endfor 

4) for each internal event and (Si , s j )  pair 
such that Sint(Si) + sj 

qij = qij + l/ta'(si); 
endfor 

5)for each state 
q i i = - c  . . .. j Jf; Q s J ;  

endfor 

Figure 1: Atomic model transformation procedure. 

3.2 Analysis of Coupled DEVS Models 

As mentioned in the previous section, the cou- 
pled atomic DEVS models can be transformed into an 
equivalent atomic model. Thus, we can construct a 
CTMC corresponding to a coupled model. The space 
space of the CTMC consists of the Cartesian product 
of the states of all the CTMC's of component mod- 
els. The state space of resulting CTMC will more 
rapidly grow than the system complexity. To analyze 
a CTMC with a large state space is very cumbersome 
and needs vast amount of computation costs. In our 
approach, we analyze each atomic DEVS model inde- 
pendently and use the coupling information to relate 
event occurrence rates. 

The couplings between component models in a cou- 
pled model can be classified into three classes : 

1) request/acknowledge(queued) couplings; 

2) synchronization couplings; 

3) notifying couplings. 

A pair of couplings between models i and j is an 
queued coupling if the sequence of operations is as fol- 
lows. Model i invokes a service from model j through 
coupling "req" and it waits for the acknowledge sig- 
nal. Upon receiving the request, model j queues the 
requested job. Model j sends an acknowledge over the 
coupling "ack" when the component is ready for the 
requested job. Figure 2 shows this class of couplings 
and state transitions. 
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Figure 2: State transition by queued coupling. 

Figure 4: Single bus multiprocessor system. 

The average sojourn time of W A I T  becomes the 
expected waiting time in the queue and can be eati- 
mated using a queueing model. 

The second class of couplings are used to synchro- 
nize states between two component models. Figure 3 
shows the state transitions caused by a pair of syn- 
chronization signals. 

rMODEL i 1  rMODEL j1 

Figure 3: Synchronization of two models using signal. 

The sojourn time of state S E N D  is same as that 
of state R C V .  Once the sojourn time of RCV deter- 
mined, we set t a ( R C V )  as S E N D ' S  sojourn time and 
we can disconnect the "rcvd" signal coupling. But, 
the "send" signal will affect the transition rate of s'. 

A component model may send the notification of 
an event to influencees and does not wait for a return 
signal. We call this class of couplings notifying cou- 
pling. In this case, the event occurrence rate is the 
mean recurrence time of the state at which the source 
component sends a signal. 

Using the above classification and event occurrence 
rates, the couplings between models are simplified to 
the notifying coupling. The rates of notifying signals 
can be determined if steady state probabilities for each 
CTMC are determined. Next section describes an ex- 
ample of application. 

4 Example and Results 

As an application of our approach, we consider the 
single-bus multiprocessor system with a shared com- 
mon memory. The system consists of p processing el- 
ements with private memory and a single bus through 
which the elements access the common shared mem- 
ory. The architecture is shown in figure 4. When 
a set of processing elements needs to access common 
memory through the single bus, a bus contention oc- 
curs. Only one element can connect the memory at 
any instant. Since such bus contentions degrade the 
performance of system, the effect of contentions on 
the performance has become the major concerns of 
researchers. A number of research efforts on the per- 
formance study of the architecture have been reported 
in the literature. We will compare the result of our ap- 
proach with one of them. 

To model the system within the DEVS formalism, 
we first develop two atomic models as the components 
of the systems. The atomic model PE describes the 
behavior of a processing element. We assume that all 
processing elements are identical. The atomic BUS 
model specifies the single bus and the common mem- 
ory. Once the atomic model are developed, we then 
construct a coupled DEVS model MULTI. The cou- 
pled model MULTI specifies the coupling between the 
component atomic models. The coupling scheme is 
shown in figure 4. 

Figure 5 shows the phase transitions of each atomic 
models. Since the state variable PHASE directly cap- 
tures the state transitions of the models, we sim- 
plify the state sets of each atomic model as pos- 
sible range of variable PHASE. Thus, the state 
set of PE becomes (phase1 = LOCAL,phasez  = 
W A I T , p h a s e s  = A C T I V E }  and (phase1 = 
IDLE,phasez = S A C K , p h a s e s  = T R A N S }  for 
BUS. 
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“ack” 

=-%- - -- 
QBUS= 

(a) phase transitions of PE -4req -@rq 0 

17$done (1 - V)@done -p 
0 -A0 Aa 1 .  

length(queue) = 0 ‘ length(queie)> o 
and “donen* and “done” 

(b) phase transitions of BUS - internal transition 
-------*external transition 

Figure 5: State transition of components. 

Each processing element operates at one of three 
states. Initially, an element executes a job at LO- 
CAL state which do not require the common memory 
access. After executing the job during exponentially 
distributed random time, the element requests bus to 
access common memory and then passivates in the 
WAIT state to wait for an acknowledge signal. Upon 
receiving an acknowledge signal, the element accesses 
the common memory. BUS model serves the bus re- 
quests from processing elements in the first come first 
served mode. The following is the atomic DEW spec- 
ification of PE : 

x = { a c k } ;  
Y = { r e q ,  done};  
S = { W A I T ,  L O C A L ,  A C T I V E } ;  

6 , , t ( W A I T , e , ” a c k ” )  --+ A C T I V E ;  

& , t ( L O C A L )  --+ W A I T ;  
& , t ( A C T I V E )  -+ L O C A L ;  

A( L O C A L )  --+ ”done” ; 

t a ( L 0 C A L )  -+ ezponential(&); 
t a ( A C T I V E )  -+ ezponential(p);  
t a ( W A I T )  --+ 00; 

Applying the atomic model translation procedure, 
we can obtain the transition rate matrices for the 
atomic models PE(QPE) and BUS(QSUS) : 

where n is the number of processing elements. And 
the average waiting time in the queue, E[W], is given 
by [41 

nlcl 1 1 
1-17  AI P ’  
----- 

The inverse of this waiting time is the rate of the 
”ack” signal to a processing element. By solving all 
unknowns in QPE and QBUS, transition rates and so- 
journ times of states are obtained. These probabilities 
enable us to estimate system behavior in steady state. 

In order to validate our approach, we performed 
simulation experiment with the developed DEVS 
model in the DEVSIM++ environment[l]. We com- 
pared the processing power P which is one of major 
performance indices of bus-connected multiprocessors 
and is defined as the average number of processors in 
LOCAL state. Each simulation result takes an aver- 
age of 10 statistically independent simulation runs and 
summarized in tables 1 and 2. The notations used in 
the tables are as follows : 

n : number of processing elements; 

Pa : results from our approach; 
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2 1.62 1.62 

Table 1: Processing power for varying number 
of processing element. 

Xi/p I P., I Pa I % error 
0.1 I 4.36 I 4.36 I 0 

Table 2: Processing power for varying load. 

P, : results from simulation experiments; 

% error : (Pa - P.,)/P., . 100. 

Table 1 shows the processing power for varying the 
number of processors. The offered load, Ai/p, is set 
to 0.2. The results show that our approach can ac- 
curately estimate the steady state behavior of DEVS 
models. Comparisons for different offered load are 
shown in table 2. The number of processing elements 
is set to 5. 

5 Summary and Conclusions 

We have presented an approach to analyze the 
steady state behavior of DEVS models without simu- 
lation experiments. The approach is based on a trans- 
formation of a DEVS model into an equivalent CTMC 
in steady state. Also, we validated the proposed ap- 
proach by comparing the results with those obtained 
from simulation experiments. The results show that 
our approach can accurately estimate the steady state 
behavior of DEVS models. 

Our approach can be applied in many areas. It can 
be used to figure out the operation of a system in the 
early stage of system design with inexpensive com- 
putation cost. When used in a hybrid modeling and 
simulation, it can replace a complex state transition 
DEVS model with a simple probabilistic model. This 
will greatly reduces the simulation time. 

Currently, an extension of the proposed approach 
to more general and complex cases is underway. In 
parallel, we are plan to develop a hybrid modeling 
and simulation framework within which both analytic 
and simulation models are simulated. We believe that 
the investigation of sound mathematical foundations 
in the coupled model analysis is a good topic for fur- 
ther research. 
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