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8Mouse models of human cancer have transformed our ability to link genetics, molecular mechanisms and phenotypes.

9Both reverse and forward genetics in mice are currently gaining momentum through advances in next-generation

10sequencing (NGS). Methodologies to analyze sequencing data were, however, developed for humans and hence do not

11account for species-specific differences in genome structures and experimental setups. Here, we describe standardized

12computational Q1pipelines specifically tailored to the analysis of mouse genomic data. We present novel tools and workflows

13for the detection of different alteration types, including single-nucleotide variants (SNVs), small insertions and deletions

14(indels), copy-number variations (CNVs), loss of heterozygosity (LOH) and complex rearrangements, such as those of

15chromothripsis. Workflows have been extensively Q2validated and cross-compared using multiple methodologies. We also

16give step-by-step guidance on the execution of individual analysis types, provide advice on data interpretation and make

17the complete code available online. The protocol takes 2–7 d, depending on the desired analyses.

18
Introduction

19The mouse as a model organism has been used Q3in cancer research for almost a century. In the 1920s,

20the first inbred ‘isogenic’ mouse lines were generated to establish cancer models that developed
21different malignancies either spontaneously or after treatment with carcinogens1. Transgenesis,
22embryonic stem cell technology and gene targeting opened the way for the development of genetically
23engineered mouse models of cancer, revolutionizing our ability to link genes, molecular mechanisms
24and organismal phenotypes2. Mouse models were used to elucidate many of the most fundamental
25biological principles that have since been discovered3. Through CRISPR-based genome engineering, it
26has now become possible to edit genomes, even somatically in living animals. Fast and scalable in vivo
27CRISPR applications are substantially changing our ability to perform complex manipulations and
28functional genomic studies in mice4. These and other developments contribute to a growing
29importance of mouse models in basic and translational cancer research. Q4
Q5Q6Q7
30In humans, cancer genomics has been revolutionized by NGS. With sequencing costs constantly

31dropping, NGS has also begun to influence the arena of mouse cancer genomics. As a consequence,
32the demand for sequencing of mouse cancers is increasing, as is the need for robust analysis pipelines.
33A high degree of gene orthology between human and mouse exists. 80% of human protein-coding
34genes have one-to-one mouse orthologs. The remaining 20% are either (i) in one-to-many, or many-
35to-many, orthologous relationships; (ii) are members of gene families that have undergone species-
36specific expansions or reductions; or (iii) contain species-specific open reading frames5.
37Nevertheless, comparative analyses of mouse and human genomes have also revealed some dif-
38ferences between the two species6,7. For example, in mice, segmental duplications are typically
39arranged in clusters, forming contiguous blocks of structural variations, whereas in humans
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40duplications are more often interspersed along the genome8. These clusters of segmental duplications
41are hotspots of recombination, leading to diversification both between mouse strains and ‘de novo’
42between individuals of the same strain9. Other differences between mouse and human genomes are
43not well studied, and it is unclear how such differences affect the accuracy of genomic analyses. The
44development of analytical tools and bioinformatics pipelines was focused on humans and such tools
45have so far not been systematically validated in the mouse context.
46Another limitation in mouse genomic analyses is the lower size/availability of genomic data
47resources for rodents. For example, single-nucleotide or copy-number databases comprise orders of
48magnitude more entries in humans than in mice10,11. Moreover, large data resources linking muta-
49tions to various phenotypes (cancer, Mendelian disorders) exist for human data but are mostly
50unavailable for the mouse. As an exception to this, a few mutations have been modeled in mice (e.g.,

51Trp53 point mutants) to dissect functionality at the organismal level.
52Finally, the use of inbred strains for mouse cancer studies, which can affect different aspects of
53data analysis, represents a significant difference from the human situation. For example, the type and
54extent of inbreeding can have critical impacts on the quality of LOH analysis. Although defined
55crosses of two different inbred strains can facilitate the analysis of LOH (e.g., in F1 animals from Sv/
56129 × C57BL/6), this scenario is rare in mouse cancer studies. Typically, either pure backgrounds are
57used, in order to control for phenotype stability12–15, or various mixtures of backgrounds are gen-
58erated through intercrosses of the different required alleles, which were often engineered in different
59backgrounds. In both cases, LOH analysis is substantially impaired, either by the low number of
60variant alleles in the germline or by their uneven distribution.

61Development of the protocol

62To analyze whole-exome or whole-genome sequencing (WES/WGS) data from mice, we initially
63tested computational methodologies and settings that were benchmarked for humans. However,
64validation experiments using array comparative genomic hybridization (aCGH), multicolor fluores-

65cence in situ hybridization (M-FISH), or targeted re-sequencing revealed inaccuracies of results
66related to different alteration types. There is a scarcity of mouse-specific workflows for the analysis of
67cancer genomic data. For example, currently no pipelines are available for the inference of LOH and
68chromothripsis, and workflows for calling of indels and CNVs have not yet been validated in the
69mouse context. We therefore set out to systematically examine, validate and benchmark tools for the
70analysis of all cancer-relevant genomic alterations in mice, including SNVs, indels, CNVs, LOH and
71complex rearrangements.
72Our protocol describes computational workflows for each analysis type. It extensively cross-
73compares, validates and recommends tools for the analysis of SNVs and CNVs, and contributes novel
74analytical methods and pipelines for the detection of LOH and chromothripsis. We provide all
75scripts, as well as guidance on their use. The protocol also gives recommendations for a broad

76spectrum of analytical details, such as parameter settings in various analytical and research contexts.
77Finally, each section also contains advice on data interpretation.
78This work benefited from our extensive collection of various mouse tumor entities, including
79pancreatic, colon, stomach and hematopoietic cancers. The collection encompasses both tumors
80derived from genetically engineered mice and cancers triggered by environmental factors such as
81inflammation. Importantly, we developed primary cancer cell cultures from these mouse tumors,
82allowing accurate multi-layered analyses and validation approaches. For example, M-FISH using
83metaphase spreads facilitated the development, refinement and validation of pipelines for the
84detection of CNVs, LOH or chromothripsis.
85We used the workflow (overview in Fig. 1) described in this protocol to analyze mouse cancers
86from different cancer entities16,17. Comparative analysis using matched human cancers revealed

87important considerations for the use of mouse models. First, the types of genetic alterations occurring
88in individual cancer types are similar in mouse and human, reflecting the similarities in biology
89between the species and supporting the role of the mouse as a prime model for human cancer. For
90example, mutational patterns and complex rearrangement types are similar in the two species, as
91shown in Fig. 2 for pancreatic cancer. Second, the frequency of mutations is generally lower in mice,
92particularly in genetically engineered models, which are driven by oncogene and tumor suppressor
93alterations, often induced using tissue-specific Cre-lines starting at the embryonic or early postnatal
94stages. Third, the reduced mutational complexity can aid data interpretation and can be exploited to
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95uncover biological principles that are difficult to extract from the more complex human genomes17

96(Anticipated results).

97Applications of the method

98Genomic analyses in mouse cancer models offer multifaceted opportunities to answer questions in
99cancer research that are difficult to answer in human studies. One limitation in humans is a lack of
100tissue resources that are needed in some research areas. For example, although ~1,000 human
101pancreatic cancers have been deep sequenced, the scarcity of primary/metastasis pairs—particularly

102of treatment-naive ones—substantially hampers studies into metastasis genetics. Mouse models can
103overcome this obstacle, allowing systematic sequencing-based surveys for genes that drive metastasis
104or metastatic organotropism. Also, in sample banks, the phenotypic spectrum of a disease is often
105misrepresented. For example, ~50% of pancreatic cancer patients present with advanced (stage 4)
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Fig. 1 | Overview of mouse cancer genome analysis Q8workflows. Overview focusing on the bioinformatic section of

this protocol, highlighting key procedures and their corresponding steps in the protocol. N, normal; SV, structural

variation; T, tumor.
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106disease, but because these are not undergoing surgery, such samples account for only <10% of cases in
107sample banks18.
108Another major advantage of the mouse is the possibility of tailoring experimental conditions to the
109study of specific context dependencies: (i) a plethora of possibilities for spatiotemporal genetic
110manipulations in mice19 allow, for example, analysis of genetic-context dependencies by modeling
111specific subentities of individual cancer types initiated by different oncogenes; sequencing can be used
112to identify subentity-specific driver alterations20,21. (ii) Cellular-context dependencies can be inves-
113tigated by activating oncogenes in different cell types of an organ, and genetic analyses of resulting
114cancers can identify ‘cell of origin’–dependent oncogenic processes22–24. (iii) Moreover, qualitative

115manipulation of various environmental contexts (e.g., the immune system, tumor stroma, inflam-
116matory conditions), allows us to study how these factors impinge on genetic tumor evolution and
117mutational processes.
118Monitoring of cancers over time in mice also allows the study of the genetics/epigenetics of
119dynamic processes and phenotypes, such as epithelial–mesenchymal transition and drug resistance.
120Combined with the growing experimental toolbox for in vivo cellular barcoding, phylogenetic
121tracking and other types of evolutionary studies are now feasible at unprecedented scale and depth25.
122Finally, deep sequencing offers opportunities in the arena of forward genetics. Carcinogen-induced
123rodent models of human cancers have been used for decades. Examples are hepatocellular carcinoma,
124skin cancer and lung cancers induced by diethylnitrosamine26, dimethylbenzanthracene Q1227 and
125N-nitroso-N-methylurea28, respectively. Before the era of NGS, genetic studies in such models were

126substantially hampered by the low throughput of traditional approaches to cancer genome analysis.
127Recent studies showed, however, that chemical perturbation of genomes, combined with NGS of
128cancers in these mice, is a powerful approach for gene discovery and evolutionary studies29–32.

129Comparison with alternative methods

130Sequencing-based cancer genome analysis detects—in contrast to other approaches—all classes of
131genetic alteration in one experiment and is also increasingly outcompeting other methods with
132respect to costs. For validation purposes, we have extensively used alternative techniques—including
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Fig. 2 | Genetic alterations in human and murine tumors. a–c, Similar genetic alterations can be found in tumors

from humans and mice (a,c), although at different frequencies (b). a, Trinucleotide context–specific somatic SNVs,

as detected by Q9WES, for mouse (n = 38) and human (n = 51 patients from ref. 63) pancreatic cancer samples. b,

Frequency of SNVs, indels, CNVs and translocations by WES, aCGH and M-FISH in PK Q10mice (n = 38) and human

pancreatic ductal adenocarcinomas (n = 51 patients for SNVs, indels, CNVs (data from ref. 63) and n = 24 cell lines

for translocations). **P = 0.002, ***P ≤ 0.001, two-sided Mann-Whitney test; bars, median. c, Representative

examples of M-FISH karyotypes from pancreatic cancers. Top, highly aneuploid human karyotype (70

chromosomes) with multiple translocations; middle, diploid mouse karyotype (40 chromosomes); bottom, complex

mouse karyotype (77 chromosomes, 4 translocations). CNA, copy-number alteration; n, Q11xxxxxxx. a–c adapted with

permission from ref. 17, Springer Nature Limited.

PROTOCOL NATURE PROTOCOLS

4 NATURE PROTOCOLS |www.nature.com/nprot

www.nature.com/nprot


U
N
C
O
R
R
E
C
T
E
D
 P

R
O
O
F

133amplicon-based sequencing (SNV validation), aCGH (CNVs) and M-FISH (rearrangements)—to
134detect individual alteration types.
135With respect to the sequencing technology, all data analyzed in this protocol were generated on the
136widely used Illumina platforms (short-read, paired-end sequencing by synthesis). We prefer Illumina
137systems for WGS or WES Q13because of their lower costs or lower sequencing error rates as compared
138with alternative short-read sequencing methods such as semiconductor-based sequencing (Ion
139Torrent, Thermo Fisher Scientific) or DNA nanoball sequencing (Beijing Genomics Institute),
140respectively.
141The Illumina HiSeq 3000/4000 Q14system has been widely used for WES and WGS sequencing;
142however, both the HiSeq X Ten (which can be used only for WGS) and the recently released NovaSeq
143system (WES and WGS sequencing) achieve lower prices per sequenced base. All HiSeq systems use a

144four-color chemistry, whereas NovaSeq uses the novel two-channel sequencing-by-synthesis chem-
145istry. Although there are minor differences in base-calling quality between these systems33, our
146pipelines perform well with raw data produced by any of the Illumina systems.
147Ultra-long-read sequencing (>1 kb) through single-molecule real-time sequencing (Pacific Bios-
148ciences) and nanopore-based sequencing (Oxford Nanopore) can substantially improve the detection
149of complex structural variations and also offer applications in epigenetics. Currently, their use in the
150analysis of cancer genomes is limited, as both error rates and sequencing costs per megabase Q15are
151higher compared to short-read sequencing34.
152Further information on alternative bioinformatics methods is given in the specific sections below.

153Limitations

154Limitations of sequencing-based analysis of different genomic alteration types will be discussed
155specifically in the respective sections below.

156Experimental design

157Sample collection and DNA isolation

158For the analysis of somatic alterations in cancer, a matched normal sample is required. Although any
159non-cancer tissue can be used as reference sample, circulating tumor cells can be a confounding
160factor; therefore, blood is not ideal as a control sample. Typically, reference DNA is most easily
161obtained from tail tips, which are collected during necropsy.
162Sequencing of matched control samples—instead of relying only on germline variant filtering
163using publicly available databases—is important even when using inbred mice. First, germline data
164are essential for LOH analysis. Second, single-nucleotide germline mutations are acquired at a rate of
165~5 × 10−9 per generation and base pair (~15 novel SNVs per generation)35,36. The same is true for
166copy-number alterations, with 1 × 10−2 to 1 × 10−6 novel copy-number alterations per generation
167being reported, depending on the genomic region9,37. Novel SNVs acquired through breeding are not
168represented in databases, which are based on sequencing data from only a few mice per inbred line10.

169Given that inbred lines are often kept over many years or even decades at research institutions, this
170can profoundly affect SNV calling and determination of mutation rates/patterns. For example, in a
171primary mouse pancreatic cancer cell culture, 3,573 mutations were identified using databases to filter
172out potential germline variants. Additional filtering against matched control tissue revealed, however,
173that 96% of these SNVs are germline variants, leaving only 136 true somatic SNVs.
174High-quality input DNA free of contaminants increases the odds of successful and reliable
175sequencing library preparation. For most sample types, such as tissue, blood or cultured cells,
176commercial DNA extraction kits using silica-based DNA immobilization are commonly used because
177they are easy to use and yield consistent results. Archived material is typically formalin-fixed and
178stored in 70% ethanol Q16or embedded in paraffin (FFPE). Both fixation and embedding can adversely
179affect the integrity of DNA. We recommend using DNA isolation procedures tailored to specific

180sample materials in order to ensure amplifiable DNA and adequate sequencing quality38. Precise
181determination of DNA concentrations is necessary to ensure the equimolar representation of each
182sample in the library. We recommend quantification assays using dsDNA-specific fluorescent dyes.

183Library preparation and sequencing

184Currently, Illumina short-read, paired-end sequencing is most commonly used for WES and WGS.
185For WES, on-target coverage of ~80–100× is typically aimed for. To reduce technical bias, we suggest
186pooling libraries from multiple samples and spreading these across multiple lanes. For WGS, one
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187Illumina HiSeq X lane, for example, results in ~30× whole-genome coverage using 2 × 150-bp paired-
188end sequencing. However, depending on the experimental setup and analyzed tissue, it can be
189necessary to significantly increase sequencing depth. For example, the tumor-cell content in stroma-
190rich tumors is often <50% of all cells, decreasing the effective sequencing depth of tumor cells. The
191experimental question can also affect the required sequencing depth. Experiments aimed at studying
192intratumor heterogeneity and clonal evolution of metastasis, for example, typically require high
193sequencing depth39.

194Reference files

195After initial quality control and trimming, reads are mapped to the reference genome GRCm38

196(mm10; http://www.xxxxxxxx), which is based on Q17the C57BL/6J strain. Separate reference genomes
197have been generated for the most widely used laboratory strains, but these are not routinely used for
198mapping during analysis of mouse cancer genomes (because they are of inferior quality and are not
199represented in the standard GRCm38 database). In addition, mice used in cancer studies are often
200kept on a mixed background.
201Information on known mouse germline variations, mostly resulting from strain-specific differ-
202ences, is, however, needed for base quality recalibration after alignment, as well as for filtering of
203somatic mutations to reduce false-positive calls. The most widely used database of mouse germline
204variation is maintained by the Wellcome Sanger Institute (https://www.sanger.ac.uk/sanger/Mouse_
205SnpViewer).

206SNV and small indel calling

207Various mutation callers are available for the analysis of WES or WGS data, the most widely used
208ones being Mutect, Strelka and VarScan. Mutect1(ref. 40) has been used as an SNV somatic mutation
209caller in mouse WES studies17,20,21,29,31,41. A newer version, Mutect2, was released in 2018 and is
210already being used in newer publications42. Whereas Mutect1 calls only SNVs, Mutect2, which is
211recommended in this protocol, can detect both SNVs and indels. Both versions use a Bayesian
212classifier testing a reference model (which assumes that each observed non-reference base is due to
213sequencing error) against the variant model (which assumes that the specific site contains a true
214variant). A similar approach is used by Strelka2 (ref. 43), which can also call both SNVs and indels.
215Another algorithm, VarScan2, uses a Fisher’s exact test to compare the proportion of variant fre-
216quencies between tumor and normal samples44.

217Tools commonly deployed in population genetics, such as GATK HaplotypeCaller, are less well
218suited to the analysis of cancer genomes45. These tools are primarily intended for genotyping
219germline variants. Their design does not account for cancer-specific aspects, such as varying degrees
220of healthy stromal cell content, aneuploidy and intratumor heterogeneity with subclonal tumor cell
221populations. By contrast, dedicated somatic mutation callers typically integrate data from both the
222control and the tumor sample into a joint statistical model.

223Validation and choice of somatic SNV/indel callers

224To evaluate the performance of our mutation-calling workflow, we systematically validated SNV calls
225made by Mutect2 (GATK 4), Mutect1 (GATK 3), Strelka and VarScan2 in mouse primary gastric
226cancer cell cultures (Fig. 3a), using amplicon-based re-sequencing (685 validated positions; for details,

227see Supplementary Methods).
228Figure 3b shows the performance of the different SNV callers at the individual sample level.
229Weighted mean values for sensitivity and precision of SNV detection are summarized in Table 1.
230Mutect1 and Mutect2 outperformed Strelka2 and Varscan2. Although differences in weighted mean
231sensitivity were not marked (0.81, 0.8, 0.8 and 0.72 for Mutect1, Mutect2, Strelka2 and VarScan2,
232respectively), we noticed substantial discrepancies in precision, with Mutect1 and Mutect2 con-
233sistently reporting fewer false-positive calls than the other algorithms.
234These differences between callers were evident over the whole range of variant allele frequencies.
235Figure 3c shows the cumulative performance in relation to the frequency of analyzed variant alleles.
236As expected, the confidence of calls was smallest at low mutant allele frequencies. For example, the
237sensitivity and precision for Mutect2 were 0.7 and 0.61, respectively, at mutant allele frequencies of

2380.1–0.2 but increased to 0.89 and 0.95, respectively, at allele frequencies between 0.4 and 0.5. We
239noted that when combining results from Mutect1 and Mutect2, the increase in sensitivity was more
240pronounced than the decrease in precision (red curves in Fig. 3c), which could be exploited in
241projects in which high sensitivity is the key requirement.
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242For detecting small indels (defined as indels of ≤10 bp), we tested Mutect2 and Strelka2 (Mutect1
243does not support indel calling). Moreover, we included Pindel46, a tool which has been widely used in

244sequencing studies for indel calling. We validated indels identified by these tools in an approach
245similar to the one described above for SNVs (179 validated positions; Fig. 4a). We determined
246sensitivity and precision for each tool, allowing their comparison (although it is worth noting that the
247‘true’ sensitivity and precision cannot be determined in this manner because even the cumulative
248combination of all three tools might miss some indels). As shown in Fig. 4b, Mutect2 substantially
249outperformed Strelka2 and Pindel, particularly in regard to sensitivity, which was 0.9, 0.4 and 0.04 for
250Mutect2, Strelka2 and Pindel, respectively (Table 1).
251To evaluate the performance of our pipeline on datasets from other laboratories, we used
252a validated dataset from a recent study that performed exome sequencing on mouse cancers20

253(Supplementary Methods). The precision and sensitivity of our workflow were 0.95 and 0.89,
254respectively, confirming the high quality of our SNV-calling pipelines.

255In summary, we recommend the use of Mutect2 for SNV and indel calling in mouse cancers. The
256software is well documented and supported by a large and active user and development community.
257Mutect1, which was widely used in the past, has two disadvantages: namely, its longer overall runtime
258and, more importantly, its inability to detect indels.
259However, we found that the Mutect2 runtime can vary considerably, depending on the degree of
260aneuploidy (e.g., 8 h for the analysis of 30× of a purely diploid sample compared to >24 h for a highly
261aneuploid sample). Strelka2 has substantially lower runtimes (e.g., 35 and 55 min, respectively, for the
262samples discussed above). Therefore, if computational cost is a constraint, the use of Strelka rather
263than Mutect2 for somatic mutation calling could be considered (keeping in mind that mutation
264calling using Strelka has slightly lower precision and sensitivity).

265Postprocessing of somatic mutation calls

266SNV and indel postprocessing can substantially affect the quality of results and is often tailored to the
267specific experimental setup. In the analysis of WES from primary cell cultures or cell lines with

Fig. 3 | Systematic comparison of SNV callers. Mutect2 outperforms other SNV callers for mouse cancers when

validated using targeted re-sequencing. a, SNV calling by four different callers identified a total of 7,031 mutations in

mouse gastric cancer cell cultures (n = 5) on the basis of WES. From the pool Q18of all detected mutations, SNVs were

selected for targeted amplicon-based deep re-sequencing. For this, calls were stratified by sample, caller, allele

frequency and base change (microstates) and sampled from each stratum randomly. After re-sequencing (median

coverage, 13,550; interquartile range, 7,913–20,794), 685 SNVs, from which 306 were true positives, were used for

benchmarking the callers. b, Sensitivity and precision of SNV callers for individual mouse gastric cancer cell cultures

based on the validation of 685 SNV calls by targeted amplicon-based deep re-sequencing. Note that the union

(Mutect1 ∪ Mutect2) contains all SNVs detected by either Mutect1 or Mutect2. c, Sensitivity (left) and precision

(right) of SNV callers in relation to SNV allele frequency. Performance of SNV callers was tested on the basis of 685

validated SNVs. Values for sensitivity or precision Q19were calculated in windows of 0.05, starting at a variant allele

frequency of 0.1.

Table 1 | SNV and indel calls detected by Mutect1, Mutect2, VarScan2, Strelka and Pindel in five
murine Q20gastric cancer primary cell cultures

Type Caller Baseline
calls

Validated
calls

True
positives

False
positives

False
negatives

Weighted
mean
sensitivity

Weighted
mean
precision

SNV Mutect1 2,703 685 249 48 58 0.81 0.84

Mutect2 2,575 685 245 51 62 0.80 0.83

Mutect1 ∪
Mutect2

3,032 685 286 74 20 0.94 0.79

VarScan2 5,115 685 235 258 72 0.72 0.50

Strelka2 4,002 685 247 137 60 0.80 0.66

Indel Mutect2 200 179 133 25 16 0.90 0.84

Strelka 260 179 59 5 90 0.40 0.90

Pindel 26 179 5 5 143 0.04 0.39

Sensitivity and precision were calculated as weighted means, accounting for the number of calls in each sample.

PROTOCOL NATURE PROTOCOLS

8 NATURE PROTOCOLS |www.nature.com/nprot

www.nature.com/nprot


U
N
C
O
R
R
E
C
T
E
D
 P

R
O
O
F

15

149 2942

7

2 2

a

Available for validation

(n = 179)

True positives

(n = 148)

Validation of

WES calls

Strelka2

Pindel

1

20112

12

37

6

Strelka2

Pindel

Mutect2

Mutect2

Baseline Indels

(n = 246)

0

1589

00

38

6

Strelka2

Pindel

Mutect2

Random selection,

stratified by microstate,

followed by amplicon-

based re-sequencing

0.0

0.2

0.4

0.6

0.8

1.0

Sensitivity

Precision

P
e

rf
o

rm
a

n
c
c
e

Caller: PindelMutect2 Strelka2

b

6
8

_
3

I

7
3

_
1

L

6
7

_
1

G

6
8

_
2

G

6
9

_
1

F

6
8

_
3

I

7
3

_
1

L

6
7

_
1

G

6
8

_
2

G

6
9

_
1

F

6
8

_
3

I

7
3

_
1

L

6
7

_
1

G

6
8

_
2

G

6
9

_
1

F

Fig. 4 | Systematic comparison of callers for the detection of small indels. Using targeted re-sequencing, small

indel calls were validated. In a comparison of three callers, Mutect2 outperformed both Strelka2 and Pindel. a, Indel

calling (size, ≤10 bp) by three different callers in mouse gastric cancer cell cultures (n = 5) on the basis of WES. 246

indels were identified in total. Indels were stratified by sample, caller, allele frequency and indel size and randomly

selected from each stratum. These positions were used for targeted amplicon-based deep re-sequencing (median

coverage, 10,625; interquartile range, 6,548–16,757). For benchmarking of the callers, 179 positions, from which 148

were true positives, were used. b, Sensitivity (left) and precision (right) of indel callers for individual mouse gastric

cancer cell cultures on the basis of the validation of 179 indel calls by targeted amplicon-based deep re-sequencing.

The sensitivity and precision for Pindel were 0 for calls from three samples, because Pindel found no true positives

for those samples.

NATURE PROTOCOLS PROTOCOL

NATURE PROTOCOLS |www.nature.com/nprot 9

www.nature.com/nprot


U
N
C
O
R
R
E
C
T
E
D
 P

R
O
O
F

268matched tail tissue (coverage ~100×), we use the following postprocessing filter settings: for SNVs and
269indels, we recommend using a variant allele frequency ≥10%, a minimum of 10× read coverage in
270both tumor and normal at this position, a minimum of three reads supporting the variant allele in the

271tumor sample and no reads supporting the variant allele in the matched normal tissue. The proposed
272settings are aiming at reducing false-negative calls (increasing precision) while keeping sensitivity
273high (>90%).
274Of note, optimal threshold settings strongly depend on which parameter is more important for a
275given experiment: sensitivity or precision. For example, in cases in which sensitivity is critical, settings
276can be relaxed and downstream validation experiments (e.g., using amplicon-based resequencing) can
277correct for false-negatives. Examples of experimental setups or questions that can warrant qualitative
278changes in postprocessing are (i) evolutionary studies, which often use low threshold settings (for
279read support and variant allele frequency) in order to achieve high sensitivity in detecting subclonal
280events. This is particularly relevant in cancers with a high degree of intratumoral heterogeneity.
281(ii) Studies using archived material often rely on the recovery of tumor and normal DNA from the

282same FFPE tissue slide. This carries the risk of tumor cell ‘contamination’ within the normal tissue.
283In such cases, detection of ‘contaminating’ tumor-derived variants in the normal tissue would lead to
284exclusion of true-positive SNVs in the tumor. In such a scenario, the absolute read count filter for the
285variant allele must be raised in the normal tissue.
286All postprocessing steps are performed using the variant call format (VCF), which describes all
287called mutations and can be used in virtually all genomic software tools. However, VCF was designed
288for the interchange between computer programs and is therefore not the best choice as a final output.
289We therefore export the final results in tabular format. An explanation of all relevant fields can be
290found in Box 1, and exemplary data are shown in Table 2. Note that genetically engineered mutations
291in mouse cancer models are present in both the tumor and the germline and are therefore filtered out
292during standard SNV calling (for example, KrasG12D in the pancreatic cancer model described above).

293Sources of error

294Historically, one important finding was that during the library preparation, C>A/T>G artifacts were
295introduced at low frequencies through a combination of heat, induced during DNA shearing, and
296contaminants in the DNA buffers, resulting in oxidation of guanine47. Although this potential source
297of artifacts was first reported in 2012, implementation of improved protocols for library preparation
298was often not immediate in sequencing facilities. Although there are tools available for the removal of
299these artifacts (FilterByOrientiationBias from GATK, DKFZBiasFilter), these often can only attenuate
300the problem. It is therefore advisable to treat C>A/T>G-calls, originating from raw data generated
301before or shortly after 2012, with great care. We recommend evaluating all samples for possible

302sequencing artifacts. Because the read frequency of such artifacts is low, an additional filtering
303step using high variant frequency thresholds (requiring an allele frequency of >0.2) should be
304considered, particularly in cases in which high precision is required (e.g., to compare mutational
305patterns among entities).

Box 1 | Description of SNV output

In the final output file, each line describes the effect of one unique mutation on one unique transcript, of which
there are often multiple per gene. An exemplary output is provided in Table 2.
CHROM Chromosome name
POS Genomic position. For indels, position of the first reference nucleotide.
REF The reference base at POS. In case of deletions, the base before the event is included.
ALT The alternative/variant base at POS.
GEN[Tumor].AF Allele frequency. Frequency of the alternative (mutated) allele.
GEN[Tumor].AD[0] Number of reads in the tumor supporting the reference base at POS.
GEN[Tumor].AD[1] Number of reads in the tumor supporting the alternative base at POS.
GEN[Normal].AD[0] Number of reads in the control supporting the reference base at POS.
GEN[Normal].AD[1] Number of reads in the control supporting the alternative base at POS.
ANN[*].GENE Gene name (HGNC)
ANN[*].EFFECT Effect of this variant using sequence ontology terminology. A detailed explanation of each
effect can be found in the SnpEff documentation (http://snpeff.sourceforge.net/SnpEff_manual.html)
ANN[*].IMPACT Each effect is categorized into one of our impact categories. Generally, changes in the amino
acid sequence of protein-coding genes are categorized as MODERATE or HIGH.
ANN[*].FEATUREID Here, this corresponds to the Ensembl Transcript ID.
ANN[*].HGVS_C Nucleotide change using HGVS annotation.
ANN[*].HGVS_P Amino acid change using HGVS annotation (if the variant affects the coding region)
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306Another source of false-positive somatic calls in cancer is the failure to detect ‘true’ germline
307variants in the corresponding control tissue (incorrect variant calling in the healthy matched tissue).
308This source of error is often underestimated. To overcome this problem, we use the following two
309approaches. (i) First, we filter called somatic mutations using a database of known germline variants
310(Mouse Genome Project V5), maintained by the Wellcome Sanger Institute10. This list encompasses
311~18 million SNVs and ~4 million indels. Importantly, these variants were generated using low-
312coverage WGS of only a few animals per strain. In our experience, the first filtering step using these
313data resources is not sufficient to remove all ‘false-positive’ somatic calls. (ii) Second, we routinely
314generate a cohort-specific list of germline variants, representing all germline SNVs and indels from all
315available animals (referred to as ‘panel-of-normals’). We use this list to perform a second filtering step
316in order to remove false-positive somatic calls. As an example, the total numbers Q22of somatic calls in

317one mouse gastric cancer cell line were 1,138 (before filtering), 1,121 (after the first filtering step) and
3181,110 (after the second filtering step).

319Interpretation of mutation calls

320Several methods are available to further explore and interpret the relevance of somatic mutation calls.
321PROVEAN (Protein Variation Effect Analyzer; http://provean.jcvi.org/) is a software tool that pre-
322dicts whether an amino acid substitution or indel has an impact on the biological function of a
323protein48. Variant alleles and their coordinates can be uploaded to the PROVEAN web interface.
324PROVEAN supports the analysis of mouse data, in contrast to comparable tools such as SIFT or
325PolyPhen-2. Another unique feature of PROVEAN is the possibility of interrogating functional

326consequences of in-frame indels, which is not supported by other tools.
327Statistical approaches to separate commonly abundant passenger mutations from truly significant
328driver events are based on the assumption that. within a cohort of samples. mutations in driver genes
329occur more often than expected by chance. Unfortunately, the majority of tools for such approaches
330are specifically tailored to the analysis of human cancers. An exception to this is MuSiC2, which can
331be used for mouse data as well49. Required inputs for MuSiC2 are mapped reads (BAM files) and
332mutation calls (MAF or VCF files). In addition to statistics on the gene level, MuSiC2 can also be used
333to identify significantly enriched pathways within a cohort (increased number of mutated genes in
334specific pathways as compared to random expectation).
335Mutational signatures, estimated from the trinucleotide context of SNVs, can be used to deduce
336the biological process generating mutations. This type of analysis requires additional reformatting of

337VCF files and uses the Bioconductor packages Somatic Signatures and Variant Annotation50. A major
338limitation of the identification of mutational signatures in mice, however, is the low number of SNVs
339per cancer. Tumors arising in genetically engineered transgenic mice often have fewer SNVs than
340needed for robust mutational signature detection (between 50 and 500 mutations).

341Analysis of CNVs from whole-exome data

342aCGH and single-nucleotide polymorphism (SNP) arrays have been widely used to call somatic CNV
343aberrations in mouse and human cancer. The widespread use of NGS to study SNVs in mouse
344cancers also allows extraction of CNV data from NGS results. To this end, we systematically tested
345and improved algorithms for the detection of somatic CNVs from WES and WGS data.
346Tools that infer CNVs from WES data count reads mapping to genomic regions. These counts are

347de-noised, corrected for GC content and mappability, which is followed by normalization. Regions
348are then segmented by circular binary segmentation or a hidden Markov model (HMM). Several tools
349use reads mapping to exonic regions (‘on-target’ reads of whole-exome enrichment kits). We found,
350however, that this approach does not perform well in murine cancers. This is mainly due to sequence-
351specific variation in pull-down efficiencies during library preparation. Following DNA fragmentation,
352exonic regions are captured by biotinylated oligonucleotide baits. Thereby, capturing efficacy can be
353biased by variable factors, e.g., sequence context. Most tools try to adjust for such biases through
354statistical means.
355A recently reported approach uses ‘off-target’ reads for the analysis of CNVs. These reads originate
356from genomic regions that are not specifically captured by the enrichment kits but fail to be removed
357by washing steps during library preparation. Historically, these ‘undesired’ reads could account for up

358to 60% of all sequenced reads. Improved library preparation workflows have reduced this number: in
359our mouse cohorts, the median percentage of reads mapping to off-target regions is ~20%.
360CopywriteR51 was the first tool using off-target reads for the analysis of CNVs. A later algorithm,
361CNVKit52, uses both on- and off-target reads in a combined approach. As described in detail below,
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362we found that, in mice, both tools perform considerably better than tools based on the analysis of
363‘on-target’ reads.
364To objectively determine and compare the quality of calls made by these tools, we used 38 murine
365pancreatic ductal adenocarcinoma primary cell cultures from an earlier study17. Tumors were
366induced in mice with pancreas-specific activation of KrasG12D. We performed both aCGH and WES
367for each cell culture (Supplementary Table 1).
368Agilent Genomic Workbench was used to preprocess and segment the aCGH files. Called seg-
369ments were then manually reviewed and curated, e.g., by also evaluating M-FISH karyotypes, in order

370to obtain the highest possible quality of calls. Called segments with a log2 ratio between −0.25 and
371+0.25 were regarded as copy-number neutral. This relatively low cutoff was used to account for
372intratumoral heterogeneity and the frequent presence of aneuploidy/polyploidy in our cohort.
373We used CopywriteR and CNVKit to determine copy-number aberrations for each gene from
374WES data in this cohort. For each tool, sensitivity and precision were determined using aCGH as a
375reference. For CopywriteR, the weighted mean sensitivity and precision were 94% and 93%,
376respectively (Fig. 5a), whereas for CNVKit both were 90% (Supplementary Fig. 1).
377CNVKit, which uses on- and off-target reads, can be advantageous when looking at small exonic
378regions. As an example, Supplementary Fig. 2 shows an isolated small intragenic deletion of the EGFR
379gene, which was detected by CNVKit but not by CopywriteR. However, this Q25advantage must be
380weighed against the slightly higher overall false-positive rates of CNVKit, which becomes particularly

381apparent in samples with few copy-number changes (note the drop of precision in samples on the
382right side of the graph in Supplementary Fig. 1). We prefer CopywriteR for calling CNVs and
383additionally use CNVKit to inspect specific genes of biological interest or cases in which there is
384evidence of small (exonic) deletions.
385Below, we highlight important considerations for the use of CopywriteR. At the individual sample
386level, the majority of cancers analyzed by CopywriteR have excellent sensitivity and precision scores:
38721 out of 38 samples reached ≥98% for both performance indicators (Fig. 5a). Even for chromosomes
388with highly complex rearrangements, such as in chromothripsis (a frequent phenomenon in our
389pancreatic cancer cohort), we found very high concordance rates between CNV calls detected by WES
390(using CopywriteR) and aCGH, or WGS (using HMMCopy), shown in Fig. 5b.
391In two samples (S302 and 5123, marked with asterisks in Fig. 5a) Q26CopywriteR performed sig-

392nificantly worse than in the rest of the cohort. M-FISH of these samples revealed extensive aneu-
393ploidy/polyploidy and intratumoral heterogeneity (Supplementary Figs. 3–5), resulting in widespread
394copy-number changes with low log2 ratios (between 0.2 and 0.3, which is very near our cutoff of 0.25
395for calling copy number–altered segments). This oscillation around our cutoff value is the cause for
396the decreased concordance between aCGH and CopywriteR. Importantly, when we raised our
397segment-calling threshold to ±0.3, concordance increased considerably (Fig. 5c).
398The analysis of an extensive series of cancers allowed us to systematically search for limitations
399inherent to CopywriteR. Notably, we found that, in very aneuploid samples, CopywriteR assigns
400incorrect log2 ratios to called segments, which is due to incorrect centering to the ‘zero baseline’ (i.e.,
401see Chr11–13 in Fig. 5d). Figure 5e shows the M-FISH karyotype for such a sample. Because this
402phenomenon was strongly dependent on the degree of aneuploidy, we suspected that CopywriteR’s

403normalization method, which uses the absolute median deviation as a location parameter, was the
404cause. To verify this hypothesis, we adopted the normalization strategy used in CNVKit for re-
405centering called segments from CopywriteR. By contrast, CNVKit uses the mode derived from a

Table 2 | Exemplary output of SNV calls

Chrom Pos Ref Alt Allele
freq.

Reads
tumor
(Ref)

Reads
tumor
(Alt)

Reads
normal
(Ref)

Read
normal
(alt)

Gene Effect Impact Transcript HGVS_C HGVS_P

18 34314862 G C 0.43 89 68 134 0 Apc missense_variant MODERATE Q21ENSMUST00000079362.11 c.4810G>C p.Ala1604Pro

11 69589213 C T 0.90 5 46 39 0 Trp53 stop_gained HIGH ENSMUST00000108658.9 c.736C>T p.Arg246*

10 20963869 C A 0.17 73 15 95 0 Ahi1 synonymous_variant LOW ENSMUST00000105525.10 c.678C>A p.Gly226Gly

1 22630308 TA T 0.62 6 10 11 0 Rims1 intron_variant MODIFIER — — —

2 26384880 G C 0.12 53 4 57 0 Snapc4 upstream_gene_variant MODIFIER ENSMUST00000114115.8 c.-4321C>G

2 26384880 G C 0.12 53 4 57 0 Pmpca upstream_gene_variant MODIFIER ENSMUST00000076431.12 c.-4485G>C —

Alt, variant (alternative) base; Chrom, chromosome; HGVS_C, nucleotide change; HGVS_P, amino acid change (for protein-coding genes); Pos, genomic position; Ref, reference base.
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416417418419420421422423424425426427428429430431432433Gaussian kernel estimator as location parameter. This allowed us to correct faulty annotations,
434resulting in substantially increased concordance with M-FISH and aCGH data, even in highly
435aneuploid samples (Fig. 5f,g). This re-normalization is implemented in the Procedure.
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436For visualization of recurrent CNVs, multisample overlays showing changes at a cohort level can
437be generated (Fig. 6a). Moreover, to identify regions of the genome that are significantly amplified or
438deleted across samples, we use GISTIC2 (Fig. 6b)53. Because the GISTIC2 package does not include
439reference files for the analysis of mouse genomes, the respective files for GRCm38 are provided in the

440MoCaSeq repository (‘Equipment setup’ section).

441Detection of LOH

442LOH is a hallmark of cancer evolution. It can be studied by the analysis of common (SNPs) and rare
443SNVs in the genome using NGS. We tested a variety of LOH callers. Frequently, their output was
444erratic when using mouse samples, whereas the same tools robustly called LOH from human samples
445when compared with other methods.

446Identification of heterozygous variant positions in the germline

447For the detection of LOH, the first step is the identification of heterozygous variant positions in
448the germline of the respective animal (‘informative’ variants). A problem that arises when extracting
449these positions from mapped sequences is difficulty in differentiating between ‘true variants’
450and sequencing artifacts, which typically requires extensive postprocessing (arrow in Fig. 7a).

Fig. 5 | Performance of CopywriteR for detecting copy-number changes. Copy-number changes can be inferred

from WES data using CopywriteR with precision similar to that of aCGH. a, Sensitivity and precision of CopywriteR

(median on-target coverage of 75×; from SureSelectXT Mouse All Exon kit ;49.6 Q23Mb) in primary pancreatic cancer

cell cultures (n = 38). CNV calls were benchmarked with corresponding reference aCGH data (Agilent SurePrint G3

Mouse CGH; 240K) by gene-wise comparison. Called segments with a log2 ratio between −0.25 and +0.25 were

regarded as copy-number neutral. Samples were sorted by the fraction of the genome affected by CNVs. Two

samples (*) performed significantly worse than the rest of the cohort, owing to a large degree of intratumoral

heterogeneity and aneuploidy/polyploidy (see also c and Supplementary Figs. 3–5). b, Copy-number profiles of Chr4

from one primary pancreatic cancer cell culture sample (S821) detected by aCGH (top), WES using CopywriteR

(middle) or WGS using HMMCopy (bottom) show high concordance. c, Effect of increasing the log2 cutoff on the

performance of CopywriteR, as compared to aCGH, in polyploid cancers with substantial intratumoral heterogeneity

(Supplementary Figs. 3–5). d, Copy-number profile estimated by CopywriteR for aneuploid sample R1035. For

centering, CopywriteR uses the absolute median deviation (MAD), which incorrectly centers copy-number states in

highly aneuploidy cancer genomes. Note the shift of the log2 ratio for chromosomes 1, 3, 9, 11 and 12, indicating a

subclonal loss, was not confirmed by M-FISH (e). e, Representative M-FISH karyotype Q24for the same sample. In total,

ten separate karyotypes for this sample were analyzed: +2 (2/10 analyzed karyotypes), +5 (10/10), +6 (10/10), +7

(10/10), +8 (7/10), +14 (5/10), +17 (10/10), and +19 (5/10). f, Re-centering of the copy-number profile estimated

by CopywriteR for sample R1035. Using the mode, estimated by a Gaussian kernel estimator of the called segments,

results in expected log2 ratios for all chromosomes. Mode centering results in a shift of the log2 ratio of +0.16.

g, Performance of CopywriteR using MAD or mode estimator for centering. After correction using the mode

estimator, the performance of CopywriteR improves for the samples with the highest CNV load.

100

a b

Kras

9qF4

Chr
2

1 3 5

Cdkn2a Trp539qF4

7 9 11 13 15 17 19

4 6 8 10 12 14 16 18

10–3

10–3

10–7

10–20

10–30

10–70

10–2

10–1

0.25

0.25

Cdkn2a

Myc

Kras Myc

Trp53

50

A
m

p
lif

ic
a

ti
o

n

(%
 o

f 
s
a

m
p

le
s
)

A
m

p
lif

ic
a

ti
o

n
 (

q
)

D
e

le
ti
o

n
 (

q
)

D
e

le
ti
o

n

(%
 o

f 
s
a

m
p

le
s
)

50

100

Chr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

Fig. 6 | Analysis of copy-number changes across one cohort. a, Overlay of copy-number profiles from a cohort of primary pancreatic cancer cell

cultures (n = 38). The y axis shows the frequency of amplifications (up) or deletions (down) in the cohort, with Cdkn2a and Kras loci being

most frequently affected by copy-number alterations. b, GISTIC2 plot for the same cohort. The significance threshold is q = 0.25 (green line).

Chr, chromosome.

PROTOCOL NATURE PROTOCOLS

14 NATURE PROTOCOLS |www.nature.com/nprot

www.nature.com/nprot


U
N
C
O
R
R
E
C
T
E
D
 P

R
O
O
F

451Variant calling using Mutect2 in single-sample mode removes the vast majority of these sequencing
452artifacts (Fig. 7b).

453After artifact removal, variant positions with allelic frequencies outside the expected range of
454a diploid genome are still present (arrow in Fig. 7b). We found that these variants originate from
455reads mapping to pseudogenes and regions of segmental duplication (overlap of these regions is
456marked red in Fig. 7b).
457Duplicated sequences in mouse genomes have three to four times as many paralogs as compared
458with those of human genomes8. Our attempt to remove these regions using mouse databases of
459segmental duplications was unsuccessful, most likely because of incomplete annotation of these
460genomic features. We reasoned that filtering based on mapping quality could improve alleviate
461problem. Mappers such as bwa-mem assign each read a mapping quality score, which integrates
462different parameters, such as base quality, similarity (sequence identity) to the reference genome and
463‘uniqueness’ of the mapped position. We tested various mapping quality thresholds on mouse data

464and found that reliable removal of ambiguous positions in segmental duplications and pseudogenes
465requires rigorous filtering using the maximum possible threshold (Fig. 7c).
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Fig. 7 | Identification of heterozygous variant positions in the mouse germline. a, Allele frequency distribution of all

germline variants from WES data of a single mouse tail, extracted using SAMtools. Note the high rate of variants

with an allele frequency <10% (arrow) and >98%. b, Distribution of allele frequencies of variants detected by

Mutect2, run in single-sample mode, in the same tail sample. Most of the technical artifacts are removed. A number

of variants between allele frequencies of 0 and 0.25 remain (arrow), which is unexpected in diploid genomes

(peaks are expected at 0.5 and 1). These variants are not technical artifacts but true variants located almost

exclusively in segmental duplications (number of positions in segmental duplications marked in red). c, Allele

frequency distribution of all germline variants identified by Mutect2 after filtering for a mapping quality of 60.

Here, only reads mapping uniquely to the reference genome remain, avoiding mapping in segmental duplications

(marked in red), repetitive regions or pseudogenes. As expected, this results in a bimodal frequency distribution.

MapQ, mapping quality.
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466Differences between humans and mice in the number of informative variant positions

467Both the absolute number and the distribution of heterozygous SNVs in the germline are important
468criteria for the detection of LOH. In humans, these informative variants are distributed homo-
469geneously throughout the genome/exome (Fig. 8a). The differences between individuals, even when
470including different ancestries, is negligible for the analysis of LOH.
471By contrast, significant differences in the number and distribution of informative variants between
472individual mice can exist, depending on their genetic background and the level of inbreeding and
473backcrossing. In the mouse cohorts typically used in cancer research, these effects can be substantial.
474For example, in a cohort of mouse pancreatic cancers induced by pancreas-specific KrasLSL-G12D

475expression, some mice were kept on a mixed Sv/129;C57BL/6 background (Fig. 8b), whereas others
476were backcrossed to C57BL/6 to varying degrees (Fig. 8c,d).

477In animals on mixed backgrounds or outbred mice, the distribution of germline variants allows
478LOH analysis at most genetic loci (Fig. 8b). By contrast, the frequent use of inbred genetic back-
479grounds in cancer research poses significant challenges to LOH analyses. Genomes of inbred mice
480have only a few nucleotides at which the maternal and paternal alleles differ. Figure 8c shows the
481variant allele frequency derived from WES for such an example: a knock-in mouse line that had been
482generated in Sv/129 embryonic stem cells and was subsequently extensively (13 generations) back-
483crossed to C57BL/6. LOH calling in cancer derived from this mouse is impossible for the majority of
484positions in the genome.
485Figure 8d shows an example of only minimal backcrossing. Here, some chromosomes (e.g., Chr6)
486have high variant allele density, supporting LOH analyses. By contrast, for other chromosomes
487(e.g., Chr3), LOH analysis is impeded by the low variant allele density.

488Visualization of LOH in mice

489After the identification of heterozygous variant positions, the tumor variant allele frequency is plotted
490for these positions. When using human data from WES, this approach yields plots very similar to
491B-allele frequency plots derived from SNP arrays (Fig. 9a). In mice derived from crosses of different
492inbred strains, long stretches of variant alleles are often located on the same haplotype, even after
493many generations of interbreeding. In regions of LOH, this results in long blocks of continuous loss of

494either the variant or the reference allele (Fig. 9b,c). For inexperienced users, the visual interpretation
495of such data can be difficult. To simplify this, we developed a visualization tool creating LOH plots
496based on B allele frequency, as used earlier for visualization of SNP array data. This approach uses
497defined rules to designate each variant as the A or B allele. This leads to a symmetric representation of
498LOH regions on both sides of the LOH plot, similar to those for human data (see the transformation
499of the plot in Fig. 9c into the plot in Fig. 9d).

500Complex genomic rearrangements

501Complex genomic rearrangements can arise either through gradual acquisition or through a single
502catastrophic event. Breakage–fusion–bridge cycles, which are acquired during multiple cell cycles
503(progressive model), represent examples of the former. By contrast, chromothripsis is a single
504catastrophic event during which a localized region of a chromosome is shattered into multiple
505fragments. The chromosome is then reassembled through random re-joining of these fragments,

Fig. 8 | Mouse-specific limitations of LOH detection. a–d, Patterns of germline SNVs in healthy human and wild-

type mouse genomes, on the basis of WES. Calls from Mutect2 were filtered for a mapping quality of 60 (Fig. 7).

Each dot corresponds to the variant allele frequency of an individual SNP and its position in the mouse genome. For a

diploid genome, the distribution of allele frequencies is expected to peak at 0.5 (heterozygous, variant allele inherited

from one parent) and 1 (homozygous, inherited from both parents). Only heterozygous variants (informative

positions) can be used for the detection of LOH. a, In the human germline, both hetero- and homozygous variants are

distributed evenly throughout the genome. The plot on the right Q27shows a zoom-in on Chr17. b, Mouse genome with

mixed C57BL/6 and Sv/129 background. Although the absolute number of variants is comparable to those of human

genomes, informative positions are not evenly distributed across the genome. Stretches of heterozygous variants are

interrupted by blocks of homozygous variants, allowing the study of the LOH of most but not all genetic loci. The

zoom-in on the right shows the distribution of germline variants on Chr16. c, Mouse genome with mixed C57BL/6

and Sv/129 background backcrossed to C56BL/6 background for 13 generations. Backcrossing resulted in extensive

loss of informative germline variants, thus rendering LOH analysis impossible. d, Mouse genome with mixed C57BL/

6 and Sv/129 background, partially backcrossed to C57BL/6. Note the strong variation of germline variant density at

different chromosomes (e.g., Chr6 versus Chr3). Chr, chromosome; gen., generation.

PROTOCOL NATURE PROTOCOLS

16 NATURE PROTOCOLS |www.nature.com/nprot

www.nature.com/nprot


U
N
C
O
R
R
E
C
T
E
D
 P

R
O
O
F

506during which genomic fragments can be lost54. Separate derivative or double minute chromosomes
507can be formed, which typically include oncogenes. Examples of chromothripsis affecting different
508chromosomes in mouse pancreatic cancers are shown in Fig. 10.
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509To differentiate chromothripsis from other forms of complex rearrangements, Korbel and
510Campbell proposed six hallmarks of chromothripsis55: (i) clustering of breakpoints, (ii) regularity
511of oscillating copy-number states, (iii) identical copy-number alteration and LOH patterns,
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Fig. 9 | Visualization of LOH in human and mouse cancer genomes. a, Variant allele frequency plot of germline

variants on Chr4 of a human pancreatic cancer genome on the basis of WES. b,c, Variant allele frequency plot for

Chr6 (b, B590) and Chr4 (c, S821) in mouse pancreatic cancer cell cultures based on WES. In contrast to human

cancer genomes, LOH in mouse cancer genomes results in long blocks with loss of either the variant (B590) or the

reference allele (S821), evenly shifting all positions to one ‘side’ (toward 0 or 1) of the plot. d, B-allele Frequency

(LOH plot) for Chr4 of mouse primary pancreatic cancer cell culture S821. The variant allele frequency was

transformed into the corresponding B-allele frequency for each heterozygous germline variant. A- and B-alleles were

defined following conventions developed by Illumina.
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512(iv) rearrangement of only one haplotype, (v) randomness of DNA segment order/joints and (vi) the
513ability to walk the derivative chromosome (alternating head–tail sequences).
514We implemented a pipeline for the systematic analysis and statistical testing of each hallmark in
515mouse cancer genomes. Input data for this pipeline are WGS-derived data describing structural
516variations (using Delly56), CNVs (HMMCopy57) and regions of LOH. Exemplary tests for these
517hallmarks for different mouse pancreatic cancers are shown in Fig. 11 and Supplementary Figs. 6
518and 7. Note that although copy-number and LOH plots derived from WES can be used to ‘screen’
519larger cohorts for potential chromothripsis, WGS is essential to detecting key hallmarks and
520providing definitive proof of chromothripsis.

521Clustering of breakpoints. In contrast to a progressive model of rearrangement acquisition
522(sequential Q29acquisition), in which breakpoints between fragments are distributed randomly across
523the chromosome, the breakpoints on a chromothriptic chromosome cluster together. This means that
524the observed distribution of distances between breakpoints after chromothripsis differs from a dis-
525tribution of distances in which the breakpoints are randomly placed on a chromosome. An expo-
526nential distribution can describe the progressive model. The χ

2 test can be applied to test whether the
527observed breakpoint distances differ from this expected (exponential) distribution (Fig. 11a).
528Regularity of oscillating copy-number states. In a model of sequential acquisition of alterations,
529copy-number states of altered regions can change with the acquisition of new alterations,
530often resulting in multiple CNV states affecting a region of the chromosome (multi-stepped CNV
531plots). By contrast, chromothripsis is characterized by merely two to three distinct copy-number
532states (Fig. 11b).

533For testing, a Monte Carlo approach can be used to simulate the sequential acquisition of
534all observed rearrangements affecting a chromosome. Our algorithm sequentially inserts Q30a
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535number (n) of randomly chosen rearrangements from the input list of observed rearrangements
536into a chromosome and calculates the number of distinct copy-number states after each run. The
537simulation is re-iterated 1,000 times for each n between 1 and the total number of observed
538rearrangements.
539In a sequential model, the number of distinct copy-number states increases with the absolute
540number of rearrangements, whereas in a chromothriptic model the number of distinct copy-number
541states is independent of the number of alterations (Fig. 11c).
542Interspersed loss and retention of heterozygosity. In a diploid genome, loss of a chromosomal
543fragment leads to LOH of the corresponding region, which is irreversible. Therefore, in chromo-

544thripsis, there is high-level concordance between CNV and LOH patterns (Fig. 11b; concordance level
545reflected by Jaccard index).
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Fig. 11 | WGS-based inference of chromothripsis in mouse cancer genomes. a–f, Implementation of systematic analysis and statistical testing of

chromothripsis hallmarks proposed by Korbel and Campbell55. WGS data from mouse pancreatic cancer primary cell culture S821 were used for

analysis. a, Clustering of breakpoints: the distribution of observed distances between breakpoints (n = 145) differs significantly from an exponential

distribution (Expected). P < 10−12; χ2 goodness-of-fit. b, Interspersed loss and retention of heterozygosity: comparison of CNV and LOH plots for Chr4.

Copy-number and LOH events cluster in the second half of the chromosome. Only three distinct copy-number states (2, 1 and 0 copies) can be

identified. Regions of loss and retention of heterozygosity alternate. There is near-perfect overlap between regions of LOH and copy-number loss

(Jaccard index (J) = 0.99). c, Regularity of oscillating copy-number states: a Monte Carlo approach was used to simulate the sequential acquisition of

observed rearrangements on Chr4 (n = 1,000 simulations per number of structural variations). Black dots represent the mean copy-number states.

The associated 95% confidence intervals are shown as black lines. Chr4 showed fewer copy-number states than expected by sequential acquisition of
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rearrangements). Each fragment is represented by two blocks, indicating the read orientations (3′ and 5′ in gray and red, respectively) for the start and

the end of each chromosome segment when mapped to the reference genome (Fig. 12b). In a chromothriptic model, the read orientations will be

alternating, resulting in a gray-red-gray-red pattern. The Wald–Wolfowitz test is used to test this alternating 3′-to-5′ pattern of paired-end read

orientation (P < 10-12). The connections between fragments are visualized above and below the blocks (line color indicates fragment join type; see

Fig. 12a for details). See also Fig. 10a for visualization of the same connections superimposed on the copy-number profile. SV, structural variation.

Adapted with permission from ref. 17, Springer Nature Limited.
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546As mentioned above, the analysis of LOH is highly dependent on the absolute number and
547distribution of heterozygous variants in the germline. Therefore, depending on the level of inbreeding,
548it can be difficult to evaluate this chromothripsis hallmark in mice.
549Prevalence of rearrangements affecting one haplotype. During chromothripsis, a region of a single
550chromosome is shattered and reassembled, so that only one haplotype is affected by rearrangements.

551Testing of this hallmark therefore requires the reconstruction of the haplotypes for the affected
552chromosome. However, haplotype reconstruction from short-read paired-end WGS/NGS data
553(phasing) is possible only in combination with comprehensive databases of haplotype information,
554and even then results in only unconnected blocks of reconstructed haplotypes of ~2-Mbp length58.
555The precision of this reconstruction is determined by two factors: the quality and size of the hap-
556lotype databases and the density and distribution of heterozygous germline variants. In mice, the
557latter is a critical limiting factor because of the low variant number due to inbreeding. Therefore,
558testing for this hallmark is often not possible.
559However, mouse crosses can be planned to overcome the necessity of haplotype reconstruction,
560facilitating the analysis of this hallmark; in crosses of two different inbred strains, the affected
561haplotype can be inferred directly from LOH plots (all LOH regions shift to one ‘side’ of the plot;

562Fig. 9b,c and Fig. 11b).
563Randomness of DNA fragment joins and segment order. During chromothripsis, a region of the
564chromosome is shattered into multiple fragments and then randomly re-joined. Each join between
565two fragments, depending on the orientation of each fragment, can be classified into one of four
566categories: deletion type, duplication type and two different inversion types (Fig. 12a). Each of these
567categories is characterized by a unique pattern of read orientations between two paired-end reads
568when these are mapped onto the reference genome. In the literature, multiple different nomenclatures
569for these structural variants can be found55,56,59.
570The current assumption is that, during reassembly after chromothripsis, there is no preference for
571the type of join between two fragments. Therefore, each category should occur in 25% of the
572rearrangements. A χ

2 test can be used to test whether the observed distribution of joins significantly
573differs from the expected distribution. (Fig. 11d). In this test, a nonsignificant result supports the

574hypothesis of chromothripsis.
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575The order in which the fragments are reassembled after chromothripsis is random and
576independent of the types of joins between two segments. To this end, we order each segment
577according to its start position and assign ranks for both the start and the end positions. For a
578perfectly ordered chromosome, the difference between these ranks is 0. By contrast, for a chromo-
579thriptic chromosome, the difference in ranks is >0 and increases with the randomness of
580fragment order.
581For statistical testing, we implemented a Monte Carlo approach by randomly reassigning the
582observed start and end positions 1,000 times and re-calculating the (absolute) mean rank difference
583for each simulation. The results of this test are shown in the histogram in Fig. 11e. If the observed
584mean rank difference is larger than the 5% percentile of this distribution, there is strong evidence that
585the observed fragment order originates from a random reassembly process.

586Ability to walk the derivative chromosome. After a chromothriptic event, each chromosome
587fragment contains loose 3′ and 5′ ends, to which other fragments are joined during reassembly. In a
588paired-end sequencing approach, each breakpoint is supported by a read facing in the 3′ direction
589and a read facing in the 5′ direction (Fig. 12b). Mapping of these read orientations onto the reference
590chromosome results in an alternating 3′/5′ pattern, as shown in Fig. 11f. Statistically, this alternating
591pattern can be tested using the Wald–Wolfowitz test.
592By contrast, in a progressive model with nested duplications or deletions, this pattern of read
593orientations is disturbed, leading to runs of segments with the same orientation (Fig. 12c). It should
594be noted that the test will also fail if breakpoint detection is insensitive, e.g., because of low sequence
595read coverage leading to missed observations.

596
Materials Q31

597Biological materials

598599Laboratory mouse strains can be obtained from external providers such as the Jackson Laboratory
600(e.g., Krastm4Tyj/J, stock no. 008180). Experimental mice are typically housed in isolated ventilated
601cages under specific pathogen-free conditions. The room temperature is set to 22 °C. Ambient
602lightning follows a 12 h/12 h dark/light cycle. Mice have free access to standard chow and water.
603Mouse handling is performed in a laminar flow cabinet. Mice are monitored daily by animal care
604staff. Ear clippings allow identification and genotyping of each animal ! CAUTION All animal

605experiments must be approved Q32by local authorities. They should be performed in accordance with the

606relevant local regulations and follow guidelines for the care of laboratory animals such as FELASA60.

607The experiments discussed in this paper were approved by the xxxxxxxx.

608Reagents

609● DNase-free water (Thermo Fisher Scientific, cat. no. 10977015)

610● DNeasy Blood & Tissue Kit (Qiagen, cat. no. 69506) c CRITICAL We generally recommend this kit for

611the purification of genomic DNA. Yet the use of comparable genomic DNA purification kits or

612protocols would probably yield sequencing results similar to those shown here.

613● Ethanol (absolute; Carl Roth, cat. no. 9065.2) ! CAUTION Ethanol is flammable; use it while wearing

614appropriate personal protective equipment.

615● Mayer’s hematoxylin solution (Sigma-Aldrich, cat. no. MHS16-500ML)

616● MinElute Reaction Cleanup Kit (Qiagen, cat. no. 28204)

617● PBS (pH 7.4; Thermo Fisher Scientific, cat. no. 10010023)

618● Proteinase K (Qiagen, cat. no. 19131)

619● Qubit dsDNA BR Assay Kit (Thermo Fisher Scientific, cat. no. Q32850)

620● Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, cat. no. Q32851)

621● RNAlater (Thermo Fisher, cat. no. AM7020)

622● Roti-Histofix (4%; Carl Roth, cat. no. P087) ! CAUTION Avoid direct exposure; use under a fume hood.

623● Xylene (Sigma-Aldrich, cat. no. 534056-500ML-D) ! CAUTION Xylene is flammable, toxic upon

624inhalation, and a skin irritant. Use under a fume hood and wear appropriate safety equipment.

625● HiSeq Q333000/4000 PE Cluster kit (Illumina, cat. no. PE-410-1001)

626● HiSeq 3000/4000 SBS kit (300 cycles; Illumina, cat. no. FC-410-1003)

627● HiSeq X Ten Reagent Kit v2.5 (Illumina, cat. no. FC-501-2501)

628● ddH2O Q34

629● Paraffin
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630Equipment

631Necropsy

632● SafeLock Eppendorf tube (1.5 ml; Eppendorf, cat. no. 0030 108.051)

633● Omnifix-F syringe (Braun, cat. no. 9161406V)

634● Sterican needle, (18 gauge; Braun, cat. no. 4667123)

635● Disposable scalpel (Swann-Morton)

636● Surgical scissors Q35(Fine Science
Q36

Tools)

637● Surgical forceps (Fine Science Tools) ! CAUTION Handle with care; dispose of forceps in sharp

638containers.

639● Tweezers Q37

640● Microscope (Carl Zeiss)

641● Stereomicroscope (Carl Zeiss, model no. Stemi 508)

642● Camera (Nikon, model no. D3400, cat. no. VBA490K001)

643● Shaking heat block (Eppendorf, cat. no. 5383000019)

644● Microtome (Thermo Fisher Scientific, cat. no. 902100)

645● Centrifuge (Eppendorf, cat. no. 5401000010)

646● Qubit fluorometer (Thermo Fisher Scientific, cat. no. Q33226) c CRITICAL Fluorescent dyes specific

647for dsDNA (e.g., Qubit dsDNA BR Assay Kit) do not overestimate DNA concentration and are

648therefore the method of choice for quantification.

649Library preparation and sequencing

650● 2100 Bioanalyzer instrument (Agilent, cat. no. G2939BA)

651● Agilent DNA 1000 Kit (Agilent, cat. no. 5067-1504)

652● Agilent SureSelectXT Mouse All Exon kit (Agilent, cat. no. 5190-4641)

653● TruSeq Nano DNA Low Throughput Library Prep Kit (Illumina, cat. no. 20015964) c CRITICAL The

654downstream analysis of the raw sequencing data shown here are optimized for the Illumina sequencing

655platform.

656● cBot 2 instrument (Illumina, cat. no. SY-312-2001)

657● HiSeq 4000 instrument (Illumina, cat. no. SY-401-4001)

658● HiSeq 3000/4000 PE Cluster kit (Illumina, cat. no. PE-410-1001)

659● HiSeq 3000/4000 SBS kit (300 cycles; Illumina, cat. no. FC-410-1003)

660● HiSeq X Instrument (Illumina, cat. no. SY-412-1001)

661● HiSeq X Ten Reagent kit v2.5 (Illumina, cat. no. FC-501-2501)

662Hardware needed for data processing and analysis

663● A workstation or computer cluster running a POSIX system (Unix, Linux or macOS) c CRITICAL

664Critical factors limiting the throughput of the pipeline are available RAM, number and performance of

665CPU threads, and speed of disk storage. The minimum requirements are an 8-core processor (48-core

666processor is preferred), 32 GB of RAM (256 GB is preferred) and 250 GB of disk space (a solid-state drive

667is preferred). In general, running an appropriate number of samples in parallel substantially increases the

668total throughput of the pipeline (Table 3). A comparison of runtimes for different systems is listed in

669Supplementary Table 2 c CRITICAL Both academic providers such as the European Open Science Cloud

670(https://www.eosc-portal.eu) and commercial cloud computing providers such as Amazon Web Services

671(AWS; https://aws.amazon.com) or Google Cloud (https://cloud.google.com) can be used to run this

672pipeline online. An overview for one provider (AWS) in regard to runtimes and associated costs is

673provided in Supplementary Table 3 c CRITICAL 15 GB of disk storage is needed for reference files. While

674running the WES (100×) analysis, ~170 GB of disk storage is needed for temporary files. The complete

675results of each tumor-normal pair can use up to ~30 GB of disk storage. For 30× WGS, ~1,000 GB of

676disk storage is needed for temporary files, whereas the results use ~300 GB of disk storage.

677Software

678! CAUTION When updating software tools, cross-compare results to older versions using test data.

679● Docker (https://www.docker.com/) c CRITICAL Docker allows for packaging of software, including all

680dependencies, in containers. These containers can be run on most operating systems, including

681Windows, MacOS and Linux distributions. The Docker image provided online (see ‘Equipment setup’

682section) includes the majority of tools listed below and makes separate installation of specific tools

683unnecessary. Versions of tools are listed as they are packaged in the Docker container.
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684● BAM-matcher (https://bitbucket.org/sacgf/bam-matcher)

685● bcl2fastq Q38v.2.20 (https://support.illumina.com/downloads/bcl2fastq-conversion-software-v2-20.html)

686● bwa-mem v.0.7.17 (http://bio-bwa.sourceforge.net)

687● bcftools v.1.9 (https://www.htslib.org)

688● bedtools v.2.28.0 (https://github.com/arq5x/bedtools2)

689● Delly2 v.0.8.1 (https://github.com/dellytools/delly)

690● DNACopy v.1.57.0 (https://bioconductor.org/packages/release/bioc/html/DNAcopy.html)

691● CNVKit v.0.9.6 (https://github.com/etal/cnvkit)

692● CopywriteR v.2.15.2 (https://github.com/PeeperLab/CopywriteR)

693● Fasta-to-Fastq (https://github.com/ekg/fasta-to-fastq)

694● fastQC v.0.11.8 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc)

695● GATK v.4.1.2.0 (https://software.broadinstitute.org/gatk)

696● GATK v.3.8.1.0 (https://software.broadinstitute.org/gatk)

697● HMMCopy v.1.25.0 (http://bioconductor.org/packages/release/bioc/html/HMMcopy.html)

698● HMMCopy Utils (https://github.com/shahcompbio/hmmcopy_utils)

699● htslib v.1.9 (https://www.htslib.org)

700● IGV v.2.4.16 (http://software.broadinstitute.org/software/igv)

701● Java v.1.8 (https://java.com/download)

702● Manta v.1.6.0 (https://github.com/Illumina/manta)

703● MultiQC v.1.7 (https://github.com/ewels/MultiQC)

704● msisensor v.0.5 (https://github.com/ding-lab/msisensor)

705● Picard v.2.20.0 (https://broadinstitute.github.io/picard)

706● R v.3.6.1 (https://www.r-project.org)

707● samtools v.1.9 (https://www.htslib.org)

708● SnpEff v.4.3T (http://snpeff.sourceforge.net)

709● Strelka v.29.10 (https://github.com/Illumina/strelka)

710● TitanCNA v.1.21.2 (https://github.com/gavinha/TitanCNA)

711● Trimmomatic v.0.39 (http://www.usadellab.org/cms/index.php?page=trimmomatic)

712● VCFtools v.0.1.16 (https://github.com/vcftools/vcftools)

713● vcf2maf v.1.6.17 (https://github.com/mskcc/vcf2maf)

714● VEP v.96 (https://github.com/Ensembl/ensembl-vep)

715● (Optional) GISTIC2 v.2.0.23 (ftp://ftp.broadinstitute.org/pub/GISTIC2.0)

716● (Optional) MuSiC2 v.0.2 (https://github.com/ding-lab/MuSiC2)

717● (Optional) SomaticSignatures v.2.20.0 (http://bioconductor.org/packages/release/bioc/html/Soma

718ticSignatures.html)

719Equipment setup

720c CRITICAL We recommend using the containerized version of this pipeline; you can either build it

721directly from a Dockerfile (available online: https://github.com/roland-rad-lab/MoCaSeq/blob/master/

722Dockerfile) or download an already-built version (detailed below). The steps detailed in this protocol can

723be used from inside the docker container, invoking BASH commands and executing scripts (Steps 6–48).

724This is very Q39flexible; however, it can be cumbersome when processing large numbers of samples. Using

725the functionality provided by the Docker container to execute a scripted version of this pipeline greatly

726simplifies processing of a larger number of samples and increases reproducibility.

Table 3 | Processing time for a cohort of 16 WES samples using different batch sizes

Samples running in parallel Runtime per set
of samples (h:min)

Total runtime for a
cohort of 16 samples (h:min)

1 15:50 253:00

2 17:20 138:40

4 21:15 85:00

8 22:30 45:00

Matched tumor–normal data derived fromWES for sample S821 were used. The pipeline was run on a Linux workstation, using 48 CPU threads, 256 GB

of RAM and 2 TB of SSD storage. All steps were run sequentially.
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727728Initial setup

729Define the location of a working directory and save it to a variable called working_directory,
730which will be used for testing and to hold downloaded reference files. Use a volume with at least
731250 GB of free disk Q40space.
732

733working_directory=/PATH/TO/WORKING_DIRECTORY

734

735Next, create the directory:
736

737mkdir -p ${working_directory} \

738&& cd ${working_directory}

739

740Download and unzip the analysis workflow, available at https://github.com/roland-rad-lab/
741MoCaSeq:
742

743wget https://github.com/roland-rad-lab/MoCaSeq/archive/master.zip \

744&& unzip master.zip \

745&& rm master.zip \

746&& mv MoCaSeq-master ${working_directory}/MoCaSeq

747

748Download the Docker image, available at https://cloud.docker.com/repository/docker/rolandradlab/
749mocaseq:
750

751sudo docker pull rolandradlab/mocaseq:latest

752

753The version of the pipeline can be specified by replacing latest with the corresponding release
754tag (listed at https://github.com/roland-rad-lab/MoCaSeq/releases). ! CAUTION When downloading

755and unzipping Q41the analysis workflow, do not change any file names or paths inside the downloaded

756folder.

757Reference files

758This pipeline requires several reference files, some of which can be downloaded directly, whereas
759others need to be generated before the first run of the pipeline. To facilitate these steps, the pipeline
760automatically checks whether the reference files have already been downloaded, and if not, will
761prepare them. For this, start the pipeline in test mode:
762

763sudo docker run \

764-v ${working_directory}:/var/pipeline/ \

765rolandradlab/mocaseq:latest \

766--test yes

767

768A folder containing the necessary reference files (ref) will be created inside the current working

769directory. ! CAUTION Owing to limits in downloading speed and computing-intensive steps during

770the generation of reference files needed for HMMCopy, this step can take up to 20 h. c CRITICAL To

771ensure comparability, make sure to use the same reference files for each sample of the experimental

772cohort.

773Example dataset

774We use exemplary sequencing data from a primary pancreatic cancer cell culture (sample S821), for
775which both WES (100× coverage) and WGS (30× coverage) are available. The raw data are available
776from the European Nucleotide Archive (https://www.ebi.ac.uk/ena) using the run accession numbers
777ERR2230828 (WES Tumor), ERR2230866 (WES Normal), ERR2210078 (WGS Tumor) and
778ERR2210079 (WGS Normal). A script, located in the repository folder, is provided to easily download
779data, resulting in eight files (WES and WGS data, separated into reverse and forward reads for the

780tumor and normal sample):
781

782mkdir -p ${working_directory}/raw \

783&& cd ${working_directory}/raw \
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784&& sh ${working_directory}/MoCaSeq/repository/Preparation_GetExemplary

785Data.sh WES \

786&& cd ${working_directory}

787

788! CAUTION This step requires 100 GB of disk space.

789Use of the Docker container

790To illustrate the use of the Docker container, the following command will process the WES FASTQ
791files for Sample S821, a murine primary pancreatic cancer cell culture. This will automatically run
792through Steps 6–36 (for WES) of the Procedure. Additional options are displayed when the container

793is run without any options. Replace <threads> and <RAM> with appropriate values for your
794machine Q42and then start the pipeline as follows:
795

796sudo docker run \

797-e USERID='id -u' -e GRPID='id -g' \

798-v ${working_directory}:/var/pipeline/ \

799rolandradlab/mocaseq:latest \

800-nf ‘/var/pipeline/raw/S821-WES.Normal.R1.fastq.gz' \

801-nr ‘/var/pipeline/raw/S821-WES.Normal.R2.fastq.gz' \

802-tf ‘/var/pipeline/raw/S821-WES.Tumor.R1.fastq.gz' \

803-tr ‘/var/pipeline/raw/S821-WES.Tumor.R2.fastq.gz' \

804--name S821-WES \

805--sequencing_type WES \

806--threads <threads>\

807--RAM <RAM>\

808--artefact GT

809

810Docker by design runs the container and its contents as user root (UID 1 and GID 1). Persistent
811directories mounted into the container with the option -v therefore are owned by root. Because this
812is often undesirable, the UID and GID of the current user can be passed into the container by
813specifying -e USERID='id -u' -e GRPID='id -g'.
814By default, Docker containers cannot access files located on the machine on which they run.

815Therefore, local folders need to be mapped to folders inside the container using -v local_

816folder:container_folder. Importantly, the pipeline requires that the working directory be
817mapped to /var/pipeline/, the directory containing the reference folder (GRCm38) be mapped
818to /var/pipeline/ref/ and the folder for temporary data be mapped to /var/pipeline/

819temp/. By default, both ref and temp are located inside the working directory.

820
Procedure Q43

821Sample collection Q44● Timing variable

8221 Carefully extract the tumor from the euthanized mouse using surgical equipment. Remove

823excessive non-cancer tissue from the primary tumor. The aid of a dissection microscope is

824recommended. For large primary tumors (>0.5 cm), we perform regional sampling to extract

825material for use in Step 2. Cut out a central cross-section (>2.5 mm) from the tumor. To avoid

826degradation, immediately place the cross-section into a histology cassette and fixative for use in

827Step 2B. Both remaining tumor ends can be collected in RNAlater for direct DNA isolation

828(Step 2A) and/or used for the establishment of primary cultures (Step 2C). Check whether the

829primary tumor contains macroscopic heterogeneous regions, because this could point toward

830different cancer clones and should be addressed during regional sampling. For smaller primary

831tumors (<0.5 cm), isolate one part of the tumor in RNAlater (Step 2A) and (optionally) additional

832parts for histology (Step 2B) and/or for the establishment of primary cultures (Step 2C). For each

833tissue part, a diameter of at least 2.5 mm is recommended for Steps 2A and 2C. Metastatic lesions

834can be processed like primary cancer tissues; however, sample collection depends on the size,

835location and number of metastases. Count and describe the number of macroscopic metastatic

836nodes. Use scissors to cut a reference sample (>0.5 cm) from the tail and store it in RNAlater.

837c CRITICAL STEP For each cancer sample, immediately Q45continue with the corresponding

838extraction option in Step 2.
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839c CRITICAL STEP We recommend storing sample material in RNAlater because it greatly simplifies

840sample handling (e.g., no need to process samples immediately, no snap-freezing in liquid nitrogen

841necessary); preserves high-quality DNA and RNA, even though frequent freeze–thaw cycles; and

842yields reliable NGS data (e.g., in contrast to formalin fixation, which causes DNA sequence

843artifacts). Of course, conventional snap-freezing in liquid nitrogen is a good alternative for the

844isolation of high-quality DNA/RNA.

845c CRITICAL STEP Samples must be stored in at least five volumes of RNAlater (e.g., 200 mg

846of tissue in 1 ml of RNAlater solution) and must be completely immersed. Use a SafeLock

847microcentrifuge tube because this prevents unintentional opening of the tubes during storage. 848

849DNA extraction

8502 Extract DNA, using option A for tissue stored in RNAlater, option B for microdissected FFPE-fixed

851material, or option C for cultured cells

852(A) Extract DNA from RNAlater tissue ● Timing 1–2 d

853(i) Incubate the samples overnight (>12 h) at 4 °C. Subsequently, transfer the samples to

854−20 °C for long-term storage.

855j PAUSE POINT Tissue in RNAlater can be stored permanently at −20 °C. We

856recommend collecting all samples of a mouse cohort and continuing DNA extraction

857from this step.

858(ii) For DNA extraction, remove tissue from the RNAlater solution; cut a sufficient, but not too

859large, piece (~25 mg of tumor tissue, ~0.5 cm of mouse tail) using a scalpel and tweezers in

860a clean Petri dish and chop it into fine pieces (<1 mm). Clean the instruments by washing

861in ddH2O and 80% ethanol after each sample to avoid cross-contamination. Transfer the

862tissue to a 2-ml microcentrifuge tube and add 180 µl of ATL buffer (included in the Qiagen

863DNeasy Blood & Tissue Kit).

864(iii) Add 20 µl of proteinase K solution and digest at 56 °C in a shaking heat block

865(~1,000 r.p.m.) until the tissue is completely lysed.

866c CRITICAL STEP We strongly advise the use of fresh proteinase K or a stock solution

867stored at −20 °C, because proteinase K will degrade if improperly stored. Shaking in 2-ml

868tubes greatly enhances tissue disruption and speeds up lysis. If the sample is not lysed

869completely after 24 h, it was probably too large; in that case, we recommend adding

870another 180 µl of ATL buffer and 20 µl of proteinase K solution to complete the lysis. Take

871care to double the volumes of ATL buffer and ethanol in the next step as well and load the

872DNeasy mini spin column twice to bind all the DNA.

873(iv) Proceed according to the Qiagen DNeasy Blood & Tissue Kit manufacturer’s instructions. 874

875(B) Extract DNA from microdissected FFPE material ● Timing 5–6 h

876c CRITICAL Depending on the size of the region of interest and cancer cell content, adjustments

877to the DNA extraction protocol are recommended for optimal results, as detailed below.

878c CRITICAL Formalin covalently cross-links nucleic acids and proteins, and over-fixation can

879affect the integrity of the DNA; similarly, long-term or inappropriate storage can lead to DNA

880degradation; finally, carryover of organic solvents from de-paraffinization can also affect

881downstream reactions. Hence, we recommend using a DNA isolation procedure designed

882specifically for formalin-fixed sample material. The selection of an optimal protocol will

883produce amplifiable DNA and support sequencing quality.

884885(i) Remove the tissue from the tube containing fixative and embed the tissue in paraffin

886according to standard procedures61.

887j PAUSE POINT FFPE material can be stored indefinitely protected from light at room

888temperature.

889(ii) Cut the FFPE material into 10-µm-thick sections, mount specimens on a glass slide and

890air-dry the samples overnight at 37 °C as previously described62.

891c CRITICAL STEP Do not use sections <2 µm, because this will reduce the amount of

892extracted genomic DNA.

893c CRITICAL STEP Overnight drying is recommended because the rehydration for

894microdissection can cause the whole specimen to detach from the glass slide.

895(iii) Deparaffinize slides by immersion in fresh xylene twice for 10 min each.

896! CAUTION Xylene is flammable, toxic when inhaled and a skin irritant. Use under a fume

897hood and wear appropriate safety equipment.
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898(iv) Rehydrate the slides by consecutive immersion Q46in absolute ethanol (twice), 96% ethanol

899(twice) and 70% ethanol (once) for 2 min each.

900! CAUTION Ethanol is highly flammable. Use under a fume hood and take appropriate

901care.

902(v) Briefly submerge the slides in water and then stain them with Mayer’s hematoxylin

903solution for 30–60 s. Wash the slides to remove excess staining solution.

904(vi) Keep the specimen wet during the microdissection procedure. Use a microscope for

905magnification and scratch around the region of interest with a clean cannula. Either use the

906tip of the cannula to place the specimen into a Safe-Lock microcentrifuge tube pre-filled

907with ATL buffer (included in the Qiagen DNeasy Blood & Tissue Kit) or carefully pipette

90820 µl of ATL buffer onto the region of interest, aspirate the material into the pipette tip and

909release the sample into a SafeLock microcentrifuge tube.

910c CRITICAL STEP Avoid contamination of your cancer specimen with healthy wild-type

911surrounding tissue because this will affect downstream analyses.

912(vii) Fill the sample tube to 180 µl with ATL buffer and add 20 µl of fresh proteinase K. Incubate

913at 56 °C and ~1,000 r.p.m. for 3 h in a shaking heat block.

914(viii) Incubate specimens for 1 h at 90 °C without shaking to reverse cross-linking of DNA.

915(ix) Proceed according to the Qiagen DNeasy Blood & Tissue Kit manufacturer’s instructions.

916For very small sample amounts (<2-mm diameter), we recommend using QIAamp

917MinElute kit instead of DNeasy mini spin columns to yield higher DNA concentrations in

918a smaller elution volume.

919(x) Finally, transfer the DNeasy mini spin column to a new Eppendorf LoBind microcentrifuge

920tube and add 100 µl of AE buffer (included in the Qiagen DNeasy Blood & Tissue Kit) to

921the center of the DNeasy mini spin column. Alternatively, for QIAamp MinElute spin

922columns, add 20–30 µl of AE buffer. Incubate for 3 min at room temperature. Elute by

923centrifugation at 8,000g at room temperature for 1 min.

924(xi) Re-load the DNA-containing eluate onto the same DNeasy mini or QIAamp MinElute spin

925column and centrifuge at 8,000g at room temperature for 1 min. Store the DNA-containing

926eluate at −20 °C. 927

928(C) Extract DNA from cultured cells ● Timing 2 h

929(i) Apply cell isolation and culturing techniques appropriate to your cancerous tissue of

930interest.

931(ii) Use a maximum of 5 × 106 cultured cells or frozen cells in 200 µl of PBS and extract DNA

932according to the Qiagen DNeasy Blood & Tissue Kit manufacturer’s instructions.

933c CRITICAL STEP Do not exceed the recommended cell numbers, because insufficient cell

934lysis will compromise DNA binding to the silica matrix of the DNeasy mini spin columns.

935If larger cell numbers need to be processed, scale up the buffer volumes accordingly and

936load the spin columns repeatedly. 937938939

940DNA quantification ● Timing Q47x x

9413 Prepare the Qubit dsDNA BR fluorescent dye (from the Qubit dsDNA BR Assay Kit) in the

942reaction buffer according to the manufacturer’s instructions and measure the DNA samples.

943Always perform a fresh standard curve for the measurement (included in the Qubit kit).

944Alternatively, for microdissected FFPE DNA samples, the Qubit dsDNA HS kit can be used.

945c CRITICAL STEP Thaw the samples completely and vortex before pipetting. Vortex the samples as

946well as the standards after adding them to the Qubit buffer to ensure homogeneous fluorescence

947staining of the DNA.

948c CRITICAL STEP UV spectrophotometry is precise and allows for the detection of contaminants

949such as protein or phenol. However, it relies on the wavelength-specific absorbance of nucleotides

950and therefore cannot distinguish between dsDNA, ssDNA, RNA and even dNTPs. This may lead to

951gross overestimation of DNA concentrations if the RNA is not removed during nucleic acid

952extraction; especially metabolically active tissues contain several times more mRNA than does

953genomic DNA. For these reasons, we strongly recommend quantification assays using dsDNA-

954specific fluorescent dyes.

955c CRITICAL STEP Most sequencing facilities require ~1 µg of DNA at a concentration of at least

95620 ng/µl for WES. For WGS, 250 ng of DNA is typically sufficient.

957j PAUSE POINT Purified DNA can be stored at −20 °C indefinitely. 958
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959Library preparation

9604 Prepare DNA libraries for WES (option A) or WGS (option B) from extracted mouse genomic DNA.

961c CRITICAL For cancer genome analyses, it is essential to prepare a separate library from the tail

962reference sample of each mouse.

963964(A) Whole-exome library preparation ● Timing 2 d

965(i) Prepare the exome DNA library from 1–2 µg of high-quality genomic DNA, using the

966Agilent SureSelectXT Mouse All Exon kit according to the manufacturer’s instructions.

967(ii) Quantify individual sample libraries, using the 2100 Bioanalyzer in combination with an

968Agilent DNA 1000 Kit according to the manufacturer’s instructions. Pool and quantify the

969final DNA library.

970c CRITICAL STEP Quantify the pooled library to ensure optimal cluster density on the flow

971cell during the sequencing process. 972

973(B) Whole-genome library preparation ● Timing 4–5 h

974(i) Prepare the whole-genome DNA library using the TruSeq Nano DNA Low Throughput

975Library Prep Kit from 250 ng of high-quality genomic DNA according to the

976manufacturer’s instructions.

977(ii) Quantify individual sample libraries using the 2100 Bioanalyzer in combination with the

978Agilent DNA 1000 Kit according to the manufacturer’s instructions. Pool and quantify the

979final DNA library.

980c CRITICAL STEP Quantify the pooled library to ensure optimal cluster density on the flow

981cell during the sequencing process. 982983984

985Next-generation sequencing ● Timing Variable

9865 Sequence libraries for WES by following option A and for WGS by following option B.

987(A) Whole-exome sequencing ● Timing 2.5 d

988(i) Sequence the exome library on an Illumina HiSeq 4000 DNA sequencer in 2 × 100-bp paired-

989end sequencing mode to ~100× coverage with the HiSeq 4000 Reagent Kit Q48according to the

990Illumina system guide. In general, 4–6 exomes per lane result in ~100× coverage per sample. 991

992(B) Whole-genome sequencing ● Timing 3 d

993(i) Sequence the whole-genome DNA library on the Illumina HiSeq X in 2 × 150-bp paired-

994end sequencing mode to ~30× coverage with the HiSeq X Ten Reagent Kit Q49according to the

995Illumina system guide. In general, one genome per lane results in ~30× coverage. 996997998

999Bioinformatic analysis ● Timing 5 min

10006 Steps 6–48 detail how the pipeline can be run manually, invoking BASH commands and executing

1001scripts while running the Docker container in interactive mode. In this example, we will be using

1002WES data for sample S821, a mouse primary pancreatic cancer cell culture sample. For this, choose

1003option A if you have followed the steps detailed in the ‘Equipment setup’ section (creation of a

1004working directory where the raw data and reference files are located); otherwise, choose option B to

1005manually locate the working directory, the directories containing the reference and temporary files

1006and the directory containing the raw data.

1007(A) Interactive mode with default folders

1008(i) Start the Docker container as follows:

1009

1010sudo docker run \

1011-it --entrypoint=/bin/bash \

1012-e USERID='id -u' -e GRPID='id -g' \

1013-v ${working_directory}:/var/pipeline/ \

1014rolandradlab/mocaseq:latest

10151016

1017(B) Interactive mode with custom folders

1018(i) Map the local directories to the Docker container as follows:

1019

1020working_directory=/PATH/TO/WORKING_DIRECTORY

1021reference_directory=/PATH/TO/REFERENCE_DIRECTORY

1022temp_directory=/PATH/TO/TEMP_DIRECTORY

1023rawdata_directory=/PATH/TO/RAWDATA_DIRECTORY
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1024

1025(ii) Start the Docker container as follows:

1026

1027sudo docker run \

1028-it --entrypoint=/bin/bash \

1029-e USERID='id -u' -e GRPID='id -g' \

1030-v ${working_directory}:/var/pipeline/ \

1031-v ${reference_directory}:/var/pipeline/ref/ \

1032-v ${temp_directory}:/var/pipeline/temp/ \

1033-v ${rawdata_directory}:/var/pipeline/raw/ \

1034rolandradlab/mocaseq:latest

1035

1036c CRITICAL STEP To improve reproducibility, use a MoCaSeq release tag (listed at

1037https://github.com/roland-rad-lab/MoCaSeq/releases) instead of latest. 10381039

10407 Now, define a set of basic variables that will be used throughout the pipeline. These include name,

1041which identifies the samples and is prepended to all output files. Some specific aspects of this

1042pipeline are different when used for WES versus WGS; therefore, define sequencing_type as

1043either WES or WGS. Set Species to Mouse.

1044

1045name=S821

1046sequencing_type=WES

1047species=Mouse

1048

1049In the following commands, replace <threads> and <RAM> with values (in GB) appropriate

1050for your machine

1051

1052threads=<threads>

1053RAM=<RAM>

1054

1055The configuration file is provided in the Docker image. Set config_file to the corresponding

1056path and then load the configuration file using source.

1057

1058config_file=/opt/MoCaSeq/config.sh

1059source $config_file

1060

10618 Now, create the folders for the output of the pipeline. Note that ~200 GB of data will be generated

1062per pipeline run for WES, of which ~10 GB will be the raw read files, ~30 GB will be the results,

1063including the mapped BAM files, and ~170 GB will be temporary files (located inside the

1064temp Q50folder), which can be deleted afterward.

1065

1066mkdir -p $temp_dir/

1067mkdir -p $name/fastq/

1068mkdir -p $name/results/QC

1069mkdir -p $name/results/Genotype

1070mkdir -p $name/results/bam

1071mkdir -p $name/results/Mutect2

1072mkdir -p $name/results/LOH

1073if [$sequencing_type = ‘WES']; then

1074mkdir -p $name/results/Copywriter

1075elif [$sequencing_type = ‘WGS']; then

1076mkdir -p $name/results/Delly

1077mkdir -p $name/results/HMMCopy

1078mkdir -p $name/results/Chromothripsis

1079fi

1080

1081c CRITICAL STEP This workflow expects that the folder structure created in this step and

1082all generated files are neither renamed nor moved to other folders until all steps have been

1083completed. 1084
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1085Formatting of raw data ● Timing 5–30 min, depending on initial format

10869 The standard input format for this pipeline consists of gzipped FASTQ files for the tumor and

1087normal control samples, separated by read mate (2 × 2 files in total) and named accordingly, in

1088which case follow option A. Although this is commonly the case, sometimes raw reads are provided

1089in multiple FASTQ files or as unmapped BAM files, which are handled differently, in which case

1090use option B or C, respectively.

1091(A) Handling standard input format files

1092(i) In the case that gzipped FASTQ files are provided, simply copy these files to the working

1093directory as follows:

1094

1095cp raw/S821-WES.Normal.R1.fastq.gz $name/fastq/$name.Normal.

1096R1.fastq.gz

1097cp raw/S821-WES.Normal.R2.fastq.gz $name/fastq/$name.Normal.

1098R2.fastq.gz

1099cp raw/S821-WES.Tumor.R1.fastq.gz $name/fastq/$name.Tumor.R1.

1100fastq.gz

1101cp raw/S821-WES.Tumor.R2.fastq.gz $name/fastq/$name.Tumor.R2.

1102fastq.gz

11031104

1105(B) Handling multiple FASTQ files

1106(i) In some cases, raw reads are made available in multiple FASTQ files (e.g., when sequenced

1107on multiple lanes). Simply merge these files using cat as follows:

1108

1109cat $name.Normal.Lane_1.R1.fastq.gz $name.Normal.Lane_2.R1.

1110fastq.gz \

1111> $name/fastq/$name.Normal.R1.fastq.gz

11121113

1114(C) Handling unmapped BAM files

1115(i) If unmapped BAM files are provided, Q51convert these to the FASTQ format beforehand as

1116follows:

1117

1118for type in Normal Tumor;

1119do

1120java -jar $picard_dir/picard.jar SamToFastq \

1121INPUT=$name.$type.bam \

1122FASTQ=$name/fastq/$name.$type.R1.fastq.gz \

1123SECOND_END_FASTQ=$name/fastq/$name.$type.R2.fastq.gz \

1124INCLUDE_NON_PF_READS=true VALIDATION_STRINGENCY=LENIENT

1125done 112611271128

1129Quality control of raw data before trimming ● Timing 5 min

113010 Generate basic quality checks of the raw data, using fastqc as follows. These, together with quality

1131checks generated after trimming (Step 12), will be used in Step 18 for the evaluation of this run.

1132fastqc -t $threads \

1133$name/fastq/$name.Normal.R1.fastq.gz \

1134$name/fastq/$name.Normal.R2.fastq.gz \

1135$name/fastq/$name.Tumor.R1.fastq.gz \

1136$name/fastq/$name.Tumor.R2.fastq.gz \

1137--outdir=$name/results/QC 1138

1139Read trimming ● Timing 10 min

114011 Use Trimmomatic to discard short reads and reads with insufficient base qualities as follows.

1141Depending on the version of the Illumina machine software used for sequencing the samples,

1142different phred-scales (encoding the probability of an incorrectly sequenced base in the form of an

1143ASCII character) are used to annotate base quality. Most modern sequencers provide quality

1144information using Phred33, whereas older sequencers may use Phred64. This information is

1145provided by the sequencing provider or can be found in the fastqc output Q52generated in the
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1146previous step (phred64 for Sanger/Illumina Encoding for versions 1.3 to 1.7; otherwise, phred33).

1147Here, a custom script is implemented to Q53automatically extract the phred-scale.

1148

1149for type in Normal Tumor;

1150do

1151phred=$(sh $repository_dir/all_DeterminePhred.sh $name $type)

1152trimmomatic_file=$(basename $trimmomatic_dir)

1153java -Xmx${RAM}G -jar $trimmomatic_dir"/"$trimmomatic_file".jar" PE \

1154-threads $threads -$phred \

1155$name/fastq/$name.$type.R1.fastq.gz \

1156$name/fastq/$name.$type.R2.fastq.gz \

1157$temp_dir/$name.$type.R1.passed.fastq \

1158$temp_dir/$name.$type.R1.not_passed.fastq \

1159$temp_dir/$name.$type.R2.passed.fastq \

1160$temp_dir/$name.$type.R2.not_passed.fastq \

1161LEADING:25 TRAILING:25 MINLEN:50 \

1162SLIDINGWINDOW:10:25 \

1163ILLUMINACLIP:$trimmomatic_dir/adapters/TruSeq3-PE-2.fa:2:30:10

1164done 1165

1166Quality control of raw reads after trimming ● Timing 5 min

116712 Run fastqc to collect quality data using the trimmed reads as follows. The data from both pre-

1168(Step 9) and post-trimming can be summarized using multiqc (Step 19). In this example,

1169between 60 million and 70 million reads are available for the analysis of this sample. Inspect the

1170distribution of quality scores of the raw reads, before and after trimming. The distribution of quality

1171scores should be very similar for all reads.

1172

1173fastqc -t $threads \

1174$temp_dir/$name.Normal.R1.passed.fastq \

1175$temp_dir/$name.Normal.R2.passed.fastq \

1176$temp_dir/$name.Tumor.R1.passed.fastq \

1177$temp_dir/$name.Tumor.R2.passed.fastq \

1178--outdir=$name/results/QC 1179

1180Alignment to reference genome ● Timing 15 min

118113 Align the trimmed reads to the reference genome as follows. The index files required by BWA need

1182to be generated separately (see ‘Equipment setup’ section) to include alternative contigs, which are

1183currently not placed on the auto- and allosomes.

1184

1185for type in Normal Tumor;

1186do

1187bwa mem -t $threads $genomeindex_dir \

1188-Y -K 10000000 -v 1 \

1189$temp_dir/$name.$type.R1.passed.fastq \

1190$temp_dir/$name.$type.R2.passed.fastq \

1191> $temp_dir/$name.$type.sam

1192done

1193

119414 In each of following steps, processed files will be deleted once they are not needed anymore.

1195Remove the trimmed raw files as follows:

1196

1197for type in Normal Tumor;

1198do

1199rm $temp_dir/$name.$type.R1.passed.fastq

1200rm $temp_dir/$name.$type.R1.not_passed.fastq

1201rm $temp_dir/$name.$type.R2.passed.fastq
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1202rm $temp_dir/$name.$type.R2.not_passed.fastq

1203done 1204

1205Postprocessing of aligned reads ● Timing 2 h

120615 Several postprocessing steps are required to prepare the files for use during SNV, LOH and CNV

1207calling. Use CleanSam to provide information on soft-clipped reads, which are only partly aligned

1208to the reference genome. Next, sort these files using samtools. Use Picard Readgroups to

1209mark reads that have been sequenced together, as follows. Then duplicate reads (which possibly are

1210PCR duplicates) are marked, which enables downstream tools to evaluate these reads differently.

1211

1212for type in Normal Tumor;

1213do

1214MAX_RECORDS_IN_RAM=$(expr $RAM \* 250000)

1215java -Xmx${RAM}G -Dpicard.useLegacyParser=false \

1216-jar $picard_dir/picard.jar CleanSam \

1217-INPUT $temp_dir/$name.$type.sam \

1218-OUTPUT $temp_dir/$name.$type.cleaned.bam \

1219-VALIDATION_STRINGENCY LENIENT

1220rm $temp_dir/$name.$type.sam

1221samtools sort -@ $threads \

1222$temp_dir/$name.$type.cleaned.bam \

1223-o $temp_dir/$name.$type.cleaned.sorted.bam

1224rm $temp_dir/$name.$type.cleaned.bam

1225java -Xmx${RAM}G -Dpicard.useLegacyParser=false \

1226-jar $picard_dir/picard.jar AddOrReplaceReadGroups \

1227-I $temp_dir/$name.$type.cleaned.sorted.bam \

1228-O $temp_dir/$name.$type.cleaned.sorted.readgroups.bam \

1229-ID 1 -LB Lib1-Control -PL ILLUMINA -PU Run1 -SM $type \

1230-MAX_RECORDS_IN_RAM $MAX_RECORDS_IN_RAM

1231rm $temp_dir/$name.$type.cleaned.sorted.bam

1232java -Xmx${RAM}G -Dpicard.useLegacyParser=false \

1233-jar $picard_dir/picard.jar MarkDuplicates \

1234-INPUT $temp_dir/$name.$type.cleaned.sorted.readgroups.bam \

1235-OUTPUT $temp_dir/$name.$type.cleaned.sorted.readgroups.marked.bam \

1236-METRICS_FILE $name/results/QC/$name.$type.duplicate_metrics.txt \

1237-REMOVE_DUPLICATES false -ASSUME_SORTED true \

1238-VALIDATION_STRINGENCY LENIENT \

1239-MAX_RECORDS_IN_RAM $MAX_RECORDS_IN_RAM

1240rm $temp_dir/$name.$type.cleaned.sorted.readgroups.bam

1241done 1242

1243Base recalibration ● Timing 2.5 h

124416 Systematic errors, which can affect the base quality scores, can be introduced during sequencing.

1245Therefore, recalibrate these scores in the final step of postprocessing as follows. Importantly, this

1246step requires a VCF file of known germline variants, which should have been generated during the

1247initial Equipment setup

1248

1249(MGP.v5.snp_and_indels.exclude_wild.vcf.gz)

1250for type in Normal Tumor;

1251do

1252java -Xmx${RAM}G -jar $GATK_dir/gatk.jar BaseRecalibrator \

1253-R $genome_file \

1254-I $temp_dir/$name.$type.cleaned.sorted.readgroups.marked.bam \

1255--known-sites $snp_file \

1256--use-original-qualities \

1257-O $name/results/QC/$name.$type.GATK4.pre.recal.table

1258java -Xmx${RAM}G -jar $GATK_dir/gatk.jar ApplyBQSR \
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1259-R $genome_file \

1260-I $temp_dir/$name.$type.cleaned.sorted.readgroups.marked.bam \

1261-O $name/results/bam/$name.$type.bam \

1262-bqsr $name/results/QC/$name.$type.GATK4.pre.recal.table

1263rm $temp_dir/$name.$type.cleaned.sorted.readgroups.marked.bam

1264java -Xmx${RAM}G -jar $GATK_dir/gatk.jar BaseRecalibrator \

1265-R $genome_file \

1266-I $name/results/bam/$name.$type.bam \

1267--known-sites $snp_file \

1268--use-original-qualities \

1269-O $name/results/QC/$name.$type.GATK4.post.recal.table

1270samtools index -@ $threads $name/results/bam/$name.$type.bam

1271rm $name/results/bam/$name.$type.bai

1272done 1273

1274Quality control of the alignments ● Timing 30 min

127517 Generate multiple quality controls for evaluating the mapped reads, which, together with other

1276metrics, are summarized in Step 19, as follows.

1277

1278for type in Normal Tumor;

1279do

1280java -Xmx${RAM}G -Dpicard.useLegacyParser=false \

1281-jar $picard_dir/picard.jar CollectSequencingArtifactMetrics \

1282-R $genome_file \

1283-I $name/results/bam/$name.$type.bam \

1284-O $name/results/QC/$name.$type.bam.artifacts

1285java -Xmx${RAM}G -Dpicard.useLegacyParser=false \

1286-jar $picard_dir/picard.jar CollectMultipleMetrics \

1287-R $genome_file \

1288-I $name/results/bam/$name.$type.bam \

1289-O $name/results/QC/$name.$type.bam.metrics

1290samtools idxstats $name/results/bam/$name.$type.bam \

1291> $name/results/QC/$name.$type.bam.idxstats

1292done

1293

129418 Collect metrics for coverage calculation. Here, WES and WGS are handled separately using

1295options A and B, respectively, mainly for correct estimation of sequencing depth at each nucleotide

1296(coverage).

1297(A) Whole-exome sequencing

1298(i) Calculate metrics for WES, including sequencing coverage, as follows. The correct

1299estimation of coverage depth requires information about the target (baited) regions used in

1300the exome extraction kit Q54(Step X). This information is provided by the manufacturer.

1301

1302for type in Normal Tumor;

1303do

1304java -Xmx${RAM}G -Dpicard.useLegacyParser=false \

1305-jar $picard_dir/picard.jar CollectHsMetrics \

1306-SAMPLE_SIZE 100000 \

1307-R $genome_file \

1308-I $name/results/bam/$name.$type.bam \

1309-O $name/results/QC/$name.$type.bam.metrics \

1310-BAIT_INTERVALS $interval_file \

1311-TARGET_INTERVALS $interval_file

1312done

1313

1314c CRITICAL STEP The corresponding file for Agilent SureSelectXT Mouse All Exon, which

1315was used for exome extraction for this sample, was generated for an older reference
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1316genome (mm9). We generated the corresponding file for the current mouse reference

1317genome, GRCm38; it is located in the data folder. 1318

1319(B) Whole-genome sequencing

1320(i) Calculate metrics for WGS, including sequencing coverage, as follows.

1321

1322for type in Normal Tumor;

1323do

1324java -Xmx${RAM}G -Dpicard.useLegacyParser=false \

1325-jar $picard_dir/picard.jar CollectWgsMetrics \

1326-R $genome_file \

1327-I $name/results/bam/$name.$type.bam \

1328-O $name/results/QC/$name.$type.bam.metrics \

1329-SAMPLE_SIZE 1000000

1330done.

1331

1332? TROUBLESHOOTING 133313341335

1336Visualize and check quality control metrics ● Timing 15 min

133719 Use multiqc to summarize the output of all quality metric tools as follows.

1338

1339multiqc $name/results/QC -n $name -o $name/results/QC/ --pdf

1340--interactive 1341

1342Genotyping ● Timing 5 min

134320 Some mouse models carry engineered mutations. Although specific polymerase chain reactions are

1344typically used to determine these genotypes, in some cases they can be inferred from WES and

1345WGS data. Here, we exemplarily detect the engineered Kras allele (see Fig. 13, one base pair change)

1346using the following commands.

1347First, create a new TXT file containing the correct header line as follows:

1348

1349echo -e ‘Name\tAllele\tCHROM\tPOS\tREF\tALT\tCount_Ref\tCount_Alt

1350\tComment' \

1351> $name/results/Genotype/$name.Genotypes.txt

1352

1353Next, define the specific genomic position for which the allele counts from the tumor and

1354normal sample will be extracted:

1355

1356allele=Kras-G12D

1357position=6:145246771-145246771

1358comment="GGT>GAT=G>D"

1359

S K G V G A G V V V L K YG

145,246,775 145,246,795 (bp)145,246,755

T
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Fig. 13 | The mutant Kras allele is present in both tumor and matched normal tissue. Screenshot from IGV showing

Kras exon 2 of mouse S821. The C>T mutation results in the KrasG12D allele. A T>C mutation 20 bp upstream was

introduced during engineering of the locus. Approximately 50% of the reads (red T) carry the engineered mutation

in both the tumor and normal matched tissue. VAF, variant allele frequency. WT, wild type.
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1360Then start the custom script, using the following command:

1361

1362sh $repository_dir/SNV_GetGenotype.sh \

1363$name $allele $comment $config_file Mouse $position MS $types

1364

136521 In some genetically engineered mouse models, multiple exons and not single positions are

1366affected. Here, we use the following commands to exemplarily test this for a Trp53 knockout,

1367in which, after recombination, exons 2–10 are lost:

1368

1369allele=Trp53-fl

1370position=11:69580359-69591872

1371transcript=ENSMUST00000171247.7

1372wt_allele=1,11

1373del_allele=2,3,4,5,6,7,8,9,10

1374sh $repository_dir/CNV_GetGenotype.sh $name $position

1375Rscript $repository_dir/CNV_GetGenotype.R \

1376$name $genecode_file $transcript $allele $position $wt_allele

1377$del_allele

1378cat $name/results/Genotype/$name.Genotypes.temp.CNV.txt \

1379>> $name/results/Genotype/$name.Genotypes.txt

1380rm $name/results/Genotype/$name.Genotypes.temp.CNV.txt 1381

1382SNVs and small indels ● Timing 5 h

138322 Run Mutect2 to call somatic point mutations and indels simultaneously and store the results as a

1384VCF file as follows. Because the realignment step is directly implemented in Mutect2, we recommend

1385storing the realigned reads in a separate BAM file (using bamout). This can be used to inspect

1386callings afterwards that might not be explained by alignments generated in Step 13 of this protocol.

1387

1388java -Xmx${RAM}G -jar $GATK_dir/gatk.jar Mutect2 \

1389--native-pair-hmm-threads $threads \

1390-R $genome_file \

1391-I $name/results/bam/$name.Tumor.bam \

1392-I $name/results/bam/$name.Normal.bam \

1393-tumor Tumor -normal Normal \

1394-O $name/results/Mutect2/$name.m2.vcf \

1395-bamout $name/results/Mutect2/$name.m2.bam

1396

139723 Use FilterMutectCalls, provided in the GATK package, to remove probable technical or

1398germline artifacts as follows.

1399

1400java -jar $GATK_dir/gatk.jar FilterMutectCalls \

1401--variant $name/results/Mutect2/"$name".m2.vcf \

1402--output $name/results/Mutect2/"$name".m2.filt.vcf \

1403--reference $genome_file

1404

140524 Filter Mutect2 calls for potential artifacts that arose through either oxidative DNA damage (G/T)

1406during sample preparation or formaldehyde driven deamination of cytosines in FFPE samples

1407(C/T) as follows. The tool makes use of the metrics file created in Step 17 of the protocol. Execute

1408this step only if there is sufficient evidence that these samples are affected by one of these technical

1409artifacts (using options B or C, respectively); otherwise, simply rename/copy the file (option A).

1410(A) No artifact filtering

1411(i) Rename/copy the files as follows:

1412

1413cp $name/results/Mutect2/$name.m2.filt.vcf \

1414$name/results/Mutect2/$name.m2.filt.AM.vcf

1415cp $name/results/Mutect2/$name.m2.filt.AM.vcf \

1416$name/results/Mutect2/$name.m2.filt.AM.filtered.vcf

1417
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1418

1419(B) Filtering of FFPE artifacts

1420(i) Filter Q55FFPE artifacts as follows:

1421

1422java -jar $GATK_dir/gatk.jar FilterByOrientationBias \

1423-V $name/results/Mutect2/$name.m2.filt.vcf -P \

1424$name/results/QC/$name.Tumor.bam.artifacts.pre_adapter_de-

1425tail_metrics \

1426--artifact-modes C/T --output $name/results/Mutect2/$name.

1427m2.filt.AM.vcf

1428cat $name/results/Mutect2/$name.m2.filt.AM.vcf \

1429| java -jar $snpeff_dir/SnpSift.jar filter \

1430"(((FILTER = ‘PASS') & (exists GEN[Tumor].OBP) & \

1431(GEN[Tumor].OBP <= 0.05)) | ((FILTER = ‘PASS')))" \

1432> $name/results/Mutect2/$name.m2.filt.AM.filtered.vcf

14331434

1435(C) Filtering of oxidative DNA damage artifacts

1436(i) Filter oxidative DNA damage artifacts as follows:

1437

1438java -jar $GATK_dir/gatk.jar FilterByOrientationBias \

1439-V $name/results/Mutect2/$name.m2.filt.vcf -P \

1440$name/results/QC/$name.Tumor.bam.artifacts.pre_adapter_de-

1441tail_metrics \

1442--artifact-modes G/T --output $name/results/Mutect2/$name.

1443m2.filt.AM.vcf

1444cat $name/results/Mutect2/$name.m2.filt.AM.vcf \

1445| java -jar $snpeff_dir/SnpSift.jar filter \

1446"(((FILTER = ‘PASS') & (exists GEN[Tumor].OBP) & \

1447(GEN[Tumor].OBP <= 0.05)) | ((FILTER = ‘PASS')))" \

1448> $name/results/Mutect2/$name.m2.filt.AM.filtered.vcf

144914501451

145225 Use SelectVariants to filter out all indels >10 bp as follows:

1453

1454java -jar $GATK_dir/gatk.jar SelectVariants --max-indel-size 10 \

1455-V $name/results/Mutect2/$name.m2.filt.AM.filtered.vcf \

1456-output $name/results/Mutect2/$name.m2.filt.AM.filtered.selected.vcf

1457

145826 Additional filters can be used to decrease the false-positive rate of reported mutations. We apply

1459filters for mutant allele frequency (≥10%), coverage at particular positions in tumor and normal

1460samples (≥10×) and supporting reads for mutation in tumor sample Q56(at least two), as follows:

1461

1462cat $name/results/Mutect2/$name.m2.filt.AM.filtered.selected.vcf \

1463| java -jar $snpeff_dir/SnpSift.jar filter \

1464"((FILTER = ‘PASS') & (GEN[Tumor].AF >= 0.1) & \

1465((GEN[Tumor].AD[0] + GEN[Tumor].AD[1]) >= 10) & \

1466((GEN[Normal].AD[0] + GEN[Normal].AD[1]) >= 10) & \

1467(GEN[Tumor].AD[1] >= 3) & (GEN[Normal].AD[1] = 0))" \

1468> $name/results/Mutect2/$name.m2.postprocessed.vcf

1469

147027 To further reduce false-positive callings, compare the SNVs and indels to known polymorphisms as

1471follows:

1472

1473bgzip $name/results/Mutect2/$name.m2.postprocessed.vcf

1474tabix -p vcf $name/results/Mutect2/$name.m2.postprocessed.vcf.gz

1475bcftools isec -C -c none -O z -w 1 \

1476-o $name/results/Mutect2/$name.m2.postprocessed.snp_removed.vcf.gz \

1477$name/results/Mutect2/$name.m2.postprocessed.vcf.gz \

1478$alternate_snp_file
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1479bcftools norm -m -any \

1480$name/results/Mutect2/$name.m2.postprocessed.snp_removed.vcf.gz \

1481-O z -o $name/results/Mutect2/$name.Mutect2.vcf.gz

1482gunzip -f $name/results/Mutect2/$name.Mutect2.vcf.gz.

1483

1484? TROUBLESHOOTING

148528 Use SNPeff to annotate the resulting set of SNVs and indels as follows:

1486

1487java -Xmx${RAM}G -jar $snpeff_dir/snpEff.jar $snpeff_version -canon \

1488-csvStats $name/results/Mutect2/$name.Mutect2.annotated.vcf.stats \

1489$name/results/Mutect2/$name.Mutect2.vcf \

1490> $name/results/Mutect2/$name.Mutect2.annotated.vcf

1491

149229 To improve readability, split the effect of the same mutation on different transcripts into separate

1493lines as follows:

1494

1495cat $name/results/Mutect2/$name.Mutect2.annotated.vcf \

1496| $snpeff_dir/scripts/vcfEffOnePerLine.pl \

1497> $name/results/Mutect2/$name.Mutect2.annotated.one.vcf

1498

149930 Export the resulting file to a tab-separated TXT file as follows. The output format is explained in

1500Box 1.

1501

1502java -jar $snpeff_dir/SnpSift.jar extractFields \

1503$name/results/Mutect2/$name.Mutect2.annotated.one.vcf \

1504CHROM POS REF ALT "GEN[Tumor].AF" "GEN[Tumor].AD[0]" "GEN[Tumor].AD[1]" \

1505"GEN[Normal].AD[0]" "GEN[Normal].AD[1]" ANN[*].GENE ANN[*].EFFECT \

1506ANN[*].IMPACT ANN[*].FEATUREID ANN[*].HGVS_C ANN[*].HGVS_P \

1507> $name/results/Mutect2/$name.Mutect2.txt.

1508

1509? TROUBLESHOOTING

151031 Remove the intermediary files, if they are not needed for quality control, as follows:

1511

1512sh $repository_dir/SNV_CleanUp.sh $name MS 1513

1514Loss-of-heterozygosity ● Timing 4 h

151532 As discussed in the ‘Experimental design’ section, use Mutect2 to extract positions for LOH

1516analysis as follows:

1517

1518for type in Normal Tumor;

1519do

1520java -Xmx${RAM}G -jar $GATK_dir/gatk.jar Mutect2 \

1521--native-pair-hmm-threads $threads \

1522-R $genome_file \

1523-I $name/results/bam/$name.$type.bam \

1524-tumor $type \

1525-O $name/results/Mutect2/$name."$type".m2.vcf \

1526-bamout $name/results/Mutect2/$name."$type".m2.bam

1527done

1528

152933 In Step 32, tumor and normal variants were called separately from the respective BAM files. Use the

1530following commands to filter calls and extract positions that are evaluated for LOH plotting.

1531

1532for type in Normal Tumor;

1533do

1534java -jar $GATK_dir/gatk.jar FilterMutectCalls \

1535--variant $name/results/Mutect2/$name.$type.m2.vcf \
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1536--output $name/results/Mutect2/$name.$type.m2.filt.vcf \

1537--reference $genome_file

1538java -jar $snpeff_dir/SnpSift.jar extractFields \

1539$name/results/Mutect2/"$name".$type.m2.filt.vcf \

1540CHROM POS REF ALT "GEN["$type"].AF" "GEN["$type"].AD[0]" \

1541"GEN["$type"].AD[1]" MMQ[1] MBQ[1] \

1542> $name/results/Mutect2/$name.$type.Mutect2.Positions.txt

1543done

1544

154534 Remove the intermediary files as follows:

1546

1547for type in Normal Tumor;

1548do

1549sh $repository_dir/SNV_CleanUp.sh $name SS $type

1550done

1551

155235 Generate a list of variants to be used during the plotting procedure as follows. This custom script

1553performs several steps sequentially; it filters out positions (i) with read coverage <10, (ii) with

1554mapping quality <60, and (iii) that are potentially affected by strand Q57artifacts. Positions that pass

1555these filters in both the tumor and normal sample and for which the allele frequency is between 30

1556and 70% in the normal sample are used for plotting. Although the variant allele frequency can be

1557used in LOH plots (Fig. 9a,b), we adapted the Illumina convention (https://www.illumina.com/

1558documents/products/technotes/technote_topbot.pdf) of defining the A and B allele, which results in

1559plots mirrored along the 0.5 axis (Fig. 9d)

1560

1561Rscript $repository_dir/LOH_GenerateVariantTable.R \

1562$name $genome_dir/GRCm38.p6.fna $repository_dir

1563

156436 Plot the resulting list of heterozygous germline variants as follows:

1565

1566Rscript $repository_dir/LOH_MakePlots.R \

1567$name $species $repository_dir 1568

1569Copy-number variation

157037 Use option A for WES data (to detect CNVs using CopywriteR) or option B for WGS data (to

1571detect CNVs using HMMCopy). See Box 2 for an explanation of the output format. For the analysis

1572of WES data, this step concludes the workflow.

1573(A) CNVs from WES data ● Timing 1.5 h

1574(i) Call CNVs from WES data using CopywriteR with 20-kB windows, as follows:

1575

1576Rscript $repository_dir/CNV_RunCopywriter.R \

1577$name Mouse $threads MS $genome_dir $types

1578

1579(ii) The called segments are located inside an Rdata object. Use the below command to extract

1580the raw data generated by CopywriteR.

1581

1582Rscript $repository_dir/CNV_CopywriterGetRawData.R $name MS

1583

Box 2 | Description of CNV output

The CNV section provides both a plot and an output file.
Chrom Chromosome name
Start Start position of the segment.
End End position of the segment.
Mean The mean log2 ratio between tumor and normal for the segment. In genomes of known ploidy, this can be
converted to absolute copy-number change: ploidy × 2Mean; e.g., 2 × 21.58 = 6 (there are six copies of the affected
region).
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1584(iii) Re-center called segments using mode as location estimator Q58as follows:

1585

1586python $repository_dir/CNV_CopywriterGetModeCorrectionFactor.

1587py $name

1588Rscript $repository_dir/CNV_CopywriterGetModeCorrectionFactor.

1589R $name MS

1590

1591(iv) Create CNV plots for both the MAD- and mode-centered segments as follows:

1592

1593Rscript $repository_dir/CNV_PlotCopywriter.R $name Mouse

1594$repository_dir

1595

1596(v) Extract exact copy-number state for each gene as follows:

1597

1598Rscript $repository_dir/CNV_MapSegmentsToGenes.R $name Mouse

1599Copywriter

1600

1601(vi) Clean up intermediary CNV files using the command below:

1602

1603sh $repository_dir/CNV_CleanUp.sh $name

16041605

1606(B) CNVs from WGS data Q59● Timing 30 min

1607(i) Run HMMCopy, using 20-kB windows, as follows:

1608

1609sh $repository_dir/CNV_RunHMMCopy.sh $name Mouse $config_file

161020000

1611

1612(ii) Call segments and create CNV plots from the WIG file generated in the step above, as

1613follows:

1614

1615Rscript $repository_dir/CNV_PlotHMMCopy.R $name Mouse $repo-

1616sitory_dir

161720000 $mapWig_file $gcWig_file $centromere_file $varregions_file

1618

1619(iii) Extract exact copy-number state for each gene as follows:

1620

1621Rscript $repository_dir/CNV_MapSegmentsToGenes.R $name Mouse

1622HMMCopy 20000 162316241625

1626Structural variations and rearrangements ● Timing 2 h

162738 Use the following command to call rearrangements using Delly:

1628

1629delly call \

1630-o $name/results/Delly/$name.pre.bcf \

1631-g $genome_dir/GRCm38.p6.fna \

1632$name/results/bam/$name.Tumor.bam \

1633$name/results/bam/$name.Normal.bam

1634

163539 Filter the resulting structural variation calls as follows:

1636

1637delly filter \

1638-f somatic -o $name/results/Delly/$name.bcf \

1639-s $genome_dir/Samples.tsv $name/results/Delly/$name.pre.bcf

1640
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164140 Transform the Delly output to the VCF format, which is used in the chromothripsis workflow,

1642as follows:

1643

1644bcftools view $name/results/delly/$name.pre.bcf \

1645> $name/results/delly/$name.pre.vcf 1646

1647Chromothripsis ● Timing 1 h

164841 In our experience, Delly is very sensitive in detecting structural variations. In some cases, however,

1649these variants are false positives. During benchmarking of these tests, we added several filter

1650steps that are important to reducing these false-positive SV callings: (i) we exclude all short- and

1651medium-length variants (<6 kb). (ii) Because it has been shown that chromothripsis happens very

1652early during tumorigenesis, we exclude variants with allele frequencies <0.2. (iii) For all

1653rearrangements not supported by ‘split reads’ (reads that span a specific breakpoint), we added

1654additional filtering steps: Because highly repetitive regions are prone to false-positive callings from

1655Delly, (i) we exclude all callings for which the read coverage significantly exceeds the mean coverage

1656and (ii) the mapping quality score is <30.

1657Use the following commands to extract the mean coverage for each alignment file (using data

1658generated in Step 18) and filter the Delly calls as explained above:

1659

1660coverage=$(sh $repository_dir/Chromothripsis_GetCoverage.sh $name)

1661sh $repository_dir/Chromothripsis_FormatTable.sh $name

1662Rscript $repository_dir/Chromothripsis_AnnotateRatios.R \

1663-i $name/results/Delly/$name.breakpoints.tab \

1664> $name/results/Delly/$name.breakpoints_annotated.tab

1665Rscript $repository_dir/Chromothripsis_FilterDelly.R \

1666-n $name -c $coverage \

1667-i $name/results/Delly/$name.breakpoints_annotated.tab

1668

166942 Using these results, as well as data from LOH and CNV calling, each hallmark of chromothripsis

1670is tested separately on one chromosome at a time. For sample S821, the exemplary data used

1671here, there is very strong suspicion that Chr4 was affected by chromothripsis. The output format

1672(.tif or.emf) Q60for all plots resulting from the chromothripsis workflow can be defined. Set up the test

1673for Chr4 with the following commands:

1674

1675chr=4

1676format="tif"

1677

167843 Test for the chromothripsis hallmark ‘clustering of breakpoints’ as follows. This results in Fig. 11a.

1679

1680Rscript

1681$repository_dir/Chromothripsis_DetectBreakpointClustering.R \

1682-i $name/results/Delly/$name.breakpoints.filtered.tab \

1683-c $chr -n $name -f $format

1684

168544 Test for the chromothripsis hallmark ‘regularity of oscillating copy-number states’ as follows. This

1686results in Fig. 11c.

1687

1688Rscript $repository_dir/Chromothripsis_SimulateCopyNumberStates.R \

1689-i $name/results/Delly/$name.breakpoints.filtered.tab \

1690-o mouse -c $chr -n $name -s 1000 -a 1000 -f $format -v 1

1691

169245 Test for the chromothripsis hallmark ‘interspersed loss and retention of heterozygosity’ as follows.

1693This results in Fig. 11b.

1694

1695Rscript $repository_dir/Chromothripsis_PlotLOHPattern.R \

1696-s $name/results/HMMCopy/$name.HMMCopy.$resolution.segments.txt \
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1697-d $name/results/HMMCopy/$name.HMMCopy.$resolution.log2RR.txt \

1698-v $name/results/LOH/$name.VariantsForLOH.txt \

1699-o mouse -c $chr -n $name -f $format

1700

170146 Test for the chromothripsis Q61hallmark ‘randomness of DNA fragment joins and segment order’ as

1702follows. This results in Fig. 11d,e.

1703

1704Rscript $repository_dir/Chromothripsis_DetectRandomJoins.R \

1705-i $name/results/Delly/$name.breakpoints.filtered.tab \

1706-c $chr -n $name -f $format

1707

170847 Test for the chromothripsis hallmark ‘ability to walk the derivative chromosome’ as follows. This

1709results in Fig. 11f.

1710

1711Rscript $repository_dir/Chromothripsis_WalkDerivativeChromosome.R \

1712-i $name/results/Delly/$name.breakpoints.filtered.tab \

1713-c $chr -n $name -f $format

1714

171548 Visualize a combined rearrangement graph/copy-number plot using the following command. This

1716results in Fig. 10a.

1717

1718Rscript $repository_dir/Chromothripsis_PlotRearrangementGraph.R \

1719-i $name/results/Delly/$name.breakpoints.filtered.tab \

1720-d $name/results/HMMCopy/$name.HMMCopy.$resolution.log2RR.txt \

1721-c $chr -n $name -f $format 1722

1723
Troubleshooting

1724Troubleshooting advice can be found in Table 4.

1725
Timing

1726Timing estimates for the Q63bioinformatic analysis are based on the analysis of one mouse cancer
1727sample, using WES data (coverage ~100× for both tumor and normal) for Steps 6–37, and WGS data
1728(coverage ~30× for both tumor and normal) for Steps 38–48. Table 3 shows runtime improvements
1729when running multiple samples in parallel for a cohort of 16 matched WES tumor–normal pairs.

1730Table 5 provides a comparison between runtimes for each step when using WES versus WGS. The
1731hands-on time for Steps 6–48 is <10 min for either WES or WGS data.
1732In the analysis of WGS data, especially in very aneuploid tumors, somatic mutation calling using
1733Mutect2 can be the limiting factor in overall throughput. The alternative use of Strelka2 can markedly
1734improve the overall runtime (Table 5).

Table 4 | Troubleshooting table

Step Problem Possible reason Possible solution

18 Calculated sequencing coverage
is lower than expected

Insert size is low. Picard discards reads for the
calculation of sequencing coverage if forward
and reverse reads overlap. This is most often a
problem in FFPE-extracted DNA

Evaluate absolute number of mapped reads
manually

27 Distribution of SNVs skewed to
C>A/G>T

DNA was damaged through oxidative stress
during library preparation

Filter artifacts in Step 23

30 Output contains an unexpectedly
large number of SNVs

Tumor sample and normal sample are not from
the same mouse

Use BAM-matcher (https://bitbucket.org/
sacgf/bam-matcher) to check correct tumor-
normal pairings for all animals (automatically
included when running the Docker pipeline)
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1736Step 1, sample collection: variable

1737Step 2A, DNA extraction from tissue stored in RNAlater: 1–2 d

1738Step 2B, DNA extraction from microdissected FFPE material: 5–6 h Q64

1739Step 2C, DNA extraction from cultured cells: 2 h

1740Step 3, DNA quantification: x x

1741Library preparation and sequencing

1742Step 4A, library preparation (WES): 2 d

1743Step 4B, library preparation (WGS): 4–5 h (WGS)

1744Step 5A, sequencing (WES): 2.5 d

1745Step 5B, sequencing (WGS): 3 d

1746Bioinformatic analysis

1747Steps 6–21, alignment and postprocessing: 6–6.5 h

1748Steps 22–31, SNV/indel calling: 5 h

1749Steps 32–36, LOH calling: 4 h

1750Step 37A, CNV calling (WES): 1.5 h

1751Step 37B, CNV calling (WGS): 30 min

1752Steps 38–40, SV calling (WGS only): 2 h

1753Steps 41–48, inference of chromothripsis (WGS only): 1 h

1754
Anticipated results

1755Genetic alteration types and frequencies in an exemplary mouse cancer

1756Below we present results from the analysis of one individual cancer. The tumor was generated in a
1757genetically engineered mouse model of pancreatic cancer (ID S821). The model is based on a
1758heterozygous KrasLSL-G12D knock-in allele that was activated in a pancreas-specific manner using Cre
1759recombination.

1760SNVs and indels

1761Step 30 of our protocol generates a list of 45 mutations (listed in Supplementary Table 4), of which 8

1762are mis- or nonsense mutations (listed in Table 6). An explanation of all columns in the file generated

Table 5 | Comparison between runtimes for the analysis of WES and WGS.

Steps WES runtime (h:min) WGS runtime (h:min) RAM (GB)

Trimming (Steps 9–12) 0:10 1:00 90

Alignment to the reference genome (Steps 13 and 14) 0:15 2:30 119

Postprocessing of aligned reads (Step 15) 1:45 8:00 201

Base recalibration (Step 16) 2:30 9:45 73

Quality control (Steps 17–19) 0:30 3:30 188

Genotyping (Steps 20 and 21) 0:05 0:05 4

SNV/indel (Mutect2, Steps 22–31) 4:45 19:00 90

SNV/indel (Strelka2, alternative for Steps 22–31) 0:20 1:00 47

LOH (Steps 32–36) 4:00 37:00 136

CNV (WES, Step 37) 1:30 — 66

CNV (WGS, Step 37) — 0:30 45

SV (Steps 38–40) — 2:00 9

Chromothripsis (Step 41–48) — 1:00 22

Sum 15:50 85:20 —

Matched tumor-normal data derived from WES and WGS for sample S821 was used. The pipeline was run on a Linux workstation, using 48 CPU threads, 256 GB of RAM and 2 TB of SSD storage.

RAM usage is similar for both WES and WGS but depends
Q62

on the total capacity of available RAM. All steps were run sequentially.
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1763by the SNV/indel workflow is provided in Box 1. Note that the KrasLSL-G12D knock-in allele is a
1764germline allele present in every cell, although it is expressed only in the pancreas (because of
1765pancreas-specific recombination of the LoxP-flanked stop cassette). Thus, at the DNA level, the
1766KrasLSL-G12D mutation is detectable in both the tumor and the control tissue. As a consequence, the
1767final list of somatic tumor SNVs/indels will not contain this mutation. However, it can be visualized,
1768for example, using IGV (Fig. 13) or can be extracted separately during the genotyping procedure in

1769Steps 20 and 21.

1770CNV

1771In Step 37, a copy-number profile for the complete genome is generated (Fig. 14a). Multiple copy-
1772number changes are located on Chr4 in an oscillating pattern very suggestive of chromothripsis
1773(Figs. 5b,11 and 14c). Chr6, where Kras is located, is amplified (log2 ratio 0.42). Because sample S821
1774is tetraploid (as determined by M-FISH), this corresponds to five copies of Chr6. A table listing log2

1775ratios for all detected segments is also generated (Supplementary Table 5). An explanation of these
1776columns is provided in Box 2.

1777LOH

1778The LOH plot in Fig. 14b is generated in Step 36. The animal from which this tumor originates is on a
1779mixed background. However, several generations of backcrossing to C57BL/6 have been performed

1780for this line. Therefore, not all regions of the genome can be adequately inspected for the occurrence
1781of LOH.

1782Inference of chromothripsis

1783A comprehensive overview of the results generated by our chromothripsis pipeline (Steps 41–48) is
1784shown in Fig. 11.

1785Integrative analyses of different alteration types affecting prototypic oncogenes and tumor

1786suppressors

1787An individual genomic locus within a cancer cell can be affected by multiple alteration types. Inte-
1788grative analysis of different alteration types affecting one locus is therefore essential for accurate

1789interpretation of cancer genomic data. For example, tumor suppressors such as Trp53 can be inac-
1790tivated in multiple ways, either through somatic point mutations, larger copy-number changes or loss
1791of wild-type alleles. Below we present exemplary data displaying common mechanisms of somatic
1792alterations at prototypic tumor suppressors and oncogenes Q65in mouse pancreatic ductal adenocarci-
1793noma (Figs. 15 and 16). All tumors were derived in the abovementioned genetically engineered mouse
1794model of KrasG12D driven pancreatic cancer. Data were generated through WES of primary cancer
1795cell cultures.

1796Allelic imbalance at the mutated Kras oncogene

1797A hallmark of pancreatic cancer evolution in humans and mice is allelic imbalance at the Kras locus,
1798leading to KrasG12D dosage gain (multiple copies of the mutant KrasG12D allele). Examples of changes

Table 6 | Non-synonymous SNV calls for sample S821

Chrom Pos Ref Alt Allele
freq.

Reads
tumor
(Ref)

Reads
tumor
(Alt)

Reads
normal
(Ref)

Read
normal
(Alt)

Gene Effect Impact Transcript HGVS_C HGVS_P

2 13342476 C A 0.132 44 6 59 0 Cubn missense_variant MODERATE ENSMUST00000091436.6 c.6230G>T p.Gly2077Val

2 85438826 C A 0.11 54 6 102 0 Olfr995 missense_variant MODERATE ENSMUST00000099924.2 c.331G>T p.Asp111Tyr

2 86690856 A G 0.113 98 12 178 0 Olfr1087 missense_variant MODERATE ENSMUST00000099877.1 c.118T>C p.Phe40Leu

3 96654785 C A 0.114 52 6 48 0 Itga10 missense_variant MODERATE ENSMUST00000029744.5 c.1987C>A p.Gln663Lys

5 25022007 C T 0.27 66 24 92 0 Prkag2 missense_variant MODERATE ENSMUST00000030784.13 c.251G>A p.Arg84Gln

10 70940567 C A 0.107 56 6 73 0 Bicc1 missense_variant MODERATE ENSMUST00000143791.7 c.2301G>T p.Lys767Asn

17 34034195 A G 0.117 50 6 31 0 Rxrb missense_variant MODERATE ENSMUST00000044858.14 c.775A>G p.Arg259Gly

19 34021638 C A 0.104 58 6 51 0 Lipk missense_variant MODERATE ENSMUST00000054260.6 c.332C>A p.Ala111Asp

Alt, variant (alternative) base; Chrom, chromosome; HGVS_C, nucleotide change; HGVS_P, amino acid change (for protein-coding genes); Pos, genomic position; Ref, reference base.
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1799affecting Chr6, the location of Kras, are shown for different cancers in Fig. 15. One cancer (Fig. 15a)
1800displays arm-level gain of Chr6 (duplication of an entire chromosome; see CNV plot and M-FISH).
1801The duplication affects the chromosome carrying the oncogenic KrasG12D point mutation, indicated
1802by the elevated frequency of mutant KrasG12D reads (70% of reads are KrasG12D mutant; upper left
1803panel). The LOH plot shows corresponding B allele frequency distribution peaks at 0.66 and 0.33

1804(lower right panel). Figure 15b shows a cancer with focal amplification (~6 copies) of the chromo-
1805somal region harboring the Kras locus. The amplification affects the chromosome carrying the
1806mutant KrasG12D allele (KrasG12D and KrasWT allele frequencies are 89% and 11%, respectively).
1807Because this region carries only a few heterozygous germline variants in this mouse, focal amplifi-
1808cation cannot be easily seen in the LOH plot. Figure 15c and Fig. 15d show two cancers displaying
1809KrasG12D dosage gain by copy-number-neutral (CN)-LOH (KrasG12D homozygosity, acquired uni-
1810parental disomy, loss of wild-type Kras). CN-LOH can affect either the whole chromosome (Fig. 15c;
1811arising through chromosomal missegregation) or only parts of Chr6 (Fig. 15d; through mitotic
1812recombination). Discriminating between these two scenarios is possible only through LOH analyses
1813(bottom panels in Fig. 14c,d).

1814Alterations at prototype tumor suppressors

1815Examples of different types of tumor suppressor alterations are shown for Trp53 (Fig. 16a) and
1816Cdkn2a (Fig. 16b–d). One cancer has a somatic Trp53 point mutation on Chr11 (Fig. 16a). Three
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1817copies of Chr11 are detectable in an otherwise tetraploid genome. All three carry the somatically
1818acquired Trp53 mutation. Owing to the low number of heterozygous germline variants (inbred mice),
1819LOH analyses are impossible. Therefore, the exact evolution of these changes cannot be resolved in
1820this cancer.
1821Figure 16b shows a heterozygous loss of Chr4, which harbors Cdkn2a, an important tumor
1822suppressor locus in pancreatic cancer. In a different tumor (Fig. 16c), Cdkn2a is inactivated
1823by two independent copy-number alterations: loss of one Chr4 and focal Cdkn2a deletion
1824on the remaining chromosome. Finally, another cancer (Fig. 16d) displays a homozygous Cdkn2a
1825loss. The genome of this cancer is tetraploid. Only two Chr4s are present, which are identical
1826(identical focal deletion and haplotype). The data indicate that loss of one Chr4 and deletion

1827of Cdkn2a on the remaining Chr4 happened before genome duplication. Not shown here are
1828less frequent types of homozygous Cdkn2a inactivations, such as (i) two independent deletions on
1829both Chr4s and (ii) deletion of Cdkn2a on one Chr4, followed by CN-LOH through mitotic
1830recombination.

1831Reporting Summary

1832Further information on research design is available in the Nature Research Reporting Summary
1833linked to this article.

1834Data availability

1835NGS data from mouse pancreatic cancer cell cultures are available from the European Nucleotide
1836Archive using study accession no. PRJEB23787. The validation datasets generated during the current
1837study are available from the corresponding author upon request.
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1838Code availability

1839The source code for all pipelines is available for public use at https://github.com/roland-rad-lab/
1840MoCaSeq under the MIT license. In addition, the main workflow described in this protocol is
1841packaged as a Docker container, available at https://cloud.docker.com/repository/docker/rolandradla
1842b/mocaseq.
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