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Abstract: In this work, we consider a very simple gravitational theory that contains a
scalar field with its kinetic and potential terms minimally coupled to gravity, while the
scalar field is assumed to have a coulombic form. In the context of this theory, we study an
analytic, asymptotically flat, and regular (ultra-compact) black-hole solutions with non-
trivial scalar hair of secondary type. At first, we examine the properties of the static and
spherically symmetric black-hole solution — firstly appeared in [109] — and we find that in
the causal region of the spacetime the stress-energy tensor, needed to support our solution,
satisfies the strong energy conditions. Then, by using the slow-rotating approximation, we
generalize the static solution into a slowly rotating one, and we determine explicitly its
angular velocity ω(r). We also find that the angular velocity of our ultra-compact solution
is always larger compared to the angular velocity of the corresponding equally massive slow-
rotating Schwarzschild black hole. In addition, we investigate the axial perturbations of the
derived solutions by determining the Schrödinger-like equation and the effective potential.
We show that there is a region in the parameter space of the free parameters of our theory,
which allows for the existence of stable ultra-compact black hole solutions. Specifically, we
calculate that the most compact and stable black hole solution is 0.551 times smaller than
the Schwarzschild one, while it rotates 2.491 times faster compared to the slow-rotating
Schwarzschild black hole. Finally, we present without going into details the generalization
of the derived asymptotically flat solutions to asymptotically (A)dS solutions.
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1 Prologue

General theory of Relativity (GR) is now more than a hundred years old, and during this
time interval, it has been tested countless times at different distance scales. It counts many
experimental successes with the most recent ones being the detection of the gravitational
waves [1] and the black hole shadow [2]. However, cosmological observations indicate that
General Relativity is an effective theory and is therefore expected to break down at some
distance or energy scale. Indeed, the Standard Model for Cosmology has many open prob-
lems, like the nature of dark energy and dark matter or the accurate model for inflation.
Therefore, these observations motivate the need for modified gravitational theories. The
simplest and most studied modified gravitational theories are the Scalar Tensor (ST) theo-
ries where the scalar field provides an additional scalar degree of freedom. One important
property of scalar tensor theories is that most modified gravitational theories have a limit
in which they reduce to scalar-tensor theories. Moreover, after the detection of the Higgs
boson in 2012 [3, 4] it is now widely accepted that scalar fields exist in nature. Conse-
quently, scalar-tensor theories constitute a very fertile framework in which new ideas can
be easily applied and new spacetime geometries can be easily generated.

Although the Modified Gravitational theories are usually constructed as cosmological
models, the existence of local (black-hole, neutron star or even star) solutions is essential for
their credibility. If it is not possible to give rise to astrophysically realistic local solutions,
then the theory cannot be considered viable. However, the search for new black hole
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solutions in the scalar tensor theories was prematurely stopped due to the formulation of
No-Scalar Hair theorems [5, 6] that forbade the existence of a static black hole solution
associated with a non-trivial scalar field. Nevertheless, the validity of the first no-scalar
hair theorem was disputed after the derivation of new black-hole solutions. Some indicative
examples are solutions with Yang-Mills gauge fields [7–10], Skyrme fields [11, 12] or with
a conformal coupling to gravity [13, 14]. Bekenstein developed a new formulation of the
no scalar hair theorem at 1995 [15] but this was also shown to be evaded only after a year
with the derivation of the dilatonic Gauss-Bonnet black holes [16]. In addition, the revival
of the Horndeski theory [17] through the generalized Galileon theory [18] has significantly
enhanced the number of new black hole solutions in scalar tensor theories. The last decades
a vast number of hairy black-hole solutions has appeared in the literature; for a partial list
of asymptotically flat solutions see refs. [19–73], while for asymptotically (A)dS4 solutions
see refs. [74–84]. Also, in the recent review [85], one can find inhomogeneous solutions in
the context of both GR and scalar-tensor gravity. It is important to mention though, that
the existence of black hole solutions does not guarantee by itself that these black holes are
serious candidates for astrophysical objects. An astrophysical black hole must be stable
and also it must rotate. Hence, it is crucial to study the existence of local solutions in
scalar-tensor theories along with their rotation and stability.

Furthermore, in scalar-tensor theories we may derive solutions for local objects that are
forbidden in General Relativity like wormholes or particle-like solutions (solitons). In Gen-
eral Relativity, wormholes require the existence of exotic matter near their throat [86], that
violates the energy conditions, while in electrovacuum the solitons are unstable [87, 88].
In scalar-tensor theories though, the scalar field generates an effective energy momentum
tensor that may violate the energy conditions and generate wormhole solutions, while in
the same time the ordinary matter that may exist around the throat remains non-exotic.
Although this is mainly achieved using phantom scalar fields, i.e. scalar fields that have a
negative sign in front of their kinetic term, it has been shown that in the Einstein-scalar-
Gauss-Bonnet theory real scalar fields may support regular wormhole solutions [89–91].
Also, in the framework of the scalar tensor theories numerous solutions for solitons have
been found [85, 92–100]. The geometry of these local objects is characterized by the ab-
sence of singularities or horizons while asymptotically they are flat or (A)dS. Note also
that in scalar-tensor theories there are solutions of ultra-compact black holes, which con-
stitute a new kind of local solutions [101]. These are regular compact black hole solutions
with horizon radius always smaller than the horizon radius of the corresponding GR black
hole with exactly the same mass. All of the above solutions may be accurate models for
(ultra-)compact objects in the universe like the X-ray transient GROJ0422+32 [102] (see
also [103–105]).

In this work we will focus on a very simple action functional which besides gravity
contains a minimally coupled scalar field with both its kinetic and potential terms. This
theory belongs to the class of the Horndeski theories,1 and it is conformally equivalent with
the f(R) and Brans-Dicke theory. The last decades, it is widely used in Cosmology since it

1It is a Horndeski theory with G2 = X + V (Φ), G4 = 1 and G3 = G5 = 0.
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provides accurate models for dark energy and inflation. Returning to the families of local
solutions, the theory was used quite early on for the construction of wormhole solutions
with the most characteristic example the Ellis wormhole [106–108], which is supported by
phantom fields. However, due to the No-Scalar hair theorem it is impossible to derive black
hole solutions for a large class of potentials. It may be shown that black hole solutions
may be found only for negative definite potentials, V (Φ) < 0. Also, although this theory
is very simple, it is extremely difficult to provide analytic solutions for black holes. Even
for the simple polynomial potentials V (Φ) = λΦn we need to employ numerical methods.
Therefore, it is essential to map the potentials that lead to analytic solutions for black
holes. The last years several works have been made towards this direction [20–22, 26, 34].
These works have in common that in order to construct analytic solutions the authors
employ the so-called “scalar-potential engineering” method. In this, we specify a form
for the scalar field and the potential is determined by solving the field equations. Here,
we start from an analytic black hole solution that first appeared in [109] and thoroughly
study its properties. We show that these types of solutions can indeed describe ultra-
compact black holes, we generalise these solutions into slow rotating ones, and we also
compare their angular velocities with the angular velocities of the corresponding slow-
rotating Schwarzschild black-hole solutions of the same mass. The most attractive feature
of these solutions is that the scalar field assumes a coulombic form, while in order to deduce
whether these types of solutions could comprise astrophysical objects, we also examine their
thermodynamic stability and their stability under spacetime perturbations.

The outline of our work is as follows: in section 2, we present our theoretical frame-
work. We introduce our four-dimensional field theory and then we derive the black hole
solution by solving the field equations. Furthermore, we study the properties of the solu-
tion, we determine the location of its horizon and we compare it with the horizon radius
of the Schwarzschild black hole. Also, we examine the black-hole entropy, the regularity
of the scalar curvature quantities and the energy conditions for our solution. Moreover,
we investigate whether the potential that supports our solutions is in agreement with the
conditions for the evasion of the No-scalar Hair theorem. In section 3, we generalise the
static solution into a slow-rotating one by using the slow rotation approximation. We begin
by defining the necessary formalism for a general metric and then by substituting our so-
lution we find the analytic expression of the angular velocity ω(r), which then is compared
with the angular velocity of the corresponding slow-rotating Schwarzschild black hole. In
section 4, we consider the stability of our black hole solutions under linear perturbations.
We derive the Schrödinger-like equation which is obeyed by the perturbations and by ex-
amining the effective potential we derive the stability conditions. Finally, in section 5 we
conclude and discuss future directions.

2 The theoretical framework

We consider the following action functional

S = 1
16π

∫
d4x
√
−g
[
R− 1

2(∂Φ)2 − V (Φ)
]
. (2.1)
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The theory contains the scalar curvature R ≡ gµνRµν , and a scalar field Φ with its kinetic2

and potential terms. The gravitational field equations of the theory follow if we vary the
above action with respect to the metric tensor gµν , while the equation of motion of the
scalar field follows from the variation of the action with respect to Φ. By doing so, we
obtain the following equations:

Gµν = T (Φ)µ
ν , (2.2)

∇λ∇λΦ− ∂ΦV = 0 , (2.3)

where T (Φ)µ
ν is the stress-energy tensor associated with the scalar field Φ and is defined by

T (Φ)µ
ν ≡

1
2∂

µΦ∂νΦ− 1
2δ

µ
ν

[
(∂Φ)2

2 + V (Φ)
]
. (2.4)

In the context of this work, we are interested in analytic black-hole solutions with scalar
hair which are regular and asymptotically flat. To this end, we consider the geometric
ansatz

ds2 = −eA(r)B(r) dt2 + dr2

B(r) + r2(dθ2 + sin2 θ dϕ2) , B(r) ≡ 1− 2m(r)
r

, (2.5)

while for the scalar field it is natural to assume only radial dependence, namely Φ = Φ(r).
Using now (2.2) together with (2.4) we obtain the following independent equations

A′ = r

2
(
Φ′
)2
, (2.6)

A′′
(
r − 2m

)
+A′

(
1 + m

r
− 3m′

)
+
(
A′
)2(r

2 −m
)
− 2m′′ + 4m′

r
= 0 , (2.7)

V (Φ) = 2
r

(2m
r
− 1

)
A′ + 4m′

r2 +
(
Φ′
)2(1

2 −
m

r

)
. (2.8)

In the above, with prime we denote the derivative with respect to the radial coordinate r.
Note also, that the scalar-field equation (2.3) is not an independent one, but rather follows
from the aforementioned three differential equations. It is now obvious, that in order to
solve the above set of differential equations (2.6)–(2.8) with four unknown functions, we
first need to impose a particular expression for one of the functions involved. Consequently,
assuming the scalar-field function Φ(r) = q/r, where q is the scalar charge, and solving one
by one the above equations, we obtain

A(r) = − q2

4r2 , (2.9)

m(r) = r

2 + 4r3

q2 + e
q2

8r2 r2

q2

[
− 12M +

√
2π q erf

(
q

2
√

2 r

)]

− e
q2

4r2 r3

q3

{
4q − 12

√
2πM erf

(
q

2
√

2 r

)
+ πq

[
erf
(

q

2
√

2 r

)]2}
, (2.10)

V (Φ) = 2(24 + Φ2)
q2 − 12 Φ eΦ2/8

q3

[
12M −

√
2π q erf

( Φ
2
√

2

)]

+ (Φ2 − 12)eΦ2/4

q3

[
4q − 12

√
2πM erf

( Φ
2
√

2

)
+ πq

[
erf
( Φ

2
√

2

)]2]
, (2.11)

2We note that (∂Φ)2 ≡ ∂µΦ∂µΦ.
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respectively.3 Notice that the scalar potential V (Φ) contains a term of the form (2/q2) Φ2,
therefore, the parameter q can be related to the mass of the scalar field. In (2.10) we have
chosen the integration constants appropriately in order to get a flat geometry at the space-
time boundary.4 Note that in general the integration constants may generate an effective
cosmological constant Λeff resulting to an asymptotically (anti-)de Sitter spacetime. The
general solution may be found in appendix A. Here, we will focus on the asymptotically
flat solutions, thus at infinity the metric function A(r) gives

lim
r→+∞

eA(r) = 1 , (2.12)

while the expansion of B(r) at large values of the r-coordinate results to

B(r � 1) = 1− 2M
r

+ q2

4r2 −
7Mq2

20r3 + q4

36r4 +O
( 1
r5

)
. (2.13)

With the use of the above expressions in (2.5), it is straightforward to confirm that at the
radial infinity (r → +∞) the spacetime geometry is indeed flat. We also notice that the
first three terms of the expansion resembles a Reissner-Nördstrom (RN) black hole, and
since eA(r) goes to unity as r grows larger, the spacetime geometry spanned by (2.5) cannot
be distinguished from the geometry of a RS black hole at large values of the r-coordinate.
However, in our case, the parameter q originates from the scalar field Φ rather than from
an electromagnetic gauge field.

To obtain a better understanding of the spacetime geometry, we need to study its
causal structure and the curvature invariant quantities generated by its line-element. In
appendix B, we give the analytic expressions of all three scalar curvature quantities derived
by (2.5), (2.9), (2.10). Their expressions are fairly complex, but it is clear that at r = 0
the spacetime exhibits a singularity, since all the terms of the form 1/r` and eq2/r2 diverge
at r = 0. We will come back to the scrutiny of the scalar curvature quantities shortly,
but first it will prove helpful to investigate the horizon(s) of the black hole. The causal
structure of the spacetime is defined via the light cone, and thus we need to consider radial
null trajectories in the background geometry. Therefore, using (2.5) and by keeping the
coordinates θ and ϕ constant, the condition ds2 = 0 leads to

dt

dr
= ± e

q2

8r2

|B(r)| = ± e
q2

8r2

|1− 2m(r)
r |

. (2.14)

At the spacetime boundary, namely when r → +∞, the above relation becomes dt/dr = ±1,
as expected for asymptotically flat spacetimes. However, at the root(s) of the function B(r)
the fraction dt/dr diverges. Therefore, the horizon radius rh is defined through the relation

3The error function is defined as
erfx = 2√

π

∫ x

0
e−t

2
dt .

4As mentioned in the Introduction, the above asymptotically flat solution has been first derived in
the review paper [109], where the authors did not go into a detailed analysis of the solution, but rather
mentioned it as an example of a black-hole solution with scalar hair.
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Figure 1. Both (a) and (b) depict graphs of the ratio |dt/dr| in terms of the radial coordinate r
for various values of the parameter q while keeping the mass parameter constant, i.e. M = 10. In
(a) q = 40, 35, 25, 0.01 from left to right, while in (b) q = 42, 43, 70, 100 from top to bottom.

B(rh) = 0. In both figures 1(a) and 1(b) we see the graphs of the positive branch of the
quantity dt/dr in terms of the radial coordinate r, for various values of the q-parameter and
fixed mass value M = 10. Since, there is at most one spike for each graph, we forthwith
deduce that there is only one root for the relation B(rh) = 0, if any. Consequently, there is
at most a single horizon for the black hole described by the line-element (2.5). In figure 1(a)
for q = 0.01 we have rh ' 20, for q = 25, rh ' 17.4, for q = 35, rh ' 14, while for q = 40,
rh ' 10.6. In figure 1(b) we observe that as the value of q increases, there is a point
(q & 42) at which the graph smoothens and the spike disappears; this means that for these
particular values of the parameters M and q, the line-element (2.5) describes the topology
of a naked singularity. Although we have obtained the above result for a particular value of
the black-hole mass, namely M = 10, one can verify that the transition from a black-hole
solution to a naked singularity happens at the relative value q/M & 4.2. This behaviour is
also observed in the Reissner-Nordström black hole, where the naked singularity appears
in the region of the parameter space for which Q2 > M2.5 Of course, we do not expect
these particular paradigms of naked singularities to correspond to astrophysical objects.

As we already discussed, from equation B(rh) = 0 one can determine the horizon
radius rh in terms of the mass parameter M and the parameter q. However, this value
can be specified only numerically, since it is impossible to solve explicitly the equation
B(rh) = 0 with respect to rh. It is though possible and even more meaningful to solve the
aforementioned equation with respect to the dimensionless quantity rh/(2M). Using (2.10)

5In this case, the implied Reissner-Nordström line-element is of the following form:

ds2 = −
(

1− 2M
r

+ Q2

r2

)
dt2 +

(
1− 2M

r
+ Q2

r2

)−1

dr2 + r2 dΩ2
2 .
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Figure 2. The graph of the fraction rh/(2M) in terms of q/rh. Both quantities are dimensionless,
while the horizontal axis is logarithmic.

and after a little bit of algebra it is easy to show that

rh
2M =

6 e
q2

8r2
h

 q
rh
−
√

2π e
q2

8r2
h erf

(
q

2
√

2 rh

)
q

rh

4− 4 e
q2

4r2
h + q

rh

√
2π e

q2

8r2
h erf

(
q

2
√

2 rh

)
− π e

q2

4r2
h

[
erf
(

q

2
√

2 rh

)]2

. (2.15)

From (2.15), it is obvious that the value of the quantity rh/(2M) depends only on the
value of q/rh, therefore the scalar hair is of secondary type. In figure 2 we see the graph of
the above relation. Notice that for small values of the ratio q/rh,6 the fraction rh/(2M) is
equal to unity and therefore rh = 2M as in the Schwarzschild geometry. We also observe
that the greater the value of q/rh, the smaller the value of rh/(2M); thus, in the region
of the parameter space where q > rh the condition B(rh) = 0 leads to an ultra-compact
black hole, since for a fixed value of the mass M the horizon radius rh is smaller than
the horizon radius of the corresponding Schwarzschild black hole with the same mass. Of
course, for values q/rh > 10 the horizon radius of the ultra-compact black hole becomes
extremely small and hence, it is very likely that this region of the parameter space is
unphysical. Observational measurements from LIGO-VIRGO, Event Horizon Telescope or
other astrophysical experiments/missions will prove very useful in the future and hopefully
will put bounds on the size and mass of (ultra-)compact objects [103–105].

The horizon radius is also related to the entropy of the black hole. The entropy may
be calculated using Wald’s formula [110, 111] that associates the Noether charge on the

6The expansion of the quantity rh/(2M) for q/rh � 1 is the following:

rh
2M = 1− 3

40

(
q

rh

)2
+ 55

8064

(
q

rh

)4
+O

[(
q

rh

)6]
.
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horizon with the entropy of the black hole

S = −2π
∮
d2x

√
h2

(
∂L

∂Rabcd

)
H
ε̂ab ε̂cd . (2.16)

In the above, ε̂ab is the binormal to surface of the horizon H, h2 the determinant of the
2-dimensional projected metric on H, and L the Lagrangian of the theory. By using the
above equation it is easy to verify that in our theory the entropy is described by the
Bekenstein-Hawking formula S = A/4. Therefore,

S

SSch
=
(
rh

2M

)2
, (2.17)

where SSch is the entropy of the corresponding Schwarzschild black hole with mass M . For
more details about the calculation of the entropy see [81]. From figure 2 we observe that
black holes with q/rh < 1 have approximately the same entropy with the corresponding
Schwarzschild black hole of the same mass, while the ultra-compact black holes have always
smaller entropy than the Schwarzschild ones. Therefore, we expect the solutions with
q/rh < 1 to be thermodynamically more stable than the ultra-compact black holes.

To comprehend fully the geometry of the spacetime (2.5), (2.9), (2.10), we need to
examine the curvature invariant quantities: the Ricci scalar R, the scalar R ≡ RµνRµν ,
and the Kretschmann scalar K ≡ RµνκλRµνκλ. Their analytic expressions are presented
in appendix B, while in figures 3(a), 3(b) and 3(c) we depict their graphs in terms of the
dimensionless radial quantity r/rh for various values of the dimensionless parameter q/rh.
In all sub-figures of figure 3, we have multiplied each scalar with the appropriate power of
rh to make the resulting quantity dimensionless.7 In addition, in order to keep the black-
hole horizon constant in all graphs, independently of the value of q, we have substituted
the mass M from (2.15) inside the relations (B.1)–(B.3). By doing so, although we vary
the parameter q, as long as we vary accordingly the mass of the black hole we can keep
the black-hole horizon fixed. As one can clearly observe from figure 3, all three scalar
curvature quantities diverge at r = 0. Therefore, we deduce that at r = 0 we encounter a
real spacetime singularity. However, as we move away from the black-hole singularity, the
curvature invariant quantities obtain their zero asymptotic values extremely fast, hence
leading to an asymptotically flat spacetime. One can also notice that for values q . rh the
scalar quantities are effectively zero on the black-hole horizon, and thus, the intense change
of the spacetime curvature due to the existence of the black-hole singularity at r = 0 is only
noticeable way beyond the crossing of the horizon, namely at distance r ' rh/2. On the
other hand, for values q ≥ 5rh, the effect of the singularity on the curvature of the spacetime
becomes apparent even to an observer outside the black-hole horizon. This behaviour is
indeed anticipated and in complete agreement with the discussion which took place earlier,
since as it was shown in figure 2 for values q/rh ≥ 5 we have an ultra-compact black hole.

Having studied the geometrical characteristics of the line-element (2.5), (2.9), (2.10) it
is now important to examine the energy conditions which are satisfied by the stress-energy
tensor regarding the scalar field, namely T (Φ)µ

ν . It is easily deducible from (2.4) that the
7Note that [R] = [L]−2, [R] = [K] = [L]−4.
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Figure 3. (a) The Ricci scalar r2
h R, (b) the scalar r4

hR and (c) the Kretschmann scalar r4
hK

in terms of the radial coordinate r for various values of the dimensionless parameter q/rh. The
quantity q/rh takes the values 0.01, 0.5, 1, 5, 6 (from left to right).

stress-energy tensor is solely characterized by three components: the energy density ρE =
−T (Φ)t

t, the radial pressure pr = T (Φ)r
r and the tangential pressure pθ = T (Φ)θ

θ = T (Φ)ϕ
ϕ.

It is also discernible that pθ = −ρE , while pr = wr ρE with wr = wr(r). In figure 4(a)
and 4(b) we see the graphs of the quantities ρE+pr and ρE+∑i pi ≡ ρE+pr+2pθ = pr+pθ,
respectively, in terms of the radial coordinate r, for rh = 1 and various values of the
dimensionless parameter q/rh. Note here that the mass M inside the expression of the
scalar potential V (Φ) and consequently inside the expressions of the energy density ρE and
the pressures pr, pθ has been replaced from eq. (2.15). That is the reason why the only
independent parameters of the quantities depicted in figure 4 are the horizon radius rh and
the scalar charge q. One can readily observe that independently of the values of the ratio
q/rh, the quantity ρE +∑

i pi is positive-definite for all values of the radial coordinate r,
while ρE + pr is positive-definite for all values of r which are greater than the black-hole
horizon radius rh, i.e. in the spacetime region which lies outside of the black hole. In
appendix C one may find the explicit calculation which proves that the quantity ρE + pr
changes sign at r = rh, a result which is independent of the value of the parameter q/rh.
Therefore, combining the results from figures 4(a) and 4(b) we conclude that outside of
the black hole (r > rh) — in the causal region of spacetime — the distribution of energy
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Figure 4. (a) The quantity ρE +pr and (b) the quantity ρE +
∑

i pi in terms of the radial coordinate
r for rh = 1 and different values of the dimensionless parameter q/rh.

and pressure corresponding to the scalar field Φ satisfies the strong energy conditions
(SEC): ρE + pi ≥ 0, ∀pi and ρE + ∑

i pi ≥ 0.8 In the region of spacetime beyond the
black hole horizon (i.e. for r < rh), both the energy density ρE and the quantity ρE + pr
become negative, thus the energy conditions are violated. In wormhole solutions, we often
meet violation of the energy conditions [86, 89–91, 112], but for black hole solutions this
type of matter is rarely encountered. In this particular scenario though, we see that for the
interior of the black hole this type of exotic behaviour of the scalar field is indeed necessary,
otherwise the simple scalar-field theory LΦ = −(∂Φ)2/2− V (Φ) would not have been able
to support by itself the geometry of the ultra-compact black-hole solution.

Before we discuss the scalar potential V (Φ) given by eq. (2.11), let us first focus on
the No-Scalar Hair theorem. The No-Scalar hair theorem that has been developed by
Bekenstein and Teitelboim [5, 6, 15], is an extension of the GR No-Hair theorems which
forbid the association of the black holes with scalar hair. For the particular theory that we
consider in this work, the validity of the No-Scalar Hair theorem relies on the sign of the
potential. We may easily verify this by multiplying the scalar field equation (2.3) with V
and integrating over the whole spacetime outside the black hole∫ ∞

rh

dx4√−g V (∇µ∇µΦ− ∂ΦV ) = 0 . (2.18)

Here we assume that the black hole is asymptotically flat and the scalar field has the same
symmetries with the spacetime i.e. Φ(xµ) = Φ(r). Integrating by parts the first term, the
above equation becomes ∫ ∞

rh

dx4√−g ∂ΦV (∂µΦ ∂µΦ + V ) = 0 . (2.19)

The boundary term [√−g V ∂µΦ]∞rh vanishes in both boundaries. Near the horizon of the
black hole it vanishes due to the factor B(r) that appears via the derivative of the scalar
field with respect to r,9 while at infinity the scalar potential V (Φ) vanishes since the

8For a perfect fluid ρ+
∑

i
pi = ρ+ 3p, and the second condition would have been ρ+ 3p ≥ 0.

9∂µΦ = δµrgrr∂rΦ = δµrB(r)∂rΦ and B(rh) = 0 by definition.
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Figure 5. The potential r2
h V (Φ(r)) in terms of the radial coordinate r for different values of the

dimensionless parameter q/rh.

black-hole solution is asymptotically flat. Moreover, because of the staticity and spherical
symmetry of our solutions, the first term in eq. (2.19) is ∂µΦ ∂µΦ = grrΦ′2 > 0 throughout
the exterior region of the black hole. Therefore eq. (2.19) may be satisfied only if the
potential is negative V (Φ) < 0. Hence, for a large class of theories with V > 0, including
the mass term V = m2Φ2/2, it is not possible to derive a non-trivial black hole solution.
In these cases, the only acceptable spherically symmetric solution is the Schwarzschild one
accompanied with a trivial (constant everywhere) scalar field. Returning to our solutions,
in figure 5 we depict the potential r2

h V (Φ(r)) for five black hole solutions with different
values of the dimensionless parameter q/rh. We have multiplied the potential with r2

h in
order to make the resulting quantity dimensionless and also scale invariant, as long as
we adjust accordingly the mass of the black hole. We observe that in accordance with the
evasion condition, the black-hole solutions are always accompanied by a negative potential.
For q/rh < 1 the effect of the potential is significant only inside the black hole while it is
negligible at the horizon. On the other hand, the potential of the ultra-compact black holes
is also considerable in the near horizon region. For every solution, the potential always
obeys the condition V (Φ) < 0, which means that is negative and has no nodes. Finally, at
infinity, the potential vanishes and this leads to the asymptotic flatness of our solutions.

3 Black-hole solution with slow rotation

In this section, we will generalise the static line-element (2.5) in order to incorporate black-
hole solutions with slow rotation. To this end, we will approximate the rotating solutions
as axisymmetric perturbations on the static and spherically symmetric spacetime (2.5).
Following the same method as Pani and Cardoso did in [113], which constitutes a general-
ization of the Hartle’s method [114] in the framework of General Relativity, we are led to
consider the line-element

ds2 = −eA(r)B(r) dt2 + dr2

B(r) + r2
{
dθ2 + sin2 θ[dϕ− εΩ(r, θ) dt]2

}
. (3.1)
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In the above, Ω(r, θ) is the angular velocity of an observer at (r, θ), while ε is a dimensionless
parameter which helps us control the perturbations. We also assume that the scalar field
is Φtot(r, θ) = Φ(r) + εΦ1(r, θ). We take the expansion at ε → 0 and we find that the
unperturbed system of equations accept the solution described by eqs. (2.9)–(2.11) of the
previous section. The independent equations to first order in ε, namely O(ε), have the form

(∂ΦV )Φ1(r, θ) +B(r)(∂rΦ)∂rΦ1(r, θ) = 0 , (3.2)

∂θΦ1(r, θ) = 0 , (3.3)

3 cot θ ∂θΩ(r, θ) + ∂2
θΩ(r, θ) + rB(r)

2 (8− r∂rA) ∂rΩ(r, θ) + r2B(r) ∂2
rΩ(r, θ) = 0 . (3.4)

Equation (3.3) indicates that the scalar correction Φ1 has no angular dependence, hence
Φ1(r, θ) = Φ1(r). Using the previous result in eq. (3.2) we find that

Φ1(r) = Φ0 exp
(
−
∫

∂ΦV

B(r)∂rΦ
dr

)
, (3.5)

where Φ0 is an integration constant. Although the complexity of the functions V (Φ) and
B(r) does not allow us to explicitly compute the integral in eq. (3.5), we are able to
calculate it near the black-hole horizon and asymptotically. In the asymptotic limit the
expression inside the integral of (3.5) takes the form

∂ΦV

B(r)∂rΦ
r→+∞−−−−→ 2M

r2 + 16M2 − q2

4r3 +O
( 1
r4

)
, (3.6)

which by its turn leads to

Φ1(r) r→+∞−−−−→ Φ0

[
1 + 2M

r
+ 16M2 − q2

8r2 +O
( 1
r3

)]
. (3.7)

On the other extreme, that is near the black-hole horizon, and by using eq. (2.15) one finds
that

∂ΦV

B(r)∂rΦ
r→rh−−−→ 1

r − rh
+A+O(r − rh) , (3.8)

where A = A(rh, q) and is given by

A=

e
− q2

8r2
h

4q

q2e
q2

4r2
h −4r2

h

−4
√

2πrh e
q2

8r2
h
(
q2−4r2

h

)
erf
(

q

2
√

2rh

)
−e

q2

4r2
h πq3erf2

(
q

2
√

2rh

)
8r3
h

[
πq e

q2
8r2
h erf2

(
q

2
√

2rh

)
+4
√

2πrh erf
(

q

2
√

2rh

)
−4qe

q2
8r2
h

] .

(3.9)

Consequently, the near horizon expansion results to

Φ1(r) r→rh−−−→ Φ0
e−A r

r − rh
. (3.10)
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We observe that Φ1(r) diverges at the horizon and therefore we are obliged to set Φ0 = 0,
otherwise the slow-rotating approximation does not hold. This means that for the assumed
Lagrangian density, and metric ansatz, the slow-rotating approximation demands a scalar
field which is of purely coulombic form. Of course, if one tries to find the non-perturbative
generalization of the line-element (2.5), then it is indisputable that the scalar field would
differ significantly from the coulombic form. However, this is not the case here.

Let us now turn to eq. (3.4). By using the method of separation of variables, eq. (3.4)
can be decomposed into two differential equations, one for each coordinate

3 cot θdY`
dθ

+ d2Y`
dθ2 = −`(`+ 1)Y` , (3.11)

r2B ω′′` + rB

2 (8− rA′)ω′` = `(`+ 1)ω` . (3.12)

Therefore, the general solution of eq. (3.4) is Ω(r, θ) = ∑
` ω`(r)Y`(θ). The slow rotation

approximation of the Schwarzschild solution gives

ωSch(r) = 2J
r3 , (3.13)

where J is the angular momentum of the black hole [113]. Consequently, the above relation
will serve as a boundary condition for (3.12). At infinity we find that (3.12) takes the form

ω′′` + 4
r
ω′` −

`(`+ 1)
r2 ω` = 0 , (3.14)

with its solution being

ω`(r) = c1 r
b+ + c2 r

b− , with b± = −1
2

(
3±

√
9 + 4`(`+ 1)

)
. (3.15)

We observe that only the solution with ` = 0, c1 = 2J and c2 = 0 satisfies the boundary
condition (3.13). For ` = 0, eq. (3.11) assumes the solution Y0(θ) = const, which means
that the general solution of the angular velocity reduces to

Ω(r, θ) = Ω(r) = ω(r) . (3.16)

Thus, we conclude that at first order in perturbation theory, the solution for a slowly
rotating black hole does not have angular dependence. Hence, eq. (3.12) leads to the
following differential equation for ω(r):

ω′′ + 1
2r

(
8− q2

2r2

)
ω′ = 0 . (3.17)

The solution of the above differential equation is

ω(r) = −24J
q3

q e− q2

8r2

r
−
√

2π erf
(

q

2
√

2 r

), (3.18)
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Figure 6. The graph of the ratio ω(rh)/ωSch(2M) in terms of q/rh. Both quantities are dimen-
sionless, while the horizontal axis is logarithmic.

where we have already taken into account the appropriate asymptotic behaviour of ω(r),
and we have identified the integration constants by matching the asymptotic expansion10

of ω(r) with ωSch(r).
Summing up, we have shown that the action functional (2.1) with Φ(r) = q/r and

V (Φ) given by the relation (2.11), incorporates as a solution a slow rotating ultra-compact
black hole described by the line-element

ds2 = −eA(r)B(r) dt2 + dr2

B(r) + r2
{
dθ2 + sin2 θ[dϕ− ε ω(r) dt]2

}
, B(r) = 1− 2m(r)

r
.

(3.19)
In the above, the functions A(r), m(r) and ω(r) are given by eqs. (2.9), (2.10) and (3.18),
respectively.

Considering now the slow-rotating ultra-compact black hole (3.19) and a slow-rotating
Schwarzschild black hole of the same mass, we can calculate the ratio of their angu-
lar velocities evaluated respectively at each horizon: ω(rh)/ωSch(2M). With the use of
eqs. (3.18), (3.13) and (2.15), we obtain the following expression

ω(rh)
ωSch(2M) = −

4− 4 e
q2

4r2
h + q

rh

√
2π e

q2

8r2
h erf

(
q

2
√

2 rh

)
− π e

q2

4r2
h

[
erf
(

q

2
√

2 rh

)]2


3

18 e
3q2
4r2
h

 q
rh
e
− q2

8r2
h −
√

2π erf
(

q

2
√

2 rh

)2 .

(3.20)
In figure 6, we depict the graph of the ratio ω(rh)/ωSch(2M) in terms of the dimensionless
quantity q/rh. As mentioned above, we consider the case in which these two compact

10For large values of the radial coordinate, r � 1, it holds that

ω(r) = 2J
r3 −

3q2J

20 r5 + 3q4J

448 r7 +O
( 1
r9

)
' 2J
r3 .
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objects are of the same mass M , however, as we have already shown in figure 2, depending
on the value of the parameter q/rh their horizon radii can differ significantly. We observe
that for small values of the quantity q/rh the angular velocities have the same value. This
is indeed anticipated by the fact that for small values of the parameter q/rh, the horizon
radius of the black-hole solution (2.5), (2.9), (2.10) is equal to the horizon radius of the
corresponding Schwarzschild one with the same mass, namely rh = 2M (see figure 2). We
also notice that the angular velocities remain fairly equal up until the value q/rh ' 1,
while from q/rh ' 1 to q/rh ' 7 the angular velocity ω(rh) triples in magnitude compared
to ωSch(2M). After the point where q/rh ' 7, the relative value of the angular velocities
remains constant.

4 Stability analysis

In this section, we will investigate the linear stability of the black-hole solution (2.5), (2.9),
(2.10) under small perturbations hµν in the background spacetime gµν , |hµν | � |gµν |.
The sum of the background metric gµν together with the spacetime perturbations hµν will
constitute from now on the total metric tensor gtot

µν :

gtot
µν = gµν + hµν . (4.1)

The method that we will use for the stability analysis is the same as the one developed by
Regge and Wheeler back in 1957 [115] and which later corrected and enriched by Zerilli and
Vishveshwara in 1970 [116–118]. However, since we are dealing with a more general La-
grangian density we also need to incorporate the perturbations of the scalar field Φ, namely

Φtot = Φ + δΦ . (4.2)

The perturbations are distinguished into two distinct classes based on their parity: pertur-
bations with odd parity (−1)L+1 also known as axial, and perturbations with even parity
(−1)L also known as polar, where L is the angular momentum of the particular pertur-
bation mode. Although our black-hole solution is static, the perturbations depend on all
spacetime coordinates. Using the method of separation of variables, the decomposition
into modes with fixed energy is accomplished via the term exp(−ikt), with k being the
frequency of the mode, while the decomposition into modes with fixed angular momentum
L is achieved via the tensor spherical harmonics [118–123] which generalize the well-known
spherical harmonics YML

L (θ, ϕ). Our theory is invariant under diffeomorphisms and there-
fore we may use the gauge freedom in order to simplify the components of the perturbation
tensor hµν . By using the Regge-Wheeler gauge [115] and setting to zero the z-component
of the angular momentum ML, we eliminate the dependence on the ϕ coordinate. One is
allowed to specialize the z-component of the angular momentum, namely ML = 0, since the
physics of the perturbations will not be altered by this choice. Consequently, we are led to
the Legendre polynomials PL(cos θ) which are equal to the spherical harmonics Y 0

L (θ, ϕ).
In this gauge, the perturbations are called canonical and they have the following form:
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• Odd perturbations

hodd
µν =


0 0 0 h0(r)
0 0 0 h1(r)
0 0 0 0

h0(r) h1(r) 0 0

e−ikt sin θ ∂θPL(cos θ) , δΦ = 0 , (4.3)

• and even perturbations

heven
µν =


H0(r)eA(r)B(r) H1(r) 0 0

H1(r) H2(r)/B(r) 0 0
0 0 r2K(r) 0
0 0 0 r2K(r) sin2 θ

e−iktPL(cosθ) , (4.4)

δΦ(r) = Φ̃(r)e−iktPL(cosθ) . (4.5)

In the above, we have used the same notation as in the Regge and Wheeler work [115]
while the expressions of A(r) and m(r) are given by eqs. (2.9) and (2.10).

In this work, we will focus only on the odd perturbations. The even perturbations, will
be studied separately in a future work, since, due to their complexity, we have not been
able to obtain rigorously an argument which decides either for or against the stability of
our solution. In appendix D we present the four by four system of differential equations
which characterizes the polar perturbations.

Substituting now eqs. (4.1)–(4.3) to the field equations and keeping only the linear
terms in hµν , we find that for the odd metric perturbations there are only two independent
equations: the (θ, ϕ) equation{

eA

4r2
[
h1(A′B+2B′)+2Bh′1)

]
− ik

2r2B
h0

}
[2cotθ∂θPL(cosθ)+L(L+1)PL(cosθ)] = 0 ,

(4.6)
and the (r, ϕ) equation{

h1

[
eA

4r4

(
3r2A′B′+2r2B′′+2L(L+1)

)
+ eAB

2r4

(
r2A′′+ r2A′2

2 −rA′+r2Φ′2−2
)
− k2

r2B

]

− ik

2r2B
h′0+ ik

r3B
h0

}
∂θPL(cosθ) = 0. (4.7)

Notice here that for L = 0, P0(cos θ) = 1, and both eqs. (4.6), (4.7) become identically
zero. Thus, for L = 0 there are no odd-parity perturbations in the canonical ansatz. The
same result also holds for L = 1, for which P1(cos θ) = cos θ and eq. (4.6) is satisfied
identically. In this case, although there is eq. (4.7) to work with, by performing the
coordinate transformation

x′µ = xµ + i δµϕ
e−ikt

k r2 h0(r) , (4.8)
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and redefining the function h1(r) through the relation

h1(r) = i
rh′0(r)− 2h0(r)

k r
, (4.9)

we can make eq. (4.7) identically zero as well. Thus, in the case of L = 1 the perturbations
can be gauged away completely. Therefore, the odd-parity modes exist only for L ≥ 2.
Since the angular part of the above equations is non-vanishing or non-singular for L ≥ 2
we may focus only on their radial part. Eq. (4.6) may be easily solved for h0(r) and then
by substituting the result into eq. (4.7) we get:

h′′1(r) + q1(r)h′1(r) +
[
k2qk(r) + q0(r)

]
h1(r) = 0 , (4.10)

where

q1(r) = 3A′
2 + 3B′

B
− 2
r
, qk(r) = e−A

B2 , (4.11)

q0(r) = B′2

B2 −
A′′

2 −
rB′(4− rA′) + 2L(L+ 1)

2r2B
+ 2
r2 − Φ′ 2 . (4.12)

It is clear now that eq. (4.10) determines the dynamics of the system while h0 is a dependent
function. For Φ = 0 and V (Φ) = 0 the above equation reduce to the Regge-Wheeler
equation [115]. Here we are interested only in the stability of the system and therefore we
do not have to solve eq. (4.10). Instead, due to the time evolution factor exp(−ikt), we
have only to determine whether or not the frequency k is purely imaginary. To do this
we have to eliminate the term with the first derivative in the above equation and thus
bring eq. (4.10) into a Schrödinger-like form. To this end, we introduce a new perturbation
function Ψ(r) through the relation

h1(r) = rΨ(r)
B(r) eA(r)/2 , (4.13)

and we also impose the tortoise coordinate r∗ via the transformation dr∗= dre−A(r)/2/B(r).
The tortoise coordinate transforms the region [rh,+∞) to (−∞,+∞) and therefore it
parametrizes the whole exterior spacetime of the black hole. Also we observe that the
coefficients qk(r) and q0(r) diverge at the horizon. The introduction of both the new
function Ψ and the tortoise coordinate r∗ eliminate this divergences and transform eq. (4.10)
to the Schrödinger-like form:

d2Ψ(r∗)
dr∗2

+
[
k2 − V(r)

]
Ψ(r∗) = 0 , (4.14)

where the potential V(r) is given by

V(r) = eAB

2r

{
B′
(
3rA′−2

)
+B

[
2r
(
A′′+Φ′2

)
+rA′2−3A′

]
+2rB′′+ 2L(L+1)

r

}
. (4.15)

In the tortoise coordinate both the new dynamical function Ψ and the potential V are
everywhere regular outside the horizon. Also, it may be shown that the potential tends to
zero in both asymptotic regions.

– 17 –



J
H
E
P
0
4
(
2
0
2
2
)
0
9
6

-5 0 5 10 15 20 25

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(a)

0 10 20 30 40

0.00

0.05

0.10

0.15

0.20

0.25

(b)

Figure 7. The potential r2
h V in terms of the radial coordinate r∗/rh for (a) six stable and

(b) six unstable solutions for different values of the dimensionless parameter q/rh, and angular
momentum L = 2.

An unstable mode corresponds to a bound state of the Schrödinger equation (4.14) i.e.
to a negative eigenvalue k2 < 0. This means that the frequency k is purely imaginary and
therefore the mode grows exponentially due to the term exp(−ikt). For a potential V(r∗)
that vanishes in r∗ → ±∞, the condition for at least a bound state is [124]

∫ +∞

−∞
V(r∗) dr∗ < 0 . (4.16)

However, as the authors in [124] argue, even if the above integral is positive a bound state
could still exist. Intuitively this makes sense, since for a potential with a shape as the ones
depicted in figure 7(b), there is nothing which prevents a bound state to exist in the region
where the potential is negative-definite and has the shape of a well. Consequently, we claim
that if the potential V is negative in a region, then this particular solution contains at least
one unstable mode. The term L(L + 1) in eq. (4.15) adds a positive angular barrier in
the potential. Therefore it is sufficient to examine the stability of our black hole solutions
on the mode with the smallest possible value for the angular momentum, i.e. L = 2. In
figure 7 we depict the potential r2

h V(r∗) for twelve black hole solutions for different values
of the parameter q/rh. We find that the solutions with q/rh < 3.6 are stable while the
solutions with q/rh ≥ 3.6 are unstable. Using eq. (2.15), we can evaluate the ratio q/M ,
regarding black-hole solutions, for any given value of the dimensionless quantity q/rh. The
graph of the ratio q/M in terms of the quantity q/rh is given in figure 8. The vertical line
which lies at q/rh = 3.6 distinguishes the stable from the unstable black-hole solutions,
while for q/rh = 3.59 the quantity q/M takes its highest value, which is approximately
3.956. Substituting q/rh = 3.59 to eqs. (2.15) and (3.20) we find that the most compact
stable black hole is 0.551 times smaller than the Schwarzschild one, while it rotates 2.491
times faster compared to the slow-rotating Schwarzschild black hole.
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Figure 8. The graph of the ratio q/M in terms of q/rh. Both quantities are dimensionless, while
the horizontal axis is logarithmic and the vertical dashed line lies at q/rh = 3.6. The values of q/M
correspond to black-hole solutions. The blue continuous line represents stable solutions, while the
red dashed line refers to unstable ones.

5 Epilogue

In this work, we have considered a very simple theory which contains a scalar field with its
kinetic and potential terms minimally coupled to the gravitational field. We have assumed
a spherically symmetric form for the metric tensor and a coulombic form for the scalar field.
Consequently, performing the variation of the action functional with respect to the fields
of our theory, we have obtained the field equations which then have been explicitly solved
to determine the analytic expressions of the spacetime line-element and the self-interacting
scalar potential. The spherical symmetric solution which was considered in this work had
been firstly appeared in [109].

We started our analysis by examining the properties of the spacetime geometry. By
taking the expansion of the metric components at infinity, we were able to show that
the derived spacetime geometry is asymptotically flat, while — as the scalar curvature
quantities dictate — a true spacetime singularity is present at r = 0. Studying the causal
structure of the background geometry we have also shown that the spacetime admits one
horizon, hence, the derived solution describes the geometry of a black hole. However, by
letting the scalar hair q — which is of secondary type — to obtain arbitrarily large values
compared to the black-hole mass M , we encounter a transition from a black hole to a
naked singularity. The critical value between the scalar hair and the black-hole mass in
which this transition takes place is q/M & 4.2. For any combination of the parameters
q and M for which the black-hole horizon is apparent, the horizon radius of our solution
is found to be always smaller than the horizon radius of the corresponding Schwarzschild
black hole with the same mass. An appropriate choice of parameters q and M can lead to
extremely low values of the ratio rh/(2M), and thus to ultra-compact black-hole solutions.
However, examining the ultra-compact solutions from a thermodynamical point of view, we
can readily deduce that as the horizon radius decreases the horizon entropy also decreases
and therefore the ultra-compact black holes are thermodynamically less stable.
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The most interesting property of electrovacuum black-hole solutions in General Rela-
tivity is their simplicity and uniqueness. It is well-known that in the context of GR black
hole solutions are determined only by three physical quantities: mass, electromagnetic
charge and angular momentum. The fact that the association of GR black holes with any
other conserved “charge” or quantum number is forbidden, is a direct result of the no-hair
theorems. Even in the context of scalar-tensor theories of gravity, no-scalar hair theorems
have been also formulated. In this case though they prohibit the association of black-hole
solutions with scalar hair. As we already mentioned, the term scalar hair has the sense of a
non-trivial scalar configuration that accompanies the black hole, and not just a conserved
scalar charge. However, it was shown that although the no-hair theorems have a catholic
validity, the no-scalar hair theorem is only viable in a subclass of the scalar-tensor theo-
ries. The theory which we considered in this work constitute a simple but a special type of
model, which for negative-definite scalar potentials can evade the no-scalar hair theorem
and lead to hairy and most importantly regular black-hole solutions. As we illustrated in
section 2 the scalar potential in our case exhibits the desired behaviour, V (Φ) < 0, which is
necessary for the evasion of the no-scalar hair theorem, hence, our hairy black hole solutions
are completely justified. Having in our disposal the explicit expressions of the scalar field
and the potential of the field, the evaluation of the energy-momentum tensor associated
with the scalar field is an easy task. Then, from the mixed components of the stress-energy
tensor it is straightforward to identify the energy density ρE and the pressures pr (radial
pressure) and pθ (tangential pressure). Having their analytic expressions, we have shown
that the strong energy conditions are satisfied in the region which lies outside the black
hole horizon, namely the causal region of the spacetime, while beyond the black-hole hori-
zon, in the interior of the black hole, the energy conditions are violated. This is indeed
anticipated since the assumed scalar field was a coulombic one which by its turn led to a
negative-definite scalar potential that decreases as we move closer to the singularity.

Apart from the description of static solutions, we were able to construct solutions which
are slowly rotating. To achieve this, we have treated the rotation of the black hole as ax-
isymmetric perturbations on the static and spherically symmetric background metric. By
doing so, we obtained new differential equations for the angular velocity of the black hole,
which together with the appropriate boundary condition have been solved analytically. As
it is anticipated, the resulting angular velocity was found to depend only on the radial
component r, while its magnitude compared to the angular velocity of a slow-rotating and
equally massive Schwarzschild black hole was found to be always larger. Intuitively, this
result should not be surprising, since, as we have discussed previously, our solution de-
scribes ultra-compact black holes with horizon radii always smaller than the horizon radius
of the corresponding Schwarzschild black hole with the same mass. Hence, assuming that
both solutions could emerge from the collapse of the same star, the one with the smaller
horizon radius is expected to spin faster. As it has been illustrated in section 3, for values
q/rh ≥ 7, the ratio of the angular velocity of the slow-rotating ultra-compact black hole to
the angular velocity of the slow-rotating Schwarzschild black hole remains constant, and
specifically ω(rh)/ωSch(2M) ' 3.2. However, so fast rotation lies beyond the slope of the
slow rotation approximation and therefore one should take into account the next to leading
order terms, or perform a non-perturbative rotation analysis.
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Modified theories of gravity have been extensively studied over the past years, and as
a result, the literature of hairy black holes has been rapidly enhanced with novel solutions.
However, it is not clear if all of them can be considered as astrophysical objects. The
way to decide if a black-hole solution on the paper can be seriously taken into account
as an astrophysical object is via its stability under spacetime perturbations. This is the
reason why stability analysis is such a requisite and crucial part of any complete study of
the physical characteristics of a black-hole solution. As far as our solution is concerned,
we have studied its stability under axial perturbations, and we have derived explicitly
the Schrödinger-like equation and the effective potential. It is solely the behaviour of the
effective potential which decides whether the solution is stable or not. Plotting the effective
potential in terms of the dimensionless coordinate r∗/rh — with r∗ being the tortoise
coordinate — for various values of the dimensionless parameter q/rh, we have found that
for q/rh ≤ 3.59, all resulting black-hole solutions are stable under axial perturbations.
For the critical case of q/rh = 3.59, one can easily determine that rh/(2M) = 0.551,
q/M = 3.956, and ω(rh)/ωSch(2M) = 2.491. Thus, according to our analysis the most
compact and stable black hole solution is 0.551 times smaller than the Schwarzschild one,
while it rotates 2.491 times faster compared to the slow-rotating Schwarzschild black hole.

The axial perturbations may provide us an indication about the stability of our solu-
tions. However, the full stability of the system may be determined by the examination of
both axial and polar perturbations. Therefore, future directions of our work could be the
examination of the polar perturbations, which were left aside in the context of this work
due to their complexity. In order to fully analyze the even perturbations, one needs ad-
vanced mathematical methods since a system of four first order differential equations with
non-constant coefficients is not an easy task to undertake. Having attained the complete
stability analysis of a particular black-hole solution, one can then study its quasi-normal
modes (QNMs), which are directly related to the way a black hole oscillates. Since differ-
ent solutions is most likely to have different frequency spectra, knowing the QNMs of a
compact object is like knowing the digits of a person’s ID card. Therefore, it is very likely
in the future to discover new compact objects, if they exist, through their quasi-normal
modes from gravitational wave experiments [125]. Note here that the future updates of
the LIGO-Virgo experiments are expected to probe these frequencies, hence, the study of
QNMs is of great importance. Apart from the detailed study of spacetime perturbations
and QNMs, a thorough investigation of the asymptotically (A)dS solutions — which we
only discussed briefly in appendix A — could also be a very interesting path for one to take.
These types of solutions possess an effective cosmological constant and therefore could also
be used as models for dark energy. It is in our future plans to return to, at least, one of
those questions.
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A Asymptotically (anti-)de Sitter black hole solution

The most general solution of the system of differential equations (2.6)–(2.8) is

A(r) =− q2

4r2 , (A.1)

m(r) = r

2 + 4r3

q2 + r2e
q2

8r2

q2

[
−12M+

√
2πq erf

(
q

2
√
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− r
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{
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√
2πM erf

(
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√
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+πq

[
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(

q
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√

2r

)]2
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, (A.2)

V (Φ) = 2(Φ2+24)
q2 − 12eΦ2

8 Φ
q3

[
12M−

√
2πq erf

( Φ
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√

2

)]

+ e
Φ2
4
(
Φ2−12
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q3

{
4q− q

3Λeff
6 −12

√
2πM erf

( Φ
2
√

2

)
+πq

[
erf
( Φ

2
√

2

)]2
}
, (A.3)

where
Λeff = 24

q2 + 6C. (A.4)

The constant C in the definition of the Λeff is an integration constant from eq. (2.7). By
taking the expansion at infinity of the metric function B(r) = 1 − 2m(r)/r we find that
the spacetime assumes an (A)dS form

B(r) = −Λeff
3 r2 +

(
1− q2Λeff

12

)
− 2M

r
+ q2

4r2

(
1− q2Λeff

24

)
+O

( 1
r3

)
. (A.5)

Note that at infinity, where the scalar field Φ = q/r vanishes, the potential has the following
expansion

V (Φ) = 2Λeff + Λeff Φ2

3 + Λeff Φ4

48 − 2M Φ5

5q3 +O(Φ6) (A.6)

Finally, if we ignore the effective cosmological constant Λeff = 0 we get the asymptotically
flat solution given in eqs. (2.9)–(2.11).
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B Analytic expressions of scalar curvature quantities

Below, we present the analytic expressions of the curvature invariant quantities R ≡
gµνRµν , R ≡ RµνRµν and K ≡ RµνκλRµνκλ which result from the line-element (2.5).

R= 96
q2 + 3e

q2

4r2

q3 r2

(
q2−8r2

){
4q−12

√
2πM erf
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√
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√
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− e
q2

8r2

q2 r3
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q2−24r2

)[√
2πq erf
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]
, (B.1)
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C Analytic expressions of the mixed stress-energy tensor components

From eq. (2.4) it is straightforward to deduce that the independent mixed stress-energy ten-
sor components are the energy density ρE = −T (Φ)t

t, and the radial pressure pr = T (Φ)r
r.

Their analytic expressions can be calculated from (2.4) with the use of eqs. (2.5), (2.9)–
(2.11), and they are presented below.

ρE(r) = 1
q2r3
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√
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(C.2)

Combining the above relations one may compute that

ρE(r) + pr(r) = 4
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Using now eq. (2.15) in the above relation, we find that
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(C.4)

From the above equation one can easily observe that ρE(rh) + pr(rh) = 0. Due to the fact
that the root at rh is not of even order leads us to conclude that the quantity ρE(r)+pr(r)
changes sign at the black-hole horizon. This may also be observed in figure 4(a).
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D The differential equations of polar perturbations

Substituting eqs. (4.1), (4.2), (4.4) to the field equations and keeping only the linear terms
in hµν and δΦ, we find that for the even perturbations there are four independent equations:
(t, r), (t, θ), (r, r) and (r, θ), while (θ, ϕ) results toH2(r) = H0(r). The system of differential
equations regarding the functions H0(r), H1(r), K(r) and Φ̃(r) is the following

H ′0(r)
H ′1(r)
K ′(r)
Φ̃′(r)

 = M(r)


H0(r)
H1(r)
K(r)
Φ̃(r)

 , M(r) ≡


M11(r) M12(r) M13(r) M14(r)
M21(r) M22(r) M23(r) M24(r)
M31(r) M32(r) M33(r) M34(r)
M41(r) M42(r) M43(r) M44(r)

 , (D.1)

where

M11(r) = 1
r
−A′(r)−B′(r)

B(r) , M12(r) = iL(L+1)
2kr2 − ike−A(r)
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2 + B′(r)

2B(r)−
1
r
,

M14(r) =− q

2r2 , M21(r) =M23(r) =− ik

B(r) , M22(r) =−A
′(r)
2 −B′(r)

B(r) , M24(r) = 0 ,

M31(r) = 1
r
, M32(r) = iL(L+1)

2kr2 , M33(r) = A′(r)
2 + B′(r)

2B(r)−
1
r
, M34(r) = q

2r2 ,
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q
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qB(r) −
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qB(r) −

q
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q
,

M42(r) =− iL(L+1)A′(r)
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qB(r) − iL(L+1)B′(r)
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q
− 2k2r2e−A(r)

q[B(r)]2 −
r2[B′(r)]2

2q[B(r)]2 + rB′(r)+L(L+1)−2−r2A′(r)B′(r)
qB(r) ,

M44(r) =−A
′(r)
2 − B′(r)
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r2∂ΦV (Φ)
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r
.
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