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Analytic Alpha-Stable Noise Modeling in a
Poisson Field of Interferers or Scatterers

Jacek Ilow,Member, IEEE, and Dimitrios Hatzinakos,Member, IEEE

Abstract—This paper addresses non-Gaussian statistical mod-
eling of interference as a superposition of a large number of small
effects from terminals/scatterers distributed in the plane/volume
according to a Poisson point process. This problem is relevant
to multiple access communication systems without power control
and radar. Assuming that the signal strength is attenuated over
distance rrr as 1=rm1=rm1=rm, we show that the interference/clutter could
be modeled as a spherically symmetric���-stable noise. A novel
approach to stable noise modeling is introduced based on the
LePage series representation. This establishes grounds to inves-
tigate practical constraints in the system model adopted, such
as the finite number of interferers and nonhomogeneous Poisson
fields of interferers. In addition, the formulas derived allow us to
predict noise statistics in environments with lognormal shadowing
and Rayleigh fading. The results obtained are useful for the
prediction of noise statistics in a wide range of environments with
deterministic and stochastic power propagation laws. Computer
simulations are provided to demonstrate the efficiency of the���-
stable noise model in multiuser communication systems.

The analysis presented will be important in the performance
evaluation of complex communication systems and in the design
of efficient interference suppression techniques.

Index Terms—Random access systems, statistical modeling,
wireless communications.

I. INTRODUCTION

A N IMPORTANT requirement for most signal processing
problems is the specification for the corrupting noise dis-

tribution. The most widely used model is the Gaussian random
process. However, in some environments, the Gaussian noise
model may not be appropriate [1]. A number of models have
been proposed for non-Gaussian phenomena, either by fitting
experimental data or based on physical grounds. In the latter
approach, we have to consider the physical mechanisms giving
rise to these phenomena. The challenge in analytically deriving
general noise models lies in attempts to characterize a random
natural phenomenon in terms of a limited set of parameters.
This is one of the main motivations for the research in this
paper.

The most credited statistical-physical models have been pro-
posed by Middleton [2]. Other common physically motivated
model is based on the K-distribution [3]. The data fitting
noise modeling [4], [5] using Weilbull, lognormal, Laplacian,
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or generalized-Gaussian distributions is appropriate only to a
narrow class of systems because data collected are limited to
a finite number of conditions. Moreover, the current literature
does not provide enough insight into the relation between the
parameters of these distributions and environmental conditions
in which noise occurs. Therefore, alternative models should
be considered.

It has been suggested that among all the heavy-tailed
distributions, the family of stable distributions provides a
considerably accurate model for impulsive noise [6]. Stable
interference modeling is used in many different fields, such
as economics, physics, hydrology, biology, and electrical
engineering [7], [8]. In communications, stable noise mod-
els have been verified experimentally in various underwater
communications and radar applications [7]–[11].

Stable distributions share defining characteristics with the
Gaussian distribution, such as the stability property and the
generalized central limit theorem and, in fact, include the
Gaussian distribution as a limiting case [12]. A univariate
symmetric -stable ( ) distribution is most conveniently
described by its characteristic function [6]

(1)

Thus, a distribution is completely determined by two
parameters: 1) the dispersion and 2) the characteristic
exponent , where , and . One of the
most important class of multivariate stable distributions is the
class of spherically symmetric (SS) distributions [13]. The
real RV’s are SS -stable, or the real random
vector is SS -stable if the joint
characteristic function is of the form

(2)

Note that the above characteristic function is obtained from
the univariate characteristic function in (1) by substituting
the norm of for . More detailed information on stable
distributions can be found in [14] and [15].

In this paper, we present a realistic physical mechanism
giving rise to SS -stable noise. This is accomplished by
considering the nature of noise sources, their distributions in
time and space, and propagation conditions. We concentrate
on spectrum sharing systems with high likelihood of signals
interfering with one another. In radar, noise, which is often
referred to as clutter, is an electromagnetic field composed of
independent contributions from a large number of scattering
centers [16]. In multiple access (MA) radio networks [17],
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where one channel is used by many terminals, noise, which is
referred to as multiple access interference, is a superposition
of many signals from terminals using the same channel.
Assuming that the multiuser detection and the power control
are not feasible in the system, we analyze frequency hop-
ping spread spectrum (FH SS) radio networks without power
control. In many situations, positions of interferers/scatterers
are not known, and therefore, they are often assumed to be
randomly distributed in the plane or volume [18] according to
a Poisson point process [8], [19]. A common feature in radar
and multiple access systems without power control is that the
noise vector after correlation detection can be written as the
sum of contributions from sources

(3)

In this equation, the random vector with real coordinates
corresponds to the signal from theth interferer after cor-
relation detection, and the scalar accounts for signal
propagation characteristics. In general, the depends on
the distance between the detector and theth noise source. In
our modeling, we assume that the signal strength is attenuated
on average as with distance . This allows us to predict
the interference parameters for a wide range of propagation
conditions determined by the attenuation factor[20]–[22].

Our approach for -stable noise as given in (3) is based on
the LePage series decompositions [15]. In Section III, first,
we generalize the LePage representation to a multivariate
case. Next, we link through the squared/cubed distances the
arrangement of interferers/scatterers in the plane/volume to
the Poisson process on the line. These two original results
allow us to show that the asymptotic distribution for the inter-
ference/clutter is -stable. Practical constraints in our noise
model are investigated in Section IV, and we demonstrate
analytically and through simulations that they do not limit our
analysis. In Section V, the simulation results are presented
to support the accuracy of the proposed model for the MA
interference in FH SS radio networks.

Previous approaches to-stable noise modeling [7], [8]
have been traditionally based on the influence function method
[12] and apply only to a limiting noise distribution when the
number of interferers is infinite; they do not provide any
insight into noise distribution when the number of interferers
is finite. In contrast, our proof for the limiting-stable noise
distribution allows us to analyze the convergence of random
series in (3). We also introduce randomness into the power
propagation law and investigate the effects of the nonuniform
distribution of scatterers/interferers.

II. SYSTEM AND INTERFERENCEMODELS

Throughout this section, we will concentrate on interference
in multiple access communication systems that do not employ
power control. However, a similar scenario applies to clutter
resulting from scattering in radar systems and man-made
interferences such as automotive ignition noise.

In our system model, a receiver using an omnidirectional
antenna is located at the center of a plane where there is

Fig. 1. System model.

a large number of transmitters using the same power and
modulation. The distances between the detector and interfering
terminals are denoted as, where . We
assume initially that the number of interferers is infinite
( ). The case with a finite number of interferers
is considered in Section IV-B. A schematic representation
of the system is provided in Fig. 1, where denotes
the th interfering terminal, and denotes the receiver.
The passband interference at the receiver resulting from a
superposition of continuous-time waveforms coming from
interfering terminals is written as

(4)

where is the signal from the th interferer, and
represents the attenuation of signal from this interferer.

We assume the use of the conventional detector that first
projects the passband signal onto the set ofreal and
orthogonal basis functions . The def-
inition of orthogonality and the projection operation depend
on the signaling scheme and the type of demodulation used
in the system. In general, after the correlation detection, the
interfering signal is represented as an-dimensional vector
given by

(5)

where is a random vector with
coordinates , which are real RV’s. Theth
coordinate of is the correlation of with the function

.1 Because all interfering terminals in the systems consid-
ered use the same modulation scheme and transmit at the same
power, it is reasonable to assume that the random vectors
are i.i.d. Moreover, the distribution of is independent of .

In this paper, we are concerned with characterizing the
distribution of or its multivariate components

, where . In order to do

1The projection ofxi(t) onto 'j(t) or, equivalently, the correlation of

these two, is given asXi; j
�
= T

0
'j(t)xi(t) dt, whereT is a symbol

interval.
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this, we assume that , or its multivariate components
corresponding to the similar partition of, are spherically
symmetric2 (SS) RV’s. When referring generically to
and , which are the random vectors of interest, we will
drop the superscript and simply denote them asand ,
respectively. In this notation,

(6)

Our task is to find the distribution of under the assumption
that are SS. Note that the fact that all subvectors are
SS does not imply that is SS. The term SS is applicable
to multivariate RV’s, but when we specialize our results to
the bivariate RV’s, we will use the term circularly symmetric
(CS) rather than SS. A detailed discussion explaining the SS
modeling of is provided at the end of this section. For
notational convenience, we denote the dimension ofand

as .
We assume that the signal amplitude loss function with the

distance is given by

(7)

where the constant depends on the transmitted power.
In free space, where radio frequency (RF) power radiates
perfectly in a sphere from the antenna, the received power
will decay in proportion to the square of the distance between
the transmitter and receiver corresponding to a value of
in (7). In practice, for cellular radio frequencies, can vary
from slightly more than 1 for hallways within buildings to
larger than 3 for dense urban environments and office buildings
[23]. For the active radar, it is , which corresponds to
free-space propagation. For monostatic radars, sea clutter gives
a variation of from at close range to at
the longer ranges [20]. The attenuation of signal strength over
distance in (7) is referred to as the deterministic law. Random
fluctuations of the signal amplitude for a fixed distance, such
as lognormal shadowing and Rayleigh fading, and their effects
on noise modeling are discussed in Section IV-A.

Under the assumption that terminals/scatterers trans-
mit/radiate at the same power, combining (6) and (7) results
in the noise equation

(8)

With respect to the terminal/scatterers positions, we assume
that interfering terminals/scatterers contributing toform a
Poisson point process with the expected number of terminals
per unit area/volume given by [19], i.e., for interferers
distributed in the plane, the probability in of trans-
mitters being in a region depends only on the areaof the
region and is given by

in (9)

2The random vectorX is said to be SS if its characteristic function�X(t)
depends only on the Euclidean (L2) norm oft, i.e.,�X(t) = �(jjtjj), where
jjtjj = (

n
i=1 t2i )

1=2 [13].

Note: For scatterers distributed in space, the concept of the
Poisson point process is derived by replacing the area with
volume.

Poisson assumption for the spatial distribution of terminals
in wireless networks, although not strictly verified, turns out
to be reasonable in the presence of a large population of users
[24].

In this paper, we assume that the hopping times of different
users are synchronized, i.e., all terminals begin and end
symbol transmission at the same time. In [25], we drop
this assumption, and we demonstrate that multiple access
interference has the same distribution for both synchronous
and asynchronous networks, except for one parameter. For
active radar systems, the synchronous assumption is realistic
because time delays from reflected waveforms at different
distances are negligible. The asynchronous model may be
applicable to passive sonar.

A Note on SS modeling of : To understand the noise
modeling in (6), it is useful to consider a system with on–off
frequency shift keying (FSK) and noncoherent detection. In
this system, , and .
Under the assumption that a tone is transmitted, the
projection of onto results in

, where is uniformly distributed in
. When no signal is present, . This means

that is CS. We can also view this case as one with
and reduced density of terminals

to , where is the density of all terminals.
To describe the self-interference in frequency-hopping (FH)

systems with -ary FSK, we recall that at the receiver,
after down-converting, the signal is demodulated using the
conventional receiver for noncoherent-ary FSK (i.e., a bank
of bandpass filters with envelope detectors at their output and
a decision rule that chooses the symbol corresponding to the
maximum envelope). Let be the output of
the correlation filter tuned to theth tone as shown in Fig. 2,
where and denote the in-phase and quadrature
integrator outputs, respectively. Here, the random vector
is a concatenation of , i.e.,

, where is the number
of frequency hopping slots. The RV’s are independent
and uniform. Because each terminal transmits only one tone
at a time, by grouping terminals that use theth frequency
(we denote their distances from the receiver as ), we can
write [25] the self-interference as

(10)

From this representation, it is evident that the self-interference
at the th branch of the envelope detector has the same
distribution as the interference in on–off FSK. Moreover,

’s are independent from each other. Note that terminals
at for form independent Poisson field
processes with density , where is the
number of orthogonal tones in the systems. In this system,
is not a SS random vector, but its components , which
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Fig. 2. Correlation receiver for noncoherent demodulation of bandpass orthogonal signals with equal energy.

are bivariate outputs from branches of a correlation detector,
are; more precisely, they are CS.

Even though, in this paper, we concentrate on multidimen-
sional signaling, the model we develop is also applicable to
one-dimensional (1-D) signals when . In this case, the
requirement that is SS means that the univariate

is symmetric. This condition is always met in any
antipodal signaling scheme with coherent demodulation.

In multiple access communication systems,is determined
by the signaling scheme employed, but in radar, particularly in
passive radar, depends on the characteristics of scatterers.
If the echo from the th scattering center is a Gaussian
process, then usually, , where is the identity
matrix, and is a SS RV.

Our objective in this paper is to provide an accurate sta-
tistical description of the interference , which will lead
to the design of receivers with improved performance over
conventional receivers.

III. A LPHA-STABLE MODEL FOR INTERFERENCE

In this section, we prove the following.
Theorem 1: If the RV’s are i.i.d. and SS and the in-

terferers/scatterers form a Poisson field, then the characteristic
function of the interference vector in (8) is SS -stable, i.e.,

(11)

where and for interferers distributed in
the plane and volume, respectively. The parameter, which
is called dispersion, is given as

(12)

where is a characteristic function of the SS
RV’s , and denotes differentiation. The constant
for interferers in the plane, and for scatterers in the
volume.

Proof: Our proof of Theorem 1 is based on the multi-
variate version of the LePage series representation.

Theorem 2 (The Multivariate LePage Series Represen-
tation): Let denote the “arrival times” of a Poisson
process,3 and let be SS i.i.d. vectors in , independent
of the sequence , with , or equivalently,

. Then

(13)

converges almost surely (a.s.) to a SS-stable random vector
with the characteristic function (cf)

(14)

The characteristic exponent , and the dispersion
parameter is given as

(15)

The proof of Theorem 2 is provided in Appendix A.
To link the multivariate version of the LePage series with

the noise equation in (8), we need to map a Poisson point
process in the plane (volume) onto the homogeneous Poisson
process on the line. To achieve this, we use the following two
propositions

Proposition 1: For a homogeneous Poisson point process in
the plane with the rate, assuming that points are at distances

( ) from the origin, represents Poisson
arrival times on the line with the constant arrival rate.

Proposition 2: For a homogeneous Poisson point process
in a volume (3-D space) with the rate, represents
“occurrence” times with the arrival rate . These two
propositions are proven in Appendix B.

Now, based on Theorem 2 and both Propositions, we are
able to give statistics of in (8). For interferers distributed

3In this paper, we use the termsarrival times or occurrence timesof a
Poisson process to mean a Poisson process on the line, where time is just
a hypothetical variable. We decided to use this terminology because, in the
engineering literature, the notion of Poisson processes on the line is well
established in the time domain.
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in the plane, we rewrite in (8) as

(16)

From Proposition 1, represents Poisson “occurrence”
times on the line with the arrival rate , and based on
Theorem 2,4 is SS -stable with the characteristic exponent

and dispersion .
The multiplicative constant changes the dispersion of-
stable RV by [14]. Note that because , this is valid
only when , which is almost always the case. However,
the free-space propagation is not included in this model.

For interferers distributed in a volume, we rewritein (8)
as

(17)

From Proposition 2, represents Poisson “occurrence”
times on the line with the arrival rate , and based on
Theorem 2, is SS -stable with the characteristic exponent

and dispersion .
Since , the attenuation exponent .

A. Parameters of Stable Noise

The characteristic exponentin (11) controls the heaviness
of the pdf tails ( ) as for univariate RV’s:
A small positive value of indicates severe impulsiveness,
whereas a value of close to 2 indicates a more Gaussian
type of behavior [14]. Like a variance for Gaussian RV’s, the
dispersion is the scale parameter from that controls
the spread around the origin.

In the case of noncoherent on–off FSK (OOK),
, where is uniformly distributed in

. Therefore, , where is a th-
order Bessel function of the first kind [26]. In this case,
is bivariate and CS. This model for is assumed in many
radar applications. It is also applicable to branch outputs of
a noncoherent correlation receiver with orthogonal-ary
FSK, as described in Section II. Because ,
[27, formula 6.561.17] can be used to calculate that for

(18)

In this equation, the admissible range of the path loss exponent
is for interferers distributed in the plane, and

for scatterers distributed in the volume.
In Fig. 3, the normalized dispersion is

plotted as a function of or as a function of (in parenthesis).
For in the range (0.5, 1.5), the normalized dispersion is
almost constant. In this range, asdecreases, the tails of the
CS -stable distribution become heavier, and if the dispersion
is constant, the area of the tails will increase. This means that
the channel will be more impulsive. Therefore, in interference-
limited systems, underestimating may result in performance
of some detection schemes that is too optimistic. Forin

4Here, we use�i rather than�i as in Theorem 2 to emphasize that the
Poisson process on the line results from our mapping of squared distances.

Fig. 3. Normalized dispersion for noncoherent OOK as a function of� or
(m).

the range (1.5, 2.0), a considerable increase in dispersion is
observed with increasing. In this range, as decreases, the
tails area does not necessarily increase at the same rate as in
the previous range.

IV. PRACTICAL CONSIDERATIONS

In Section III, when deriving the formula for the distribution
of self-interference, we have made two idealized assumptions:
1) We assumed an infinite network, and 2) we assumed
a uniform distribution of points in a Poisson field. In this
section, we show that these assumptions do not constrain our
analysis. In addition, we discuss the influence of the shadowing
effect—random fluctuations of the received power—on noise
statistics in our modeling.

A. Shadowing and Fading Effects on Noise Distribution

Thus far, we have assumed that the received signal strength
decreases with range raised to some exponent (the determin-
istic power-law propagation). However, experimental results
show that this is only the average behavior of the signal. The
received signal at fixed range is not constant due to different
terrain characteristics and statistical fluctuations in propagation
conditions. Typically, the following random effects should be
included in the study.

1) the random link attenuation due to the lognormal shad-
owing;

2) Rayleigh fading.

These are mutually independent and multiplicative phenom-
ena. Furthermore, for most applications, they may be regarded
as constant during at least one signaling interval (slow fading).

In this section, first, we show how to include the effect
of lognormal shadowing alone in our framework of LePage
series, and then, we give results for fading superimposed
on shadowing. The lognormal shadowing model applies both
to the power and to the amplitude. This is because the
multiplication of lognormal RV’s is lognormal [21]. Therefore,
the pdf of the signal strength is of the form [21]

(19)

where is the median of given as in (7),
and . The parameter is the standard deviation of
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the instantaneous power, and it depends on the environment.
Values of on the order of 8 to 10 dB are reported in the
literature [21]. Therefore, in order to include the lognormal
shadowing effect in our model, we have to consider in
(6) to be a RV given as , where is
the standard Gaussian RV with zero mean [21]. The interfering
signal is then

(20)

We assume here that are i.i.d. The hypothesis of inde-
pendence between shadowing effects from different users is
generally accepted [21]. Therefore, we can apply Theorem 1 in
(20) with replaced by .5 Then, in environments
with lognormal shadowing, is again -stable with
and for interferers distributed in the plane and
volume, respectively. To calculate the dispersion, we use (28)

(21)

where is a dispersion of the corresponding system with
the deterministic power propagation law. The last equation
in (21) follows from the first moment relation for lognormal
RV’s. The dispersion of the noise increases with increase
in , which depends on environment. When comparing with
dispersion in the system without shadowing, dispersion of the
noise also increases with an increase in(decrease in ).

If is Rayleigh distributed, for a given, can be
represented [21] as , where the RV

is Rayleigh distributed with

. Then, we have to substitute for in
Theorem 1, and is -stable with the same characteristic
exponent as in the deterministic power propagation scenario.
The dispersion is calculated in the same fashion as in (21).
Because [28] , the dispersion is

(22)

For the impact of multiplicative Rayleigh fading and lognor-
mal shadowing, we have to substitute for
in Theorem 1. In this case, the dispersion is given by

(23)

The dispersion factors for lognormal shadowing,
Rayleigh fading, and combined shadowing and fading are
calculated based on (21)–(23), respectively. They are shown
in Fig. 4 as a function of . The curves are plotted with the
shadowing standard deviation dB. We see that in all
cases examined, the dispersion factors are increasing functions
of . For lognormal shadowing, the dispersion also increases
with an increase in shadowing parameter.

5The RV’sexp(�Gi)Xi are spherically symmetric (SS) because a product
of a univariate RV and a SS RV is SS. In addition, they are independent
becausefGig andfXig are assumed to be independent sequences of mutually
independent RV’s.

Fig. 4. Dispersion factor for Rayleigh fading and lognormal shadowing
(�s = 10 dB).

B. Convergence of the LePage Random Series

Because the number of users transmitting at the same time in
a multiple-access network is finite, it is of interest to determine
the speed of convergence of the truncated LePage series

(24)

to , as given in (13). Our objective is to give quantitative
information on the convergence of the sums to with
respect to different values of the parameter. In this section,
we report results from two experiments investigating the con-
vergence of the truncated LePage series to stable distributions.
Short interpretation of the results obtained is given at the end
of the section.

1) Experiment 1 (Mean Square Error Convergence of the
Univariate LePage Series):Because and are SS RV’s,
it is sufficient to examine the convergence in one of the
coordinates only; we will denote these coordinates of
and as and , respectively. Note that since is
SS, the characteristic function of has the same form as
the characteristic function of . The same applies to
and . Therefore, the convergence of to implies the
convergence of and because the pdf’s of SS RV’s are
related to characteristic functions through the inverse Hankel
transform [26].

It may be shown that [15]

(25)

where . Fig. 5 shows
the graphs of for , , and

. In this figure, ; therefore, is
but not standard ( ). The slow convergence of to
is observed only for ’s close to 2—this is a case close to
free-space propagation. For corresponding to

for the interferers distributed in the plane, we
observe a good convergence in the mean square error (MSE)
sense even for , which is a reasonable number of
interferers in real multiple-access networks.
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Fig. 5. MSE of the LePage series approximation.

2) Experiment 2 (Alpha-Stable Parameter Fitting to Bivari-
ate LePage Series):To investigate the convergence further,
we have fitted the bivariate -stable distribution to the 2-D
RV’s generated with the truncated LePage series; we estimated
the parameters of the latter distributions as if they were-
stable. The estimation procedure for the parameters of the
symmetric -stable RV was based on the first- and second-
order moments of developed by Zolotarev
[29] (see also [30]). The truncated LePage series have been
generated as described in [15] and [25].

Table I shows the results obtained from the estimation of-
stable parameters for the “ideal”-stable generator (column
1) and the truncated LePage series. The generator of “ideal”
CS -stable RV’s was implemented as described in [14].
In columns 2–4, we present parameter fitting results for the
truncated series with , , and ,
respectively, where are uniformly distributed on the unit
circle ( or, in short, ).
We scaled similarly so that the corresponding LePage
series (with infinite number of terms) was standard ( ).
In columns 5 and 6, we present parameter fitting results for
the truncated LePage series, with and ,
where (we included the effect
of lognormal shadowing). In both columns, dB.
The true values for the parameters are and

, except for columns 5 and 6, where the dispersion is
modified by the factor ) [see (21)]. We calculated
this factor in the last column. Table I gives the average (, )
and the standard deviation (, ) values from Monte Carlo
simulations. In the simulations, the sample size was 5000, and
the experiments were repeated independently 1000 times. We
observe that for approximately , we have a good fit of
the ideal -stable distribution to the truncated LePage series
with as small as 10. For a constant, as the number
of terms in the truncated LePage series decreases, the
distribution of becomes more heavy tailed (with smaller
fitted ) and more “peaked” (concentrated more around the
zero-location parameter—with smaller). In addition, we see
that the shadowing (the distribution of ) does not affect the
convergence much. Moreover, the factor obtained in (21) is in
a good agreement with simulation results. Forclose to 2,
the convergence is much slower.

3) A Note on Modeling the Truncated LePage Series:For
-stable RV’s, with , only moments of order less than

TABLE I
ESTIMATED PARAMETERS OF THE BIVARIATE DISTRIBUTIONS

FOR THE IDEAL GENERATOR AND TRUNCATED LEPAGE

SERIES (SHADOWING PARAMETER �s = 10 dB)

exist [6]. Therefore, theoretically, there is a contradiction in
observing that the truncated LePage series can be represented
by a RV with infinite variance. A finite sum of RV’s with finite
second moments should result in the distribution with a finite
variance. It has to be emphasized that the LePage series is only
an asymptotic representation. We use stable distributions to
model the truncated LePage series because both exhibit similar
statistical behavior; they are heavy tailed. Analytical calcula-
tions and data-fitting experiments in this section show good
convergence properties of the truncated LePage series. There-
fore, we conjecture that for the modeling purposes, an-stable
distribution is a proper choice when we try to represent the
truncated LePage series with a distribution of a simpler form.

C. Nonhomogeneous Poisson Processes

Until now, we have been concentrating on Poisson point
processes with a constant rate. In particular, we map the
processes in the plane (volume) through the squared (cubed)
distances into homogeneous processes on the line. This is
because the LePage series representation applies only to
Poisson processes with a constant rate. However, as any
nonhomogeneous process can be made homogeneous by a
monotone transformation [19], it is of interest to determine
what rate functions for the density of interferers/scatterers
can be handled in our framework. Because, in (13), the form
factors have to be , where are occurrence times
of a homogeneous Poisson process, and because from (8),

, then the mapped process must be of the
form , where . In the rest of this section, we
limit our attention to interferers distributed in the plane. The
mapping should be from the original Cartesian coordinates

into the “polar” coordinates , with (see
Appendix B). This allows us to work with nonhomogeneous
point processes with the rate function and

. Note that since and ,
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then the induced measure in the new plane is
.

Ignoring , the homogeneous Poisson processhas the rate
. Then, we could proceed as in Section II-

B and arrive at the stable model with and
.

Similarly, if we assume that the interferers are Poisson
distributed only in a sector of the plane with an angle
and that their density is , then we can map such a process
to a homogeneous Poisson point process in the whole plane
with the rate . This sce-
nario is applicable to directional antennas as opposed to the
omnidirectional ones discussed so far.

Although the results presented above are specific to Poisson
processes in the plane, Poisson processes in the higher dimen-
sional spaces (volume in particular) can be handled in a similar
fashion. More information on modeling the noise in nonhomo-
geneous Poisson fields of interferers can be found in [25].

The Poisson assumption for interferer positions is consistent
with that followed in many papers on wireless radio networks
[23], [31]; however, its choice is often motivated by analytical
convenience [24]. With this model, we may apply the noise
modeling to a network with dynamically changing topology
or to obtain average performance for a collection of random
networks.

V. SIMULATION RESULTS

To demonstrate the practicality of the proposed noise model,
we simulated a small, single-cell, code division multiple access
(CDMA) wireless network [17] and verified that stable distri-
butions provide good description of MA interference statistics.
The modulation employed is binary noncoherent FSK, and
the network is synchronous, without power control. Each of
users in the network is assigned a hopping sequence being a
Reed–Solomon (RS) codeword that minimizes the number of
simultaneous transmissions between code sequences (users) at
the same frequency—“hits.” The description of the frequency-
hopping pattern design using RS codes is beyond the scope
of this paper and can be found in [32]. Briefly, if is a
prime number, we have a set of sequences of length

such that any two sequences hit at most times in
each period of symbols. The parameterdetermines the
number of frequency slots (gain), whereas determines
the number of users in the system. In our simulations, we
have experimented with different values ofand , and in
this section, we disclose the results for and .
In the case considered, we have 110 users, and nine ()
out of 110 terminals hopping to the same frequency as our
receiver (provided that all users are active in the network).
As to the user positions, we assume that, initially, they are
Poisson distributed and they are moving around an area of

m . Their velocity is random between 2 and 4
km/hr. In the simulations, we ensure that the terminals do not
get closer than 5 m to the receiver. The sample positions of
terminals moving over the period of 5 s, with the receiver in
the center of the square, are shown in Fig. 6. The transmission
rate in the system is 1 kb/s. We assume deterministic power
propagation law with the attenuation factor , and

Fig. 6. Positions of moving terminals with the initial state given by a
realization of the Poisson field.

In the simulations, we considered two situations: 1) All
users are active (transmit), and 2) on average, only one user
out of two is active and transmits on average for 1 s. We will
refer to these networks as networks with the duty cycle of 100
and 50%, respectively. In the first case, the density of users is

m , ( ), whereas in the second case,
m , ( ).

Table II shows the results obtained from the estimation of-
stable parameters of the bivariate MA noise for the simulated
networks. As in Table I, we provide the average (, ) and
the standard deviation ( , ) values from Monte Carlo
simulations, as well as the theoretical results (, ) obtained
based on closed-form expressions: and (18) (we
normalized the network area to 4). In the estimation process,
the number of symbols was 5000, and the experiments were
repeated independently 100 times. In the 100% duty cycle
network, the number of interfering terminals is twice of that
in 50% duty cycle network, and we would expect that the
fit of stable model to MA noise in this network should be
better. Note, however, that in the 50% duty cycle network,
the positions of interfering terminals are more “randomized”
than in 100% duty cycle network, which makes the first
network conform better to the system assumptions described
in Section II. In general, for both networks, the estimation
results in Table II are close to the theoretical ones; however,
there is a bias in the estimated parameters, indicating less
impulsive character of the MA noise than predicted from the
theoretical model. The reason for this is at least twofold: 1) In
the simulations, we did not allow interferers to get too close
to the receiver, and 2) in CDMA networks, we have only
pseudo-random subsets of users using the same frequency.

With respect to the first point, the alpha-stable character of
the random series in (13) is determined by the first summand
[14], and it is the fact that is unbounded that gives
the rise to the stable behavior of. The deviation of the ex-
perimental interference from the predicted alpha-stable model
depends on the density of users and the radius of the area
where we do not allow other interferers in the proximity of
the receiver.
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TABLE II
ESTIMATED AND THEORETICAL PARAMETERS OF THECS�-STABLE

DISTRIBUTIONS FOR THEMA I NTERFERENCE IN THESIMULATED NETWORKS

With respect to the second point, recall that in our noise
modeling (Section II), we assume that on different hops,
we have different (random) subsets of users hopping to the
frequency to which our receiver is tuned. This scenario cor-
responds to SS MA networks where we regard the code
sequences as statistically independent processes [17]. Exper-
iment 2 in Section IV-B already confirmed that for this type
of multiuser systems, the alpha-stable distributions provide
a good description of MA noise. In CDMA networks, we
have only pseudo-random subsets of terminals using the same
frequency, and for a small number of users and small gains,
there can be instances where the initial positions of terminals
influence the MA interference to the point where stable model
is inappropriate. Generally, CDMA FH patterns of long pe-
riods (supporting large number of users) behave like SS MA
signals [17], and this was a premise on which we projected
the MA interference model in SS MA networks to the MA
interference in CDMA FH networks.

To demonstrate further that the stable model describes effi-
ciently the MA interference, in Fig. 7, we plot the histogram
of the envelope of MA interference in the network with duty
cycle of 50%, for ( ). There, we also show
the pdf of the envelope based on two fitted models: 1) Rayleigh
and 2) the envelope of the bivariate alpha-stable random
vector. The parameter of the Rayleigh model was obtained
by estimating the mean of the series (the realization length
was 100 000 samples). The calculation of the envelope pdf
for the CS -stable RV was carried out using Fourier–Bessel
expansion [25]. In Fig. 7, we show the center part of the
pdf and the tail region using linear and logarithmic scales,
respectively. It is evident that the bivariate Gaussian RV does
not capture the heavy-tail character of MA noise, and the stable
model provides much better fit to the histogram. The use of
the Gaussian model for the MA interference in probability of
error calculations will result in performance prediction of the
networks that is too optimistic. Even though we do not have the
perfect fit of the stable model to simulated MA interference,
the advantages of defining the noise model in terms of just two
parameters linked to physical scenarios are far more important.

There are many aspects of CDMA radio networks that have
been simplified in our simulations and that may affect the
noise parameters estimated. In general, these networks are
more “random”:

1) They are asynchronous.
2) The user activity factors are more complex.
3) There is fading and multipath propagations.

Fig. 7. Pdf of the envelope of MA noise in a simulated CDMA network with
FH based on the histogram and two fitted models. Rayleigh and the envelope
of bivariate alpha-stable RV’s.

4) There are many more effects which have not been
considered here.

By experimenting with the simulated network parameters, we
observed that the more random the network, the more accurate
fit the stable model was providing. Specifically, longer periods
of hoping patterns () result in more independent Poisson-
like fields of interferers and follow closer the assumptions in
Section II. For a given , the number ofhits controlled by
the parameter is of lesser importance to the overall fit of
stable distributions to MA interference. This is in agreement
with the relatively fast convergence of the LePage series. In
our simulations, we did not observe a better fit of stable
distributions to MA interference at law values ofas expected
from the convergence analysis in Fig. 4. This is related to the
exclusion of close to the receiver interferers, which makes
the MA interference more Gaussian-like and affects stable
distributions more for low values of .

In summary, in this section, we verified the applicability
of stable distributions to MA interference modeling in FH
CDMA networks without power control. We pointed out some
limitations in assumptions made when building the analytical
model in Section II. However, as always, certain simplifica-
tions have to be made when transforming complicated intrinsic
processes in the radio networks into a nearly equivalent MA
interference model, which is credible, analytically tractable,
and computationally efficient.
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VI. SUMMARY

In this paper, we have characterized interference for multiple
access communication systems without power control in which
interferers are assumed to be Poisson-distributed in the plane.
The same development applies for radar backscatter. Assuming
inverse power attenuation of signal strength with distance,
interference in the system is shown to be an SS-stable
noise. This model has the advantage of specifying system noise
with two parameters: the characteristic exponentand the
dispersion . By using the LePage series representation of an

-stable RV, through simulations and numerical calculations,
we have shown that a theoretical assumption about an infinite
number of interferers does not limit our analysis. Moreover,
we have demonstrated that the-stable model applies when
interferers form nonhomogeneous Poisson fields. In addition,
we have derived the formulas that allow us to predict noise
statistics in complex interference environments with lognor-
mal shadowing and Rayleigh fading, and we have verified
the validity of our modeling by simulating small wireless
networks.

The hypothesis of -stable noise is partially confirmed
by the impulsive character of clutter and multiple access
interference. In the end, however, it must be resolved against
experimental data.

APPENDIX A
THE LEPAGE TYPE SERIES REPRESENTATIONS

The following result from [14, Th. 1.4.2] for univariate RV’s
forms the basis in the proof of Theorem 2:

Theorem 3 (The LePage Series Representation):Let be
as given in Theorem 2, and let be symmetric univariate
i.i.d. RV’s, independent of the sequence with

. Then, the sum

(26)

converges almost surely (a.s.) to a symmetric-stable ( )
RV whose characteristic function is

(27)

The characteristic exponent , and the dispersion is

(28)

where .
Now, to prove Theorem 2, we proceed in three steps.

Step 1) First, we show that is SS.
The RV’s are spherically symmetric

(SS) because a product of a univariate RV, and a
SS RV is SS. The random vector is then a sum
of SS RV’s and, therefore, is SS.

Step 2) Next, we show that each coordinate ofis uni-
variate .

In the th coordinate ( ), the sum in
(13) has the form

(29)

where being a th coordinate of SS
is a symmetric univariate distribution. Based on
Theorem 2, RVs are symmetric -stable ( )
with the dispersion as in (28). Now, since each
coordinate of is with the same charac-
teristic exponent and dispersion , and because

is SS, is SS -stable with the characteristic
function as in (14).

Step 3) We express now the dispersionin terms of the
characteristic function of .

We start with the integral formula ([27], 3.823)

(30)

for any real constant, and . Replacing
the constant with RV and taking expectation
of both sides, after some algebra, we obtain

(31)

Similar integral manipulation as in the proof of
Step 3 has been used in [6].

To confirm the equivalence of (28) and (31), we
evaluate them for with .
In both cases, using

([27], 3.381.4) and after some manip-
ulations, we obtain

(32)

APPENDIX B
MAPPING OF POISSON POINT PROCESSES

Before we prove Proposition 1 and 2, we recall that for
Poisson point processes in , in addition to the rate (density)
of points, we often specify mean measure(expected number
of points) defined as

(33)

where stands for . In the special case, when
is constant, .

Now, both propositions arise as a consequence of the
following mapping theorem, which is often overlooked in the
engineering literature [19].

Theorem 4: Let be a Poisson process with mean measure
in the space , and let be a “smooth” function.

Then, is a Poisson process on having as its mean
measure the induced measure

(34)

where is the inverse image of set in .
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Proof of Proposition 1: When we map the Poisson point
process in the Cartesian coordinate system into the
“polar” coordinates , we again obtain a
Poisson point process in the strip

with the induced measure
, where is the

Jacobian of the transformation from into . If the
angle is not considered, the values of form a Poisson
process on with the rate .

The proof of Proposition 2 parallels that of Proposition 1.
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