
Boise State University
ScholarWorks
Computer Science Faculty Publications and
Presentations Department of Computer Science

1-1-2017

Analysis on the Security and Use of Password
Managers
Carlos Luevanos
Willamette University

John Elizarraras
North Star Charter High School

Khai Hirschi
Capital High School

Jyh-Haw Yeh
Boise State University

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. doi: 10.1109/PDCAT.2017.00013

https://scholarworks.boisestate.edu
https://scholarworks.boisestate.edu/cs_facpubs
https://scholarworks.boisestate.edu/cs_facpubs
https://scholarworks.boisestate.edu/cs
http://dx.doi.org10.1109/PDCAT.2017.00013

Analysis on the Security and Use of Password Managers*

Carlos Luevanos1, John Elizarraras2, Khai Hirschi3, and Jyh-haw Yeh4

1Dept. of Computer Science, Willamette University, CA
2North Star Charter High School, Eagle, ID;

3Capital High School, Boise, ID
4Dept. of Computer Science, Boise State University, ID

Abstract— Cybersecurity has become one of the largest
growing fields in computer science and the technology industry.
Faulty security has cost the global economy immense losses.
Oftentimes, the pitfall in such financial loss is due to the
security of passwords. Companies and regular people alike do
not do enough to enforce strict password guidelines like the
NIST (National Institute of Standard Technology) recommends.
When big security breaches happen, thousands to millions
of passwords can be exposed and stored into files, meaning
people are susceptible to dictionary and rainbow table attacks.
Those are only two examples of attacks that are used to
crack passwords. In this paper, we will be going over three
open-source password managers, each chosen for their own
uniqueness. Our results will conclude on the overall security
of each password manager using a list of established attacks
and development of new potential attacks on such software.
Additionally, we will compare our research with the limited
research already conducted on password managers. Finally, we
will provide some general guidelines of how to develop a better
and more secure password manager.

Index Terms— Password Managers, Password Authentication

I . I N T RO D U C T I O N

In this paper, we will be discussing three open-source

password managers: Passbolt [24], Padlock [8], and Encryptr

[6]. We have chosen these three due to each unique quality

they carry; we will mention them here once and then bring

them up again in their separate sections. Passbolt was chosen

for its unique property in that its full potential and benefits are

reached when utilized by teams, companies, and closed groups

of people who trust each other with sensitive information;

additionally, Passbolt runs on OpenPGP [7], a secure email

encryption standard founded by Phil Zimmerman. Padlock

was chosen for its use of the Electron and Polymer developer

environment as well as being a minimalist password manager.

Lastly, Encryptr was chosen for its brow-raising qualities; all

data is stored in the cloud, and it uses Crypton, a cryptography

framework that implements a no-knowledge proof system, a

somewhat fancier way of saying end-to-end encryption. To

conclude our paper, we will compare and contrast all the

features between these password managers and more popular

ones in order to have a standard of security for this type of

software in general.

*This work was partially funded by the NSF REU Software Security Site
and NASA ISGC High School Summer Research Experience grants.

4The corresponding author, jhyeh@boisestate.edu

The organization of this paper starts with the related works

in Section II. Following that we give a brief rundown and

history of password managers. We then discuss each password

manager in their own sections; we will go over Passbolt,

Encryptr, and Padlock in that order. Each section contains

subsections discussing the details of the password managers,

reported security flaws already found for them, our reported

flaws, a review and critique about the password manager,

and then some potential solutions to the vulnerabilities. The

paper concludes with suggestions of what an ideal password

manager should have; we review some features of more

popular password managers and look at the pros and cons of

both open-source and closed-source password managers.

I I . R E L AT E D W O R K

The niche of research on password managers has direct

ties to that of applied cryptography and penetration testing,

so the body of our work will go back to referencing a mix of

academic papers on the security of more popular password

managers and penetration testing write ups performed by

security auditing teams, although we will reference some

papers that display proof of concept or have contributed to

the field in some other way. Additionally, we have tried

our best to extend any and all audits performed on our

three researched password managers. The earliest work for

password managers comes from Luo and Henry in 2003 [20],

who demonstrated a proof of concept and implementation of

a more effective password manager, compared to Microsoft

Passport. In 2005, Halderman et al’s work [19] comprised the

proof of concept and implementation of a password manager

in the web-browser, where an example implementation in

Firefox was given in their work.

Moving on to the trend of security analysis, we are given

insight on popular password managers such as LastPass and

Roboform by Li, He, Song, and Akhawe [18]. Silver, Jana,

Chen, Boneh, and Jackson [3] made outstanding contributions

to the auto-fill feature found in popular password managers

such as LastPass, KeePass, and those implemented in web-

browsers such as Google Chrome and Safari. They found

critical vulnerabilities that abused the auto-fill feature; such

attacks include iFrame sweep attacks, password sync exploita-

tion, and injections. Their work would help greatly influence

the policies auto-fill executes. To show some of the root

problems as to why password managers are seeming to

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 18th International Conference on Parallel
and Distributed Computing, Applications and Technologies (PDCAT 2017), published by IEEE. Copyright restrictions may apply. doi: 10.1109/PDCAT.2017.00013

become more and more necessary, the work of Gaw and

Felten [16] would contribute statistical analysis of surveys

performed at Princeton University. Gaw and Felten found

that participants often reused passwords for less important

websites and predict this trend would grow as more on-line

accounts accumulate. Participants were found to be ignorant

to the security risks that this trend brings. They also found a

feeling of indifference towards the use of password managers.

Looking at the rising trend of cloud computing, the work of

Zhao, Yue, and Sun [14] contributed to vulnerability analysis

of LastPass and Roboform; they were able to detect threats

such as credentials being stored in plain-text on cloud servers

and offered suggestions to both product makers on how to

better secure their data and product.

To conclude the related work we mention Gasti and

Rasmussen [13]; their contributions include a forefront on

the analysis of password manager database formats, as their

paper’s title suggests: “On The Security of Password Manager

Database Format.” What Gasti and Rasmussen found was that

despite a number of password managers being different from

each other, each pretty much used the same database format.

They also found several vulnerabilities in each password

manager they investigated.

I I I . OV E RV I E W O F PA S S W O R D M A NAG E R S

A. Quick Rundown

First and foremost, we must define what a password man-

ager is. Password managers are programs used to generate,

encrypt, and store passwords for a client-side user. All that

is required of a user is to remember one master password

and user name. It is believed that using such software will

increase security. Typically passwords will be stored on the

local machine itself or on some hosted server. In some cases,

they may be hosted on cloud servers to ensure more security

for the parties involved; i.e., the user and the host of the

servers/proprietors of a password manager. There is some

variety in the types of password managers available to the

public; some are built into web browsers such as Google

Chrome, Mozilla Firefox, Safari, and Microsoft Edge, while

others serve as standalone programs with the capability of

web-browser integration. Some strictly enforce strong master

passwords while others do not. More notably there are a few

that have integrated multi-factor authentication, which is very

beneficial to security. Given a brief rundown of such software,

let us now delve into some history.

B. History of Password Managers

Not much is known about password managers; the first

successful implementation of an effective password manager

open to the public (to our knowledge), after the work of

Luo and Henry [20], was KeePass, developed by Dominik

Reichl [21], with an initial launch back in 2003. KeePass is

a minimalist password manager that runs on Windows, Mac

OS, and Linux, along with unofficial imports to Android,

IoS, and Blackberry. The latest versions of KeePass use

AES-256 bit encryption [40] along with ChaCha20-256 bit

encryption [41]; however, KeePass does allow you to use

other algorithms if you wish to do so, but we shall not go

over technical specifications. Following a mixed response

from the launch of KeePass, it would be a few years until

commercial success for password managers took off; LastPass,

Dashlane, and Roboform serve as prime examples, with the

LastPass being the most popular, having a reported 7 million

users as of 2015 [22]. By the 2010’s it seems as if some kind

of password manager mania has taken off. Many developers

have begun focusing their time on password managers, and to

increase popularity they made their work open-source, giving

the public a chance to use their product and view their code,

giving the technical community a chance to shape a password

manager to their liking by giving feedback on what can be

added onto or improved, or by exposing vulnerabilities [23].

This method seems to be useful in the fact that it is essentially

a free security audit. Of course, the time it would take to

report to developers would be much longer.

I V. O P E N - S O U R C E PA S S W O R D M A NAG E R S

Now focusing our attention to the bulk of our work, let us

recall our three password managers: Passbolt, Padlock, and

Encryptr. Each of these password managers is open-source.

We chose to look at open-source password managers for

multiple reasons. First of all, because they are open-source,

we can look at the source code ourselves. Additionally, this

also allows us to set up our own servers to test on. Each

password manager was chosen for their own unique properties.

We shall go into technical detail about each one, along with

pointing out vulnerabilities we have found in each one and

referencing previous vulnerabilities exposed by others.

A. PASSBOLT

Passbolt is an open-source password manager initially de-

veloped by Kevin Muller, Diego Lendoiro, Remy Bertot, and

Cedric Alfonsi, with later work of Passbolt being supported

by the GitHub community. Passbolt’s core user-base includes

development teams and companies, adopting the philosophy

that company password policies can be shoddy or annoying,

which in turn creates a less efficient workspace and perhaps

some security vulnerabilities. The Passbolt development team

believes their product can be adopted to ease the process of

sharing passwords among peers and coworkers in an easier

and much more secure way [24].

1) Overview of Passbolt: Currently, Passbolt only runs in

a browser. More specifically, it only runs on Firefox and

Google Chrome. This is reportedly due to them still being in

the alpha development of Passbolt [25]. Passbolt was written

in JavaScript, PHP, and Shell, and it currently uses OpenPGP

for their encryption standard. Passwords stored in Passbolt

are encrypted, and the database used by the client can also be

encrypted to improve security. However, user names are not

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 18th International Conference on Parallel
and Distributed Computing, Applications and Technologies (PDCAT 2017), published by IEEE. Copyright restrictions may apply. doi: 10.1109/PDCAT.2017.00013

encrypted and are stored in plain text. One existing problem

for Passbolt includes the use of a bad pseudo-random number

generator [25]. There is also no current way to change your

master password or use multi-factor authentication. There

is the option of emailing a copied list of your encrypted

passwords to yourself should the option for email notification

be enabled. Passbolt also boasts the use of a color security

token which should prevent phishing, however, we believe

we have found a way to bypass this feature which we will go

into detail in our discovered flaws section. Another current

flaw reported by the Passbolt team is the predicament of the

client and server trusting all keys; although they admit to this

being a flaw, they wish to fix this error in the future [25].

2) Reported Security Flaws: Found early in the surveil-

lance of Passbolt, it was discovered by Wigginton et al that

the use of the PHPseclib has the potential to default to the

use of ECB encryption [4]. While this isn’t a direct flaw

in Passbolt itself, it is still a flaw to consider. Reported

problems by Passbolt include server integrity problems, DDoS

attacks, server information leaks, key revocation, the potential

of authentication cookies being stolen if SSL is broken, and

the potential to mimic server keys [26]. It should be noted

that Passbolt currently only uses MySQL servers, which have

had reported problems that were recently fixed by Golunski

[2]. Given that Passbolt is only in alpha and developed by

a single team rather than a company, they do not have the

resources to perform a full-stretched security audit; most

vulnerabilities have been found by the developers themselves

or by the GitHub community. The team’s use of cryptographic

functions (by use of OpenPGP) has been reviewed by security

audit team Cure53 [27]. The team was able to find several

vulnerabilities in the OpenPGP library but we shall omit the

details.

3) Our Discovered Flaws: To begin testing on Passbolt

we opted to not perform any attacks already conducted, so

we tried some of our own attacks. Before testing, we set up a

private server using the Hamachi Virtual Private Network

so that we could as closely as possible simulate a work

environment typical to what Passbolt should be used for. The

tools involved were all on Kali Linux, with the exception of

some attacks written in C# and tested on Windows machines.

It was very easy to see that a key-logger on an unsuspecting

user would give us the master password. Passbolt was also

found to be susceptible to a clipboard attack; given the

generated passwords can be somewhat hard to read, a user

will opt to just copy and paste rather than manually type their

passwords, making strong individual passwords to websites

and services seem useless if an attacker is successful.

Passbolt has a special feature to prevent phishing attacks;

a user will remember a color assigned to them and it will be

present when they attempt to log-in. We conducted an attack

on their use of this color key token; by grabbing a live copy

of a user’s session we were able to find the lines of code

that gave us the color. Simply editing these lines we now

had an exact copy of what a user would think is the login

page, all working as if it were the real thing. With this, an

attacker could potentially perform a phishing attack in which

they can steal a user’s master password. See Figure 1 and

Figure 2 for more detail.

Fig. 1: Here we can see the hex value of the color a user’s

security token

Fig. 2: By editing this hex value, we can replace the color

with any color of our choice

One other attack we created was a custom user-script. A

user-script is a custom script that users can install to gain

extra functions to websites. Users will typically not look over

all of the code in the user-script, so it would be easy to hide

two lines of malicious code in a script that looks innocent. We

created a script (see Appendix) that would secretly replace

all links that download the Firefox Passbolt extension with

another random extension. All the links appear to go to the

original website, as seen in Figure 3. Because of the way

Firefox installs extensions, the user will get a pop-up that

says the website itself wants the user to download the fake

extension, making the extension seem trusted (See Figures

4 and 5). The Passbolt extension itself can’t be modified,

however, as Passbolt detects any changes and disables itself

if it finds any. Downloading a fake extension would bypass

this, and since the extension is open-source, mimicking the

extension would be very simple. A proposed method to get

the user to download this user-script is to hide the code

inside a good user-script. As mentioned previously, the code

would most likely go unchecked. Another method would be

to hide it in an extension. The extension would then inject

the JavaScript into the website.
4) Review and Critique: Overall, Passbolt was not a very

user-friendly password manager and we question the integrity

of the product. They have no reported security audits on their

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 18th International Conference on Parallel
and Distributed Computing, Applications and Technologies (PDCAT 2017), published by IEEE. Copyright restrictions may apply. doi: 10.1109/PDCAT.2017.00013

Fig. 3: Notice how the link to download the extension appears

to go to passbolt.com

Fig. 4: Firefox shows the server itself asking you to download

the extension

Fig. 5: The link actually downloads an arbitrary extension

called NoScript

product except a reference to the audit of OpenPGP, and they

lack many key features other password managers have, which

brings into question why they would even release an alpha

version of their product. Additionally, their demo page is

quite shoddy and the intended use of the password manager

seems to often lead attackers to use cunning phishing attacks

and DDoS attacks. The design also increases the risk of an

attack on the main administrator, since they are at the core of

how Passbolt should be used by a company. It should also be

noted there is no enforcement of a strong master password,

which is in itself a big security risk.

5) Solutions to Some Vulnerabilities: We suggest that the

Passbolt team develop some features such as typing obfusca-

tion and auto-fill to protect against key-logger and clipboard

attacks. We also encourage the use of other types of servers

besides MySQL. While not all servers are perfect, giving

user options can potentially increase the overall security of

the company using Passbolt. The user-script vulnerability is

something that would be hard for Passbolt to stop, but they

should at least use an HTML content security policy that

would block scripts loaded from an off-line source, most of

the time [12]. We would also recommend some way to either

obfuscate the security token or develop some other method

in order to prevent our proposed phishing attack.

B. ENCRYPTR

Encryptr is an open-source password manager initially

developed by Tommy Williams and then bought out by

SpiderOak [28], a company focused on building services that

feature no-knowledge frameworks.

1) Overview of Encryptr: Encryptr is a cross-platform pass-

word manager, e-wallet, and note-holder written in JavaScript,

HTML, CSS, JSON, and XML. Its encryption standard was

built using the Crypton framework, created by SpiderOak.

Crypton is an open-source framework developed in JavaScript

with a primary goal to store information on a server without

the server ever knowing what is stored [1]. Crypton’s back-

end uses PostgreSQL [36], Redis [37], Node.js [38], and

Docker [39]. Encryption and decryption are assumed in

AES-256 using Galois/Counter Mode. For more specifics,

ElGamal encryption [35] and ECDSA (Elliptic Curve Digital

Signature Algorithm) [34] are used for signature verification,

elliptic curve cryptography is used for key generation, and

such ciphers can be switched for others if a user decides

to do so [1]. The strength of Crypton is the protection of

user data and data sharing, it is the direct belief of end-

to-end encryption that users may feel more secure from

attackers and the company hosting such a service. Crypton

also uses SRP (Secure Remote Password) authentication,

which reportedly limits data compromise, with the only

supposed attack that being brute forcing AES keys [1]. Some

weaknesses of Crypton include the ability of peer graph

analysis and container access frequency analysis. What we

mean by the former statement is that user-names are stored in

plain text, so it is possible for database records to be analyzed

in order to find connections between users and perform some

intelligence gathering, leading to more potential attack vectors

[1]. As for the latter, containers in Crypton can sometimes be

created, updated, and accessed deterministically, which can

lead to a potential brute force attack. However, this can be

remedied using a strong password [1]. One last note about

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 18th International Conference on Parallel
and Distributed Computing, Applications and Technologies (PDCAT 2017), published by IEEE. Copyright restrictions may apply. doi: 10.1109/PDCAT.2017.00013

Crypton and other SpiderOak applications is the use of the

clipboard, which is reported by them to be safer than just

typing all your information.

2) Reported Security Flaws: It should be noted in this

section that no official security audit of Encryptr has been

performed. Furthermore, to our knowledge no security audit

has been performed on other SpiderOak services. Only two

official security audits were performed and published on

Crypton. The main issues reported by Leviathan Security

Group include [10]:

1) An account’s public key is not verified against the

decrypted private key. This could result in a user

encrypting something that cannot be decrypted.

2) The public signing key is not verified against the private

signing key.

3) A container by the name of containerNameHMacKey

is not verified before decryption, so the server could

replace it with a different known container and encrypt

a new symmetric key to the user’s public key.

A look into the report by Least Authority gave us some

more insight into the security of Crypton which includes [11]:

1) Server information forgery: attackers with access to the

server can overwrite and forge data on a user’s account.

2) Guessable private keys: an attacker with server access

can grab copies of cipher-text and read the plain-text.

3) An attacker with server access can disclose the en-

cryption key, essentially making all container contents

available to them.

Having read both reports we noticed plenty of the attacks

included DDoSing. While not the largest security threat to

worry about, it can still cost companies quite a bit of money

and reputation. The reports failed to include auditing web-

based attacks such as XSS attacks (Cross-Site Scripting),

CSRF attacks (Cross-Site Request Forgery), Man-In-the-

Browser attacks, and SQL injections.

3) Our Discovered Flaws: Our reported findings of vul-

nerabilities for Encryptr include:

1) High security threat with clipboard attacks (copying is

the easiest way to transfer passwords from Encryptr to

a form).

2) Susceptible to key-loggers when typing your master

password or when transferring passwords from Encryptr

to a form without copy-paste.

4) Review and Critique: Encryptr was the most minimal

of the three open-source password managers reviewed by

far; it was incredibly simple, it could be used on almost all

platforms and did not require the use of an email, yet you

could still retrieve the same data from other devices. One

critique of Encryptr is that after some further investigation it

was discovered some code is still obfuscated. It is also noted

that there is no strict enforcement of strong passwords and

generated passwords have a default length of 12 characters.

5) Solutions to Some Vulnerabilities: Like for Passbolt,

we recommend SpiderOak implement an auto-fill feature for

passwords and credit-card information, along with typing

obfuscation should user’s create their own passwords instead

of generating one.

C. PADLOCK

Padlock is a minimalist, open-source password manager

developed by Martin Kleinschrodt using the Electron and

Polymer frameworks, so like Passbolt and Encryptr, it was

all written in JavaScript, HTML, and CSS, and for the most

part, all code is available to the public. Padlock is multi-

platform and can be used on Windows, MacOS, Android,

iOS, and some time in the future, Linux.

1) Overview of Padlock: Similar to Passbolt and Encryptr,

Padlock uses a copy/paste function to quicken the process of

using one’s passwords. As noted earlier, this leads to very big

security problems. One of the notable features of Padlock

is that the application automatically logs you out of your

vault in one minute if there is no user activity detected. This

feature can be changed to a maximum of ten minutes or can

even be disabled if the user wishes to do so. Padlock does

include its own password generator, however, its weakness

is that 7 character passwords with at least one uppercase

letter, lowercase letter, and special character are considered

very strong by Padlock. By the 2017 NIST standards, these

generated passwords are not considered secure [29].

2) Reported Security Flaws: Surprisingly, the creator of

Padlock has a repository for penetration testing of his own

application. Furthermore, the penetration team Cure53 was

hired to do even more extensive testing. The reports detail

some of the following vulnerabilities:

• Tap-jacking [9].

• Exposed authentication tokens during API requests,

leading to Man in the Middle attacks [9].

• Permanent DoS attack on mobile devices: an attacker

with server access can increase the number of iterations,

essentially making the CPU do a job it cannot do, and

ultimately having to make the user reset Padlock if

they want to use the application on their phone again.

However, resetting Padlock will delete all information

stored [9].

• DoS email attacks [9].

3) Our Discovered Flaws: Since Padlock uses the clip-

board like Passbolt and Encryptr, along with no auto-fill

feature, it was easy to discover that Padlock is susceptible

to clipboard attacks and key-loggers. Additionally, we wrote

a script (see Appendix) that would be able to reset a user’s

account, all that is required is the user click a button, thus

deleting all their saved passwords and information. The attack

involves a user installing a script or extension which would

then inject JavaScript into the Padlock web page. For testing

purposes, we did this using our own personal server, but we

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 18th International Conference on Parallel
and Distributed Computing, Applications and Technologies (PDCAT 2017), published by IEEE. Copyright restrictions may apply. doi: 10.1109/PDCAT.2017.00013

believe it can be easily adapted to any other server using

Padlock. We also used a user-script (defined in subsection

IV-A.3) to manipulate a vulnerability in Padlock. Padlock has

an on-line dashboard where users can change what devices

have access to their account, as well as reset their data–with

no password. To abuse this fault, we made a script that would

reset the user’s data the instant they logged into the dashboard.

It should be noted that Padlock does try to prevent this. It uses

content security policies that block off-line scripts [12]. This

method will break certain user-script managers (extensions

that install and inject the user-scripts) but some managers

are able to bypass the security policy. This is something

Padlock can’t fix but they should ask for more verification,

such as a password, to reset all of the user’s data. It is just

two clicks to clear all of the passwords and devices on an

account. It should be noted that if you don’t reset the client,

your passwords are safe, but if the cloud was the only place

where the passwords were stored, this method will make the

passwords unrecoverable. Another script (see Appendix) we

made would revoke all of the devices, meaning that the user

would lose access to the cloud on their devices. This isn’t a

huge issue, as the user can just reconnect, but it demonstrates

Padlock’s vulnerability to script attacks.

4) Review and Critique: Padlock lived up to its name of

being a minimalist password manager that got the job done

and we were quite pleased with the initial security audits that

were reported on the application. Overall it was easy to use

and the ability to use a custom server was a nice addition.

However, we did not like the minimum security standards of

generated passwords, nor was there any strict enforcement of

strong master passwords.

5) Solutions to Some Vulnerabilities: Similar to Passbolt

and Encryptr, we suggest the creation of an auto-fill feature as

well as typing obfuscation to prevent key-logger and clipboard

attacks. Additionally, we suggest that the reset feature be

removed, as loss of all passwords in one swoop can be easy;

whether they be by someone with direct access to the local

machine or by some social-engineering attack.

V. C O N C L U S I O N : W H AT M A K E S A

PA S S W O R D M A NAG E R M O R E S E C U R E

In this section, we will review the strengths and weaknesses

of all the password managers we looked at in comparison

with the strengths and weaknesses of more popular password

managers in order to envision what a more secure password

manager would look like.

A. Strengths of Open-Source Password Managers

Looking back at Passbolt, Encryptr, and Padlock, one of the

greatest strengths they commonly share is the fact that they

are open-source. This allows for consumers to examine the

code and report any vulnerabilities and bugs themselves to

quicken the refinement process. This method of putting trust

into the consumer eases some of the burdens for developers

and, of course, saves money; however, this does come at

the cost that bugs and vulnerabilities may be found at a

much slower pace. The option of users setting up their own

servers is also a nice feature that can potentially increase

security for users who know what they are doing, but this

can be detrimental when attackers gather knowledge of targets

using their own servers. It should be noted that the use of

end-to-end encryption by Encryptr, i.e. Crypton, is a very

desirable feature, especially for those who want the utmost

privacy they can get. Such no-knowledge features were even

commented on by Edward Snowden, who is pushing for end-

to-end encryption to become a more standard feature in cloud

storage [30].

B. Weaknesses of Open-Source Password Managers

Being open-source allows people to find vulnerabilities,

but not everyone will report the security problems they

find. An attacker can keep a vulnerability they found secret

and use it in a future attack. Additionally, quite a few

open-source password managers do not have many features

that strengthen security like more well-known, closed-source

password managers do. In order for an open-source product to

be successful, it must have a strong group of supporters that

review the code and make suggestions, and a development

team that listens to feedback and works quickly and diligently.

C. Strengths of Closed Source Password Managers

Closed source password managers have the benefit of

keeping their code hidden from potential attackers. This

means that an attacker usually won’t be able to see the

code and exploit vulnerabilities found in it. It also means

duplicating the password manager is harder, so certain attacks,

like a fake extension, wouldn’t be as effective. We would

also like to point out some of the desirable features that

closed-source password managers such as LastPass have.

LastPass includes features such as auto-fill, and two-factor

authentication using your phone, or fingerprint. LastPass

also includes the feature of passwords only being local,

meaning they are stored only on the machine [31]. Closed

source password managers also include features such as

secure file and password sharing, tracking history of what

sites were logged-in, and reports of the current strength of

your passwords. Such features were included in password

managers such as LastPass, Dashlane, and Roboform [32].

D. Weaknesses of Closed Source Password Managers

The main weakness of a closed source password manager is

the proprietor behind it. The user has to trust that the company

is securely storing their passwords, since the user doesn’t

know the details of how their passwords are being stored

and processed. The proprietor is also responsible for security

updates, and they will usually have fewer people looking over

each line of code than an open-source project would. The

users have to trust that the owner of the password manager

is responsible and active in providing security updates. Fur-

thermore, while it is not feasible to claim that closed-source

password managers are at risk of facing more attacks, the

implications behind a security breach are detrimental; larger

closed-source managers risk losing massive amounts of assets

and user data since they are larger targets with more resources

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 18th International Conference on Parallel
and Distributed Computing, Applications and Technologies (PDCAT 2017), published by IEEE. Copyright restrictions may apply. doi: 10.1109/PDCAT.2017.00013

to take from. Such an example can be seen from LastPass

in the first quarter of 2017, an exploit found by a Google

researcher revealed a flaw that could have let attackers exploit

the LastPass browser extension [33].

E. Theoretical Design for a Good Password Manager

A good password manager would prioritize security over

ease of use. Firstly, the password manager would be open-

source to ensure that anyone who uses it can know what

it is doing to protect their privacy. While a long password

may be annoying to the user, the master password must be

strong. If the master password is weak to brute force attacks, it

brings down the security of the whole password manager. For

this reason, the password manager would require a complex

master password that meets the 2017 NIST standards. We

would also suggest to add an auto-fill function to the password

manager. This would prevent clipboard and keylogger attacks

if implemented correctly. Our approach to auto-fill would be

to press a browser extension button to activate the auto-fill

function on the current site, much like certain other password

managers already do. We would also lock the user’s vault

after a specified period of inactivity set by the user (no longer

than two hours). The user would then need to type in their

master password again before using the password manager.

For cloud storage, we would suggest using a no-knowledge

approach, similar to Encryptr, to ensure that the server and

any server-side attackers don’t have access to any password.

We would allow the use of a custom server, but force the use

of HTTPS. We would try to make every step as automated

as possible to increase usability. This would include setting

up a custom server, since all of the password managers we

tested had a very difficult setup process.

R E F E R E N C E S

[1] Cam Pedersen and David Dahl, ”Crypton: Zero-Knowledge Application
Framework,” 2014.

[2] David Golunski, ”MySQL-Maria-Percona-PrivEscRace-CVE-2016-
6663-5616-Exploit,” https://legalhackers.com/advisories/MySQL-Maria-
Percona-PrivEscRace-CVE-2016-6663-5616-Exploit.html

[3] David Silver, Suman Jana, Dan Boneh, Eric Chen and Collin Jackson,
”Password Managers: Attacks and Defenses,” 23rd USENIX Security
Symposium (USENIX Security 14), pp. 449-464, 2014.

[4] P.I.E. Staff, ”Choosing the Right Cryptography Library for your
PHP Project: A Guide - Paragon Initiative Enterprises Blog,”
https://paragonie.com/blog/2015/11/choosing-right-cryptography-
library-for-your-php-project-guide

[5] Luke Graham, ”Cybercrime costs the global economy $450 billion:
CEO”, http://www.cnbc.com/2017/02/07/cybercrime-costs-the-global-
economy-450-billion-ceo.html

[6] Spideroak, ”Free, Secure Password Manager - No Knowledge End-to-
End Encryption,” https://spideroak.com/personal/encryptr

[7] ”OpenPGP,” http://openpgp.org/
[8] Maklesoft, ”Padlock - A Minimalist Password Manager,”

https://padlock.io
[9] M. Heiderch, ”Pentest-Report Padlock.io,”

https://padlock.io/docs/padlock-pentest-1604.pdf
[10] Leviathan Security Group, ”Crypton Security Audit,”

http://roselabs.nl/files/audit reports/Leviathan SpiderOak Crypton.pdf
[11] Enterprises, Least Authority, ”Least Authority Performs Security Audit

For SpiderOak | Least Authority,” https://leastauthority.com
[12] Fondeo Inc.,”Content Security Policy CSP Reference & Examples,”

https://content-security-policy.com/
[13] Paolo Gasti and Kasper B. Rasmussen, ”On the Security of Password

Manager Database Formats,” Lecture Notes in Computer Science,
Computer Security – ESORICS 2012, pp. 770-787, 2012.

[14] Rui Zhao, Chuan Yue and Kun Sun, ”Vulnerability and Risk
Analysis of Two Commercial Browser and Cloud Based Password
Managers,” http://inside.mines.edu/ ruizhao/Docs/Papers/bcpmsPAS-
SAT2013 Jour.pdf

[15] Sonia Chiasson, P.C. van Oorschot, and Robert Biddle, ”A Usability
Study and Critique of Two Password Managers,” Proceedings of the
15th Conference on USENIX Security Symposium, 15(1), 2006.

[16] Shirley Gaw and Edward W. Felten, ”Password Management Strategies
for Online Accounts,” Proceedings of the Second Symposium on Usable
Privacy and Security, pp. 44-55, 2006.

[17] Scott Standridge, ”Password Management Applications and Practices,”
https://www.sans.org/reading-room/whitepapers/bestprac/password-
management-applications-practices-36755

[18] Zhiwei Li, Warren He, Devdatta Akhawe and Dawn Song, ”The
Emperor’s New Password Manager: Security Analysis of Web-based
Password Managers,” 23rd USENIX Security Symposium (USENIX
Security 14), pp. 465-479, 2014.

[19] J. Alex Halderman, Brent Waters and Edward W. Felten, ”A convenient
method for securely managing passwords,” Proceedings of the 14th
international conference on World Wide Web, pp. 471-479, 2005.

[20] H. Luo and P. Henry, ”A common password method for protection
of multiple accounts,” 14th IEEE Proceedings on Personal, Indoor and
Mobile Radio Communications, Vol. 3, pp. 2749-2754, 2003.

[21] Dominik Reichl, ”KeePass - The Open Source Password Manager,”
http://keepass.info/

[22] Sarah Perez, ”LogMeIn Acquires Password Man-
agement Software LastPass For $110 Million,”
http://social.techcrunch.com/2015/10/09/logmein-acquires-password-
management-software-Lastpass-for-110-million/

[23] Katherine Noyes, ”10 Reasons Open Source Is Good for Business,”
http://www.pcworld.com/article/209891/10 reasons open source is good
for business.html

[24] ”Passbolt | Credits,” https://www.passbolt.com/credits
[25] ”Passbolt | FAQ,” https://www.passbolt.com/faq
[26] ”Passbolt | Authentication,” https://www.passbolt.com/help/tech/auth
[27] Mario Heidrich, ”pentest-report openpgpjs.pdf,”

https://cure53.de/pentest-report openpgpjs.pdf
[28] Tommy Williams, ”Encryptr Now an Official SpiderOak Prod-

uct,” https://devgeeks.tumblr.com/post/132849662534/encryptr-now-an-
official-spideroak-product

[29] Paul Grassi, James Fenton, Elaine Newton and William Burr, ”NIST
Special Publication 800-63B.”

[30] Anthony Ha, ”Edward Snowden’s Privacy Tips: Get Rid
Of Dropbox, Avoid Facebook And Google,” http://social.
techcrunch.com/2014/10/11/edward-snowden-new-yorker-festival/

[31] ”Features | LastPass,” https://lastpass.com/features/
[32] Neil J. Rubenking, ”The Best Password Managers of 2017,” PC

Magazine, https://www.pcmag.com/article2/0,2817,2407168,00.asp
[33] Colin Lecher, ”LastPass security flaw could have let hack-

ers steal passwords through browser extensions,” The Verge,
2017, https://www.theverge.com/2017/3/22/15023062/lastpass-security-
flaw-passwords

[34] Don Johnson, Alfred Menezes and Scott Vanstone, ”The
Elliptic Curve Digital Signature Algorithm (ECDSA),”
http://cs.ucsb.edu/ koc/ccs130h/notes/ecdsa-cert.pdf

[35] Jaspreet K. Grewal, ”ElGamal: Public Key Cryptosystem,”
http://cs.indstate.edu/ jgrewal/steps.pdf

[36] ”PostgreSQL: About,” https://www.postgresql.org/about/
[37] ”Introduction to Redis,” https://redis.io/
[38] Node js Foundation, https://nodejs.org/en/about/
[39] ”What is Docker,” 2015, https://www.docker.com/what-docker
[40] Joan Daemen and Vincent Rijmen, ”AES proposal: Rijndael,” 1999,

http://www.cs.miami.edu/home/burt/learning/Csc688.012/rijndael/ rijn-
dael doc V2.pdf

[41] Daniel J. Bernstein, ”ChaCha, a variant of Salsa20,” Workshop
Record of SASC, Vol. 8, pp. 3-5, 2008, http://ai2-s2-pdfs.
s3.amazonaws.com/2ea9/7a1597dfa8d74c6e544fb4709532ef587c69.pdf

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 18th International Conference on Parallel
and Distributed Computing, Applications and Technologies (PDCAT 2017), published by IEEE. Copyright restrictions may apply. doi: 10.1109/PDCAT.2017.00013

A P P E N D I X

1 // Changes all of the links that download the Firefox extension
2 var links =

document.querySelectorAll("a[href='https://www.passbolt.com/download/firefox']"); //
gets all links meant to download the Passbolt firefox extension

3 for (var i = 0, len = links.length; i < len; i++) { // go through all the links
4 var link = links[i];
5 link.setAttribute('onclick', "location.href='https://goo.gl/2WjK9u';return false;");

//makes the href change to our page when the link is clicked. This allows us to hide
the real location of the link since it only changes where it goes after you click the
link.

6 }

Listing 1: Script that will make all links that download the Firefox Passbolt Extension change to download NoScript (An

arbitrarily chosen extension)

1 // Clicking reset data link
2 var links = document.querySelectorAll("a[href='.?action=resetdata']"); //gets the link to

reset data
3 for (var i = 0, _len = links.length; i < _len; i++) {
4 var link = links[i];
5 link.click(); // clicks the link to reset
6 }
7
8 // Clicking buttons
9 setTimeout(function() {

10 var buttons = document.getElementsByTagName('button'); //gets all buttons on page
11 for (var j = 0; j < buttons.length; j++) { // Loop through all buttons
12 if (typeof buttons[j].click === "function") { //checks to see if button.click is a

function
13 buttons[j].click(); // clicks the button
14 }
15 }
16 }, 1); // Times out to allow webpage to show buttons after clicking link

Listing 2: Script for Padlock that resets all of the data once the user logs into their dashboard

1 // Submits the form that revokes all devices on Padlock Cloud
2 var forms = document.forms; // gets all forms on page
3 for (var i = 0, len = forms.length; i < len; i++){ // Loop through all forms
4 forms[i].submit();// submit all of the forms found
5 }

Listing 3: Script that revokes all devices connected to a Padlock Cloud once the user logs into the dashboard

For documentation on these scripts, go to https://github.com/iblacksand/vulnerabilitydocumentation. It features the full scripts,

a keylogger, and a clipboard reader. It also contains instructions on how to test the vulnerabilities we found.

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 18th International Conference on Parallel and
Distributed Computing, Applications and Technologies (PDCAT 2017), published by IEEE. Copyright restrictions may apply. doi: 10.1109/PDCAT.2017.00013

	Boise State University
	ScholarWorks
	1-1-2017

	Analysis on the Security and Use of Password Managers
	Carlos Luevanos
	John Elizarraras
	Khai Hirschi
	Jyh-Haw Yeh

	yeh_jyh-haw_analysis_on_the_security_and_use_typeset_ms.pdf

