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Abstract: This study proposes a new approach called, integer sub-decomposition
(ISD), to compute any multiple kP of a point P of order n lying on an elliptic
curve. Our method depends, in computations, on fast endomorphisms ψ1 and
ψ2 of elliptic curve over prime fields. The integer sub-decomposition to multiple
kP , when the value of k is decomposed into two values k1 and k2, where both
values or one of them is not bounded by ±C √n, is illustrated in the following
formula:

kP = k11P + k12[λ1]P + k21P + k22[λ2]P
= k11P + k12ψ1(P ) + k21P + k22ψ2(P ).

where −C√n < k11, k12, k21, k22 < C√n. The integers k11, k12, k21 and k22
are computed by solving a closest vector problem in lattice. Consequently, as
for this sub-decomposition, we have managed to increase the percentage of a
successful computation of kP . Moreover, the gap in the proof of the bound
of kernel K vectors of the reduction map T : (a, b) → a + λb(mod n) on ISD
method will be filled through the analysis of the multiplier k, using two fast
endomorphisms with minimal polynomials X2 + rXi + si for i = 1, 2, 3. In
particular, we prove an integer sub-decomposition (ISD) with explicit constant

kP = k11P + k12ψ1(P ) + k21P + k22ψ2(P ),

with

max{|k11|, |k12|} and max{|k21|, |k22|} <
√

1 + |ri|+ si
√
n , for i = 1, 2, 3.
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1. Introduction

The attractive features of elliptic curves history awarded it studying by math-
ematicians over a hundred of years to solve a variety of problems. The entry
of these curves into cryptography independently by Neal Koblitz [1] and Victor
Miller [2] in 1985 who suggested elliptic curve public key cryptosystems. The
elliptic curves performance has active importance in the security level as a tra-
ditional asymmetric cryptosystem, such as RSA [3],[4]. The fundamental step
of elliptic curve cryptosystems is to compute elliptic curve scalar multiplication
kP for a point P which has a large prime order n. To accomplish this end,
various methods have been innovated, adopting on elliptic curves E over finite
fields[5],[6],[7] and [8]. A group of methods cleverly employs a distinguished
endomorphism ψ ∈ End(E) to split a large computation into a sequence of
cheaper ones, so that the overall computational cost will be lowered [3].

Recently, Gallant, Lambert and Vanstone [9],[10],[11] used such a technique
that, contrary to the previous ones, also applied to curves defined over large
prime fields. Their method uses an efficiently computable endomorphism ψ ∈
End(E) to rewrite kP as

kP = k1P + k2ψ(P ),with max{|k1|, |k2|} = O(
√
n). (1.1)

Their key point is an algorithm, that will be called the GLV method, which
inputs integers n and λ ∈ [1, n−1] and produces for any k (mod n), two residues
k1 and k2 (mod n) such that

k = k1 + λk2 (mod n). (1.2)

On the other hand, they do not succeed to give an upper bound onmax{|k1|,
|k2|} and they give a guided estimation shows that this must be O(

√
n), but it

does not demonstrate any estimation of the concerned constant in their study
too. The first appearance for an upper bound was in [12] where a different
method was used. Moreover, we were perceived of another usage to the GLV
method [11] where a necessary condition is innovated to be sure that the con-
stant in O(

√
n) is 1 in equation (1.1). This algorithm was the alternative to

the presented GLV method.
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Improving the GLV algorithm would be to find the decomposition

kP = k1P + k2ψ(P ) + ...+ kdψ
d−1(P ),with max{|ki|} = O(n

1

d ). (1.3)

In general using the GLV paradigm in equation (1.3) is not possible, since the
powers ψi are independent over Z only when i < 2. However, a class of ψ′s for
which such a decomposition exists is found as in [13].

Starting with analyzing the GLV method of Gallant, Lambert and Vanstone,
our study uses two fast endomorphisms with minimal polynomials X2 + riX +
si, for i = 1, 2, 3 to compute any multiple kP of a point P of order n lying
on an elliptic curve. When both values or one of them is not bounded by
±
√

1 + |ri|+ si
√
n, i = 1, 2, 3, the value k is then decomposed into the values

k1 and k2. The sub-decomposition from k = k1 + k2λ (mod n) is shown clearly
as follows:

k1 = k11 + k12λ1 (mod n) and k2 = k21 + k22λ2 (mod n). (1.4)

We calculate, in particular, the integer sub-decomposition (ISD) as follows:

kP = k11P + k12[λ1]P + k21P + k22[λ2]P
= k11P + k12ψ1(P ) + k21P + k22ψ2(P ).

(1.5)

where −
√

1 + |ri|+ si
√
n < k11, k12, k21, k22 <

√

1 + |ri|+ si
√
n, i = 1, 2, 3.

A proof is supplied, in this paper, that the ISD algorithm works by producing a
required upper bound of the kernel K vectors of the reduction map T : (a, b)→
a + λb (mod n). We prove, in particular, an integer sub-decomposition with
explicit constant

kP = k11P + k12ψ1(P ) + k21P + k22ψ2(P ), with

max

{

{|k11|, |k12|}
{|k21|, |k22|}

}

<
√

1 + |ri|+ si
√
n, for i = 1, 2, 3. (1.6)

The outline of this paper shows: Section 2 gives a summary of the Math-
ematical background to clarify elliptic curve E over prime field and endomor-
phisms on it. Section 3 reviews the procedure of scalar multiplication using a
GLV method and fills the logical gap of this method. Section 4 shows the value
of the bound C of kernel vectors of the reduction T in GLV method. Section
5 presents a new method called, integer sub-decomposition (ISD), to compute
scalar multiplication depending on the sub-decomposition and demonstrates the
filling up of the logical gap of the ISD method. Section 6 displays the Mathe-
matical proofs which help us find the value of the bound C of kernel vectors of
the reduction map T on ISD method. Finally, Section 7 draws the concluding
remarks.
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2. Mathematical Background

2.1. Elliptic Curves over Prime Fields

Definition 2.1. Let p 6= 2, 3. An elliptic curve E(Fp) over Fp, is defined
by an equation of the form [14]:

E : Y 2 = X3 +AX +B (mod p), (2.1)

where A,B ∈ Fp. The curve E is said to be non-singular if it has no double
zeroes, that means the discriminant DE = 4A3 + 27B2 6= 0 (mod p).

Definition 2.2. Let E(Fp) be an elliptic curve defined in equation (2.1)
over the field Fp, P = (xP , yP ) and Q = (xQ, yQ) two points on E such that
P,Q 6=∞. We define P +Q = R = (xR, yR) as follows [14] and [15]:

µ ≡















(

yQ − yP
xQ − xP

)

(mod p), if P 6= Q
(

3x2P +A

2yp

)

(mod p), if P = Q







xR ≡ λ2 − xP − xQ (mod p)

yR ≡ λ(xP − xR)− yP (mod p).
(2.2)

A special case when P = −Q then P +Q =∞.

2.2. Endomorphisms of Elliptic Curve over Prime Fields

Assume that E is an elliptic curve defined over the finite field Fp. The point
at infinity is denoted by OE . The set of Fp−rational points on E forms the
group E(Fp). A rational map ψ : E → E satisfies ψ(OE) = OE dubbed
an endomorphism of E. The endomorphism ψ will be defined over Fq where
q = pn, if the rational map is defined over Fq. Therefore, clearly, for any n ≥ 1,
ψ is a group homomorphism of E(Fp) and also of E(Fq) [3] and [15].

Definition 2.3. The endomorphism of elliptic curve E defined over Fq is
the m− multiplication map [m] : E → E defined by

P → mP (2.3)

for each m ∈ Z. The negation map [−1] : E → E defined by P → −P is a
special case from m−multiplication map [3].
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Theorem 2.4. (Hasse Theorem). Let E be an elliptic curve over a finite
field Fp [3]. Then, the order of E(Fp) satisfies

|p+ 1−#E(Fp)| ≤ 2
√
p. (2.4)

Definition 2.5. The rectangle norm [4] of (x, y) is defined bymax{|x|, |y|}.
We denote it by |(x, y)|.

3. Bridging the Logical Gaps of the GLV Algorithm

The Gallant-Lambert-Vanstone’s computation method [9] will be briefly sum-
marized in this part. Assume that Fq is a finite field. The point P = (x, y) is
a point on an elliptic curve E defined over a field Fq, with order n such that
the cofactor h = #E(Fq)/n is small, say h ≤ 4. The characteristic polynomial
of a non trivial endomorphism ψ defined over Fq takes the form X2 + rX + s,
where r and s are actually small fixed integers. By the Hasse bound, since n
is large, then ψ(P ) = λP for some λ ∈ [1, n − 1]. As a matter of fact, there
is only one copy of Z/n inside E(Fp) and ψ(P ) has also an order dividing n.
Moreover, the parameter λ is a root of X2 + rX + s modulo n, where the case
λ = 0 is excluded from all cases.

The definition of the group homomorphism T as follows:

T : Z × Z → Z/n
(i, j) → i+ λj (mod n)

(3.1)

represents a pivotal point in GLV method. Let K = kerT . Obviously, K is a
sublattice of Z × Z. And let v1 and v2 be two linearly independent vectors of
K satisfying max{|v1|, |v2|} < M for some M > 0, where | · | indicates to any
metric norm. Consider

(k, 0) = β1v1 + β2v2, (3.2)

where βi ∈ Q. Then the rounding of βi to the nearest integer is bi = ⌊βi⌉ =
⌊βi + 1/2⌉ and suppose that v = b1v1 + b2v2. Observe that v ∈ K and that
u = (k, 0) − v is short. The triangle inequality gives us the following fact

|u0| ≤
∣

∣

v1 + v2
2

∣

∣ < M. (3.3)

If one puts

(k1, k2) = u0, (3.4)
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then from equation (1.2), one can have

kP = k1P + k2ψ(P ), with |(k1, k2)| < M. (3.5)

In this way, it is fundamental in the GLV method thatM should be as small
as possible, taking into consideration that by a simple counting argument we
must have M ≥ √n/2. Gallant et. al, then, claim without proof the fact that

M ≤ C
√
n, (3.6)

for some constant C [4].

4. A Value for C in the GLV Algorithm

Remember that the extended Euclidean algorithm applied to n and λ is used
by the GLV algorithm to generate a sequence of relations

sln+ tlλ = rl, for l = 0, 1, 2, ..., (4.1)

where |sl| < |sl+1| for l ≥ 1, |tl| < |tl+1| and rl > rl+1 ≥ 0 for l ≥ 0. Also, we
have from Lemma (1-iv) in [9]:

rl|tl+1|+ rl+1|tl| = n for all l ≥ 0. (4.2)

The index m of the GLV algorithm defines as the largest integer for which
rm >

√
n. Then (4.2) with l = m gives that |tm+1| <

√
n, so that the kernel

vector v = (rm+1,−tm+1) has rectangle norm bounded by
√
n. The GLV algo-

rithm then sets v2 to be the shorter between (rm,−tm) and (rm+2,−tm+2), but
does not give any estimate on the size of v2. In reality, Gallant et al. claimed
that

min(|(rm,−tm)|), |(rm+2,−tm+2)| ≤ C
√
n. (4.3)

This will be explained with an explicit value of C [4]. Let λ and µ be the
zeros of X2 + rX + s (mod n). For any (x, y) ∈ K − {(0, 0)}, one can have
0 ≡ (x + λy)(x + µy) ≡ x2 − rxy + sy2 (mod n), hence, since X2 + rX + s is
irreducible in Z[X], one must have x2− rxy+ sy2 ≥ n. Certainly, this leads to

max(|x|, |y|) ≥
√

n

1 + |r|+ s
. (4.4)

In particular,
|(rm+1,−tm+1)| ≥

√
n/

√

1 + |r|+ s. (4.5)
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There are two cases of the components of the vector v:

Case 1.[4] If |tm+1| ≥
√
n/

√

1 + |r|+ s. Then, the equation (4.2) with
l = m produces that rm <

√

1 + |r|+ s
√
n, hence

|(rm,−tm)| <
√

1 + |r|+ s
√
n. (4.6)

Case 2.[4] If rm+1 ≥
√
n/

√

1 + |r|+ s. The same equation (4.2) with l = m+1
implies that |tm+2| <

√

1 + |r|+ s
√
n, hence

|(rm+2,−tm+2)| <
√

1 + |r|+ s
√
n. (4.7)

Theorem 4.1. An admissible value [4] for C is

C =
√

1 + |r|+ s. (4.8)

In particular, the decomposition of any multiple kP can take the form

kP = k1P + k2ψ(P ), with max{|k1|, |k2|} <
√

1 + |r|+ s
√
n.

5. Bridging the Logical Gaps of the (ISDA) Integer
Sub-Decomposition Algorithm

The integer sub-decomposition computation method can be interpreted through
this section as follows. Assume that Fq is a finite field. The point P = (x, y)
is a point on an elliptic curve E defined over a field Fq, with order n such that
the cofactor h = #E(Fq)/n is small, say h ≤ 4. The characteristic polynomials
of non trivial endomorphisms ψ1 and ψ2 defined over Fq take the form X2 +
riX+si, where ri and si are actually small fixed integers and i = 1, 2, 3. By the
Hasse bound, since n is large, then, ψ1(P ) = λ1P and ψ2(P ) = λ2P for some
λ1 and λ2 ∈ [1, n−1]. Actually, there is only one copy of Z/n inside E(Fq) and
ψ1(P ) and ψ2(P ) have also an order dividing n. Furthermore, the parameters
λj , j = 0, 1, 2, are roots of X2 + riX + si modulo n, i = 1, 2, 3 and the cases λ1
and λ2 = 0 are excluded from all cases.

A fundamental role of the ISD method lies in the definition of the group
homomorphism

T : Z × Z → Z/n
(a, b)→ a+ λjb (mod n)

(5.1)
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where j = 0, 1, 2. Let K = kerT . Clearly, the K is a sublattice Z × Z. Let
v1, v2, v3, v4, v5 and v6 be linearly independent vectors of K and integer lattice
points that satisfy

max







|v1|, |v2|
|v3|, |v4|
|v5|, |v6|







< M

for some M > 0, where | · | denotes to any metric norm. These points can be
computed by solving the closest vector problem in a lattice which is embodied
in using a GLV generator algorithm in [3] to compute {v1, v2} and our modified
ISD generators algorithm (1) in Appendix (A) to compute {v3, v4} and {v5, v6}.

Express






(k, 0) = β1v1 + β2v2,
(k1, 0) = β3v3 + β4v4,
(k2, 0) = β5v5 + β6v6,

where βi ∈ Q, i = 1, 2, 3, 4, 5, 6. Then the rounding of βi to the nearest integer
bi = ⌊βi⌉ = ⌊βi + 1/2⌉ and let







v = b1v1 + b2v2,
v′ = b3v3 + b4v4,
v′′ = b5v5 + b6v6.

Observe that v, v′, v′′ ∈ K and these







u0 = (k, 0) − v,
u1 = (k1, 0)− v′,
u2 = (k2, 0) − v′′.

are short. By the triangle inequality, one can obtain



















|u0| ≤ |
v1 + v2

2
|

|u1| ≤ |
v3 + v4

2
|

|u2| ≤ |
v5 + v6

2
|



















< M. (5.2)

If one sets

(k1, k2) = u0, (5.3)

then

k = k1 + (k2λ) (mod n) (5.4)
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where k1 and k2 are integers resulting from the decomposition of the multiplier
k by using the balanced length-two representation of a multiplier algorithm [3].
The formula in the equation (5.4) is equivalent to

k = k1 + k
′

2 (mod n),with |(k1, k
′

2)| > M. (5.5)

Thus, the main idea of ISD method is to sub-decompose the values k1
and k

′

2 when both values or one of them is not bounded by ±M . Therefore,
we decompose k1 and k

′

2 again into integers k11, k12, k21 and k22 which means
that the sub-decomposition of k by applying the modified balanced length-two
representation of a sub-decomposition multiplier algorithm (2), in Appendix
(B), as follows:

k = k11 + k12λ1 + k21 + k22λ2 (mod n) (5.6)

with−M < k11, k12, k21, k22 < M from any ISD generators {v3, v4} and {v5, v6}.
Assume that one puts

u1 = (k11, k12) and u2 = (k21, k22), (5.7)

then

k1 = k11 + k12λ1 (mod n) and k2 = k21 + k22λ2 (mod n) (5.8)

which are equivalent to

k1P = k11P + k12ψ1(P ) and k2P = k21P + k22ψ2(P ). (5.9)

That means

kP = k11P + k12ψ1(P ) + k21P + k22ψ2(P ), (5.10)

with

|(k11, k12)| and |(k21, k22)| < M. (5.11)

The fast performance of scalar multiplication kP in equation (5.11) de-
termines our modification, in algorithm (3), in Appendix (C), that uses in
computations two endomorphisms ψ1(P ) = [λ1]P and ψ2(P ) = [λ2]P , where
P ∈ E(Fp), λ1, λ2 ∈ [1, n − 1] and λ1 6= ±λ2. Basically, M is as small as
possible in the ISD method and we must have M ≥ √n/2. The integer sub-
decomposition method, ISD will help increase 50% more successful rate as com-
pared to the GLV method in the computation of the kP . See algorithm (4) in
Appendix (D).
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6. A Value for C in an Integer Subdecomposition Method (ISDM)

In this section, we overcome on the omission which applied to ISD method that
focuses on the sub-decomposition of integer k when the values were decomposed
k1 and k2 are not bounded by ±M . The using of the extended Euclidean
algorithm in the ISD algorithm utilized to n and λ0 firstly to generate a sequence
of relations in the equation (4.1). Also, we had the condition in equation (4.2)
from Lemma (1-iv) in [9]. The GLV algorithm used in ISD method defines the
index m as the largest integer for which rm >

√
n. Then, the equation (4.2)

with l = m gives that |tm+1| <
√
n, so that the vector v1 = (rm+1,−tm+1) in

K, has a rectangle norm bounded by M . The modified GLV algorithm, then,
sets v2 to be the shorter between (rm,−tm) and (rm+2,−tm+2) and satisfies the
conditions in Lemmas (1) and (2) in [11] such that

min(|(rm,−tm)|, |(rm+2,−tm+2)|) ≤ C
√
n,

where gcd(rm,−tm)=1 and gcd(rm+2,−tm+2)=1, with an explicit value of C =
1.

In similar way, we can set the vectors v4 and v6 by depending on v3 and v5
as follows

min

{

|(r̄m,−t̄m)|, |(r̄m+2,−t̄m+2)|
|(r̂m,−t̂m)|, |(r̂m+2,−t̂m+2)|

}

≤ C
√
n, (6.1)

where

gcd















(r̄m,−t̄m)
(r̄m+2,−t̄m+2)

(r̂m,−t̂m)

(r̂m+2,−t̂m+2)















= 1,

with an explicit value C = 1.
Now, one can show the explicit value of C when this value greater than 1

as follows. Let λj and µj ∈ [1, n − 1], j = 0, 1, 2, be the zeros of X2 + riX +
si (mod n), i = 1, 2, 3. For any (x, y) ∈ K − {(0, 0)}, then

0 ≡ (x+ λjy)(x+ µjy) ≡ x2 − rixy + siy
2 (mod n), (6.2)

hence, since X2 + riX + si is irreducible in Z[X], one must have

x2 − rixy + siy
2 ≥ n. (6.3)

This certainly leads to

max(|x|, |y|) ≥
√

n

1 + |ri|+ si
, i = 1, 2, 3. (6.4)
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In particular,






|(rm+1,−tm+1)|
|(r̄m+1,−t̄m+1)|
|(r̂m+1,−t̂m+1)|







≥
√
n/

√

1 + |ri|+ si, where i = 1, 2, 3. (6.5)

Theorem 6.1. Suppose that






|tm+1|
|t̄m+1|
|t̂m+1|







≥
√
n/

√

1 + |ri|+ si, where i = 1, 2, 3.

Then, the equation (4.2) with l = m implies that






rm
r̄m
r̂m







≥
√
n/

√

1 + |ri|+ si, where i = 1, 2, 3.

hence,






|(rm,−tm)|
|(r̄m,−t̄m)|
|(r̂m,−t̂m)|







≥
√
n/

√

1 + |ri|+ si, where i = 1, 2, 3. (6.6)

Proof. From the conditions in equation (4.1) |tl| < |tl+1|, rl > rl+1 ≥ 0 and
in equation (4.2), rl|tl+1|+ rl+1|tl| = n for all l ≥ 0.
⇒ n = rl|tl+1|+ rl+1|tl| > rl|tl+1|+ rl|tl| = rl(|tl+1|+ |tl|).

That is, n > rl(|tl+1|+ |tl|). Since |tl+1| > |tl|
⇒ n = rl(|tl+1|+ |tl|) = 2rl|tl+1|
⇒ n

2 > rl(|tl+1|. From the hypothesis |tm+1| ≥
√
n/

√

1 + |ri|+ si, i = 1, 2, 3,

⇒ n
2 > rl

√
n√

1+|ri|+si

⇒ n
√

1+|ri|+si

2
√
n

> ri

⇒
√
n
√

1+|ri|+si
2 > ri

⇒ ri <
√
n
√

1+|ri|+si
2 <

√
n
√

1 + |ri|+ si,
hence,

|(rm,−tm)| <
√

1 + |ri|+ si
√
n, when i = 1.

In the same way, we can find
{

|(r̄m,−t̄m)|
|(r̂m,−t̂m)|

}

<
√

1 + |ri|+ si
√
n, where i = 2, 3.
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Theorem 6.2. Assume that






rm+1

r̄m+1

r̂m+1







≥
√
n/

√

1 + |ri|+ si, i = 1, 2, 3.

The same equation (4.2) with l = m+ 1 implies that







|tm+2|
|t̄m+2|
|t̂m+2|







<
√

1 + |ri|+ si
√
n, i = 1, 2, 3.

hence,






|(rm+2,−tm+2)|
|(r̄m+2,−t̄m+2)|
|(r̂m+2,−t̂m+2)|







<
√

1 + |ri|+ si
√
n, i = 1, 2, 3. (6.7)

Proof. From the conditions in equation (4.1) |tl| < |tl+1|, rl > rl+1 ≥ 0 and
in equation (4.2), rl|tl+1|+ rl+1|tl| = n for all l ≥ 0.
⇒ n = rl|tl+1|+ rl+1|tl| > rl|tl+1|+ rl+1|tl+1| = |tl+1|(rl + rl+1).
That is, n > |tl+1|(rl + rl+1). Since rl > rl+1 ≥ 0,
⇒ n > |tl+1|(rl + rl+1) = 2rl+1|tl+1|.
⇒ n

2 > rl+1|tl+1|. From the hypothesis rm+1 ≥
√
n/

√

1 + |ri|+ si, i = 1, 2, 3.

⇒ n
2 >

√
n√

1+|ri|+si
|tl+1|,

⇒
√

1+|ri|+si
√
n

2 > |tl+1|,
⇒ |tl+1| <

√
1+|ri|+si

√
n

2 <
√

1 + |ri|+ si
√
n. Since l = m+ 1,

⇒ |tl+2| <
√

1 + |ri|+ si
√
n, i = 1.

In similar way, we can prove
{

|(r̄m+2,−t̄m+2)|
|(r̂m+2,−t̂m+2)|

}

<
√

1 + |ri|+ si
√
n, i = 2, 3.

Hence,






|(rm+2,−tm+2)|
|(r̄m+2,−t̄m+2)|
|(r̂m+2,−t̂m+2)|







<
√

1 + |ri|+ si
√
n, i = 1, 2, 3.

Theorem 6.3. An admissible value for C is

C =
√

1 + |ri|+ si, i = 1, 2, 3. (6.8)



ANALYSIS ON THE ELLIPTIC SCALAR MULTIPLICATION... 107

In particular, any multiple kP can be decomposed as in equation (5.10) with

max











{|k1|, |k2|} <
√

1 + |r1|+ s1
√
n,

{|k11|, |k12|} <
√

1 + |r2|+ s2
√
n,

{|k21|, |k22|} <
√

1 + |r3|+ s3
√
n.

(6.9)

Proof. First, we want to prove C =
√

1 + |ri|+ si, for i = 1, 2, 3.

From Theorem (6.1), we can obtain







|(rm,−tm)|
|(r̄m,−t̄m)|
|(r̂m,−t̂m)|







<
√

1 + |ri|+ si
√
n, for i = 1, 2, 3.

And from Theorem(6.2), we can get







|(rm+2,−tm+2)|
|(r̄m+2,−t̄m+2)|
|(r̂m+2,−t̂m+2)|







<
√

1 + |ri|+ si
√
n, i = 1, 2, 3,

then

min







|(rm,−tm), (rm+2,−tm+2)|
|(r̄m,−t̄m), (r̄m+2,−t̄m+2)|
|(r̂m,−t̂m), (r̂m+2,−t̂m+2)|







<
√

1 + |ri|+ si
√
n, i = 1, 2, 3. (6.10)

By comparison between two equations (6.1) and (6.10), we can find the value
of C as in equation (6.8).

Now to prove any multiple kP can be decomposed as in equation (5.10)
with the conditions in equation (6.9). Since X2 + riX + si are irreducible in
Z[X], we must have the inequality in equation (6.3). This implies that the
inequality in equation (6.4). In particular,







|(rm+1,−tm+1)|
|(r̄m+1,−t̄m+1)|
|(r̂m+1,−t̂m+1)|







≥
√
n/

√

1 + |ri|+ si, for i = 1, 2, 3,

and |(rm+1,−tm+1)| = |v1|, |(r̄m+1,−t̄m+1)| = |v2| and |(r̂m+1,−t̂m+1)| = |v3|.
Since u1 = (k11, k12) and u2 = (k21, k22) from equation (5.7) and from equation
(5.8), respectively, we can get k1 = k11 + k12λ1 (mod n) and k2 = k21 +
k22λ2 (mod n) which are equivalent to k1P = k11P + k12ψ1(P ) and k2 =
k21P + k22ψ2(P ) as shown in equation(5.9).
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From inequalities in equation (5.2) as

|u1| ≤ |
v3 + v4

2
| < M and |u2| ≤ |

v5 + v6
2
| < M,

then
|(k11, k12)| < M and |(k21, k22)| < M.

Since M ≤ C√n, then |(k11, k12)| < C
√
n and |(k21, k22)| < C

√
n. Now, from

definition (2.5) of rectangle norm

|(k11, k12)| = max(|k11|, |k12|) and |(k21, k22)| = max(|k21|, |k22|).

This means that max(|k11|, |k12|) < C
√
n and max(|k21|, |k22|) < C

√
n.

Finally, from equation (6.8) to compute C, we can find

max

{

|k11|, |k12|
|k21|, |k22|

}

<
√

1 + |ri|+ si
√
n for i = 2, 3.

7. Conclusion

The present work proposes a new method which help facilitate the use of Gallant
et al.’s (GLV) integers are not bounded by ±√n. This new method, namely,
the integer sub-decomposition method, ISD will help increase 50% more suc-
cessful rate as compared to the GLV method in the computation of the kP .
This study also, focuses on presenting an accurate analysis of the ISD method
that optimizes and proves on existing bound. This bound determines value C
which is greater than 1, say C =

√

1 + |ri|+ si, i = 1, 2, 3 in case in which
the endomorphism rings End[ψ] over Z. This analysis can be applied when
embedding endomorphism rings End[ψ] into complex number field C, one can
further notice that dealing with similar case where C > 1 is more complicated
than in case in which the endomorphism rings End[ψ] over Z. Moreover, the
generalization can include the hyperelliptic curves of the ISD method.
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Appendix A. ISD Generators Algorithm

Algorithm 1 (Find ISD generators v1 = (a, b), v2 = (c, d), v3 = (g, j) and
v4 = (e, f) for given n and λ1, λ2 ∈ Z, where λ1 6= ±λ2).
Input. Integers n, λ1, λ2.
Output. The vectors v1, v2, v3 and v4.

Step 1. Compute v1 = (am+1,−bm+1) and v3 = (gm+1,−jm+1) such that
sm+1n+bm+1λ1 = am+1 and um+1n+jm+1λ1 = gm+1 where |am+1|, |bm+1|,
|gm+1| and |jm+1| < C

√
n by using the extended Euclidean algorithm to

find firstly the greatest common divisor of n and λ1 and secondly of the
same n and λ2. (This is the extension of Gallant et al.’s algorithm for two
vectors v1 and v3).

Step 2. Check if each component of v2 either (am,−bm) or (am+2,−bm+2) and
(gm,−jm) or (gm+2,−jm+2) is bounded by C√n, stop and set the shorter of
(am,−bm) and (am+2,−bm+2) as the second vector v2, also set the shorter
of (gm,−jm) and (gm+2,−jm+2) as the fourth vector v4. Otherwise, go to
step 3.

Step 3. Find any d′, w′, f ′ and v′ such that sm+1d
′−bm+1w

′ = 1 and um+1f
′−

jm+1v
′ = 1.

For example, d′ and w′ are obtained from the extended Euclidean algo-
rithm, since sm+1 is relatively prime to −bm+1, and the same thing with
f ′ and v′ are obtained from the extended Euclidean algorithm, since um+1

is relatively prime to −jm+1.

Step 4. Compute

I11 = −
d′

b
−
√
n

b
, I12 = −

d′

b
+

√
n

b
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and

I ′11 = −
f ′

j
−
√
n

j
, I ′12 = −

f ′

j
+

√
n

j
.

Step 5. Let
I1 = [I11, I12], I ′1 = [I ′11, I

′
12], if b > 0,

and
I1 = [I12, I11], I ′1 = [I ′12, I

′
11], if b < 0.

Step 6. Compute

I21 = −
d′λ1 − w′n

a
−
√
n

a
, I22 = −

d′λ1 − w′n
a

+

√
n

a
.

Also,

I ′21 = −
f ′λ2 − v′n

g
−
√
n

g
, I ′22 = −

f ′λ2 − v′n
g

+

√
n

g
.

Step 7. Let I2 = [I21, I22] and I
′
2 = [I ′21, I

′
22].

Step 8. Find all integers in the intersection of I1 and I2 and define them by
α1, also all integers in the intersection of I ′1 and I ′2 and define them by α2.
Note that the numbers of α′

1s and α′
2s are at most 4. If there is not any

of such integers exist, stop.

Step 9. Set v2 = (c, d) and v4 = (e, f), where

c = w′n− d′λ1 + α1a, d = d′ + α1b

and
e = v′n− f ′λ2 + α2g, f = f ′ + α2j.

One can easily verify that v2 = (c, d) and v4 = (e, f) are in the K and |c|, |d|, |e|
and |f | < C√n, therefore, {v1, v2} and {v3, v4} are ISD generators.

Appendix B. Balanced Length-Two Representation of a
Sub-Decomposition Multiplier Algorithm

Algorithm 2 (Balanced length-two representation of a sub-decomposition mul-
tiplier algorithm).
Input. Integers n, λ1, λ2 ∈ [1, n− 1], where λ1 6= ±λ2 and k1, k2 ∈ [1, n − 1].
Output. Integers k11, k12, k21 and k22 such that k = k11 + k12λ1 + k21 +
k22λ2 (mod n) and |k11|, |k12|, |k21|, |k22| < C

√
n.
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Step 1. Run ISD generators algorithm (1) with inputs n, λ1 and λ2. The
algorithm produces the ISD generators {v3, v4} and {v5, v6}.

Step 2. Set v3 = (r̄m+1,−t̄m+1) = (r̄,−t̄) and v5 = (r̂m+1,−t̂m+1) = (r̂,−t̂).
Step 3. If (r̄2m + t̄2m) ≤ (r̄2m+2 + t̄2m+2) then set

v4 = (ū, v̄)← (r̄m,−t̄m) and v6 = (û, v̂)← (r̂m,−t̂m).

Else

v4 = (ū, v̄)← (r̄m+2,−t̄m+2) and v6 = (û, v̂)← (r̂m+2,−t̂m+2).

Step 4. Compute c3 = ⌊v̄k1/n⌉, c4 = ⌊−t̄k1/n⌉ and c5 = ⌊v̂k2/n⌉, c6 =
⌊−t̂k2/n⌉.

Step 5. Compute k11 = k1− c3r̄− c4ū, k12 = −c3t̄− c4v̄ and k21 = k2− c5r̂−
c6û, k22 = −c5t̂− c6v̂.

Step 6. Return k11, k12, k21 and k22.

Appendix C. Modification of Point Multiplication with Two
Efficiently Computable Endomorphisms Algorithm

Algorithm 3 (Modification of point multiplication with two efficiently com-
putable endomorphisms algorithm.

Input. Integer n, k1, k2 ∈ [1, n− 1], P ∈ E(Fp), window widths w1, w2, w3 and
w4, λ1, λ2 ∈ Z, where λ1 6= ±λ2.
Output. kP .

Step 1. Use balanced length-two representation a sub-decomposing of a mul-
tiplier algorithm to find k11, k12, k21 and k22 such that

k = k11 + k12λ1 + k21 + k22λ2 (mod n).

Step 2. Calculate P2 = ψ1(P ), P3 = ψ2(P ) and let P1 = P .

Step 3. Use computing width-w NAF of positive integer algorithm to compute

NAFwj
(|kz,j |) = Σ

lj−1
i=1 kz,j,i2

i for j = 1, 2 and z = 1, 2.

Step 4. Let lz = max{lz,1, lz,2}, z = 1, 2.

Step 5. If kz,j < 0, then set Gz,j,i ← −Gz,j,i for i = 0 : lz, j = 1, 2 and
z = 1, 2.
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Step 6. Compute iPj and iPs for i ∈ {1, 3, ..., 2wj−1−1} and i ∈ {1, 3, ..., 2ws−1−
1}, where j = 1, 2 and s = 1, 3.

Step 7. Q←∞.

Step 8. For i = lz − 1 : 0 do

8.1 Q← 2Q.

8.2 For j = 1, 2, z = 1 do

If Gz,j,i 6= 0 then:
If Gz,j,i > 0 then Q← Q+ kz,j,iPj ;
Else Q← Q− |kz,j,i|Pj .

Step 9. For j = 1, 2, z = 2 do

If Gz,j,i 6= 0 and s = 1, 3 then
If Gz,j,i > 0 then Q← Q+ kz,j,iPs;
Else Q← Q− |kz,j,i|Ps.

Step 10. Return Q.

Appendix D. ISD Method to Compute Point Multiplication Elliptic
Curve kP

Algorithm 4 (ISD Method to Compute Point Multiplication Elliptic Curve
kP ). This algorithm consists of the following steps:

Step 1. Apply GLV generator algorithm in [11] to find the generator {v1, v2}
for the given n and λ such that v1 ← (r, t) and v2 ← (u, v).

Step 2. Use balanced length-two representation of a multiplier algorithm in
[3] to decompose k to find k1 and k2 for a given n, λ and k ∈ [1, n − 1].

As for the proposed steps for modification, they include the following:

Step 3. Use algorithm (2) to find

3.1 For n and λ1, generate the ISD generator {v3, v4} such that v3 ← (r̄, t̄)
and v4 ← (ū, v̄).

3.2 For n and λ2, generate the ISD generator {v5, v6} such that v5 ← (r̂, t̂)
and v6 ← (û, v̂).

Step 4. Use algorithm (3) to decompose k1 and k2 such that k1 = k11 +
k12λ1 (mod n) and k2 = k21 + k22λ2 (mod n). That is, one can get
k = k11 + k12λ1 + k21 + k22λ2 (mod n).
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Step 5. Use algorithm (4) to compute kP defined as

kP = k11P + k12[λ1]P + k21P + k22[λ2]P

= k11P + k12ψ1(P ) + k21P + k22ψ2(P ).

such that ψ1(P ) ← [λ1]P and ψ2(P ) ← [λ2]P , where λ1, λ2 ∈ Z and
λ1 6= ±λ2.


