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Abstract— This paper considers pulse-shaping multicarrier
(MC) systems that transmit over doubly dispersive fading
channels. We provide exact and approximate expressions for
the intersymbol and intercarrier interference occurring in such
systems. This analysis reveals that the time and frequency
concentration of the transmit and receive pulses is of paramount
importance for low interference. We prove the (nonobvious)
existence of such jointly concentrated pulse pairs by adapting
recent mathematical results on Weyl-Heisenberg frames to the
MC context. Furthermore, pulse optimization procedures are
proposed that aim at low interference and capitalize on the
design freedom existing for redundant MC systems. Finally,
we present efficient FFT-based modulator and demodulator
implementations. Our numerical results demonstrate that for
realistic system and channel parameters, optimized pulse-shaping
MC systems can outperform conventional cyclic-prefix OFDM
systems.

Index Terms— Multicarrier systems, OFDM, doubly disper-
sive channels, harmonic analysis, pulse design, Weyl-Heisenberg
frames.

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing
(OFDM) is an attractive multicarrier modulation

scheme for broadband wireless communications [1–4].
Conventional OFDM employs rectangular transmit and
receive pulses and a cyclic prefix (CP-OFDM) [2]. It is part
of, or proposed for, numerous wireless standards like WLANs
(IEEE 802.11a,g,n, Hiperlan/2), fixed broadband wireless
access (IEEE 802.16), wireless personal area networks (IEEE
802.15), and digital audio and video broadcasting (DAB,
DRM, DVB). OFDM is also a promising candidate for future
(4G) mobile communication systems.

Recently, pulse-shaping OFDM systems and biorthogonal
frequency division multiplexing (BFDM) systems have at-
tracted increased interest [5–16]. They have several advan-

Manuscript received September 1, 2005; accepted August 1, 2006. The
associate editor coordinating the review of this paper and approving it for
publication was H. Xu. Funding by WWTF project MOHAWI and by FWF
Grants P15156 and J2302. Parts of the material in this paper were previously
presented at IEEE PIMRC 2002, Lisbon, Portugal and MATHMOD 2006,
Vienna, Austria.

G. Matz and F. Hlawatsch are with the Institute of Communications
and Radio-Frequency Engineering, Vienna University of Technology, Vienna,
Austria (e-mail: g.matz@ieee.org, fhlawats@nt.tuwien.ac.at).

D. Schafhuber is with BMW AG, Munich, Germany (e-mail: di-
eter.schafhuber@bmw.de).
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tages over traditional CP-OFDM systems: higher bandwidth
efficiency [5]; reduced sensitivity to carrier frequency offsets,
oscillator phase noise, and narrowband interference [6]; and
reduced intersymbol/intercarrier interference (ISI/ICI) [5, 15].
In particular, low ISI/ICI will be important for future systems
where Doppler frequencies will be larger (equivalently, chan-
nel variations will be faster) due to higher carrier frequencies
and higher mobile velocities. On the other hand, a drawback of
pulse-shaping OFDM/BFDM systems is the potentially poorer
peak-to-average power ratio. Furthermore, BFDM systems
using a simple equalize-and-slice detector may suffer from
noise enhancement since the receive filters are not matched to
the transmit filters [5].

While pulse-shaping OFDM systems were proposed rather
early [1, 17], only recently the design of the OFDM/BFDM
transmit and receive pulses has been considered in more
detail. In [18], a pulse-shaping OFDM system using an
orthogonalized Gaussian function is proposed and its inter-
ference power is analyzed. In [8], a linear combination of
Hermite functions is chosen such that orthogonality between
neighboring symbols and carriers is obtained. An optimization
procedure for OFDM/OQAM (OQAM stands for offset QAM)
with finitely supported pulses that basically minimizes the
out-of-band energy is proposed in [7]; the resulting pulses
are linear combinations of prolate spheroidal wave functions.
In [9, 12, 13], the duality of multicarrier systems and Weyl-
Heisenberg (or Gabor) frames is elaborated and applied to
the design of OFDM and BFDM systems. In a similar spirit,
[5] proposes an optimization procedure for BFDM systems
that builds on frames and Riesz bases and explicitly accounts
for channel effects. The time-frequency concentration achiev-
able with Gabor Riesz bases is explored in [19]. In [10],
hexagonal time-frequency lattices are advocated, and sphere-
packing arguments are used to construct a pulse through
orthogonalization of a Gaussian function. The analysis and
design of OFDM/OQAM systems using filter bank theory is
discussed in [11]. After acceptance for publication of this
manuscript, we noticed that similar ideas regarding ISI/ICI
analysis and pulse optimization have been developed in [20]
(independently of our earlier conference paper [15]).

In this paper, we continue the path taken in [5, 9, 10] and
consider the following issues that have not been addressed
previously.

• While [5, 9, 10] describe design procedures for
OFDM/BFDM systems, no previous theoretical results
guaranteed the existence of transmit and receive pulses
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that both are well concentrated with respect to time
and frequency. We settle this issue by using a recent,
deep mathematical result from [21] to give explicit
expressions for the achievable time and frequency decay
of the transmit/receive pulses. This is important because
good time-frequency concentration is essential for small
ISI/ICI, and because in practice the pulses have to be
truncated to finite duration.

• We present an exact ISI/ICI analysis of OFDM/BFDM
systems that transmit over time-frequency selective fad-
ing channels (previously considered in this context only
in [5]). This exact analysis is complemented by new
approximate expressions and bounds for the mean ISI/ICI
power.

• We propose pulse optimization procedures that use the
mean ISI/ICI power as a cost function and thus perform
an explicit minimization of ISI/ICI.

• We develop efficient FFT-based implementations of
pulse-shaping OFDM/BFDM modulators and demodula-
tors that are only slightly more complex than current CP-
OFDM implementations.

• We provide performance evaluations for doubly disper-
sive fading channels and for realistic spectral efficien-
cies or, equivalently, redundancies. Previous performance
evaluations pertained to spectral efficiencies ≤ 0.5, which
are rarely used in practice. Furthermore, apparently for
the first time, we compare the performance of pulse-
shaping OFDM/BFDM systems with that of standard CP-
OFDM systems.

This paper is organized as follows. After a presentation of
the multicarrier1 (MC) system model in Section II, the frame-
theoretic computation of biorthogonal pulse pairs is discussed
in Section III. In Section IV, it is shown that biorthogonal
pulses can have good joint time-frequency concentration.
Section V provides an ISI/ICI analysis for MC transmission
over doubly dispersive fading channels. In Section VI, we
propose two pulse design methods aiming at a minimization
of the ISI/ICI power. Efficient FFT-based implementations of
the MC modulator and demodulator are developed in Section
VII. Finally, Section VIII presents some numerical results.

II. SYSTEM MODEL

A. Modulator and Demodulator

We consider an MC system with K subcarriers, symbol
period T , and subcarrier frequency spacing F . The equivalent
baseband transmit signal is given by

s(t) =
∞∑

l=−∞

K−1∑
k=0

al,k gl,k(t) . (1)

Here, al,k denotes the data symbol at symbol time l ∈ Z and
subcarrier k ∈ {0, . . . ,K−1}, and

gl,k(t) � g(t−lT ) ej2πkF (t−lT ) (2)

is a time-frequency (TF) shifted version of the transmit pulse
g(t). We assume that the symbols al,k are i.i.d. with zero mean
and mean power E

{|al,k|2
}

= σ2
a.

1We will use the term “multicarrier” as a unifying term to refer to CP-
OFDM, pulse-shaping OFDM, and BFDM.

At the receiver, the demodulator computes the inner prod-
ucts of the received signal r(t) with TF shifted versions
γl,k(t) � γ(t−lT ) ej2πkF (t−lT ) of the receive pulse γ(t):2

xl,k � 〈r, γl,k〉 =
∫

t

r(t) γ∗l,k(t) dt . (3)

For an ideal channel where r(t) = s(t), perfect demodulation
(i.e., xl,k = al,k) is obtained iff the pulses g(t) and γ(t) satisfy
the biorthogonality condition

〈g, γl,k〉 = δlδk . (4)

For OFDM, we have γ(t) = g(t) and thus (4) reduces to the
orthogonality condition 〈g, gl,k〉 = δlδk.

A necessary condition for (4) is TF ≥ 1 [22]. Because the
spectral efficiency is proportional to 1/(TF ), the product TF
is typically chosen only slightly larger than 1. For practical
CP-OFDM systems, TF usually ranges from 1.03 to 1.25,
which corresponds to 1/(TF ) = 0.8 . . . 0.97. A larger value of
TF results in a smaller spectral efficiency, but also increases
the freedom in designing pulses satisfying (4).

B. Channel

A wireless dispersive fading channel can be modeled as
a random time-varying system H with time-varying impulse
response h(t, τ) [23, 24]. Thus the received signal is given by3

r(t) = (H s)(t) =
∫

τ

h(t, τ) s(t−τ) dτ . (5)

The channel is assumed to satisfy the wide-sense sta-
tionary uncorrelated scattering (WSSUS) property [23, 24]
E {h(t, τ)h∗(t′, τ ′)} = RH(t − t′, τ) δ(τ − τ ′), where
RH(Δt, τ) is the channel’s time-delay correlation function.
The second-order statistics of H can alternatively be described
by the scattering function defined as [23, 24]

CH(τ, ν) =
∫

Δt

RH(Δt, τ) e−j2πνΔt dΔt ,

where ν denotes Doppler frequency. The path gain of the
channel is given by σ2

H
=

∫
τ

∫
ν
CH(τ, ν) dτ dν. Practical wire-

less channels are underspread [5, 24, 25], i.e., their scattering
function is effectively supported within a rectangular region
R � [0, τmax] × [−νmax, νmax] of area 2τmaxνmax � 1.

C. Symbol-Level I/O Relation

Combining (1), (3), and (5) yields the following mapping
from the transmit symbols al,k to the receive symbols xl,k [5]:

xl,k =
∞∑

l′=−∞

K−1∑
k′=0

Hl,k;l′,k′ al′,k′ (6a)

with

Hl,k;l′,k′ � 〈H gl′,k′ , γl,k〉 . (6b)

The terms in this sum with (l′, k′) �= (l, k) describe the ISI and
ICI introduced by the channel H. Typically, MC systems are

2Integrals are from −∞ to ∞.
3Throughout this paper, we consider the noiseless case.
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designed such that the ISI/ICI terms in (6) can be neglected,
i.e.,

xl,k ≈ Hl,k al,k , (7)

with Hl,k � Hl,k;l,k. This allows the use of a simple scalar
equalization at the receiver which, however, suffers from an
error floor due to the approximation error associated with (7).

As was observed in [25, 26], the approximate I/O relation
(7) means that the transmit pulses gl,k(t) are approximate
eigenfunctions of the channel, i.e., (Hgl,k)(t) ≈ Hl,k gl,k(t)
(together with (4), this implies (7)). This approximation rests
crucially on the assumption that the MC pulses are well TF
concentrated (cf. Section V). The existence of such pulses will
be shown in Section IV.

III. FRAME-THEORETIC COMPUTATION OF MC PULSES

When designing an MC system, a nontrivial task is the
construction of transmit and receive pulses with suitable prop-
erties. In this section, we show how results from the theory
of Weyl-Heisenberg (Gabor) frames can be used to efficiently
compute a receive pulse γ(t) satisfying the biorthogonality
relation (4) for a prescribed transmit pulse g(t). In our
discussion, we partly rephrase some ideas from [9, 13].

A. Riesz Sequences, Frames, and Duality Theory

1) Weyl-Heisenberg Riesz Sequences: The biorthogonality
condition (4) amounts to the requirement that the transmit
symbols al,k can be uniquely recovered from the transmit
signal s(t). This requires that the Weyl-Heisenberg (WH)
function set {gl,k(t)}, (l, k) ∈ Z

2 (cf. (2)) constitutes a Riesz
sequence [22], i.e., there exist constants A′, B′ > 0 such that4

A′‖a‖2
�2 ≤

∥∥∥∥ ∑
l,k

al,k gl,k

∥∥∥∥2

L2

≤ B′‖a‖2
�2 , (8)

for all al,k ∈ �2(Z2). A necessary condition for a WH Riesz
sequence is that the TF lattice constants T, F satisfy TF ≥ 1.
If {gl,k(t)} is a WH Riesz sequence, there exists a (generally
nonunique) WH Riesz sequence {γl,k(t)} that satisfies the
biorthogonality condition (4) and allows one to recover the
transmit symbols al,k according to (3) (with r(t) = s(t)).

If 〈g, gl,k〉 = δl δk holds in addition to (8), then the Riesz
sequence {gl,k(t)} is an orthogonal sequence that corresponds
to a pulse-shaping OFDM (and not just BFDM) system.

2) Weyl-Heisenberg (Gabor) Frames: We now consider a
different concept whose relation to WH Riesz sequences will
be discussed presently. A WH function set {g̃l,k(t)}, (l, k) ∈
Z

2, with g̃l,k(t) = g(t − lT̃ ) ej2πkF̃ t
}

is called a WH frame
[22] if there exist constants A,B > 0 (the frame bounds) such
that

A‖x‖2
L2

≤
∑
l,k

|〈x, g̃l,k〉|2 ≤ B‖x‖2
L2
, (9)

4The subsequent development applies to an infinite number of subcar-
riers; the results so obtained are representative if the actual number of
subcarriers is reasonably large. The squared �2-norm of a sequence al,k

is ‖a‖2
�2

=
�

l,k |al,k|2 and the squared L2-norm of a signal s(t) is
‖s‖2

L2 =
�
t |s(t)|2 dt. Summations are from −∞ to ∞ unless indicated

otherwise.

for all x(t) ∈ L2(R). The frame property (9) means that x(t)
is completely and stably determined by the frame coefficients
〈x, g̃l,k〉 via the frame expansion x(t) =

∑
l,k〈x, g̃l,k〉 γ̃l,k(t)

that involves a (generally nonunique) dual pulse γ(t). A
necessary condition for WH frames is T̃ F̃ ≤ 1 (note the
difference from WH Riesz sequences that require T̃ F̃ ≥ 1). If
the frame bounds coincide (A = B), then {g̃l,k(t)} is called
a tight WH frame. In this case γ(t) = T̃ F̃

A g(t), i.e., the dual
pulse equals the original pulse up to a constant factor.

3) Ron-Shen Duality: WH frames and WH Riesz sequences
are related by the Ron-Shen duality theorem that is stated
as follows [27, 28]. Let {gl,k(t)} and {γl,k(t)} be WH sets
on the lattice (T, F ), and let {g̃l,k(t)} and {γ̃l,k(t)} be
the corresponding WH sets on the adjoint lattice (T̃ , F̃ ) =
(1/F, 1/T ). Then

• {gl,k(t)} is a Riesz sequence iff {g̃l,k(t)} is a frame;
• {gl,k(t)} and {γl,k(t)} are biorthogonal Riesz sequences

iff {g̃l,k(t)} and {γ̃l,k(t)} are dual frames;
• {gl,k(t)} is an orthogonal Riesz sequence iff {g̃l,k(t)} is

a tight frame.

B. Application to Pulse Computation

Based on the above duality relation, the computation of
pulses inducing (bi)orthogonal WH Riesz sequences can be
reduced to the computation of dual WH frames on the ad-
joint lattice, for which frame-theoretic methods are available
(cf. [22, 29]). We thus obtain the following procedure.

1) Choose lattice constants T, F and a pulse g(t) such that
the WH set {g̃l,k(t)} on the adjoint lattice (T̃ , F̃ ) =
(1/F, 1/T ) is a WH frame (this requires TF ≥ 1). We
note that if g(t) is bounded and vanishes outside [0, T ′]
with 1/F ≤ T ′ ≤ T , then {g̃l,k(t)} is a WH frame iff

a ≤
∑

k

∣∣∣g(t− k

F

)∣∣∣2 ≤ b (10)

with some a, b > 0 [22]. In particular, {g̃l,k(t)} is a tight
WH frame iff the above condition holds with a = b, i.e.,
iff

∑
k |g(t− k

F )|2 = const.
2a) For a BFDM system, the g(t) chosen in 1) is used as the

transmit pulse, and the minimum L2-norm biorthogonal
receive pulse γ(t) is given by the canonical dual pulse
defined by the equation

1
TF

(S̃γ)(t) = g(t) . (11)

Here, S̃ is the frame operator defined by

(S̃x)(t) =
∑
l,k

〈x, g̃l,k〉 g̃l,k(t) .

2b) For an OFDM system, the transmit and receive pulses
are both given by the function g⊥(t) that is the solution
of

1√
TF

(S̃1/2g⊥)(t) = g(t) , (12)

where S̃
1/2 is the positive definite square root of the

frame operator S̃.
The operators S̃ and S̃

1/2 are invertible, and thus (11) and
(12) have unique solutions that can be written as γ(t) =
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TF (S̃−1g)(t) and g⊥(t) =
√
TF (S̃−1/2g)(t), respectively.

For an efficient numerical solution, conjugate gradient and
matrix factorization methods [29] as well as Zak transform
methods [9, 13] are available. Alternatively, γ(t) can be com-
puted by inserting the expansion γ(t) =

∑
l,k cl,k gl,k(t)

into the biorthogonality condition (4), which yields a linear
equation in the unknown coefficients cl,k [29].

For given g(t) and TF > 1, there exists a whole affine
space of biorthogonal pulses. These are all of the form γ′(t) =
γ(t) + ψ(t) where γ(t) is the canonical biorthogonal pulse
as defined by (11) and ψ(t) is an arbitrary function in the
orthogonal complement of G � span

{
gl,k(t)

}
[22]. This fact

leads to a design freedom that can be exploited for system
optimization (see Section VI).

IV. TIME-FREQUENCY CONCENTRATION OF MC PULSES

The foregoing discussion has shown how the canonical
biorthogonal pulse γ(t) and the orthogonalized pulse g⊥(t)
can be constructed for a given transmit pulse g(t). However,
when a g(t) with good TF concentration is chosen, it is not
clear a priori if γ(t) and g⊥(t) have good TF concentration
as well. We now answer this question by using a recent
mathematical result [21] to show that the canonical γ(t) in
(11) and the orthogonalized pulse g⊥(t) in (12) inherit the TF
localization properties of g(t). This is practically important
because the ISI/ICI in the case of doubly dispersive channels
is determined by the joint TF concentration of g(t) and γ(t).
More specifically, we will show in Section V that the ISI/ICI
power depends on the cross-ambiguity function (CAF) of
γ(t) and g(t) that is defined as Aγ,g(τ, ν) �

∫
t γ(t) g∗(t −

τ) e−j2πνtdt [22]. Therefore, we will use the CAF as a
measure of the TF concentration of pulses. We note that for
rational TF , temporal and spectral decay properties of the
canonical dual pulse and of the orthogonalized pulse have been
proved using weighted L1 spaces in [19].

A. TF Localization of (Bi)orthogonal Pulses

We will say that a pulse g(t) is polynomially localized of
degree s ≥ 0 if∫

τ

∫
ν

|Ag,g(τ, ν)|
(
1 +

∣∣∣ τ
T0

∣∣∣ + |νT0|
)s

dτ dν < ∞ ,

with an arbitrary normalization time constant T0 > 0. This
condition implies that |Ag,g(τ, ν)| ≤ c

(
1 +

∣∣ τ
T0

∣∣ + |νT0|
)−s

with some c > 0 and that all moments of Ag,g(τ, ν) up to
order s are finite, i.e.,

∫
τ

∫
ν |Ag,g(τ, ν)| ∣∣ τ

T0

∣∣m|νT0|n dτ dν <
∞ for m+n ≤ s. An even stronger concept of TF localization
is obtained by replacing

(
1 +

∣∣ τ
T0

∣∣ + |νT0|
)s

by the sub-

exponential weight eb(|τ/T0|+|νT0|)β

with b > 0 and 0 < β <
1. We say that g(t) is sub-exponentially localized if∫

τ

∫
ν

|Ag,g(τ, ν)| eb(|τ/T0|+|νT0|)β

dτ dν < ∞ .

This condition implies that |Ag,g(τ, ν)| ≤ c e−b(|τ/T0|+|νT0|)β

and that all moments of Ag,g(τ, ν) are finite.
Our main theoretical result asserts the existence of transmit

and receive pulses that simultaneously have excellent TF
concentration properties.

Localization Theorem. Assume that {g̃l,k(t)
}

, (l, k) ∈ Z
2,

with g̃l,k(t) = g(t− l/F ) ej2πkt/T is a WH frame.

(a) If g(t) is polynomially localized of degree s, then the
canonical biorthogonal pulse γ(t) = TF (S̃−1g)(t) and
the orthogonalized pulse g⊥(t) =

√
TF (S̃−1/2g)(t) are

also polynomially localized of degree s, and furthermore
the CAF of γ(t), g(t) satisfies∫

τ

∫
ν

|Aγ,g(τ, ν)|
(
1 +

∣∣∣ τ
T0

∣∣∣ + |νT0|
)s

dτ dν < ∞ .

(13)
(b) If g(t) is sub-exponentially localized, then γ(t) and

g⊥(t) are also sub-exponentially localized (with the same
constants b, β), and the CAF of γ(t), g(t) satisfies∫

τ

∫
ν

|Aγ,g(τ, ν)| eb(|τ/T0|+|νT0|)β

dτ dν < ∞ . (14)

The proof of this theorem (not included here) is an appli-
cation of [21] in combination with Ron-Shen duality theory.
We note that this result agrees well with previous empirical
observations reported in [9].

B. Examples

1) Spline-type Pulse: Choose T1, . . . , Tn > 0 and construct
the transmit pulse as g(t) =

(
χ1 ∗ · · · ∗ χn

)
(t), where

χk(t) = 1 for t ∈ (−Tk/2, Tk/2) and 0 otherwise, and ∗
denotes convolution. Then g(t) = 0 for |t| ≥ 1

2

∑n
k=1 Tk.

By construction, Ag,g(τ, ν) = 0 for |τ | ≥ 1
2

∑n
k=1 Tk. For

|τ | < 1
2

∑n
k=1 Tk, it can be shown that |Ag,g(τ, ν)| ≤ c (1 +

|ν|)−n+1. Hence, g(t) is polynomially localized of degree
s = n−1. If {g̃l,k(t)} is a WH frame (which can be checked
by means of (10)), our localization theorem guarantees that the
canonical biorthogonal receive pulse γ(t) is also polynomially
localized and that (13) holds.

2) Gaussian Pulse: The transmit pulse with best TF local-
ization is the Gaussian pulse g(t) = e−π(t/T0)

2
. Its ambiguity

function is Ag,g(τ, ν) = e−
π
2 [(τ/T0)

2+(νT0)2], and thus g(t) is
sub-exponentially localized for all b > 0, β < 1. Furthermore
{g̃l,k(t)} is a WH frame iff TF > 1 [22, 30]. By our
localization theorem, the canonical γ(t) is then also sub-
exponentially localized for all b > 0, β < 1; moreover, (14)
holds for all b > 0, β < 1.

V. INTERFERENCE ANALYSIS

In this section, we provide a detailed ISI/ICI analysis
of pulse-shaping MC systems transmitting over a WSSUS
channel (for the special case of CP-OFDM see [31]). For
simplicity, we assume an infinite number of subcarriers. Parts
of the results below have previously been obtained in [5].

A. Exact Analysis

We define the mean ISI/ICI power as the mean-square error
of the approximation (7):

σ2
I � E

{ |xl,k −Hl,kal,k|2
}
.

Using the statistical independence of the symbols al,k, one
obtains σ2

I = σ2
x − σ2

D, where σ2
x � E

{|xl,k|2
}

is the total
received power and σ2

D � E
{|Hl,kal,k|2

}
is the power of the
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desired component (σ2
I and σ2

D do not depend on l and k since
the channel is assumed WSSUS). Further using the WSSUS
assumption, one can show that

σ2
D = σ2

a

∫
τ

∫
ν

CH(τ, ν) |Aγ,g(τ, ν)|2 dτ dν . (15)

If |Aγ,g(τ, ν)|2 ≈ 1 on the effective support of the scattering
function CH(τ, ν), then σ2

D ≈ σ2
a σ

2
H

. We note that (4) implies
Aγ,g(0, 0) = 1, i.e., at the origin Aγ,g(τ, ν) is exactly equal
to 1. Similarly, one can show

σ2
x = σ2

a

∫
τ

∫
ν

CH(τ, ν)Pγ,g(τ, ν) dτ dν , (16a)

with

Pγ,g(τ, ν) �
∑
l,k

|Aγ,g(τ−lT, ν−kF )|2. (16b)

Inserting (15) and (16) into σ2
I = σ2

x − σ2
D, we finally obtain

the following delay-Doppler domain expression of the ISI/ICI
power:

σ2
I = σ2

a

∫
τ

∫
ν

CH(τ, ν)P (0)
γ,g (τ, ν) dτ dν , (17)

where P (0)
γ,g(τ, ν) is a periodized version of |Aγ,g(τ, ν)|2 with

the term |Aγ,g(τ, ν)|2 itself suppressed, i.e.,

P (0)
γ,g(τ, ν) � Pγ,g(τ, ν) − |Aγ,g(τ, ν)|2

=
∑

(l,k) �=(0,0)

|Aγ,g(τ−lT, ν−kF )|2.

Let R = [0, τmax] × [−νmax, νmax] denote the effective
support of CH(τ, ν). According to (17), σ2

I will be small
for small overlap of CH(τ, ν) with |Aγ,g(τ − lT, ν− kF )|,
(l, k) �= (0, 0), which in turn requires that |Aγ,g(τ, ν)|2 is
small within all regions [lT, lT + τmax] × [kF − νmax, kF +
νmax], (l, k) �= (0, 0) (note that the biorthogonality relation
(4) implies Aγ,g(lT, kF ) = 0 for (l, k) �= (0, 0)). This can
be achieved if Aγ,g(τ, ν) decays sufficiently fast outside the
support region R of CH(τ, ν), which is facilitated if R is
small (i.e., the channel is weakly dispersive) and the lattice
constants T and F are large. Since large T and F entails
poor spectral efficiency and the channel dispersion is beyond
the control of the designer, it is crucial to design pulses g(t)
and γ(t) that are jointly well TF concentrated such that their
CAF decays quickly. The existence of such pulse pairs was
established by our localization theorem in Section IV. We
conclude that, with regard to practical design, excellent joint
TF concentration of the transmit and receive pulses is the most
important requirement for low ISI/ICI.

B. Approximations and Bounds

Sometimes the channel’s second-order statistics (scattering
function CH(τ, ν)) are not known exactly, and thus the ISI/ICI
power σ2

I cannot be determined according to (17). In such
situations, we need approximations of σ2

I in terms of more
readily available global channel parameters.

The underspread assumption means that CH(τ, ν)—and,
thus, the integrand in (17)—is effectively zero outside the sup-
port region R of area � 1. Within this region, |Aγ,g(τ, ν)|2

can be well approximated by its second-order Taylor ex-
pansion (cf. [32]). Without loss of generality, we assume
that |〈g, γ〉|2 ≡ |Aγ,g(0, 0)|2 = 1. Furthermore, to obtain
simpler and more intuitive results, we restrict to real-valued
and even transmit and receive pulses. This restriction causes
the first-order and mixed derivatives in the second-order Taylor
expansion to vanish. We thus obtain the approximation

|Aγ,g(τ, ν)|2 ≈ 1 +
τ2

2

[
∂2

∂τ2
|Aγ,g(τ, ν)|2

]
(0,0)

+
ν2

2

[
∂2

∂ν2
|Aγ,g(τ, ν)|2

]
(0,0)

= 1 − 2π2
(
τ2Bg,γ + ν2Dg,γ

)
, (18)

where

Dg,γ �
∫

t

t2 g(t) γ(t) dt , Bg,γ �
∫

f

f2G(f) Γ(f) df

are measures of the “joint” duration and bandwidth, respec-
tively, of g(t), γ(t). Inserting (18) into (17), we obtain the
desired approximation for the ISI/ICI power as

σ2
I ≈ σ2

a(η1 + η2) , (19)

with

η1 � 2π2 σ2
H

(
σ2

τBg,γ + σ2
νDg,γ

)
,

η2 �
∫

τ

∫
ν

CH(τ, ν)
[
Pγ,g(τ, ν) − 1

]
dτ dν .

Here σ2
τ and σ2

ν denote the channel’s delay spread and Doppler
spread, respectively:

σ2
τ � 1

σ2
H

∫
τ

∫
ν

τ2 CH(τ, ν) dτ dν ,

σ2
ν � 1

σ2
H

∫
τ

∫
ν

ν2 CH(τ, ν) dτ dν .

The quantity η1 is a measure of the “joint” TF concentration
of g(t), γ(t) relative to the channel dispersion parameters σ2

τ

and σ2
ν . Note that η1 is determined by the decay of Aγ,g(τ, ν),

which underlines the practical relevance of our localization
theorem in Section IV. The second quantity, η2, is a (channel-
dependent) measure of how much the pulses g(t), γ(t) deviate
from the OFDM case. This interpretation is motivated by
the fact that for critically sampled OFDM systems—i.e., for
TF = 1, γ(t) = g(t) and 〈g, gl,k〉 = δl δk—one has
Pg,g(τ, ν) ≡ 1 [33] and consequently η2 = 0. We conclude
that for a BFDM system, the ISI/ICI power is determined by
the joint TF concentration of the transmit and receive pulses
(as expressed by η1) and the deviation from orthogonality (as
expressed by η2). Thus, for low interference, the pulses should
be jointly well localized in time and frequency and close to
an orthogonal system.

If CH(τ, ν) is supported within R = [0, τmax] × [−νmax,
νmax], one can derive the upper bounds

η1 ≤ 2π2 σ2
H

(
τ2
maxBg,γ + ν2

maxDg,γ

)
,

η2 ≤ σ2
H

max
(τ,ν)∈R

[
Pγ,g(τ, ν) − 1

]
.

These bounds involve the maximum delay τmax and the
maximum Doppler frequeny νmax, which may be more readily
available than σ2

τ and σ2
ν .
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For a conventional CP-OFDM system with cyclic-prefix
length Tcp > τmax (i.e., no ISI), it can be shown that (19)
simplifies to σ2

I ≈ π2

3 σ
2
aσ

2
H
σ2

ν (T −Tcp)2. This expression
generalizes results previously obtained for Jakes and uniform
Doppler spectra [31] and for “frequency offset” channels [34].

VI. PULSE OPTIMIZATION

We have seen that for low ISI/ICI, an MC system should be
almost orthogonal and use pulses that are jointly well localized
in time and frequency. Our localization theorem shows that
such well-localized pulse pairs exist: for a given transmit
pulse with polynomial (sub-exponential) TF localization, the
canonical biorthogonal receive pulse also has polynomial
(sub-exponential) TF localization and the CAF of the two
pulses decays fast. However, for TF > 1 there are other
biorthogonal receive pulses besides the canonical one. We
next propose a pulse optimization procedure that exploits this
design freedom to improve on the canonical biorthogonal
receive pulse in terms of ISI/ICI. We also propose a numerical
optimization that dispenses with the biorthogonality constraint
to achieve a further reduction of ISI/ICI. The symbol period
T and subcarrier spacing F will be assumed fixed. In practice,
based on the prior choice of the product TF as dictated by
the spectral efficiency to be achieved, the values of T and
F should be chosen by means of the rule of thumb [5, 18]
T/F =

√
σ2

τ/σ
2
ν (or T/F = τmax/(2νmax) if σ2

τ and σ2
ν are

unknown).

A. Linear Optimization

Our first pulse optimization method uses a prescribed
transmit pulse g(0)(t) and calculates the receive pulse γ(t)
minimizing the ISI/ICI power σ2

I subject to the biorthogonality
condition (4). For fixed g(0)(t) and TF > 1, any biorthogonal
receive pulse γ(t) can be written as [22]

γ(t) = γ(0)(t) + ψ(t) . (20)

Here, γ(0)(t) is the canonical biorthogonal pulse associated
to g(0)(t) and ψ(t) is an arbitrary element of the orthogonal
complement space G⊥ of G = span

{
g
(0)
l,k (t)

}
, i.e., 〈ψ, g(0)

l,k 〉 =
0 for all l, k. Hence, ψ(t) can be written as ψ(t) =

∑
i ci ui(t)

where {ui(t)} is an orthonormal basis of G⊥ and ci = 〈ψ, ui〉
denotes the corresponding coefficient of ψ(t). Using (20), the
minimization of σ2

I with respect to γ(t) under the biorthog-
onality constraint (4) can be formulated as an unconstrained
minimization with respect to the coefficients ci.

It will be convenient to use the following expression for σ2
I

that is equivalent to (17) (cf. [5]):

σ2
I = σ2

a

∫
τ

∫
ν

Q
(0)
H

(τ, ν) |Aγ,g(τ, ν)|2 dτ dν , (21)

where

Q
(0)
H

(τ, ν) �
∑

(l,k) �=(0,0)

CH(τ−lT, ν−kF )

is a periodized version of CH(τ, ν) with the term at the origin
suppressed. Inserting (20) in (21), it is seen that σ2

I depends

quadratically on the coefficients ci. The (unconstrained) mini-
mization of σ2

I with respect to the ci’s then amounts to solving
the linear equation5 Bc = −b with [c]i = ci and

[B]i,j =
∫

τ

∫
ν

Q
(0)
H

(τ, ν)A∗
ui,g(0)(τ, ν)Auj ,g(0)(τ, ν) dτ dν ,

[b]i =
∫

τ

∫
ν

Q
(0)
H

(τ, ν)A∗
ui,g(0)(τ, ν)Aγ(0),g(0)(τ, ν) dτ dν .

Thus the optimal biorthogonal receive pulse associated to the
given transmit pulse g(0)(t) is obtained as

γopt(t) = γ(0)(t) +
∑

i

copt
i ui(t) with copt = −B−1b .

(22)
The same approach can be used to optimize the transmit pulse
g(t) for a prescribed receive pulse γ(0)(t).

The optimal pulse resulting from this design method de-
pends on the channel statistics (scattering function CH(τ, ν)).
If the scattering function is not known or if good pulses are
desired for a broad range of channel statistics, one may use
by default the brick-shaped scattering function

CH(τ, ν) =

{
σ2

H

2τmaxνmax
, (τ, ν) ∈ R

0 , (τ, ν) �∈ R ,
(23)

with a suitable (worst-case) choice of τmax and νmax.
The pulse pair g(0)(t), γopt(t) may be quite different from

an orthogonal system. Near-orthogonality, which is desirable
for low ISI/ICI (cf. Section V-B) and for low noise after
demodulation, can be obtained by the following iterative ex-
tension of our pulse optimization method. The optimal receive
pulse γopt(t) is “orthogonalized” according to (12) (with g(t)
replaced by γopt(t)). Subsequently, a new optimization run is
performed to compute the optimal biorthogonal transmit pulse
associated to the orthogonalized receive pulse. The resulting
pulse is again orthogonalized, etc.

B. Joint Nonlinear Optimization

The linear optimization method discussed above has the
drawback that one of the two pulses must be chosen before-
hand and is not optimized. Therefore, we next propose a joint
optimization of g(t) and γ(t). As a cost function, we use the
reciprocal of the signal-to-interference ratio (SIR) σ2

D

/
σ2

I ,

J(g, γ) � σ2
I

σ2
D

=

∫
τ

∫
ν Q

(0)
H

(τ, ν) |Aγ,g(τ, ν)|2 dτ dν∫
τ

∫
ν CH(τ, ν) |Aγ,g(τ, ν)|2 dτ dν (24)

(cf. (15), (21)). The goal is to minimize J(g, γ) simultaneously
with respect to g(t) and γ(t). For the sake of increased design
freedom, we perform this minimization without the biorthog-
onality constraint (4). Thus, the resulting pulses are not
necessarily exactly biorthogonal. While this allows for lower
ISI/ICI power in the case of dispersive channels, there will
be some residual ISI/ICI—typically below the noise level—
for an ideal (nondispersive) channel. However, this is not a
problem because an ideal channel rarely occurs in practice.
Moreover, we observed that the jointly optimized pulses tend
to be almost biorthogonal (in fact, almost orthogonal).

5In practical digital implementations, the matrix B and the vectors b and
c are finite-dimensional.
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Fig. 1. Efficient implementation of pulse-shaping MC systems: (a) Modulator,
(b) demodulator.

The minimization of J(g, γ) has to be done by means of nu-
merical techniques. We used the unconstrained minimization
function fminunc from MATLAB’s optimization toolbox [35].
In general, the resulting pulses correspond to a local minimum
of J(g, γ), and they depend on the pulses used for initializing
the minimization procedure.

VII. EFFICIENT IMPLEMENTATION

Practical application of pulse-shaping MC systems requires
efficient digital implementations of the modulator and demod-
ulator. In this section, we propose overlap-add type imple-
mentations for rational TF that are motivated by filterbank
theory [36]. (We note that direct polyphase implementations
[36] are problematic because they require TF to be integer
whereas actually 1 < TF < 2.) The sampling rate used
for discretizing all signals is chosen equal to the system
bandwidth KF . In the resulting discrete-time setting, the
subcarrier spacing is 1/K and the discrete symbol period is
N = KTF . The sampled transmit pulse g[n] and receive pulse
γ[n] are assumed to have finite support [−N (g)

1 , N
(g)
2 ] and

[−N (γ)
1 , N

(γ)
2 ] respectively. Their respective duration is thus

given by Ng = N
(g)
1 +N

(g)
2 + 1 and Nγ = N

(γ)
1 +N

(γ)
2 + 1.

The proposed efficient implementations of the pulse-shaping
MC modulator and demodulator are depicted in Fig. 1. They
combine the length-K IFFT or FFT used by conventional CP-
OFDM systems with a pulse-shaping operation (elementwise
multiplication by the vector g = (g[−N (g)

1 ] · · · g[N (g)
2 ])T or

γ = (γ[−N (γ)
1 ] · · · γ[N (γ)

2 ])T ) and with an overlap-add or
pre-aliasing operation.

A. Modulator

The digital modulator computes the transmit signal (cf. (1))

s[n] =
1√
K

∞∑
l=−∞

K−1∑
k=0

al,k g[n− lN ] ej2π k
K (n−lN) .

Due to the finite length of g[n], within the lth symbol period
s[n] can be written as

s[n] =
l+L

(g)
1∑

i=l−L
(g)
2

s
(g)
i [n−iN ] , n ∈ [lN, (l+1)N−1] , (25)

where L
(g)
1 = �(N (g)

1 − 1)/N�, L(g)
2 = �N (g)

2 /N�, and the
partial transmit signals s(g)

l [n] are obtained by windowing the

IDFT of the transmit symbols al,k:

s
(g)
l [n] = s̃l[n]g[n] , with s̃l[n] =

1√
K

K−1∑
k=0

al,k e
j2π nk

K .

(26)
Equation (25) describes an overlap-add operation that involves
L

(g)
1 +L

(g)
2 +1 windowed IDFT signals s(g)

i [n] as given by
(26). We note that L(g)

1 +L
(g)
2 +1 is essentially the number

of overlapping transmit pulses, which typically is less than 5.
The signals s(g)

i [n] can be computed as follows. First, the
vector s̃l = (s̃l[0] · · · s̃l[K − 1])T containing the length-
K IDFT of the lth block of transmit symbols al,k, k =
0, . . . ,K−1, is repeatedly stacked to form a vector of length
Ng . Subsequently, this longer vector is multiplied elementwise
by the transmit pulse vector g. These operations are depicted
in Fig. 1(a).

B. Demodulator

At the receiver, the received signal r[n] is demodulated
according to (cf. (3))

xl,k =
1√
K

∞∑
n=−∞

r[n] γ∗[n− lN ] e−j2π k
K (n−lN) .

The summation is actually finite due to the finite length of
γ[n]. The above expression can be efficiently implemented by
means of the length-K normalized DFT

xl,k =
1√
K

K−1∑
n=0

r̃
(γ)
l [n] e−j2π kn

K .

Here, the lth length-K receive block r̃
(γ)
l [n] is obtained

through windowing and “pre-aliasing” operations, i.e.,

r̃
(γ)
l [n] =

L1(γ)∑
i=−L

(γ)
2

r
(γ)
l [n−iK], with r(γ)

l [n] = r[n+lN ] γ∗[n],

where L
(γ)
1 = �(N (γ)

1 − 1)/K� and L2(γ) = �N (γ)
2 /K�.

Again, L(γ)
1 +L(γ)

2 +1 is the number of overlapping receive
pulses, with typical values less than 5. The resulting demod-
ulator implementation is shown in Fig. 1(b).

C. Computational Complexity

The computational complexity of the modulator is domi-
nated by the IDFT and pulse shaping in (26), which require
about O(K logK + Ng) operations per symbol. Similarly,
at the demodulator the DFT and windowing amount to
O(K logK+Nγ) operations per symbol. Compared to a CP-
OFDM system that uses the IDFT and DFT but no pulse
shaping, the complexity is increased by roughly Ng + Nγ

operations per symbol. For example, the complexity of a
pulse-shaping MC system with K = 1024 carriers, symbol
period N = 1280 (TF = N/K = 1.25), and pulse length
Ng = Nγ = 2N is only about 25% higher than that of a
CP-OFDM system with the same K and N . We note that the
overlap-add and pre-aliasing operations also require additional
memory and introduce a latency of a few symbol periods.
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Fig. 2. SIR versus normalized Doppler obtained with Scp (dashed line), SI (dash-dotted), and SII (solid) in a DVB-T–like system for (a) τmax/(2T ) = 2%,
(b) τmax/(2T ) = 4%, (c) τmax/(2T ) = 6%, (d) τmax/(2T ) = 8%.
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Fig. 3. Pulse shape (top) and Fourier transform magnitude (bottom, in dB) of transmit pulses nonlinearly optimized for (a) τmax = 20.83 μs, νmax = 148 Hz,
(b) τmax = 62.5 μs, νmax = 111 Hz, (c) τmax = 83.33 μs, νmax = 37 Hz.

VIII. NUMERICAL RESULTS

To illustrate the potential of the pulse optimization tech-
niques presented in Section VI, we provide some numerical
results. All pulse designs were initialized using a truncated
and orthogonalized version g⊥(t) of a Gaussian pulse that
was chosen such that the ratio of its RMS duration and
RMS bandwidth equals T/F (cf. [5, 18]). For the MC system
obtained with the linear optimization method of Subsection
VI-A, denoted SI, the orthogonalized Gaussian was used as
the transmit pulse, i.e., g(0)(t) = g⊥(t), and the optimal
biorthogonal receive pulse was determined according to (22).
For the system obtained with the nonlinear optimization of
Subsection VI-B, denoted SII, g⊥(t) served as initialization
for the transmit and receive pulses. We also compared our
optimized designs with a conventional state-of-the-art CP-
OFDM system (denoted Scp). The SIR, given by the reciprocal
of (24), was used as a measure of performance.

A. DVB-T–like System

We first considered a DVB-T–like system operating at
800 MHz, with subcarrier separation F = 2 kHz and sym-
bol period T = 562.5μs. We thus have TF = 1.125,
corresponding to a redundancy of 12.5% and a spec-
tral efficiency proportional to 1/(TF ) = 0.89. For the
CP-OFDM system, this implies a CP length of Tcp =
62.5μs. We assumed WSSUS channels characterized by the

brick-shaped scattering function (23) with maximum delay
τmax ∈ {20.83μs, 31.25μs, 62.5μs, 83.33μs} and maxi-
mum Doppler νmax ∈ {37 Hz, 74 Hz, 111 Hz, 148 Hz}. This
corresponds to path lengths of up to 25 km and relative
velocities of up to 200 km/h. Such scenarios might occur e.g.
in single-frequency DVB-T networks providing digital video
in high-speed trains.

The SIR obtained with the systems Scp, SI, and SII is
shown in Fig. 2 as a function of the normalized maximum
Doppler νmax/F for various normalized maximum delays
τmax/T (we note that the optimization was redone for each set
of channel parameters τmax, νmax). As expected, the SIR of all
systems decreases—i.e., there is more ISI/ICI—for increasing
τmax and νmax, with the exception that the SIR of Scp is
independent of τmax as long as τmax ≤ Tcp. It is seen that
SI and, even more so, SII outperform Scp for a broad range
of channel parameters. The gains are particularly pronounced
for channels with large νmax and small-to-medium τmax (see
Fig. 2(a) and (b)) as well as for channels with τmax > Tcp (see
Fig. 2(d)). Only for channels with τmax slightly below Tcp and
small νmax is Scp (slightly) superior to SII (see Fig. 2(c)).

Fig. 3 shows the transmit pulse obtained with nonlin-
ear numerical optimization (system SII) for channels with
(τmax, νmax) equal to (20.83μs, 148 Hz), (62.5μs, 111 Hz),
and (83.33μs, 37 Hz). It is seen that for large νmax, the pulse
tends to be more concentrated in frequency. This makes sense
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because it means that the (large) Doppler shifts do not result
in excessive ICI. In contrast, for large τmax, the pulse is better
concentrated in time such that the (large) delay spread does
not result in excessive ISI.

To assess the robustness of our pulse designs to deviations
of the true channel parameters from the nominal ones, we
designed the systems SI and SII for τmax = 62.5μs and
νmax = 111 Hz (i.e., τmax/(2T ) = νmax/F = 6%) and
evaluated their SIR performance for various other values of
τmax and νmax. The results are shown as a 3-D plot in Fig. 4.
Again, our designs SI and SII are superior to Scp except for
the case where τmax is close to Tcp and, simultaneously, νmax

is small. Furthermore, SII is seen to be superior to SI for
τmax and νmax near the design parameters. This superiority is
maintained for more dispersive channels (larger τmax or νmax).
However, for less dispersive channels, SI is less affected by
the parameter mismatch.

B. DRM System

Next, we consider the application of our pulse optimization
techniques to an MC system corresponding to the ETSI
digital audio broadcasting standard Digital Radio Mondial
(DRM) [37]. DRM specifies four so-called robustness modes
A through D that correspond to CP-OFDM systems with
different parameter sets, which are suited to channels with
increasingly stronger time- and frequency-selective fading. For
example, mode A (low redundancy, large spectral efficiency) is
designed for almost no fading while mode D (high redundancy,
small spectral efficiency) is intended for fading channels
with severe delay and Doppler. For performance evaluation
purposes, the DRM standard also specifies six channel models
(1–6) with increasingly adverse time-frequency selectivity.

For robustness modes A and C and channels 2 and 5, Fig. 5
shows the SIR obtained with pulse-shaping MC systems that
were designed using our optimization procedures, as well as
the SIR obtained with the respective standardized CP-OFDM
system. Robustness mode A uses a subcarrier separation of
F = 41 2

3 Hz, a symbol period of T = 26 2
3 ms, and a CP length
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Fig. 5. SIR achieved with Scp, SI, and SII using robustness modes A and
C for DRM channels 2 and 5.

of Tcp = 2 2
3 ms, amounting to TF = 10/9, i.e., a redundancy

of 11.1%. Robustness mode C uses F = 3000/44 Hz ≈
68.2 Hz, T = 20 ms, and Tcp = 5 1

3 ms, amounting to TF =
15/11, i.e., a redundancy of 36.4%. Assuming operation of
the DRM systems at an SNR of 15 dB, a target SIR larger
than 15 dB is required to avoid performance limitation due
to ISI/ICI. In the case of the mildly dispersive channel 2,
all MC systems achieve SIRs of about 30 dB, even in mode
A with low redundancy. For the strongly dispersive channel
5, however, the standardized CP-OFDM system Scp achieves
only 12.3 dB in mode A, i.e., almost 3 dB less than the target
SIR. In this case, the CP-OFDM system would have to be
switched to the less spectrally efficient mode C to achieve the
target SIR. In contrast, both SI and SII achieve an SIR of about
19 dB even in mode A. We conclude that our optimized MC
systems can be operated in the low-redundancy mode A even
for adverse channels. For a DRM bandwidth of 10 kHz, 64-
QAM modulation, and a code rate of 0.6, this means that our
designs support a data rate of 26.6 kbit/s instead of 16.6 kbit/s
and thus allow a 60% increase in data rate (cf. [37, Annex
H]). Similar observations apply to channel 6 (not shown). It
should be noted that we used the DRM system parameters
(lattice constants T, F ) in our optimizations; additional gains
could be achieved by an adaptation of the lattice constants.

IX. CONCLUSION

We presented exact and approximate expressions for the
intersymbol/intercarrier interference (ISI/ICI) of pulse-shaping
multicarrier (MC) systems transmitting over doubly dispersive
fading channels. Our analysis demonstrated that to achieve
low interference, the transmit and receive pulses should be
jointly well localized in time and frequency and close to an
orthogonal system (i.e., almost OFDM). The existence of such
pulse pairs was shown by exploiting the Ron-Shen duality
of Weyl-Heisenberg frames and Riesz bases to adapt recent
mathematical results on Weyl-Heisenberg frames to the MC
context.

We furthermore proposed two pulse optimization techniques
that both aim at the minimization of the ISI/ICI power: a linear
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technique that assumes one pulse to be given and optimizes
the respective other pulse, and a nonlinear technique that
performs a joint optimization of both pulses. Our numerical
results showed that the resulting optimized pulse-shaping MC
systems can significantly outperform conventional CP-OFDM
systems for realistic spectral efficiencies and channel parame-
ters. We also presented efficient digital implementations of
pulse-shaping MC systems whose computational complexity
is only slightly larger than that of conventional CP-OFDM
systems.

The proposed optimized pulses yield additional benefits that
cannot be discussed in detail in this paper. Their reduced
out-of-band energy allows a larger number of subcarriers to
be used while still respecting a prescribed spectral mask.
The optimized pulses further result in improved robustness
to a frequency offset (which acts like an additional Doppler
shift). Finally, there is a gradual SIR decrease for increasing
maximum delay τmax (instead of the abrupt SIR decrease
observed for τmax > Tcp with CP-OFDM systems), which has
the potential to obviate the need for time-domain equalizers
in the case of very large delay spreads.
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Karlheinz Gröchenig is Professor of Mathematics
at the University of Vienna. From 1988 until 2004
he was Professor at the University of Connecticut,
where he was awarded tenure in 1993 and promoted
to Full Professor in 1998. He is recipient of a Marie-
Curie Excellence Grant of the European Community
and team leader of the European Center for Time-
Frequency Analysis. His field of research is har-
monic analysis, operator theory, and sampling theory
with applications in signal analysis and wireless
communications. He is author of the book “Foun-

dations of Time-Frequency Analysis” and of 100 research articles.

Manfred Hartmann received the Dipl.-Ing. degree
in Electrical Engineering from Vienna University of
Technology, Austria, in Apr. 2003. From May 2003
till Dec. 2004 he has been with the Department of
Communications and Radio-Frequency Engineering,
Vienna University of Technology, working as a Re-
search Assistant within the project ”Advanced Mul-
ticarrier Systems for Wireless Communications.”
Since March 2005 he is with Austrian Research
Centers GmbH - ARC, Vienna. His research in-
terests include statistical signal processing, wireless

communications, and biomedical signal processing.

Franz Hlawatsch received the Diplom-Ingenieur,
Dr. techn., and Univ.-Dozent (habilitation) degrees
in electrical engineering/signal processing from Vi-
enna University of Technology, Vienna, Austria in
1983, 1988, and 1996, respectively.

Since 1983, he has been with the Institute of
Communications and Radio-Frequency Engineering,
Vienna University of Technology, where he holds
an Associate Professor position. During 1991-1992,
as a recipient of an Erwin Schrödinger Fellowship,
he spent a sabbatical year with the Department

of Electrical Engineering, University of Rhode Island, Kingston, RI. In
1999, 2000, and 2001, he held one-month Visiting Professor positions with
INP/ENSEEIHT/TeSA, Toulouse, France and IRCCyN, Nantes, France. He
(co)authored a book, a review paper that appeared in the IEEE Signal
Processing Magazine, about 150 refereed scientific papers and book chapters,
and two patents. He coedited two books. His research interests include
signal processing for wireless communications, nonstationary statistical signal
processing, and time-frequency signal processing.

Prof. Hlawatsch was Technical Program Co-Chair of EUSIPCO 2004 and
served on the technical committees of numerous IEEE conferences. He is
currently serving as an Associate Editor for the IEEE Transactions on Signal
Processing and as a member of the IEEE SPCOM Technical Committee. He
is coauthor of a paper that won an IEEE Signal Processing Society Young
Author Best Paper Award.


