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ANALYTIC AND GEOMETRIC BACKGROUND OF

RECURRENCE AND NON-EXPLOSION OF THE BROWNIAN

MOTION ON RIEMANNIAN MANIFOLDS

ALEXANDER GRIGOR’YAN

Abstract. We provide an overview of such properties of the Brownian mo-
tion on complete non-compact Riemannian manifolds as recurrence and non-
explosion. It is shown that both properties have various analytic characteri-
zations, in terms of the heat kernel, Green function, Liouville properties, etc.
On the other hand, we consider a number of geometric conditions such as the
volume growth, isoperimetric inequalities, curvature bounds, etc., which are
related to recurrence and non-explosion.
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1. Introduction

The irregular movement of microscopic particles suspended in a liquid has been
known since the beginning of the nineteenth century. In 1828, English botanist
Robert Brown published his observations of ceaseless erratic motion of pollen grains
in water. He emphasized the universal character of the phenomenon in contrast to
the previous belief which attributed it to vital nature. That was the discovery of
the physical phenomenon which was later named the Brownian motion.

It was not until 1905 when the effect was explained by Albert Einstein [56] as
the result of the irregular collisions that the fine particles in suspension experience
from molecules. Einstein realized the stochastic nature of the Brownian motion and
proved that the probability distribution of the displacement of a Brownian particle
satisfied a diffusion equation. Moreover, he computed the diffusion coefficient D
and made a prediction that the mean displacement of the particle during a time t
was
√

2Dt. The latter was confirmed experimentally by Jean Perrin in 1908 which
later brought him a Nobel prize. That work was a strong argument in favor of the
molecular-kinetic theory of heat and even the atomic structure of matter.

The simplest mathematical model of the Brownian motion is a random walk on
a lattice. Suppose that a particle moves on the nodes of Zd as follows. At each
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RECURRENCE AND NON-EXPLOSION 137

Figure 1. The random walk on Z2

Figure 2. The Brownian motion on R2

step, it chooses randomly one of the 2d neighboring nodes, with equal probability
(2d)−1, and jumps to that node (see Figure 1).

A natural question is what happens with the particle as the number of steps
n → ∞? On average, the displacement of the particle is of the order

√
n as in

Einstein’s model, but this does not say much about the trajectory of the particle.
Since the rule of the movement of the particle is homogeneous and isotropic, one
may expect that, in a long run, the number of moves in all 2d directions should
be approximately the same, and the particle should be regularly returning to a
neighborhood of the origin. However, this is wrong! G.Pólya [159] discovered in
1921 that a long term behavior of the random walk depends on the dimension d. If
d ≤ 2 then the particle does visit every node (including the origin) infinitely many
times, with probability 1. However, if d > 2 then the particle visits every node only
finitely many times, also with probability 1.

In other words, an observer of the two-dimensional random walk could see the
particle in his/her range at arbitrarily large moments of time, whereas in the three-
dimensional space, the particle will escape from any bounded region after some
time forever. The first type of behaviour of the particle is referred to as recurrence
whereas the second one is called transience.

The same phenomenon takes place for a continuous time Brownian motion in
Rd which can be obtained from the random walk on Zd as a limit by a proper
refinement of the lattice and the time step. A rigorous construction of a continuous
model of the Brownian motion was done by Norbert Wiener [189]. This process
is called the Wiener process and is recognized now as the standard model for the
Brownian motion. Henceforth, we will use the term “the Brownian motion” as a
synonym for the Wiener process (see Figure 2).
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138 ALEXANDER GRIGOR’YAN

One of the goals of this paper is to study the geometric background of the
property of the Brownian motion to be recurrent or transient. In other words,
what geometric properties of the state space causes the trajectory of the stochastic
process to return to any region at arbitrarily large times or to leave any bounded
region forever?

The answer to this question depends on the family of the state spaces in question.
In the category of the Euclidean spaces (or lattices) one may answer that it is the
dimension which makes the difference. However, this becomes totally wrong in the
category of Riemannian manifolds. A Riemannian manifold is an abstract version
of a smooth curved surface. This is rather a point of view that takes into account
only intrinsic properties of the surface, which do not depend on the embedding
space.

Riemannian manifolds provide rich enough family of geometries. For example,
all classical model geometries - the spherical, euclidean and hyperbolic geometries
- are particular cases of Riemannian geometries. It turns out that the continu-
ous Brownian motion can be constructed on any Riemannian manifold (imagine a
Brownian particle moving on a curved surface). The Brownian motion on a Rie-
mannian manifold is called recurrent if it visits any open set at arbitrarily large
moments of time with probability 1, and transient otherwise.

We shall see that recurrence is related to various geometric properties of the
underlying Riemannian manifold such as the volume growth, isoperimetric inequal-
ities, curvature etc. On the other hand, recurrence happens to be equivalent to
certain potential-theoretic properties of the Laplace operator on the manifold. For
example, the recurrence of the Brownian motion in R2 is linked to the fact that the
fundamental solution log |x| of the Laplace operator in R2 is signed as opposed to

the positivity of the fundamental solution |x|2−d in Rd, for d > 2.
The question of recurrence of the Brownian motion on Riemann surfaces goes

back to the uniformization theorem of F.Klein, P.Koebe and H.Poincaré. This
celebrated theorem says, in particular, that any simply connected Riemann surface
is conformally equivalent to one of the following canonical surfaces:

1. the sphere (surface of elliptic type)
2. the Euclidean plane (surface of parabolic type)
3. the hyperbolic plane (surface of hyperbolic type).

The problem of deciding what is the type of a given Riemann surface is known as
the type problem. It is easy to distinguish between the elliptic type and the others
- the former is compact whereas the latter are not. A more interesting question is
how to distinguish the parabolic and hyperbolic types by using intrinsic geometric
properties of Riemann surfaces. Amazingly, the parabolicity is exactly equivalent
to the recurrence of the Brownian motion on the Riemann surface in question.

The understanding of parabolicity of Riemann surfaces from the potential
-theoretic point of view is largely due to L.Ahlfors [1] - [3], P.J.Myrberg [144],
R.Nevanlinna [149], [150] and H.Royden [163]. J.Deny [47], G.Hunt [98] and
S.Kakutani [105] contributed to the potential-theoretic background of recurrence.
The study of recurrence in connection with the geometry of Riemannian manifolds
was boosted by the works of S.Y.Cheng and S.-T.Yau [28] and N.Varopoulos [183],
[184].

Another property of the Brownian motion to be considered in this paper is
stochastic completeness. This is a property of a stochastic process to have infinite
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RECURRENCE AND NON-EXPLOSION 139

lifetime. In other words, a process is stochastically complete if the total probability
of the particle being found in the state space is constantly equal to 1. This is also
referred to as a conservation property (of probability) or non-explosion. Despite
the fact that the very term “a probability measure” means a measure with the total
mass 1, there are simple examples of stochastically incomplete processes. Consider
a Brownian motion in a bounded region Ω ⊂ Rd with an absorbing boundary.
After hitting the boundary ∂Ω, the particle dies, and this happens with a positive
probability. Therefore, at any positive time, the total probability of the particle
being found in Ω is smaller than 1.

The Brownian motion in Rd (and the standard random walk in Zd) is stochas-
tically complete. One might wonder whether stochastic incompleteness has to do
only with the presence of some killing conditions. It turns out that even with-
out any killing, there may exist a geometric reason for stochastic incompleteness.
R.Azencott [6] showed that the Brownian motion on a Riemannian manifold M
may be stochastically incomplete even if M is geodesically complete. Note that a
bounded region Ω ⊂ Rd is not geodesically complete when considered as a manifold.

In the example of R.Azencott, the manifold M has a negative sectional curvature
which grows fast enough to −∞ with the distance from an origin. The stochastic
incompleteness of the Brownian motion on M occurs because negative curvature on
a manifold plays the role of a drift to infinity, and a very high negative curvature
may produce an extremely fast drift which sweeps a Brownian particle to infinity
in a finite time.

An interesting question is to understand precisely what geometric properties of
M ensure stochastic completeness or incompleteness of the Brownian motion. The
crucial contributions here are due to R.Azencott [6], M.Gaffney [66], R.Khas’minskii
[111] and S.-T.Yau [194].

One may wonder what recurrence and the conservation property have in com-
mon. Both transience and explosion (=stochastic incompleteness) reflect the ten-
dency of the Brownian motion to escape to infinity. While transience says that the
Brownian motion escapes to infinity, explosion means that it does it in a finite time.
There is a full range of various escape rates between transience and explosion. No
wonder that many conditions of recurrence of Brownian motion on manifolds have
their counterparts for stochastic completeness.

The purpose of this paper is to expose the relationship between recurrence and
the conservation property on the one hand, and many other geometric and potential-
analytic properties on the other hand. For example, recurrence can be characterized
in terms of a fundamental solution to the Laplace equation, superharmonic func-
tions, capacities, the heat kernel, the Liouville property for certain Schrödinger
equation, etc. The stochastic completeness can also be characterized in various
terms including the uniqueness in the Cauchy problem for the heat equation in the
class of bounded solutions. Given that much, these two properties of the Brownian
motion appear to be of fundamental importance for analysis on manifolds and for
adjacent areas.

This paper splits into two parts. The first part consists of sections 2 - 9 and is
rather elementary. It focuses on the one hand on Theorems 5.1 and 6.2, which con-
tain various characterizations of transience and explosion partly already mentioned
above, and on the other hand on Theorems 7.3 and 9.1, which give the follow-
ing sufficient conditions for recurrence and non-explosion in terms of the volume
growth.
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140 ALEXANDER GRIGOR’YAN

Let V (r) denote the Riemannian volume of a geodesic ball of radius r with a
fixed center. Then the Brownian motion on a geodesically complete manifold M is
recurrent provided

∫ ∞ rdr

V (r)
=∞.

For example, this condition is satisfied if V (r) ≤ Cr2. In particular, this explains
why the Brownian motion on R2 is recurrent - there is just not enough volume in
the two-dimensional Euclidean space!

Furthermore, the Brownian motion on M is stochastically complete provided

∫ ∞ rdr

logV (r)
=∞.

For example, this condition is satisfied if V (r) ≤ exp(Cr2). Clearly, all Euclidean
spaces fit into this volume growth. This explains why we have to move to manifolds
in order to observe stochastic incompleteness - Rd is too small for that!

Full proofs of the key results of the first part are provided, which should be
accessible for graduate students with adequate background. Let us emphasize that
we normally assume known (and, thus, do not provide proof for) all facts which
depend only on the local structure of the manifold. For example, we freely use
such properties of solutions to the elliptic equations as C∞-regularity, convergence
principles, maximum principle, solvability of the Dirichlet problem etc. On the
contrary, we concentrate on the properties related to the structure of the manifold
“in the large”.

The second part is devoted to the relations of recurrence and non-explosion to
other questions such as Liouville properties, heat kernel bounds, eigenvalues of the
Laplace operator, curvature, escape rate of the Brownian motion, etc. This part is
more advanced and sketchy, and some results may appear to be new even to the
experts. However, we do not aim to include the most recent and general results,
and we have opted for those which exhibit interesting phenomena without technical
complications.

The subject of this paper lies on the borderline between different fields of math-
ematics such as Riemannian Geometry, Stochastic Analysis, Partial Differential
Equations and Potential Theory. We refer the reader to the following textbooks for
the necessary background:

• Riemannian Geometry: [22], [21], [112], [158], [169].
• Analysis and PDE: [43], [68], [116], [134], [188].
• Probability: [55], [60], [103], [133], [136], [172].
• Potential Theory: [16], [30], [32], [51], [64], [179].

The following monographs and survey articles provide additional valuable infor-
mation about elliptic and parabolic differential equations on manifolds: [5], [69],
[92], [130], [140], [113], [161], [162], [167], [170], [180].

There is also a vast literature devoted to recurrence criteria for random walks
on graphs and lattices. We do not touch this question here and refer an interested
reader to the books [53] and [191] as well as to the surveys [67], [90], [166], [190].
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Notation

The following list of notation is provided for convenience of reading. Most of
them are also explained in the main body of the paper.
M - a smooth connected Riemannian manifold. In many cases, M is geodesically

complete and non-compact.
d ≥ 2 - the (topological) dimension of M .
dist(x, y) - the geodesic distance on M between the points x, y ∈M .
µ - the Riemannian volume on M .
µ′ - the Riemannian measure of the co-dimension 1 on hypersurfaces in M .
|A| := µ(A) or µ′(A) depending on the context (for example, if A is an open

subset of M , then |A| = µ(A); whereas if A is a boundary of an open subset, then
|A| = µ′(A) ).
B(x, r) - the geodesic ball of radius r centered at the point x ∈M .
V (x, r) := µ(B(x, r) ) - the volume growth function.
∆ - the Laplace -Beltrami operator on M .
λ1(Ω) - the first eigenvalue of the Dirichlet problem for ∆ in Ω (where Ω is a

region in M).
p(t, x, y) - the heat kernel associated with the operator 1

2∆.
pΩ(t, x, y) - the heat kernel in the region Ω with the Dirichlet boundary condition

on ∂Ω.
Pt - the heat semigroup with the kernel p(t, x, y).
PΩ
t - the heat semigroup with the kernel pΩ(t, x, y).
G(x, y) - the Green kernel of −∆ on M .
GΩ(x, y) - the Green kernel of −∆ in the region Ω with the Dirichlet boundary

condition.
Xt - the Brownian motion on M generated by 1

2∆.
Px, Ex - measure and expectation, respectively, on the space of paths of the

Brownian motion started at x ∈M .
bΩ, sΩ - the subharmonic and superharmonic potentials of an open set Ω - see

Section 4.4.
eF , hF - the hitting probabilities - see Section 4.5.
C∞

0 (Ω) - the set of smooth real-valued functions on Ω with compact support in
Ω.
L(K,Ω) - the set of locally Lipschitz functions φ on M , compactly supported in

Ω and such that 0 ≤ φ ≤ 1 and φ|K = 1.
{Ek} - an exhaustion sequence on M - see Section 4.2.
x → ∞ - a sequence {xk} on M which leaves any compact set after some k. If

M is geodesically complete, then this is equivalent to dist(x, o) → ∞ where o is a
reference point.

flux
Γ
f - the flux of the function f through a smooth oriented hypersurface Γ,

that is,
∫
Γ
∂f
∂ν dµ

′ where ν is a unit normal vector field on Γ associated with the
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142 ALEXANDER GRIGOR’YAN

orientation of Γ. If Γ is a boundary of an open set Ω, then ν points outwards from
Ω.

Sd - the d-dimensional unit sphere in Rd+1.
Hd- the d-dimensional hyperbolic space.
ωd - the boundary area of the unit sphere in Rd.
const - a positive constant which may be different at different occurrences.

2. Heat semigroup on Riemannian manifolds

The simplest way to construct Brownian motion on a Riemannian manifold M is
to construct first the heat kernel which will also serve as the density of the transition
probability. The heat kernel will be denoted by p(t, x, y) where t > 0 is a time, x, y
are points on M. Thus, the probability that the Brownian motion starting at the
point x lies in a measurable set Ω ⊂M at the time t is given by

∫

Ω

p(t, x, y)dµ(y).

In Rd, the heat kernel is given by the classical formula

p(t, x, y) =
1

(2πt)
d/2

exp

(
−|x− y|

2

2t

)
.

It is known to satisfy the heat equation

∂p

∂t
− 1

2
∆p = 0 (2.1)

in the variables (t, x) (the point y is considered as fixed) and the initial data

p(t, ·, y) −→
t→0+

δy (2.2)

where δy is the delta function of Dirac.
The properties (2.1) and (2.2) can be used to define the heat kernel on an arbi-

trary Riemannian manifold M , which is done below.

2.1. Laplace operator of the Riemannian metric. Let gij be the Riemannian
metric tensor on M . This means that, in any coordinate chart (x1, x2, ..., xd) on
M , the length element can be computed by

ds2 = gij dx
idxj

where we assume the summation on the repeated indices. Denote by gij the el-
ements of the inverse matrix ‖gij‖−1 and let g := det ‖gij‖. Then the Laplace
operator ∆ associated with the metric gij is defined by

∆ =
1√
g

∂

∂xi

(√
ggij

∂

∂xj

)
. (2.3)

This is a second order elliptic operator on M . It is possible to show that (2.3)
defines the same operator in different charts.

Sometimes it is useful to represent the Laplacian in the form

∆ = div∇
where the gradient ∇ acts on a function f by

(∇f)
i
= gij

∂f

∂xj
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and the divergence div acts on a vector field F = F i ∂
∂xi by

divF =
1√
g

∂

∂xi
(√
gF i

)
.

Green’s formula, which follows easily from Stokes’s theorem, says that, for any
precompact region U and for any functions u, v ∈ C2

0 (U),
∫

U

v∆u dµ = −
∫

U

∇v∇u dµ , (2.4)

where ∇v∇u is the inner (Riemannian) product of the vectors

∇v∇u = gij (∇u)i (∇v)j = gij
∂u

∂xi
∂v

∂xj
,

and dµ is the Riemannian volume element, which is defined by

dµ =
√
g dx1dx2... dxd . (2.5)

If the boundary ∂U is smooth enough (say, C1) and u, v ∈ C2 (U) ∩ C1
(
U
)
, then

we have the following version of (2.4) with a boundary term
∫

U

v∆u dµ =

∫

∂U

v
∂u

∂ν
dµ′ −

∫

U

∇v∇u dµ, (2.6)

where dµ′ in the middle integral is the Riemannian volume element on the subman-
ifold ∂U , and ν is the outward unit normal vector field on ∂U .

2.2. Heat kernel and Brownian motion on manifolds. Any function on (0,∞)
×M ×M satisfying (2.1) and (2.2) is called a fundamental solution of the heat
equation (2.1) on M . The heat kernel is the smallest positive fundamental solu-
tion of the heat equation on M. It was proved by J.Dodziuk [48] that the heat
kernel always exists (regardless of geodesic completeness) and is smooth in (t, x, y).
Moreover, the heat kernel possesses the following properties.

1. Symmetry in x, y, that is p(t, x, y) = p(t, y, x).
2. The semigroup identity: for any s ∈ (0, t)

p(t, x, y) =

∫

M

p(s, x, z)p(t− s, z, y)dµ(z) . (2.7)

3. For all t > 0 and x ∈M ,
∫

M

p(t, x, y)dµ(y) ≤ 1. (2.8)

As soon as one has (2.7) and (2.8), a (sub)Markov process Xt on M can be
constructed with the transition density p by using the standard probabilistic tools
(see [30], [55]). The process Xt turns out to be a diffusion and is referred to as the
Brownian motion or the Wiener process on M. The corresponding measure in the
space of paths emanating from a point x will be denoted by Px.

Given an open set Ω ⊂M, one can treat Ω as a manifold itself. Let us denote by
pΩ the heat kernel of Ω. Minimality of the heat kernel implies that pΩ vanishes on
the boundary ∂Ω, at least if ∂Ω is smooth. This implies, in turn, that pΩ increases
on enlarging of Ω.
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The way the global heat kernel p is constructed in [48] is the following: one first
defines pΩ for precompact sets Ω (which can be done by using the eigenfunction
expansion) and then lets

p := lim
k→∞

pΩk

where {Ωk} is an increasing sequence of precompact open sets with smooth bound-
aries, which exhaust M .

Due to (2.7) and (2.8), the heat kernel p(x, y, t) can be considered as a kernel of
the submarkovian operator semigroup Pt which acts on functions on M by

Ptf :=

∫

M

p(·, y, t)f(y)dµ(y).

The semigroup corresponding to pΩ will be denoted by PΩ
t . If f is a continuous

bounded function on M , then the function u(x, t) := Ptf(x) solves the Cauchy
problem in M × (0,∞):

{
∂u
∂t = 1

2∆u ,
u(·, 0) = f .

Moreover, if f ≥ 0 then Ptf is the smallest non-negative solution to this problem.
See [171] for detailed properties of the heat semigroup on manifolds.

Let us briefly mention another way of constructing the heat kernel on Riemannian
manifolds which goes back to Gaffney [65] and which was implemented in full
generality by Cheeger and Yau [27]. The idea is to consider ∆ as an unbounded
operator in L2(M,µ). It is possible to prove that the operator ∆ with the domain
C∞

0 (M) is essentially self-adjoint and non-positive. Therefore, by using the spectral

theory, one can construct the one-parameter operator semigroup e
1
2 t∆ acting in

L2(M,µ). Next, one proves that this semigroup possesses a smooth kernel which is
the heat kernel (see also [162], [169, p.94]). The equivalence of these two approaches
was proved in [48].

Other methods of constructing the Brownian motion on manifolds (or even on
more general underlying spaces) can be found in [6], [57], [63], [102], [133], [136].

Now we can precisely define the recurrence and conservation properties.

Definition 2.1. Brownian motion Xt on a manifold M is recurrent if, for any
non-empty open set Ω and for any point x ∈M ,

Px {there is a sequence tk →∞ such that Xtk ∈ Ω} = 1.

Otherwise Xt is transient.

Definition 2.2. Brownian motion Xt is stochastically complete (=possesses the
conservation property or the non-explosion property) if, for all x ∈M and t > 0,

∫

M

p(t, x, y)dµ(y) = 1

(in other words, Px is a probability measure in the sense that its total mass is equal
to 1).

It is convenient to say that a manifold is stochastically complete (recurrent,
transient) when the Brownian motion on it has this property.
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2.3. Manifolds with boundary. Sometimes it is useful to allow a manifold M
to possess a boundary ∂M . In this case, we assume that the heat kernels p(t, x, y)
and pΩ(t, x, y) satisfy in addition the Neumann boundary condition on ∂M and
∂M ∩Ω respectively. For the Brownian motion this means that Xt reflects on ∂M .

Most results of this paper remain true for manifolds with boundary. However, by
default we consider manifolds without boundary in order to avoid some technical
complications.

3. Model manifolds

The purpose of this section is to introduce a class of model manifolds which are
the manifolds with rotational symmetry.

3.1. Polar coordinates. Let us fix a point o ∈ M and denote by Cut(o) the
cut locus of o. Away from Cut∗(o) := Cut(o) ∪ {o}, one can define the polar
coordinates with the pole o (see Figure 3). Namely, for any point x ∈M \Cut∗(o)
there corresponds a polar radius ρ := dist(x, o) and a polar “angle” θ ∈ Sd−1 such
that the shortest geodesics from o to x start at o to the direction θ in ToM . We can
identify ToM with Rd so that θ can be regarded as a point on Sd−1. In particular,
M \Cut∗(o) is diffeomorphic to a star-like region on R+ × Sd−1 (see [112] and [69]
for proofs of the facts mentioned here).

The Riemannian metric in M \ Cut∗(o) has in the polar coordinates the form

ds2 = dρ2 +Aij(ρ, θ)dθ
idθj , (3.1)

where (θ1, θ2, ..., θd−1) are coordinates on Sd−1 and ‖Aij(ρ, θ)‖ is a positive definite
matrix. In fact, Aij(ρ, ·) is the Riemannian metric tensor on the geodesic sphere
Sρ := ∂B(o, ρ) \ Cut(o). Denote A = det ‖Aij‖. Then we have, by (2.5), the area
element on Sρ

dµ′|Sρ
=
√

Adθ1dθ2...dθd−1. (3.2)

In particular,

µ′(Sρ) =

∫

Sd−1

√
Adθ1dθ2...dθd−1, (3.3)

x=( , )
d-1

ρ

Cut(o)

o

Sρ

Figure 3. Polar coordinates in M \ Cut∗(o)
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x

ο

( )d

d

ds

Figure 4. The metric on the surface of revolution Mσ

assuming that θ1, θ2, ..., θd−1 are defined almost everywhere on Sd−1.
It follows easily from (2.3) and (3.1) that the Laplace operator has in the polar

coordinates the form

∆ =
1√
A

∂

∂ρ
(
√

A
∂

∂ρ
) + ∆Sρ =

∂2

∂2ρ
+
(
log
√

A
)′ ∂
∂ρ

+ ∆Sρ (3.4)

where (·)′ denotes ∂/∂ρ and ∆Sρ is the Laplace operator on the submanifold Sρ.
We say that M is a manifold with a pole if M possesses a point o with an empty

cut locus Cut(o). The point o is called the pole of M , and the polar coordinates
are defined on M \ {o}. If, in addition, M is geodesically complete, then M is
diffeomorphic to Rd.

3.2. Spherically symmetric manifolds. In the next sections, we will introduce
methods for determining whether a given manifold is recurrent or stochastically
complete. The simplest class of manifolds where these methods apply and give
straightforward answers is the class of spherically symmetric manifolds.

A manifold M with a pole o is called a spherically symmetric manifold or a
model if the Riemannian metric on Sρ (see (3.1)) is given by

Aij(ρ, θ)dθ
idθj = σ2(ρ)dθ2

where dθ2 is the standard Euclidean metric Sd−1 and σ(ρ) is a smooth positive
function of ρ. In other words, the Riemannian metric on Sρ is obtained by scaling
that of Sd−1 by the factor σ2.

Given a smooth positive function σ(ρ) on (0, R0), the necessary and sufficient
condition that such a manifold exists is

σ(0) = 0 and σ′(0) = 1. (3.5)

The hypotheses (3.5) ensure that the metric on the cone (0, R0)× Sd−1 defined by

ds2 = dρ2 + σ2(ρ)dθ2,

can be smoothly extended to the origin ρ = 0 (see [69]). We assume in the sequel
that σ satisfies (3.5) and denote by Mσ the cone (0, R0) × Sd−1 with the added
origin.

Clearly, the model manifold Mσ is diffeomorphic to an open ball in Rd of radius
R0 (or the whole Rd if R0 =∞). The metric on any geodesic sphere ∂B(o, r) on Mσ

is obtained from that of Sd−1 by scaling it by the factor σ(r). In certain situations,
Mσ can be regarded as a surface of revolution in Rd+1 (see Figure 4).
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o

( , )

Figure 5. The polar coordinates on S2

Since
√

A = σd−1, we see from (3.3) that the boundary area S(r) of the geodesic
sphere ∂B(o, r) is computed by

S(r) = ωdσ
d−1(r),

where ωd is the area of the unit sphere in Rd. The volume V (r) of the ball B(o, r)
is given by

V (r) =

∫ r

0

S(ξ)dξ = ωd

∫ r

0

σd−1(ξ)dξ.

The Laplace operator on Mσ can be written down as follows (cf. (3.4))

∆ =
∂2

∂2ρ
+ (d− 1)

σ′

σ

∂

∂ρ
+

1

σ2
∆θ (3.6)

or

∆ =
∂2

∂2ρ
+
S′

S

∂

∂ρ
+

1

σ2
∆θ (3.7)

where ∆θ denotes the Laplace operator on the sphere Sd−1. It is important that
the operator ∆θ does not depend on the variable ρ.

The major examples of model manifolds are as follows.

Example 3.1. If R0 =∞ and

σ(r) = r,

then Mσ is isometric to Rd. The boundary area is

S(r) = ωdr
d−1

and the Laplace operator is

∆ =
∂2

∂2ρ
+
d− 1

ρ

∂

∂ρ
+

1

ρ2
∆θ.

Example 3.2. Let us set

σ(r) = sin r.

Then Mσ is the sphere Sd (assuming that R0 takes the maximum possible value π
and that the endpoint with ρ = π is added to Mσ). If d = 2 then r becomes the
latitude measured from the pole, and θ is the longitude (see Figure 5).
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The boundary area is

S(r) = ωd sind−1 r .

The Laplace operator on Sd acquires the form

∆ =
∂2

∂2ρ
+ (d− 1) cotρ

∂

∂ρ
+

1

sin2 ρ
∆θ ,

where ∆θ is the Laplace operator on the sphere Sd−1. This formula can be iterated
in the dimension d to produce a full expansion of the spherical Laplace operator in
the angular coordinates.

Example 3.3. Let us set

σ(r) = sinh r .

Then Mσ is the hyperbolic space Hd - the complete simply connected d-dimensional
manifold with constant sectional curvature −1 (assuming R0 =∞). The boundary
area on Hd is equal to

S(r) = ωd sinhd−1 r

and the Laplace operator is

∆ =
∂2

∂2ρ
+ (d− 1) coth ρ

∂

∂ρ
+

1

sinh2 ρ
∆θ .

It turns out that recurrence and stochastic completeness of Mσ can easily be
determined via the boundary area S(r). The following tests were proved by many
authors in various settings ([1], [139], [111], [99], [100], [75]).

Proposition 3.1. Let Mσ be a model manifold with R0 = ∞ (so that Mσ is
geodesically complete and non-compact). Then Mσ is recurrent if and only if

∫ ∞ dr

S(r)
=∞. (3.8)

Proposition 3.2. Let Mσ be a model manifold with R0 =∞. Then M is stochas-
tically complete if and only if

∫ ∞ V (r)

S(r)
dr =∞ . (3.9)

The proofs will be given in Sections 5 and 6 respectively.1 The condition (3.8)
holds for

S(r) ≤ const r, r→∞
and fails if

S(r) ≥ const r1+ε, ε > 0.

This explains why Rd is recurrent for d ≤ 2 and transient if d > 2. The hyperbolic
space is transient because S(r) on Hd grows exponentially fast.

1If one neglects the angular direction, then recurrence and non-explosion on a model manifold
amount to the same properties for the one-dimensional diffusion on (0,∞) generated by the

operator d2

d2ρ
+ S′

S
d
dρ

. The results of Feller [58] and Khas’minskii [111, pp.193-194] cover such

diffusions and yield exactly the tests (3.8) and (3.9).
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The borderline for the stochastic completeness condition (3.9) is much higher: it
holds, for example, if, for large r,

S(r) = exp
(
r2
)

and fails if

S(r) = exp
(
r2+ε

)
, ε > 0.

The latter yields an example of a geodesically complete but stochastically incom-
plete manifold.

4. Some potential theory

In this section, we will give an analytic characterization of certain hitting prob-
abilities. Let F be a closed subset of M . Denote by eF (x) the Px-probability that
the process Xt hits F ever, that is, Xt ∈ F for some t ≥ 0. Obviously, eF (x) = 1
on F . It turns out that eF (x) is a harmonic function outside F and superharmonic
on M .

Another function hF (x) to be considered here is the Px-probability of the event
that Xt visits F at arbitrarily large moments of time. This function turns out
to be harmonic on all of M (see Propositions 4.3 and 4.4 below). Both hitting
probabilities play an important role in the part of this paper devoted to recurrence.

4.1. Harmonic functions. A function u defined in a region of M is harmonic if

∆u = 0. (4.1)

The equation (4.1) is understood either in the sense of distribution or pointwise.
In the latter case, the function u is initially C2 smooth. In both cases, u will be
actually C∞. Indeed, u satisfies locally an elliptic equation of the second order with
smooth coefficients. Therefore, smoothness of u follows from the general theory of
elliptic PDE (see for example [68]). Other consequences are the maximum principle,
the local Harnack inequality and the convergence principles.

The standard way of constructing harmonic functions is by solving the Dirichlet
problem. If B is a precompact open set on M with smooth boundary, then, for
any continuous function f on ∂B, there exists a unique function u ∈ C(B)∩C2(B)
such that {

∆u = 0 ,
u|∂B = f .

(4.2)

This is proved exactly in the same way as the solvability of the Dirichlet problem
for elliptic equations in bounded regions of Rd, for example, by constructing a weak
solution and then proving its regularity or by constructing the Perron solutions.

Alternatively, the solution of (4.2) is given by the formula of Kakutani,

u(x) = Ex (f (Xτ )) ,

where τ is the first hitting time of the boundary ∂B by the process Xt.
The Green formula (2.6) implies that, for a harmonic function u and for any

precompact open set Ω in the domain of u, the flux of u through the boundary ∂Ω
is zero, that is

flux
∂Ω

u :=

∫

∂Ω

∂u

∂ν
dµ′ = 0 , (4.3)
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where ν is the outward normal unit vector field on ∂Ω (assuming ∂Ω is smooth
enough). Moreover, (4.3) is equivalent to harmonicity of u. Indeed, it implies by
(2.6)

∫

Ω

∆u dµ = 0,

for any Ω in the domain of u, whence ∆u = 0.
A function s defined in the region Ω ⊂ M is called superharmonic if s is con-

tinuous2 and if, for any precompact region U ⊂⊂ Ω and any harmonic function
u ∈ C2(U) ∩ C(U), s ≥ u on ∂U implies s ≥ u on U. If s ∈ C2(Ω) then the
superharmonicity of s is equivalent to

∆s ≤ 0 , (4.4)

which easily follows from the maximum principle. Conversely, if s ∈ C(Ω) and (4.4)
holds in the sense of distributions, then s is superharmonic.

Let us mention the following simple properties of superharmonic functions.

1. If {Ωα} is a family of open sets and the function s is superharmonic in each
Ωα, then s is superharmonic in their union

⋃
αΩα.

2. The minimum of two superharmonic functions is also superharmonic.

A function u is subharmonic if −u is superharmonic.

4.2. Green function. As soon as we have constructed the heat kernel, the easiest
way to introduce the Green function G(x, y) is to set

G(x, y) :=
1

2

∫ ∞

0

p(t, x, y)dt. (4.5)

The factor 1
2 appears because the heat kernel is generated by 1

2∆ rather than by
∆.

An independent definition is as follows: G(x, y) is the smallest positive funda-
mental solution of the Laplace equation on M . We follow the convention that
G ≡ +∞ if there is no positive fundamental solution, which matches the case when
the integral in (4.5) diverges. If G 6≡ ∞ then we have, for any fixed y,

∆G(·, y) = −δy.
For example, in Rd, d > 2, the Green function is given by

G(x, y) =
cd

|x− y|d−2
,

where cd = (ωd(d− 2))
−1
. In R2, we haveG ≡ ∞ (indeed, the fundamental solution

log |x− y| is signed).
Yet another way of constructing G (which will be most useful for our purposes)

is by using an exhaustion sequence. A sequence {Ek} of sets in M is called an
exhaustion sequence if

• each Ek is a precompact region with a smooth boundary;
• Ek ⊂⊂ Ek+1;
• ⋃k Ek = M.

2Sometimes it is useful to relax the continuity of s as to the lower semi-continuity. However,
we will not use lower-semicontinuous superharmonic functions here.
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One first constructs in each Ek a Green function GEk
(x, y) of the Dirichlet prob-

lem in Ek, which is continuous up to the boundary ∂Ek (as a function of x, for
any y ∈ Ek) and vanishes on ∂Ek. By the maximum principle, the sequence {GEk

}
increases in k. The limit as k → ∞ (finite or infinite) is the global Green func-
tion G(x, y). It is easy to see that this limit is independent of the choice of the
exhaustion sequence. This construction is justified in [122].

If M is a manifold with boundary, then the Green functions G and GΩ are as-
sumed to satisfy the Neumann boundary condition on ∂M and ∂M∩Ω, respectively.

The following properties of G(x, y) will be frequently used.

1. The Green function G(x, y) is either finite for all x 6= y or infinite for all x, y.
In the former case, we will say that G is finite. The on-diagonal value G(x, x)
is always infinite. Moreover, the singularity of G(x, y) as x→ y is of the same
order as that in Rd, that is,

G(x, y) ≍
{
r2−d, d > 2,
log 1

r , d = 2,
as r := dist(x, y)→ 0. (4.6)

2. Positivity: G(x, y) > 0.
3. Symmetry: G(x, y) = G(y, x).
4. G(·, y) is harmonic away from y (in fact, G(·, y) is superharmonic on M if one

allows +∞ as a value of the function).
5. If Ω is a precompact region with smooth boundary, then the flux of G(·, y)

through ∂Ω is equal to −1 if y ∈ Ω and equal to 0 if y /∈ Ω, that is

flux
∂Ω

G =

∫

∂Ω

∂G(x, y)

∂ν
dµ′(x) =

{
−1, y ∈ Ω,
0, y /∈ Ω,

(4.7)

where ν denotes the outward unit normal vector field on ∂Ω. Moreover, (4.7)
is equivalent to the fact that G is a fundamental solution. The second line in
(4.7) follows from the harmonicity of G away from y (cf. (4.3)), whereas the
first one reflects the fact that ∆G = −δy.

6. A consequence of the minimality:

inf
x∈M

G(x, y) = 0.

Example 4.1. Let Mσ be a spherically symmetric manifold with the pole o. Let us
prove that the Green function G(x, o) at o can be computed as follows:

G(x, o) =

∫ ∞

ρ

dr

S(r)
, (4.8)

where ρ = dist(x, o) (assuming that the integral in (4.8) converges).
To that end, let us first consider the function

v(ρ) =

∫
dρ

S(ρ)
(4.9)

(we take the indefinite integral here). We claim that v(ρ) is a harmonic function on
M \ {o} assuming that ρ is the polar radius. Indeed, (4.9) implies that v satisfies
the following ODE:

v′′ +
S′

S
v′ = 0 (4.10)

(in fact, (4.9) was found to solve (4.10)). On the other hand, by (3.7), equation
(4.10) is the radial part of the Laplace equation. Thus, ∆v = 0.
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Moreover, the flux of v through any sphere ∂B(o, r) is equal to 1. Indeed, (4.9)
implies v′ = 1

S(ρ) whence

flux
∂B(o,r)

v =

∫

∂B(o,r)

∂v

∂ν
dµ′ = v′(r)S(r) = 1. (4.11)

Thus, the function
∫ ∞

ρ

dr

S(r)

is harmonic away from o, has the flux −1 through any sphere ∂B(o, r) and vanishes
at ρ =∞, which implies that it coincides with the Green function G(o, x).

4.3. Capacity. Let Ω be an open set on M and K be a compact set in Ω. We call
the pair (K,Ω) a capacitor and define the capacity cap(K,Ω) by

cap(K,Ω) = inf
φ∈L(K,Ω)

∫

Ω

|∇φ|2 dµ , (4.12)

where L(K,Ω) is a set of locally Lipschitz functions φ onM with a compact support
in Ω such that 0 ≤ φ ≤ 1 and φ|K = 1.

For an open precompact set K ⊂ Ω, we define its capacity by

cap(K,Ω) := cap(K,Ω) .

Therefore, definition (4.12) can be applied in this case too, since φ|K = 1 is equiv-
alent to φ|K = 1. It is possible to define the capacity when K is a Borel set, but

we do not need that (see [29] and [134, Section 2.2]). Since ∇φ = 0 on K, we see
that the capacity cap(K,Ω) is determined by the intrinsic properties of Ω \K.

If Ω = M then we write cap(K) for cap(K,Ω). It is obvious from the definition
that the set L(K,Ω) increases on expansion of Ω (and on shrinking ofK). Therefore,
the capacity cap(K,Ω) decreases on expanding of Ω (and on shrinking of K). In
particular, one can prove that, for any exhaustion sequence {Ek},

cap(K) := lim
k→∞

cap(K, Ek) .

Let Ω be precompact. It is well known that the Dirichlet integral in (4.12) is
minimized by a harmonic function. Therefore, the infimum in (4.12) is attained at
the function φ = u which is the (Perron) solution to the following Dirichlet problem
in Ω \K:






∆u = 0
u|∂Ω = 0
u|∂K = 1 .

(4.13)

The function u is called the equilibrium potential or the capacity potential of the
capacitor (K,Ω).

It is obvious that if the boundaries of Ω and K are smooth enough, then u ∈
L(K,Ω). We have then, by the Green formula (2.6) and (4.13),

cap(K,Ω) =

∫

Ω

|∇u|2 dµ =

∫

Ω\K
|∇u|2 dµ

= −
∫

Ω\K
u∆u dµ+

∫

∂K∪∂Ω

∂u

∂ν
u dµ′

=

∫

∂K

∂u

∂ν
dµ′ = − flux

∂K
u (4.14)
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K

\K

M

u=0

u=1

u/ =0

K

K
flux u flux u

u=0

Figure 6. The capacity potential for the capacitor (K,Ω) on a
manifold with boundary

where ν is the outward unit normal vector field on ∂(Ω \K) (the negative sign in
(4.14) appears because ν points inward to K). On the other hand, the harmonicity
of u and (4.3) imply

0 = flux
∂(Ω\K)

u = flux
∂Ω

u− flux
∂K

u. (4.15)

Identities (4.14) and (4.15) imply the following formulas of the capacity:

cap(K,Ω) =

∫

Ω

|∇u|2 dµ = −flux
∂K

u = −flux
∂Ω

u. (4.16)

In general, despite the fact that u may not be in L(K,Ω), the Dirichlet integral of
u is still equal to the capacity.

It is useful to know that various classes of test functions in the definition of
capacity may be allowed without changing the value of the capacity. For example,
the class L in (4.12) can be replaced by the following class D:

D(K,Ω) := {φ ∈ C∞
0 (Ω) : 0 ≤ φ ≤ 1 and φ = 1 in a neighbourhood of K} .

(4.17)

If M is a manifold with boundary, then all the above remain true, with the addi-
tional property that the capacity potential u of (K,Ω) should satisfy the Neumann
boundary condition on ∂M ∩ (Ω\K) should the latter be non-empty. If M is made
of a conducting material, then a physical meaning of cap(K,Ω) is a conductivity of
the piece of M between ∂K and ∂Ω. Put differently, the flux of u through ∂K and
∂Ω is equal to the current through M provided the potential difference between
∂K and ∂Ω is equal to 1 (see Figure 6).

Given an open set E ⊂M , one can define the capacity relative to E as follows:

capE(K,Ω) = inf
φ∈L(K,Ω)

∫

Ω∩E
|∇φ|2 dµ, (4.18)

where (K,Ω) is a capacitor on M as above. The difference between (4.18) and
(4.12) is that the integral in the former is taken over Ω ∩ E rather than over Ω.
Clearly, the capacity capE(K,Ω) does not depend on the geometry away from E.
If Ω = M then we write capE(K) for capE(K,Ω).
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If ∂E is smooth enough, then E can be considered as a manifold with boundary.
In this case the relative capacity capE coincides with the capacity capE on the

manifold E, in the following sense:

capE(K,Ω) = capE(K ∩ E,Ω ∩ E). (4.19)

Example 4.2. Let us show how to compute the capacity cap (B(o, r), B(o,R)) on
the model manifold Mσ where o is the pole of Mσ and 0 < r < R. The function

u(ρ, θ) = u(ρ) = a

∫ R

ρ

dξ

S(ξ)
(4.20)

is the capacity potential of the capacitor (B(o, r), B(o,R)) where the constant a is
chosen to ensure u(r) = 1, i.e.

a =

(∫ R

r

dξ

S(ξ)

)−1

. (4.21)

Since by (4.11)

flux
∂B(o,R)

u = −a,

we conclude by (4.16) that

cap (B(o, r), B(o,R)) =

(∫ R

r

dξ

S(ξ)

)−1

(4.22)

and

cap (B(o, r)) =

(∫ ∞

r

dξ

S(ξ)

)−1

. (4.23)

In particular, in Rd we have

cap (B(o, r)) =

{
cd r

d−2, d > 2,
0, d = 2.

The following statement establishes a useful link between capacity and the Green
function.

Proposition 4.1. ([127], [71]) Let U be an open precompact set in M and y ∈ U .
Then the following inequality is true:

inf
x∈∂U

G(x, y) ≤ cap (U)−1 ≤ sup
x∈∂U

G(x, y) . (4.24)

Furthermore, if Ω is a precompact set in M with a smooth boundary and Ω ⊃ U ,
then

inf
x∈∂U

GΩ(x, y) ≤ cap (U,Ω)
−1 ≤ sup

x∈∂U
GΩ(x, y). (4.25)

Proof. Since (4.24) follows from (4.25) by letting Ω ↑M , it suffices to prove (4.25).
Let us set

a := max
x∈∂U

GΩ(x, y) and b := min
x∈∂U

GΩ(x, y).

For any number c, let us define

Fc := {x ∈ Ω : GΩ(x, y) ≥ c} .
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Figure 7. Sets Fa and Fb

We claim that

Fa ⊂ U ⊂ Fb. (4.26)

Indeed, the function GΩ(·, y) is harmonic in Ω \ U , and, by the maximum prin-
ciple, its supremum in Ω \ U is attained on the boundary ∂

(
Ω \ U

)
= ∂Ω ∪ ∂U .

Since GΩ vanishes on ∂Ω, we have

sup
x∈Ω\U

GΩ(x, y) = max
x∈∂U

GΩ(x, y) = a,

whence Fa ⊂ U . Similarly, the function GΩ(·, y) is superharmonic in U , whence,
by the minimum principle,

inf
x∈U

GΩ(x, y) = min
x∈∂U

GΩ(x, y) = b

and Fb ⊃ U (see Figure 7).
The inclusions (4.26) imply

cap (Fa,Ω) ≤ cap (U,Ω) ≤ cap (Fb,Ω) ,

whence (4.25) will follow if we show that, for any c > 0 (in particular, for c = a
and c = b),

cap (Fc,Ω) =
1

c
.

Indeed, the function u := 1
cGΩ(·, y) is the equilibrium potential of the capacitor

(Fc,Ω) . Therefore, by (4.16) and (4.7),

cap (Fc,Ω) = −flux
∂Ω

u = −1

c
flux
∂Ω

GΩ(·, y) =
1

c
,

which was to be proved.

4.4. Massive sets. The following notion of massiveness will play an important
role in the sequel.

Definition 4.1. Given an open set Ω ⊂ M , we say that a function v ≥ 0 is an
admissible subharmonic function for Ω if it is a bounded subharmonic function on
M such that v = 0 in M \ Ω and supΩ v > 0 (see Figure 8). An open set Ω
is called massive if there is at least one admissible subharmonic function for Ω.
Alternatively, Ω is massive if there exists an admissible superharmonic function u
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Figure 8. Admissible subharmonic function v for Ω

for Ω, i.e. a bounded superharmonic function u ≥ 0 on M such that u ≡ 1 outside
Ω and infΩ u = 0.

We say that an open set Ω is D-massive if there is an admissible subharmonic
function v for Ω (or an admissible superharmonic function u) which has a finite
Dirichlet integral:

∫

M

|∇v|2 dµ <∞.

Clearly, massiveness is an intrinsic property of Ω, despite the function v being
formally defined on the whole M . The manifold itself is always massive because
the constant function is an admissible subharmonic function. The empty set is
always non-massive.

We say that an open set Ω is proper if Ω 6= M . By the maximum principle, a
proper open precompact set is never massive.

Proposition 4.2. Massiveness (D-massiveness) is preserved by increasing the set
Ω, as well as by reducing it by a compact (for the latter, we assume that Ω is
proper).

Proof. If Ω′ ⊃ Ω then any admissible subharmonic function v for Ω is also admissible
subharmonic for Ω′. If Ω′ = Ω \ K where K is a compact, then the function
v′ := (v − c)+, where c := supK v, is admissible subharmonic for Ω′. Indeed, we
need only to show that sup v′ > 0. The fact that Ω is proper implies v 6≡ const.
Therefore, by the strong maximum principle, c < supΩ v, whence sup v′ > 0.

Let us show some examples of massive and non-massive sets. Note that in R2,
all proper open subsets are non-massive because there is no bounded subharmonic
function except for the constant function.

Example 4.3. The exterior Ω of ball B(o, 1) in Rd, d > 2, is massive. Indeed, the
function

u(x) =

{
|x|2−d , |x| > 1
1, |x| ≤ 1

is an admissible superharmonic function for Ω. Moreover, u has finite Dirichlet
integral so that Ω is D-massive.
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Figure 9. Set Ωf is the exterior of the domain of revolution Df

Example 4.4. A half-space in Rd is non-massive - a simple proof of that will be
given below (see Example 4.6). Similarly, any cone3 in Rd is non-massive. On the
contrary, any angle on the hyperbolic plane H2 is D-massive (see [73, Section 3]).
Any cone in Hd is massive but not D-massive unless d = 2 (see [73, Section 5]).

Example 4.5. Consider a domain of revolution in Rd

Df :=
{
x ∈ Rd : 0 ≤ x1 <∞ and |x′| ≤ f(x1)

}

where x′ = (x2, ..., xd) and f is a smooth function possessing certain regularity
(see Figure 9). Denote Ωf = Rd \ Df and α = 1/(d − 3), assuming d > 3. Then

Ωf is massive if f(t) = t log−(α+ε) t (t is large and ε > 0) and is not massive if

f(t) = t log−α t. Moreover, Ωf is D-massive if f(t) = t−(α+ε) and is not D-massive
if f(t) = t−α. See [85, Proposition 6.3] for a criterion of massiveness of Ωf and [73,
Section 3] for a criterion for D-massiveness of Ωf .

Definition 4.2. The subharmonic potential bΩ of an open set Ω is the supremum
of all admissible subharmonic functions v for Ω such that v ≤ 1. The superharmonic
potential sΩ of Ω is the infimum of all admissible superharmonic functions for Ω.

If there is no admissible subharmonic (superharmonic) function, then we natu-
rally let bΩ ≡ 0 (respectively, sΩ ≡ 1). It is obvious that always

sΩ + bΩ = 1,

and the function bΩ is increasing on expansion of Ω whereas sΩ is decreasing.
Clearly, Ω is massive if and only if bΩ 6≡ 0 and sΩ 6≡ 1.

The function bΩ is called also the harmonic measure of the set F := M \ Ω.
Another term for sΩ is the reduced (or reduit) function of F . Let us emphasize
that the functions bΩ, sΩ are determined by the set Ω intrinsically.

For a set Ω with smooth boundary, we will construct bΩ and sΩ as the limits of
solutions of a series of certain Dirichlet problems. Choose an exhaustion {Ek} of M
so that the boundaries ∂Ek and ∂Ω are transversal, and solve, for any set Ω ∩ Ek,

3By “a cone” we always mean an infinite cone with a compact base.
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Figure 10. Function bk

the following Dirichlet problem (see Figure 10)





∆bk = 0
bk|∂Ω∩Ek

= 0
bk|∂Ek∩Ω = 1 .

(4.27)

Proposition 4.3. Let Ω ⊂M be a non-empty open set.

(i) Assume that Ω has non-empty smooth boundary. Then

bΩ = lim
k→∞

bk in Ω.

The function bΩ is continuous, subharmonic on M and harmonic in Ω. Re-
spectively, the function sΩ is continuous, superharmonic on M and harmonic
in Ω.

(ii) For any proper open set Ω, we have

bΩ = sup
Ω′

bΩ′ ,

where the supremum is taken over all regions Ω′ with smooth boundaries whose
closure is contained in Ω.

(iii) The following dichotomy takes place:
either Ω is non-massive, bΩ ≡ 0 and sΩ = 1
or Ω is massive, sup bΩ = 1 and inf sΩ = 0.

Proof. (i) By the maximum principle, the sequence {bk} is decreasing. The limit
b∞ := limk→∞ bk is harmonic in Ω, continuous up to ∂Ω and vanishes on ∂Ω. Let
us extend b∞ by setting it equal to 0 in M \ Ω. We claim that b∞ = bΩ. Indeed,
the function b∞ is obviously a continuous subharmonic function, 0 ≤ b∞ ≤ 1, and
b∞ vanishes outside Ω. If there is another function v possessing these properties,
then by the maximum principle, v ≤ bk in Ek ∩ Ω, whence v ≤ b∞. Hence, b∞ is
the supremum of all admissible subharmonic functions v such that v ≤ 1, that is,
b∞ = bΩ (see Figure 11).

Note that if ∂Ω is not smooth, then b∞ may be discontinuous at irregular points
of the boundary ∂Ω.

(ii) Since bΩ ≥ bΩ′ , we have only to show that

bΩ ≤ sup
Ω′

bΩ′ . (4.28)
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1

Figure 11. Sequence of bk

For any open Ω′ such that Ω′ ⊂ Ω , there exists an open set Ω′′ with smooth
boundary such that Ω′ ⊂ Ω′′ and Ω′′ ⊂ Ω, whence bΩ′ ≤ bΩ′′ . Therefore, it suffices
to prove (4.28) without the requirement that ∂Ω′ is smooth. Let v be any admissible
subharmonic function for Ω. Take any ε ∈ (0, sup v) and consider the set Ω′ =
{v > ε}. Since (v − ε)+ is an admissible subharmonic function for Ω′, we have

(v − ε)+ ≤ bΩ′ .

By taking sup over v and ε, we obtain (4.28).
(iii) By definition, bΩ 6≡ 0 is equivalent to the massiveness of Ω. Let us show

that bΩ 6≡ 0 implies sup bΩ = 1. If sup bΩ =: c < 1 then, for any admissible
subharmonic function v, we have sup v ≤ c. However, then the function c−1v is also
admissible subharmonic, whence, by the definition of bΩ, we obtain c−1v ≤ bΩ and
sup bΩ ≥ 1.

Example 4.6. Let us show that a half-space Ω in Rd is non-massive. Consider the
function u which is equal to bΩ on Ω and is extended oddly over the boundary ∂Ω
to the whole space. Since u is harmonic in Rd and bounded, the Liouville theorem
implies u ≡ const and, hence, u ≡ 0. Therefore, bΩ ≡ 0, and Ω is non-massive.

4.5. Hitting probabilities. In this section, we compute, in terms of the function
sΩ, the following probabilities.

1. The Px-probability that the Brownian motion Xt visits a set F ⊂ M ever.
Denote it by

eF (x) := Px {∃t ≥ 0 such that Xt ∈ F} .
In the potential-theoretic language, the function eF is called the reduit func-
tion of F and is denoted by R1

F .
2. The Px-probability that the Brownian motion Xt hits F at a sequence of

arbitrarily large times. Denote it by

hF (x) := Px {∃ {tk} such that tk →∞ and Xtk ∈ F , for all k ∈ N} .
Proposition 4.4. Let Ω ⊂M be a non-empty open set with smooth boundary, and
denote F := M \Ω.

(i) (G.A.Hunt) For any x ∈M , we have

eF (x) = sΩ(x).
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Figure 12. The hitting probabilities eF and hF

(ii) Let us denote

P∞sΩ := lim
t→∞

PtsΩ(x) . (4.29)

Then, for any x ∈M ,

hF (x) = P∞sΩ(x).

Remark. The function bΩ(x) is also called the escape function of Ω because, due
to (i), bΩ(x) = 1 − eF (x) which is equal to the Px-probability of Xt escaping to
infinity within Ω, without touching ∂Ω.4

Remark. The function u := P∞sΩ is harmonic on M because Ptu = u. Thus, hF (x)
is a harmonic function of x on all of M . Let us recall for comparison that eF = sΩ
is harmonic in Ω but is superharmonic in M (see Figure 12).

Remark. Assertion (i) implies that massiveness has the following probabilistic
meaning: the set Ω is massive if and only if eF (x) 6≡ 1.

Proof. (i) If x ∈ F then eF (x) = 1 = sΩ(x), and there is nothing to prove.
Now let x ∈ Ω. Choose an exhaustion sequence {Ek}, and consider the event Ak

that the trajectory Xt hits the boundary ∂Ω before ∂Ek (see Figure 13). Clearly,
the sequence of events {Ak} is expanding, and their union is the event to hit ∂Ω
(and thus F ) ever, whence

eF (x) = lim
k→∞

Px(Ak). (4.30)

On the other hand, let fk be a function on ∂ (Ek ∩ Ω) which is equal to 1 on ∂Ω
and 0 on ∂Ek, and let τ denote the first hitting time of ∂Ω. We have

Px(Ak) = Ex (fk (Xτ )) = sk(x) (4.31)

where sk solves the Dirichlet problem in Ek ∩ Ω :





∆sk = 0
sk|∂Ω = 1
sk|∂Ek

= 0.
(4.32)

4One should distinguish the following two events: (1) to never hit F , which has the Px-
probability bΩ; (2) to stay in Ω for all t ≥ 0, which has the Px-probability PΩ

∞1 ≤ bΩ. The latter
may be strictly smaller than the former in the case when the process can reach infinity from within
Ω in a finite time. If the manifold M is stochasically complete, then we do have PΩ

∞1 = bΩ.
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Figure 13. Events Ak and Ak+1

Since sΩ = limk→∞ sk by Proposition 4.3, we conclude from (4.30) and (4.31) that
sΩ = eF .

(ii) Denote by Bt the event that XT hits F at some time T ≥ t. Then we have
the following identity

Px (Bt) = PtsΩ(x) =

∫

M

p(t, x, y)sΩ(y)dµ(y). (4.33)

Indeed, at time t, the Px-law of the Brownian particle y = Xt is p(t, x, y)dµ(y).
Since the Py-probability of the Brownian motion hitting F is equal to sΩ(y), we
obtain (4.33) by the Markov property.

Obviously, the sequence of events {Bt} is decreasing in t (which implies, in
particular, that the limit (4.29) exists), and their intersection is the event B∞ that
the Brownian motion visits F at a sequence of arbitrarily large times. Therefore,

hF (x) = Px (B∞) = lim
t→∞

Px (Bt) = P∞sΩ ,

which was to be proved.

4.6. Exterior of a compact. If Ω is an exterior of a compact F on M , then some
additional criteria of massiveness of Ω hold true.

Proposition 4.5. Let Ω ⊂ M be an open set with non-empty smooth boundary
and let F := M \ Ω be compact.

(a) The following dichotomy takes place:
either Ω is not massive, sΩ ≡ 1 and P∞sΩ ≡ 1,
or Ω is massive, sΩ 6≡ 1 and P∞sΩ = 0.

(b) We have
∫

∂Ω

∂sΩ
∂ν

dµ′ = cap(F ), (4.34)

where ν is the outward normal vector field at ∂Ω, and
∫

M

|∇sΩ|2 dµ = cap(F ). (4.35)

Corollary 4.6. Let Ω ⊂ M be an open set with non-empty smooth boundary and
let F := M \ Ω be compact. Then
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(a) Ω is massive if and only if Ω is D-massive.
(b) Ω is massive if and only if cap(F ) > 0.
(c) The massiveness of Ω is equivalent to eF 6≡ 1 and to hF ≡ 0.

Proof of Corollary 4.6. (a) If Ω is massive, then, by (4.35), sΩ has finite Dirichlet
integral. Thus, Ω is D-massive. The opposite direction is a general fact which
follows from the definition of massiveness and D-massiveness.

(b) The massiveness of Ω is equivalent to sΩ 6≡ 1 which is equivalent to cap(F ) >
0 by (4.34) or (4.35).

(c) This follows immediately from Proposition 4.4 and Proposition 4.5(a).

Proof of Proposition 4.5. (a) Assume that Ω is non-massive and show that M is
stochastically complete, that is, Pt1 ≡ 1. If we know that already, then we argue
as follows: the non-massiveness of Ω implies sΩ ≡ 1, whence P∞sΩ = P∞1 =
limt→∞ Pt1 ≡ 1.

Let us suppose, on the contrary, that Pt1 6≡ 1 and consider the functions v(x, t) =
Pt1(x) and

w(x) :=

∫ ∞

0

e−t v(x, t) dt.

It is easy to see that

0 < w ≤
∫ ∞

0

e−t dt = 1

and

1

2
∆w =

∫ ∞

0

e−t
1

2
∆v dt =

∫ ∞

0

e−t
∂v

∂t
dt = ve−t

∣∣∞
0

+

∫ ∞

0

e−t v dt = −1 + w ≤ 0.

Therefore, w is a positive superharmonic function on M . The assumption Pt1 6≡ 1
implies that, for some x ∈ M , we have w(x) < 1, whence ∆w(x) < 0 and w 6≡
const. By the strong minimum principle, infM w < infF w. Hence, the function
(w/ infF w) ∧ 1 is superharmonic admissible for Ω and, thus, Ω is massive, which
contradicts the hypothesis.5

Assume now that Ω is massive and, thus, sΩ 6≡ 1. Let us set u = P∞sΩ. Function
u is harmonic on M and

0 ≤ u ≤ sΩ ≤ 1.

We need to verify that u ≡ 0. Assume on the contrary that supu > 0. Since
inf u ≤ inf sΩ = 0 (see Proposition 4.3(iii)), we have u 6≡ const. By the strong
maximum principle and the compactness of F ,

sup
F
u < sup

M
u.

5The proof of the first part of the assertion (a) of Proposition 4.5 contains the following
implication: the explosion =⇒ the existence of a non-constant positive superharmonic function
(cf. Corollary 6.4 in Section 6).

Another proof can be obtained by using the strong Markov property of the Brownian motion.
Indeed, if sΩ ≡ 1 then, by Proposition 4.4, the probability eF of hitting F is identically equal to
1. By the strong Markov property, the probability hF of hitting F at arbitrary large times is also
1, whence P∞sΩ = hF ≡ 1.
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Figure 14. Functions sΩ, sU and u
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Figure 15. Sequence of sk

Choose a number c such that

sup
F
u < c < sup

M
u

and consider the set U := {u > c}. By the choice of c, we have U ⊂ Ω, whence (see
Figure 14)

sU ≥ sΩ ≥ u. (4.36)

The set U is massive since the function (u− c)+ is admissible subharmonic for U .

By Proposition 4.3, infU sU = 0. However, infU u = c > 0 which contradicts (4.36).6

(b) Let sk solve the Dirichlet problem (4.32). Then, for k large enough (such
that Ek ⊃ F ), the function sk is the equilibrium potential of the capacitor (F, Ek),
whence

cap(F, Ek) =

∫

Ek\F
|∇sk|2 dµ =

∫

∂F

∂sk
∂ν

dµ′. (4.37)

The sequence {sk} is increasing in k and converges to sΩ (see Figure 15), whence,
by the local properties of harmonic functions, all their derivatives converge to those
of sΩ locally uniformly as well. The sequence

{
∂sk

∂ν

∣∣
∂F

}
is decreasing in k because

sk|∂F = 1 and, thus, converges to ∂sΩ
∂ν

∣∣
∂F

uniformly on ∂F , whence we get (4.34).

6In fact, we have shown that sΩ admits no positive harmonic minorant.
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One direction in (4.35) follows by Fatou’s lemma:
∫

M

|∇sΩ|2 ≤ lim
k→∞

∫

Ek

|∇sk|2 = lim
k→∞

cap(F, Ek) = cap(F ).

To prove the other direction (which will be not used in the sequel, though) let us
write∫

Ek\F
|∇ (sΩ − sk)|2 =

∫

Ek\F
|∇sΩ|2 − 2

∫

Ek\F
∇sΩ∇sk +

∫

Ek\F
|∇sk|2 . (4.38)

The last term on the right hand side of (4.38) is equal to cap(F, Ek), by (4.37) . By
the Green formula and (4.34), the middle term transforms into

−
∫

Ek\F
∇sΩ∇sk =

∫

Ek\F
sk∆sΩ −

∫

∂(Ek\F )

sk
∂sΩ
∂ν

= −
∫

∂F

∂sΩ
∂ν

= −cap(F ).

Therefore, (4.38) implies

0 ≤
∫

Ek\F
|∇ (sΩ − sk)|2 =

∫

Ek\F
|∇sΩ|2 − 2cap(F ) + cap(F, Ek),

whence by letting k →∞
∫

M

|∇sΩ|2 ≥ 2cap(F )− lim
k→∞

cap(F, Ek) = cap(F ),

which was to be proved.

5. Equivalent definitions of recurrence

Manifold M is said to be non-parabolic if it admits a non-constant positive
superharmonic function, and parabolic otherwise. The following theorem provides
a number of conditions equivalent to parabolicity. In particular, the parabolicity of
M turns out to be equivalent to the recurrence of the Brownian motion Xt on M .

Theorem 5.1. Let M be a Riemannian manifold. The following properties are
equivalent.

(1) Brownian motion on M is transient; i.e. for some open set U and for some
point x ∈M , the process Xt eventually leaves U with a positive probability:

Px {∃T : ∀t > T Xt /∈ U} > 0.

(1a) For any precompact set U ⊂M and any point x ∈M , the process Xt eventu-
ally leaves U with the probability 1, i.e.

Px {∃T : ∀t > T Xt /∈ U} = 1.

(2) There exists a proper massive set Ω on M .
(2a) The exterior of any compact set on M is D-massive.
(3) There exists a non-constant positive superharmonic function on M (=there

exists a non-constant bounded subharmonic function on M).
(4) The Green function G(x, y) on M is finite for some/all x 6= y.
(5) For some/all x ∈M ,

∫ ∞

1

p(t, x, x)dt <∞ . (5.1)

(6) The capacity of some compact/any precompact open set is positive.
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(7) There exists a non-zero bounded solution on M to the equation

∆u− q(x)u = 0, (5.2)

for some/any function q(x) ∈ C∞
0 (M), which is non-negative and not identi-

cally 0.
(8) If M is a simply connected Riemann surface, then all the above are equivalent

to M being of hyperbolic type; i.e. M is conformally equivalent to H2.

Before the proof, let us make some remarks.

• The statement of Theorem 5.1 remains true if M is a manifold with boundary.
As we have mentioned before, in this case the heat kernel and the Green
function satisfy the Neumann boundary conditions on ∂M and the Brownian
motion Xt reflects at ∂M . A superharmonic function u should satisfy on ∂M
the condition ∂u

∂ν ≥ 0,where ν is the outward normal unit vector field on ∂M ,
and a subharmonic function should satisfy the opposite inequality. Finally, a
solution to (5.2) should satisfy the Neumann boundary condition on ∂M .
• The essential part of Theorem 5.1 is due to Ahlfors [2], who clarified, for the

case of Riemann surfaces, the equivalences (2)⇔ (3)⇔ (4) . His treatment was
based in turn on the works of Myrberg [144], Nevanlinna [148] and Ohtsuka
[152]. See [167, pp.29-30] for the case of Riemannian manifolds. Equivalence
(2)/(2a)⇔(4) was rediscovered by many authors in various settings: see for
example [163, Proposition 23], [111, Lemma 5.2], [88, Theorem 1.1], [122,
p.1137].
• The implication (1)⇒(4) is due to Hunt [98]. Equivalence of (4) and (5)

is obvious from the relation (4.5) between the Green function and the heat
kernel . A direct proof that (5) is equivalent to (1) can be found in [111,
Lemma 3.1].
• In the view of Proposition 4.5, the hypothesis (6) is equivalent to sΩ 6≡ 1

where Ω is an exterior of a compact. Equivalence of (4) and sΩ 6≡ 1 was
proved by Ahlfors [2] and Royden [163, Theorem 3]. The idea of using sΩ for
classification of Riemann surfaces is due to Nevanlinna [150]. We adopt here
a different approach to the capacity criterion (6) based on the direct relation
(4.24) between the Green function and the capacity [127], [71, Proposition 3].
• Equivalence of (7) and (3) was proved in [76, p.2341].
• Equivalence of transience (1) and hyperbolicity (8) is due to Kakutani [105].
• There is some mismatch in the usage of the term “parabolic” here and in the

theory of Riemann surfaces. First, any simply connected Riemann surface of
elliptic or parabolic type is parabolic in the sense of our definition. However,
a simply connected Riemann surface of hyperbolic type is non-parabolic in
our sense, which is stated in (8). Second, for a Riemann surface which is not
simply connected, its type has nothing to do with parabolicity in our sense,
because its type is determined by that of its universal cover.
• We do not apply the adjective “hyperbolic” as an antonym to “parabolic”

because there are other generalizations of the notion of hyperbolicity, for
example, Gromov’s hyperbolicity.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



166 ALEXANDER GRIGOR’YAN

Proof. We will prove the following sequence of implications:

(8)
l

(1) −→ (2) ←→ (3) ←− (7)
↑ l տ տ ↑
(1a) ←− (2a) −→ (6) ←→ (4) ←→ (5)

If there is the “some/all” alternative, then we assume the weakest one and prove the
strongest one. Not all of the implications above are logically necessary. However, it
is useful to be able to independently close different smaller circles of implications.

Another proof of equivalence of (1), (3) and (4) can be found in [130].
(1a)=⇒(1) Obvious.
(1)=⇒(2) Let us denote Ω = M \ U and consider the function v := 1 − P∞sΩ,

which is equal, by Proposition 4.4, to 1 − hU , that is to the Px-probability of Xt

leaving U after some time. By hypothesis, we have v(x) > 0, for some x, whence
P∞sΩ 6≡ 1, sΩ 6= 1 and Ω is massive.

(2a)=⇒(2) Obvious.
(2)=⇒(2a) Let Ω be a proper massive set, which exists by hypothesis, and let

Ω′ be an exterior of some compact. We need to show that Ω′ is D-massive. Let U
be a precompact open set in M which does not intersect Ω. Denote Ω′′ = M \ U.
Since Ω′′ ⊃ Ω, the set Ω′′ is massive. By Proposition 4.2, Ω′ is massive too because
Ω′′ and Ω′ differ by a compact. Finally, since Ω′ is exterior of a compact, its
massiveness implies its D-massiveness, by Corollary 4.6.

(2a) =⇒(1a) We have to prove that, with the Px-probability 1, the Brownian
trajectory Xt leaves any precompact set U after some time forever, that is hU (x) ≡
0. The latter is equivalent, by Proposition 4.4, to P∞sΩ ≡ 0 where Ω := M \ U .
By Proposition 4.5, P∞sΩ ≡ 0 is equivalent to massiveness of Ω, which we have by
hypothesis.

(2a) =⇒(6) This is part (b) of Corollary 4.6.
(6)=⇒(2) Let cap(U) > 0 for some precompact open set U . We may assume

that U has smooth boundary. By Corollary 4.6, the set Ω := M \ U is massive.
(2)=⇒(3) By slightly enlarging Ω, we may assume that Ω has smooth bound-

ary. Since Ω is massive and M \ Ω is non-empty, sΩ is a non-trivial bounded
superharmonic function on M (see Proposition 4.3(i)).

(3)=⇒(2) Let v > 0 be a non-constant superharmonic function on M . For
any number c ∈ (inf v, sup v), the set Ω = {v < c} is proper and massive because
(c− v)+ is an admissible subharmonic function for Ω.

(6)⇐⇒(4) Let U be a precompact open set in M . For a point y ∈ U , we have,
by (4.24),

inf
x∈∂U

G(x, y) ≤ cap(U)−1 ≤ sup
x∈∂U

G(x, y).

Therefore, the finiteness of G is equivalent to cap (U) > 0.
(4)=⇒(3) If the Green function G(x, y) is finite, then it is already a positive

superharmonic function in x although taking the value +∞ at x = y. The trun-
cated function min(G(·, y), C) (for a positive constant C) is finite, positive and
superharmonic.

(7)=⇒(3) If u is a bounded non-zero solution to ∆u−qu = 0 with some function
q ∈ C∞

0 , q 6≡ 0, then either u+ or u− is not identically zero. Assume that u+ 6≡ 0.
We claim that u+ is a non-constant bounded subharmonic function. The function
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u+ is subharmonic in Ω := {u > 0} just because ∆u+ = qu+ ≥ 0. Since u+ is
extended by 0 outside Ω, function u+ is subharmonic in M . Finally, u+ is bounded
and non-constant because if u+ ≡ c then u ≡ c, which is only possible if q ≡ 0 or
c = 0.

(3)⇐⇒(8) Conformal mapping in dimension 2 preserves superharmonic func-
tions. Since H2 possesses a non-constant positive superharmonic function whereas
R2 does not, hyperbolicity of M is equivalent to the presence of a non-constant
positive superharmonic function.

(4)⇐⇒(5) Since

G(x, y) =
1

2

∫ ∞

0

p(t, x, y)dt, (5.3)

the condition G(x, y) <∞ implies, for those x, y,
∫ ∞

p(t, x, y)dt <∞. (5.4)

By the local parabolic Harnack inequality, for any pair x′, y′ ∈M, we have, for all
t large enough,

p(t, x′, y′)

p(t, x, y)
< const (5.5)

(see for details [45, Theorem 10]). In particular, (5.4) holds for all pairs x, y, whence
(5.1) follows. Conversely, if (5.1) holds for some x ∈M , then (5.4) is true by (5.5)
for all x, y ∈ M. Since, for x 6= y, we have p(t, x, y) → 0 as t → 0, the integral in
(5.3) converges also at 0, and G(x, y) <∞.

(4)=⇒(7) Let {Ek} be an exhaustion sequence and Gk be the Green kernel in
Ek. Denote by uk and vk the solutions of the following Dirichlet problems in Ek{

∆uk − quk = 0 in Ek
uk|∂Ek

= 1
and

{
∆vk = −q in Ek
vk|∂Ek

= 0
.

The sequence {uk} is decreasing and converges to a function u, which is a bounded
solution to ∆u − qu = 0. Since 0 ≤ uk ≤ 1, we have also 0 ≤ u ≤ 1, and it will
suffice to show that supu > 0.

The function vk is given by

vk =

∫

Ek

Gk(·, y)q(y)dµ(y),

whence we see that {vk} is increasing and converges to

v :=

∫

M

G(·, y)q(y)dµ(y).

The function uk + vk is superharmonic because ∆ (uk + vk) = quk − q ≤ 0. Since
uk + vk|∂Ek

= 1, the minimum principle says that uk+vk ≥ 1 and, thus, uk ≥ 1−vk
in Ek (see Figure 16).

Therefore, u ≥ 1 − v. We claim that, in fact, inf v = 0, which would imply
supu > 0. By the construction, v is the smallest non-negative solution to ∆v = −q
in M . If we assume inf v > 0, then the function v − inf v is also a non-negative
solution to this equation, which contradicts the minimality of v. Thus, we obtain
inf v = 0 and supu > 0.

Let us show some applications of Theorem 5.1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



168 ALEXANDER GRIGOR’YAN

1

Figure 16. Functions uk and 1− vk

Corollary 5.2. Let U be a non-empty precompact open subset of M . The following
statements are equivalent.

(i) M is non-parabolic.
(ii) The set Ω := M \ U is massive.
(iii) cap(U) = 0.

This is just another way to state the parts (2)/(2a) and (6) of Theorem 5.1. Let
us emphasize that it suffices to test only one set U to decide whether M is parabolic
or not.

One says that manifolds M1 and M2 are quasi-isometric if there exists a quasi-
isometry7 F : M1 →M2, that is, a diffeomorphic map from M1 onto M2 such that,
for all x, y ∈M1 and some constant C > 0,

C−1distM2(F (x), F (y)) ≤ distM1(x, y) ≤ CdistM2(F (x), F (y)).

Corollary 5.3. Let M and N be two Riemannian manifolds. If the exteriors of
some compacts in M and N are quasi-isometric, then M and N are parabolic or
not simultaneously. In particular, if M and N are quasi-isometric, then M and N
are parabolic or not simultaneously.

Proof. Let K and K ′ be the compacts in M and N whose exteriors are quasi-
isometric, and let U be a precompact neighborhood of K in M . Obviously, there
is a precompact open set U ′ ⊂ N such that M \ U and N \ U ′ are quasi-isometric.
As follows from the definition (4.12) of capacity, the value of the capacity capM (U)
depends only on the intrinsic geometry of M \ U . The same applies to capN (U ′).
The capacity changes under a quasi-isometry at most by a constant factor. There-
fore, capM (U) = 0 if and only if capN (U ′) = 0. Hence, by Corollary 5.2, M and N
are parabolic or not simultaneously.

It is possible to prove that the D-massiveness is stable under a quasi-isometry
(see Theorem 14.2 below). This means also that the massiveness of an exterior of a
compact is a quasi-isometry invariant, too. However, in general, massiveness is not
invariant under a quasi-isometry as follows from [129, Section 8] and [77, Corollary
1]. See also [107] for stability of parabolicity under rough isometries and [94] for
generalizations to p-harmonic theory.

Corollary 5.4. (Khas’minskii [111]) If there is a superharmonic function v outside
a compact K such that v(x)→ +∞ as x→∞, then M is parabolic.

Proof. Let us enlargeK so that ∂K is smooth and v is non-negative on Ω := M \K.
Consider a sequence {bk} of solutions to the Dirichlet problem (4.27) in Ek \K. By

7Another related notion is a rough isometry - see [107].
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Theorem 5.1(2a), the parabolicity of M will follow from the non-massiveness of Ω,
which in turn is equivalent to

bΩ = lim
k→∞

bk = 0.

To show that, fix any C >> 1 and observe that v →∞ implies, for all k big enough,

inf
∂Ek

v ≥ C.

Therefore, by the maximum principle in Ek \K, we have v ≥ Cbk, whence C−1v ≥
bΩ. By letting C →∞, we obtain bΩ = 0.

Similarly if, in an open set Ω, there exists a superharmonic function v such that
v(x)→ +∞ as x→∞, then Ω is non-massive.

The converse to Corollary 5.4 is also true, and we present it without proof.

Theorem 5.5. (Nakai [146]) If M is parabolic, then there exists a harmonic func-
tion v(x) outside a compact such that v(x)→ +∞ as x→∞.

The following statement is a consequence of Theorem 5.1 and the explicit formula
(4.23) for the capacity of a ball on a model manifold.

Corollary 5.6. (=Proposition 3.1) A model manifold Mσ is parabolic if and only
if

∫ ∞ dρ

S(ρ)
=∞.

In the following theorem, we have collected some other criteria of parabolicity,
which we present without proof. Given a precompact open set U ⊂ M, we denote
by DU (M) a Banach space which is the completion of C∞

0 (M) with respect to the
following norm

‖f‖DU
:=

∫

U

|f |dµ+

(∫

M

|∇f |2 dµ
) 1

2

.

Theorem 5.7. Each of the following properties is equivalent to parabolicity of M .

(a) (Beurling–Deny) For some precompact open set U ⊂M,

1 ∈ DU (M). (5.6)

(b) (Royden [163, Theorem 4, p.66], Lyons–Sullivan [132, p.312]) For any smooth
vector field v on M such that |v| ∈ L2(M,µ) and div v ∈ L1(M,µ), we have

∫

M

div v dµ = 0 . (5.7)

(c) ([73, Proposition 2]) For any bounded function u ∈ C2(M) such that ∆u ∈
L1(M,µ), we have

∫

M

∆u dµ = 0. (5.8)

The condition (5.6) is close to the fact that cap (U) = 0. Roughly speaking, in
the definition of the capacity, the class of test functions can be extended to DU (M).
Therefore, if 1 ∈ DUM , then cap (U) = 0. The converse can be proved too (see [47,
pp.181-182], [163, p.67], [5, p.46]).

The identities (5.7) and (5.8) mean that there is no boundary term in the Green
formula when integrating over the entire M . This reflects the fact that a parabolic
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manifold has in some sense no boundary at infinity, which causes the Brownian
trajectory to enter any bounded region again and again.

6. Equivalent definitions of stochastic completeness

As we have seen, the notion of massiveness plays an important role when dealing
with the recurrence of the Brownian motion. Some extension of this notion - λ-
massiveness - will be useful for treatment of stochastic completeness. For any λ > 0,
we say that u is λ-harmonic function if it satisfies the equation

∆u− λu = 0.

Similarly to sub- and superharmonic functions (see Section 4.1), one defines con-
tinuous λ-sub- and λ-superharmonic functions.

Definition 6.1. Given an open set Ω ⊂M , we say that a function v is an admis-
sible λ-subharmonic function for Ω if it is a non-negative bounded λ-subharmonic
function on M such that v = 0 in M \ Ω and supΩ v > 0. An open set Ω is called
λ-massive if there is at least one admissible λ-subharmonic function for Ω.

The empty set is never λ-massive. However, the whole manifold is not necessarily
λ-massive because the function v ≡ 1 is not λ-subharmonic unlike the case λ = 0.

Similarly to Proposition 4.2, we have

Proposition 6.1. The λ-massiveness is preserved by enlarging Ω and by reducing
it by a compact.

Remark. Unlike Proposition 4.2, we do not have to assume in the second statement
that Ω is proper.

The following theorem provides various conditions equivalent to the explosion
property.

Theorem 6.2. The following properties are equivalent.

(1) The manifold M is stochastically incomplete; that is, for some (x, t) ∈ M ×
(0,∞),

∫

M

p(t, x, y)dµ(y) < 1 . (6.1)

(1a) For all (x, t) ∈M × (0,∞), we have (6.1).
(2) M is λ-massive.
(3) For some/all λ > 0, there is a non-zero bounded λ-harmonic function on M .
(4) For some/any T ∈ (0,∞), the Cauchy problem

{
∂u
∂t = 1

2∆u ,
u|t=0+ = 0

(6.2)

has a non-zero bounded solution in M × (0, T ) (the initial data is understood
in L1

loc(M,µ)).

Remark. The part (2) looks simpler than its analogue in Section 5 – Theorem
5.1(2)-(2a). Nonetheless, it is equivalent to either of the following assertions:

(2a) For some λ > 0, there is a λ-massive set.
(2b) For any λ > 0, the exterior of any compact set is λ-massive.
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Indeed, the existence of a λ-massive set implies that M is λ-massive, by the
first part of Proposition 6.1. If M is λ-massive then the exterior of any compact is
λ-massive, by the second part of Proposition 6.1.

Theorem 6.2 is largely due to Khas’minskii [111, Lemmas 4.1, 5.1 ]. The criterion
(3) goes back to Feller [59] in the case of one-dimensional diffusions. The proofs
of different parts of this theorem in various settings can also be found in [41], [75],
[76].

Proof. We will prove the following chain of implications:

(1) ←→ (1a) −→ (3) −→ (4) −→ (1)
l

(2)

(1)⇔(1a) The fact that (1a) implies (1) is obvious. Let us assume (1) and prove
(1a). By the semi-group property, we have, for all s ∈ (0, t),

Pt1 = Pt−sPs1 ≤ Pt−s1 ≤ 1. (6.3)

Since we know that Pt1(x) = 1 holds for some x ∈M,we conclude that, for this x,
all inequalities in (6.3) become equalities. In particular, we have

Pt−s(Ps1)(x) = 1

which is only possible if

Ps1 ≡ 1. (6.4)

We are left to extend (6.4) to s ≥ t. Let first s < 2t. Then s/2 < t and we obtain,
by the semi-group property,

Ps1 = Ps/2
(
Ps/21

)
= Ps/21 = 1;

that is, (6.4) holds also for s ∈ (0, 2t). By induction, we prove (6.4) for s ∈ (0, 2kt),
whence it follows for all s > 0.

(1a)⇒(3) Given λ > 0, let us set u(x, t) := Pt1 < 1 and

w(x) :=

∫ ∞

0

e−λt u(x, t) dt.

It is easy to verify that

1

2
∆w =

∫ ∞

0

e−λt
1

2
∆u dt =

∫ ∞

0

e−λt
∂u

∂t
dt

= ue−λt
∣∣∞
0

+ λ

∫ ∞

0

e−λt u dt = −1 + λw

and

0 < w <

∫ ∞

0

e−λt dt = λ−1.

Therefore, the function v := 1 − λw satisfies the equation 1
2∆v − λv = 0 and

0 < v < 1. We are left to rename 2λ to λ.
(3)⇒(4) Let v(x) be a non-zero bounded λ-harmonic function. Clearly, the

function

u(x, t) = v(x)e
1
2λt
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solves the Cauchy problem
{

∂u
∂t = 1

2∆u
u|t=0+ = v(x) .

(6.5)

On the other hand, there is another solution to (6.5), namely, w = Ptv. For any
t > 0, we have

sup |w| (·, t) ≤ sup |v| · Pt1 ≤ sup |v| ,
whereas v 6≡ 0 implies

sup |u| (·, t) = e
1
2λt sup |v| > sup |v| .

Therefore, the functions u(·, t) and w(·, t) are different, for any t > 0. At the same
time, both are bounded on M × (0, T ), whence we conclude that u−w is a non-zero
bounded solution to (6.2) on M × (0, T ).

(4)⇒(1) Let u(x, t) be a non-zero bounded solution to (6.2), for some T > 0.
We can assume that supu > 0 and sup |u| < 1 so that the function w := 1 − u is
positive and inf w < 1. Since the function w is a solution to the Cauchy problem

{
∂w
∂t = 1

2∆w
w|t=0+ = 1

(6.6)

and Pt1 is the minimal positive solution to (6.6), we conclude that Pt1 ≤ w.
Therefore, for some x ∈M and t ∈ (0, T ),

Pt1 =

∫

M

p(t, x, y)dµ(y) < 1,

and M is stochastically incomplete.
(3)⇒(2) If v is a non-zero bounded λ-harmonic function, then one of the func-

tions v+, v− must be non-zero; let it be v+. Clearly, v+ is λ-harmonic in {v > 0}
which implies that v+ is λ-subharmonic in M , and M is λ-massive.

(2)⇒(3) Let M be λ-massive and let w be an admissible λ-subharmonic function
for M . We will construct a non-zero bounded λ-harmonic function on M as the
limit of solutions to the following Dirichlet problems

{
∆vk − λvk = 0 in Ek ,
vk|∂Ek

= 1 ,

where {Ek} is an exhaustion sequence. We have 0 ≤ vk ≤ 1, and the sequence {vk}
is decreasing and converges to a bounded solution v. Let us verify that v 6≡ 0. We
may assume from the beginning that supw = 1. Then we have, by the maximum
principle, vk ≥ w and thus v ≥ w which implies v 6≡ 0.

Corollary 6.3. (Khas’minskii [111]) The stochastic completeness of M is equiva-
lent to the uniqueness for the Cauchy problem (6.2) on M × (0,∞) in the class of
bounded solutions.

Proof. It suffices to show that if M is stochastically incomplete then there is a
bounded non-zero solution to (6.2) on M×(0,∞). The function u(x, t) = 1−Pt1(x)
is such a solution (note that in the proof of Theorem 6.2, we have constructed such
a solution on a finite time interval). Indeed, it is obviously bounded and is non-zero
because Pt1(x) 6≡ 1.

Corollary 6.4. If M is parabolic, then M is stochastically complete.

Indeed, λ-massiveness implies massiveness.
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Corollary 6.5. If the exteriors of some compacts in M1 and M2 are isometric,
then M1,M2 are stochastically complete or not simultaneously.

This follows from the fact that λ-massiveness is preserved by subtracting a com-
pact (Proposition 6.1).

Corollary 6.6. ([111], [184, Proposition 1]) If, for some λ > 0, there is a λ-
superharmonic function v outside a compact set in M such that v(x) → +∞ as
x→∞, then M is stochastically complete.

The proof is similar to that of Corollary 5.4.

Corollary 6.7. ([75]) If, for some point x ∈M and a precompact open set U ∋ x,
∫

M\U
G(x, y)dµ(y) <∞, (6.7)

then M is not stochastically complete.

Proof. Assume on the contrary that M is stochastically complete. Then, for all
x ∈M , t > 0, we have Pt1 = 1, whence

∫

M

G(x, y) dµ(y) =
1

2

∫

M

∞∫

0

p(t, x, y) dt dµ(y)

=
1

2

∞∫

0

∫

M

p(t, x, y) dµ(y) dt

=
1

2

∞∫

0

dt =∞.

(6.8)

By (4.6), the singularity of the Green function is summable, whence
∫

U

G(x, y)dµ(y) <∞,

contradicting (6.7) and (6.8).

Corollary 6.8. (=Proposition 3.2) A model manifold Mσ is stochastically com-
plete if and only if

∫ ∞ V (r)dr

S(r)
=∞. (6.9)

Proof. The Green function on Mσ is

G(o, x) =

∫ ∞

ρ

dr

S(r)

where x = (ρ, θ). Therefore, the sufficient condition (6.7) for stochastic incomplete-
ness acquires the form

∫ ∞
S(ρ)dρ

∫ ∞

ρ

dr

S(r)
<∞

or, after interchanging the order of the integrals,
∫ ∞ V (r)

S(r)
dr <∞. (6.10)
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Thus, (6.10) implies stochastic incompleteness.
Let us show that conversely (6.9) implies the stochastic completeness of M . If

∫ ∞ dr

S(r)
=∞,

then Mσ is parabolic and thus stochastically complete. Assume in the sequel that
∫ ∞ dr

S(r)
<∞.

If a function v on Mσ depends only on the polar radius ρ, then the equation
∆v − v = 0 defining 1-harmonic functions amounts to

v′′ +
S′

S
v′ − v = 0. (6.11)

Let v solve (6.11) on [1,∞) with the initial values v(1) = 1 and v′(1) = 0. The
function v(ρ) is monotone increasing because equation (6.11), after multiplying by
Sv and integrating from 1 to ρ, amounts to

Svv′(ρ) =

∫ ρ

1

S
(
v′2 + v2

)
dr ≥ 0.

Equation (6.11) can be transformed also into the integral equation

v(ρ) = 1 +

∫ ρ

1

dr

S(r)

∫ r

1

S(ξ)v(ξ)dξ,

which implies, together with v ≥ 1, that

v(ρ) ≥
∫ ρ

1

dr

S(r)

∫ r

1

S(ξ)dξ =

∫ ρ

1

(V (r) − V (1))dr

S(r)
≥
∫ ρ

1

V (r)dr

S(r)
− const.

Therefore, (6.9) implies that v(ρ)→∞ as ρ→∞, and M is stochastically complete
by Corollary 6.6.

7. Parabolicity and volume growth

As follows from Theorem 5.1, in order to prove that a manifold is parabolic, it
suffices to show that capacity of some precompact open set is 0. This motivates us
to consider the following estimates of capacity.

7.1. Upper bounds of capacity.

Theorem 7.1. Assume that a ball B(x,R) on a Riemannian manifold M is pre-
compact. Then, for any 0 < r < R, the following estimates of capacity are satisfied:

cap (B(x, r), B(x,R))
−1 ≥ 1

2

∫ R

r

(ρ− r)dρ
V (x, ρ)− V (x, r)

(7.1)

and

cap (B(x, r), B(x,R))−1 ≥
∫ R

r

dρ

V ′(x, ρ)
. (7.2)

Corollary 7.2. Assume that M is geodesically complete. Then, for any r > 0 and
x ∈M ,

cap (B(x, r))
−1 ≥ 1

2

∫ ∞

r

(ρ− r)dρ
V (x, ρ)− V (x, r)
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and

cap (B(x, r))
−1 ≥

∫ ∞

r

dρ

V ′(x, ρ)
. (7.3)

Remark. The geodesic completeness of M is required here to ensure that all balls
are precompact sets.

The estimate (7.2) is contained in [134, section 2.2.2, Lemma 1], in the context
of a general notion of capacities in Rd. For Riemannian manifolds, it was proved
in [71, Theorem 1]. The estimate (7.1) was proved by Sturm [174]. A very similar
inequality appears also in [153].

Inequality (7.2) is sharp in the sense that it becomes an equality if M is a model
manifold and x is its pole. Inequality (7.1) is sharp in the sense that the factor 1

2
cannot be increased (see [174, p.77]).

The estimates of capacity can be generalized in the following way. Let v(x) be
an exhaustion function on M , i.e. a continuous function on M such that all level
sets {x ∈M : v(x) < r} are precompact. The latter is equivalent to

v(x)→ +∞ as x→∞ ,

where x→∞ means that x is leaving any compact.
Assume that v(x) is locally Lipschitz, and let Γ(x) be a continuous function on

M satisfying the inequality

|∇v(x)|2 ≤ Γ(x).

Let us set Br = {x ∈M : v(x) < r} and

W (r) :=

∫

Br

Γ(x)dµ,

which is an analogue of the volume function. Then, for all r < R,

cap (Br, BR)
−1 ≥ 1

2

∫ R

r

(ρ− r)dρ
W (ρ)−W (r)

(7.4)

and

cap (Br, BR)
−1 ≥

∫ R

r

dρ

W ′(ρ)
. (7.5)

If M is geodesically complete, then the distance function is an exhaustion func-
tion so that we may take v (·) = dist(x, ·). By letting Γ ≡ 1, we obtain (7.1) and
(7.2) from (7.4) and (7.5), respectively.

To get another example, let us set Γ = |∇v|2 assuming that v is smooth enough.
By the co-area formula, we have

W ′(ρ) =

∫

∂Bρ

|∇v| dµ′ = flux
∂Bρ

v ,

for almost all ρ, and (7.5) yields

cap (Br, BR)
−1 ≥

R∫

r

dρ

flux
∂Bρ

v
. (7.6)

The estimate (7.6) was obtained in [71, Lemma 1].
Inequalities (7.4) and (7.5) can be proved in the same way as (7.1) and (7.2)

below.
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Proof of inequality (7.1). By the definition (4.12) of capacity, we have

cap (B(x, r), B(x,R)) = inf
u

∫

B(x,R)

|∇u|2 dµ

where inf is taken over all test functions u ∈ L(B(x, r), B(x,R)). To prove (7.1),
it suffices to produce, for any ε > 0, a test function u such that

∫

B(x,R)

|∇u|2 dµ ≤ 2

(∫ R

r

s− r
V (s)− V (r) + ε

ds

)−1

(7.7)

where we denote for simplicity V (s) := V (x, s).
Let f be a Lipschitz function on [0,∞) such that

f |[0,r) = 1 and f |[R,∞) = 0. (7.8)

Let us set u := f(ρ(·)) where ρ(·) := dist(x, ·). Since |∇ρ| ≤ 1, we have

|∇u| = |f ′(ρ)∇ρ| ≤ |f ′(ρ)|
and

∫

B(x,R)

|∇u|2 dµ ≤
∫

B(x,R)

|f ′(ρ)|2 dµ =

∫ R

r

|f ′(ρ)|2 dV (ρ). (7.9)

Let us choose f to satisfy on [r,R] the equation

f ′(ρ) = −a ρ− r
V (ρ)− V (r) + ε

(7.10)

and the boundary conditions (7.8), whence

f(ρ) = a

∫ R

ρ

s− r
V (s)− V (r) + ε

ds ,

where

a =

(∫ R

r

s− r
V (s)− V (r) + ε

ds

)−1

.

Thus, by (7.9) and (7.10),

∫

B(x,R)

|∇u|2 dµ ≤ a2

∫ R

r

(
ρ− r

V (ρ)− V (r) + ε

)2

dV (ρ)

= −a2

∫ R

r

(ρ− r)2d
(

1

V (ρ)− V (r) + ε

)

= − a2(ρ− r)2
V (ρ)− V (r) + ε

∣∣∣∣
R

r

+ 2a2

∫ R

r

ρ− r
V (ρ)− V (r) + ε

dρ

≤ 2a2a−1 = 2a,

whence (7.7) follows.
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Proof of inequality (7.2). It follows the same lines as above but with a different
function f. Let us replace (7.10) by

f ′(ρ) = − a

V ′(ρ) + ε
, (7.11)

whence

f(ρ) = a

∫ R

ρ

ds

V ′(s) + ε
,

and

a =

(∫ R

r

ds

V ′(s) + ε

)−1

.

Then, by (7.9) and (7.11),
∫

B(x,R)

|∇u|2 ≤ a2

∫ R

r

V ′(ρ)dρ

(V ′(ρ) + ε)2
≤ a2

∫ R

r

dρ

V ′(ρ) + ε
= a ,

whence (7.2) follows as ε ↓ 0.

7.2. Sufficient conditions for parabolicity. The main result of this section is
the following theorem.

Theorem 7.3. Let M be geodesically complete. If, for some point x ∈M ,

∞∫
ρdρ

V (x, ρ)
=∞, (7.12)

then M is parabolic.

This theorem was proved by Karp [108], Varopoulos [184] and by the author [70],
[71].

Example 7.1. The hypothesis (7.12) is satisfied if, for example,

V (x, ρ) ≤ Cρ2

or

V (x, ρ) ≤ Cρ2 log ρ,

for some x and all ρ large enough.

Proof. By Corollary 7.2 and by (7.12), we have

cap (B(x, r)) ≤ 2

(∫ ∞

r

(ρ− r)dρ
V (x, ρ)− V (x, r)

)−1

= 0,

for any ball B(x, r). Therefore, M is parabolic by Theorem 5.1(6).

Corollary 7.4. (Cheng - Yau [28]) Let M be geodesically complete. If, for some
point x ∈M and for a sequence Rk →∞,

V (x,Rk) ≤ constR2
k, (7.13)

then M is parabolic.
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Proof. Indeed, condition (7.13) implies that

∞∫
ρdρ

V (x, ρ)
≥

∞∑

k=2

Rk∫

Rk−1

ρdρ

V (x, ρ)

≥ const

∞∑

k=2

1

R2
k

Rk∫

Rk−1

ρdρ

= const
∞∑

k=2

R2
k −R2

k−1

R2
k

=∞, (7.14)

where divergence of the series (7.14) follows from the fact that
∞∏
k=2

R2
k−1

R2
k

= 0. The

rest follows by Theorem 7.3.

Denote S(x, ρ) = µ′(∂B(x, ρ)); that is, S(x, ρ) is the boundary area of the geo-
desic sphere ∂B(x, ρ). Observe that S(x, ρ) = V ′(x, ρ), for almost all ρ. By using
the capacity estimate (7.3), we obtain the following result.

Theorem 7.5. Let M be geodesically complete and, for some x ∈M ,
∫ ∞ dρ

S(x, ρ)
=∞. (7.15)

Then M is parabolic.

Theorem 7.5 was proved by Ahlfors [1] and Nevanlinna [149] for Riemann sur-
faces, by using the conformal mapping argument. For Riemannian manifolds, it
was proved by Lyons and Sullivan [132] and by the author [70], [71].

For a model manifold, (7.15) is also a necessary condition for parabolicity, by
Proposition 3.1. We will see in the examples below that, in general, (7.15) is not
necessary for parabolicity. However, it is possible to modify (7.15) to make it a
necessary condition, too. Given an exhaustion function v, let us denote Br =
{x ∈M : v(x) < r} . If v is smooth, then the set ∂Br = {x : v(x) = r} is a smooth
hypersurface for almost all r.

Theorem 7.6. A manifold M is parabolic if and only if there is a smooth exhaus-
tion function v on M such that

∫ ∞ dr

flux
∂Br

v
=∞. (7.16)

For example, if v(·) = dist(x, ·) then flux
∂Br

v ≤ S(x, r) and Theorem 7.5 follows

from Theorem 7.6.

Proof. If (7.16) holds then, by (7.6), cap(Br) = 0 and M is parabolic, by Theorem
5.1(6). Note that in contrast to Theorem 7.5, we do not need here that M is
geodesically complete because the sets Br are automatically precompact, by the
definition of an exhaustion function.

Assume now that M is parabolic. Then there is an exhaustion sequence of
precompact open sets {Ek} such that

cap(Ek, Ek+1) ≤ 1. (7.17)
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Figure 17. Function v

Indeed, if {Ek} is some exhaustion sequence, then, for any k,

cap(Ek, El)→ 0 as l→∞ .

Choose l big enough and rename El by Ek+1, skipping all Ei with k < i < l.
Let uk be a capacity potential of the capacitor (Ek, Ek+1), k ≥ 1, and let us set

v(x) =

{
k + 1− uk(x), if x ∈ Ek+1 \ Ek ,
1, if x ∈ E1 .

The function v is continuous on ∂Ek and harmonic otherwise (see Figure 17). If
r ∈ [k, k + 1), then, by (4.16) and (7.17),

flux
∂Br

v = −flux
∂Ek

uk = cap(Ek, Ek+1) ≤ 1,

whence (7.16) follows.
Strictly speaking, the function v is not smooth. However, it is possible to smooth

v out near ∂Ek without violating (7.16).

Another proof can be obtained by Theorem 5.5, which claims that, on a para-
bolic manifold, there exists an exhaustion function v which is harmonic outside a
compact. Therefore, for r large enough, flux

∂Br

v does not depend on r, whence we

obtain (7.16).
If v is an exhaustion function which is subharmonic outside a compact, then

flux
∂Br

v is decreasing in r, which again implies (7.16). Thus, we have the following

Corollary 7.7. If there exists an exhaustion function v(x) on M , which is subhar-
monic outside a compact, then M is parabolic.

Note that the word “subharmonic” can be replaced here by “superharmonic”,
by Corollary 5.4, but the proof of the latter was entirely different!

Let us discuss to what extent the hypotheses (7.12) and (7.15) of Theorems 7.3
and 7.5 are sharp. If the manifold M has a non-negative Ricci curvature, then the
condition (7.12) is also necessary for, and thus is equivalent to, parabolicity. This
was proved by Varopoulos [181] and also follows from the Green function estimate
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Figure 18. Function V (r) satisfying (7.19) and (7.21)

of Li and Yau [126],

C−1

∞∫

r

ρdρ

V (x, ρ)
≤ G(x, y) ≤ C

∞∫

r

ρdρ

V (x, ρ)
, (7.18)

where r = dist(x, y) and C > 0. Indeed, the condition (7.12) is equivalent to
G ≡ ∞, which in turn is equivalent to the parabolicity of M . Estimates (7.18)
were also obtained by Varopoulos [182] for manifolds with non-negative sectional
curvature.

In Section 11, we will see other situations when (7.12) is equivalent to parabol-
icity. However, in general, neither (7.12) nor (7.15) is necessary for parabolicity as
is shown in the following examples.

Example 7.2. Let M be a geodesically complete and non-compact model manifold
Mσ. By Proposition 3.1, the parabolicity of Mσ is equivalent

∫ ∞ dr

V ′(r)
=∞ (7.19)

where V (r) = V (o, r). Let us compare (7.19) with the hypothesis
∫ ∞ rdr

V (r)
=∞. (7.20)

If (7.20) holds, then Mσ is parabolic by Theorem 7.3, whence (7.19) follows. How-
ever, (7.19) does not necessarily imply (7.20). The manifold Mσ with such volume
function is parabolic, but (7.20) and (7.12) fail to hold.

Let us construct a volume function V (r) satisfying (7.19) and
∫ ∞ rdr

V (r)
<∞. (7.21)

Indeed, start with any V (r) satisfying (7.21) and diminish it on a rare set of infinite
measure so that V ′ becomes nearly 0 on this set (see Figure 18). The integral (7.21)
does not change much, whereas the integral in (7.19) may become divergent.

This example shows also that a parabolic manifold may have arbitrarily fast
volume growth. Another example for that can also be found in [184, p.826].
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Mf Mg

Figure 19. Connected sum of Mf and Mg

If V (r) is convex, then (7.21) does imply, and thus is equivalent to,
∫ ∞ dr

V ′(r)
<∞,

because V ′(r) ≥ V (r)−V (0)
r . In particular, for a model manifold with a convex

volume function V (r), the condition (7.21) is equivalent to non-parabolicity.

Example 7.3. In general, the condition (7.15) is not necessary for parabolicity ei-
ther. To see that, let us consider a couple of two-dimensional model manifolds Mf

and Mg which are parabolic, that is
∫ ∞ dr

f(r)
=∞ and

∫ ∞ dr

g(r)
=∞. (7.22)

Let M be a connected sum of Mf and Mg (see Figure 19). By Corollary 5.2, an
exterior of a big enough compact in Mf (and in Mg) is not massive. Therefore, an
exterior of a big enough compact in M , being a disjoint union of such sets in Mf

and Mg, is not massive either, and M is parabolic.
On the other hand, the boundary area function S(x, r) on M is equivalent to

f(r) + g(r) as r → ∞. It is possible to find f and g satisfying, along with (7.22),
also the condition

∫ ∞ dr

f(r) + g(r)
<∞. (7.23)

Indeed, one can construct f and g so that f(r)+g(r) = r2, for large r, but functions
f(r) and g(r) may be chosen to stay nearly constant on the intervening intervals
(2k, 2k + 1) and (2k + 1, 2k + 2), respectively, which makes the integrals in (7.22)
divergent.

Therefore, we have
∫ ∞ dr

S(x, r)
<∞, (7.24)

but M is parabolic.

8. Transience and isoperimetric inequalities

In this section, we obtain lower bounds of capacity and apply them to produce
criteria of non-parabolicity.
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Figure 20. Function ψ and sets Et, St

Theorem 8.1. Let Ω ⊂ M be a precompact open set, and K ⊂ Ω be a compact
set. Assume that for any region E with a smooth boundary, such that K ⊂ E ⊂ Ω,
the inequality

µ′ (∂E) ≥ f (µ(E)) (8.1)

holds with a positive increasing function f(v). Then the following estimate is true:

cap (K,Ω)−1 ≤
∫ |Ω|

|K|

dv

f2(v)
. (8.2)

The estimate (8.2) was proved by Maz’ya [134, section 2.2.3] for an even more
general notion of capacity in Rd. For Riemannian manifolds, it was proved by the
author [70], [71]. The inequality (8.2) is sharp in the sense that it becomes an
equality if K and Ω are concentric balls in Rd.

Proof. Let φ ∈ D(K,Ω) where the class D(K,Ω) is defined by (4.17), and let us set
ψ = 1 − φ. Since the Dirichlet integrals of φ and ψ are equal, it suffices to prove
that

∫

Ω

|∇ψ|2 dµ ≥
{∫ |Ω|

|K|

dv

f2(v)

}−1

. (8.3)

For any t ∈ (0, 1), we denote (see Figure 20)

St := {x ∈ Ω : ψ(x) = t} and Et := {x ∈ Ω : ψ(x) < t} .

Since ψ ∈ C∞, the Sard theorem implies that the set St is a smooth hypersurface
for almost all t ∈ (0, 1).

The coarea formula says that, for any continuous function u,

∫

Ω\K

u dµ =

1∫

0






∫

St

u |∇ψ|−1
dµ′




 dt. (8.4)
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We have by (8.4) with u = |∇ψ|2 and by the Cauchy-Schwarz inequality

∫

Ω

|∇ψ|2 dµ =

1∫

0






∫

St

|∇ψ| dµ′




 dt

≥
1∫

0

|St|2∫
St
|∇ψ|−1

dµ′
dt . (8.5)

Again, by (8.4) with u = 1 (and with Et instead of Ω )

v(t) := |Et| = |K|+
∫

Et\K

dµ = |K|+
t∫

0






∫

Sθ

|∇ψ|−1
dµ′




 dθ,

whence for almost all t ∈ (0, 1)

v′(t) =

∫

St

|∇ψ|−1
dµ′ . (8.6)

By the isoperimetric inequality (8.1), we have for almost all t ∈ (0, 1)

|St| ≥ f(|Et|) = f(v(t)).

Therefore, we obtain from (8.5) and (8.6)

∫

Ω

|∇ψ|2 dµ ≥
1∫

0

f2(v(t))

v′(t)
dt

≥






1∫

0

v′(t)dt

f2(v(t))






−1

≥






v(1)∫

v(0)

dv

f2(v)






−1

≥






|Ω|∫

|K|

dv

f2(v)






−1

,

whence (8.3).

Theorem 8.2. Assume that, for any precompact region Ω ⊂ M with a smooth
boundary, the following inequality holds

|∂Ω| ≥ f (|Ω|) , (8.7)

where f is a positive increasing function on (0,∞) such that

∫ ∞ dv

f2(v)
<∞. (8.8)

Then M is non-parabolic.

This criterion was proved by Fernández [61] and by the author [70], [71]. In Rd,

inequality (8.7) holds with f(v) = cdv
d−1

d . For such a function, (8.8) is satisfied if
and only if d > 2.
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Proof. The capacity estimate (8.2) and condition (8.8) imply that for any compact
K with positive measure,

cap (K) ≥






|M|∫

|K|

dv

f2(v)






−1

≥






∞∫

|K|

dv

f2(v)






−1

> 0,

whence by Theorem 5.1, M is non-parabolic.

Another proof using the heat kernel argument will follow from Theorem 10.2 be-
low. However, the capacity argument has its own value since it may be applied
to other settings where the heat kernel is not available. For example, there is a
generalization of the parabolicity test (7.12) for the non-linear elliptic equation

div
(
|∇u|p−2∇u

)
= 0 which is the Euler-Lagrange equation for the functional

∫
|∇u|p; see [110], [95], [96], [39].
The estimates of capacities given by Theorems 7.1 and 8.1 can also be used to

produce pointwise estimates of the Green function G(x, y). Indeed, for any precom-
pact open set Ω containing y we have the inequalities

sup
x∈∂Ω

G(x, y) ≥ cap (Ω)
−1 ≥ inf

x∈∂Ω
G(x, y). (8.9)

If one knows a Harnack inequality to relate supx∈∂ΩG(x, y) and infx∈∂ΩG(x, y),
then one can get pointwise estimates of G(x, y). See for details [127], [71]. See
[23] and [20] for estimates of the volume of level sets of G in connection with
isoperimetric inequalities.

9. Non-explosion and volume growth

We prove here the following test for non-explosion.

Theorem 9.1. Let M be a geodesically complete manifold. If, for some point
x0 ∈M ,

∫ ∞ rdr

logV (x0, r)
=∞, (9.1)

then M is stochastically complete.

Condition (9.1) holds, in particular, if

V (x0, r) ≤ exp
(
Cr2

)
(9.2)

for all r large enough or even if V (x0, rk) ≤ exp
(
Cr2k

)
, for a sequence rk → ∞ as

k →∞.
Theorem 9.1 was proved by the author [72]. Other related results (all for geodesi-

cally complete manifolds) and references are as follows.

• M.Gaffney [66] proved that logV (x0, r) = o(r), r → ∞, implies stochastic
completeness.
• S.-T.Yau [193] proved that any manifold with Ricci curvature bounded below

is stochastically complete.
• K.Ichihara [100] and P.Hsu [97] extended the above result of Yau to allow

the Ricci curvature to grow in the negative direction in a certain way (see
Corollary 15.4(a) below).
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• Karp and Li [109] proved that (9.2) is sufficient for stochastic complete-
ness. This fact was proved also by different methods by E.B.Davies [44] and
M.Takeda [177].
• Theorem 9.1 was extended by T.Sturm [173] to a general setting of Dirichlet

spaces.
• See Section 15 for conditions for stochastic completeness in terms of the cur-

vature.

Proof of Theorem 9.1. By Theorem 6.2, it suffices to verify that the only bounded
solution to the Cauchy problem

{
∂
∂tu− 1

2∆u = 0
u|t=0+ = 0

(9.3)

in M × (0, T ) (for some T > 0) is u ≡ 0. The function u(x, t) is assumed to be in
C2 (M × (0, T )) and the initial data is understood in the sense of L1

loc(M,µ).
The assertion will follow from the following even more general fact.

Theorem 9.2. Let M be a geodesically complete manifold, and let u(x, t) be a
bounded solution to the Cauchy problem (9.3) in M × (0, T ), with the initial condi-
tion in the sense of L2

loc(M,µ). Assume that, for some x0 ∈M and for all R large
enough,

∫ T

0

∫

B(x0,R)

u2(x, t) dµ(x) dt ≤ exp (f(R)) , (9.4)

where f(r) is a positive monotone increasing function on (0,+∞) such that
∫ ∞ rdr

f(r)
=∞. (9.5)

Then u ≡ 0 in M × (0, T ).

Before the proof of Theorem 9.2, let us show why it implies Theorem 9.1. Let u
be a solution in M × (0,∞) of the Cauchy problem (9.3), such that sup |u| ≤ C. In
particular, u satisfies the initial condition not only in the sense of L1

loc(M,µ) but
also in the sense of L2

loc(M,µ). Assume that the hypothesis (9.1) holds. Then we
have

∫ T

0

∫

B(x0,R)

u2(x, t)dµ(x) ≤ C2TV (x0, R).

Denote

f(r) := log
(
C2TV (x0, r)

)

so that the hypothesis (9.4) is satisfied. Obviously, (9.5) is implied by (9.1). Hence,
we can apply Theorem 9.2 which yields u ≡ 0.

Theorem 9.2 provides a uniqueness class (9.4) for the Cauchy problem. It can
be regarded as a generalization of the classical uniqueness classes of Tichonov [178]
and Täcklind [176] for the heat equation in Rd. Indeed if, for example, the function
u(x, t) is a solution to the Cauchy problem (9.3) in Rd and belongs to the Tichonov
class:

|u(x, t)| ≤ C exp
{
C |x|2

}
,
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Figure 21. Sequences τk, δk and BRk

then the conditions (9.4) and (9.5) are satisfied with f(r) = (C + ε)r2, and we
conclude, by Theorem 9.2, that u ≡ 0.

Similar integral uniqueness classes for parabolic equations in unbounded domains
in Rd were introduced by Oleinik and Radkevich [154] and by Gushchin [91]. See
also [114], [143], [101] for the results on uniqueness for positive solutions .

Proof of Theorem 9.2. Given a large enough R > 0 and τ ∈ (0, T ), we will prove
that for any δ ∈ (0, τ ] such that

δ ≤ R2

cf(2R)
, (9.6)

the following inequality holds:
∫

BR

u2(x, τ)dµ(x) ≤
∫

B2R

u2(x, τ − δ)dµ(x) +
c

R2
, (9.7)

where c > 0 is a (large) absolute constant. Suppose that we have proved (9.7)
already; let us show how to derive u ≡ 0. Fix some (large) R > 0 and τ ∈ (0, T ).
We define the sequence of radii Rk = 2kR and the sequence {δk} , k = 0, 1, 2, ... to
satisfy (9.6) with R = Rk, that is,

0 < δk ≤
R2
k+1

4cf(Rk+1)
. (9.8)

Let us define also the decreasing sequence {τk} inductively: τ0 = τ and τk+1 =
τk − δk (see Figure 21). The inequality (9.7) yields

∫

BRk

u2(x, τk)dµ(x) ≤
∫

BRk+1

u2(x, τk+1)dµ(x) +
c

R2
k

. (9.9)

We would like the sequence {τk} to reach 0 for some finite k. Suppose that
τK+1 = 0; then

∫

BRK

u2(x, τK+1)dµ(x) = 0,
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Figure 22. Function η(x)

and by iterating (9.9) up to k = K, we get

∫

BR

u2(x, τ)dµ(x) ≤
K∑

k=0

c

R2
k

<
2c

R2
.

By letting R → ∞, we conclude u(·, τ) ≡ 0. If we manage to prove this for any
τ ∈ (0, T ), then we will conclude u ≡ 0. Thus, we have to verify that, for any
τ ∈ (0, T ), the sequence {τk} can reach 0 in a finite number of steps. In other
words, this means that, for some K,

τ = δ0 + δ1 + δ2 + ...+ δK . (9.10)

The only restriction on δk is the inequality (9.8), which imposes the upper bound
on δk. However, the hypothesis (9.5) implies that

∑

k

R2
k

f(Rk)
=∞.

Therefore, the sequence {δk} can be chosen to satisfy simultaneously (9.8) and
∑

k

δk =∞.

By diminishing some of δk, we can achieve (9.10) for any positive τ .
Now we turn to the proof of (9.7).8 Let ρ(x) be a Lipschitz function on M such

that |∇ρ| ≤ 1. For example, ρ can be a distance function from a subset of M.
Consider the function

ξ(x, t) :=
ρ2(x)

2(t− s)
defined for all x ∈ M and t 6= s (where s is a fixed number). It follows from
|∇ρ| ≤ 1 that ξ satisfies the inequality

∂

∂t
ξ +

1

2
|∇ξ|2 ≤ 0. (9.11)

Let us denote for simplicity BR := B(x0, R). Let η be a Lipschitz function such
that η(x) = 0 outside B2R and η = 1 in B 3

2R
(see Figure 22).

8A different proof can be found in [91].
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We multiply the equation (9.3) by uη2eξ and integrate over the cylinder C :=
B2R × [τ − δ, τ ] for some δ ∈ (0, τ) :

2

∫

C

∂u

∂t
uη2eξdµdt =

∫

C

∆u · uη2eξdµdt. (9.12)

Next we integrate by parts in both sides of (9.12). The left hand side is equal to

τ∫

τ−δ

∫

B2R

∂
(
u2
)

∂τ
η2eξdµdt =

∫

B2R

u2η2eξdµ

∣∣∣∣∣∣

τ

τ−δ

−
∫

C

u2η2 ∂ξ

∂t
eξdµdt.

The spatial integral on the right hand side of (9.12) is estimated as (we suppress
dµ for simplicity)

∫

B2R

∆u · uη2eξ = −
∫

B2R

|∇u|2 η2eξ − 2

∫

B2R

∇u∇ηuηeξ −
∫

B2R

∇u∇ξuη2eξ

≤ −
∫

B2R

|∇u|2 η2eξ + 2

∫

B2R

(
1

4
|∇u|2 η2 + |∇η|2 u2

)
eξ

+

∫

B2R

(
1

2
|∇u|2 +

1

2
|∇ξ|2 u2

)
η2eξ

= 2

∫

B2R

|∇η|2 u2eξ +
1

2

∫

B2R

|∇ξ|2 u2η2eξ.

Therefore, we obtain from (9.12):

∫

B2R

u2η2eξdµ

∣∣∣∣∣∣

τ

τ−δ

≤
∫

C

{
η2 ∂ξ

∂t
+ 2 |∇η|2 +

1

2
|∇ξ|2 η2

}
u2eξdµdt. (9.13)

Due to inequality (9.11), the first and the third terms of the right hand side of
(9.13) cancel, and we obtain

∫

B2R

u2η2eξdµ

∣∣∣∣∣∣

τ

τ−δ

≤ 2

∫

C

|∇η|2 u2eξdµdt. (9.14)

The function η can be chosen so that η ≤ 1 and |∇η| ≤ C
R for some constant

C independent on R (geodesic completeness is required for existence of such η).
Taking into account that η = 1 on B 3

2R
, we can rewrite (9.14) as

∫

BR

u2(x, τ)eξ(x,τ)dµ(x) ≤
∫

B2R

u2(x, τ − δ)eξ(x,τ−δ)dµ(x)

+
2C2

R2

τ∫

τ−δ

∫

B2R\B3R/2

u2eξdµdt.

(9.15)
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Now we specify ρ(x) and ξ(x, t). Let us choose ρ(x) to be the distance function
from the ball BR; i.e.

ρ(x) :=

{
0, if x ∈ BR

dist(x, x0)−R, otherwise.

Also, let s = τ + δ so that for t ∈ (τ − δ, τ)

ξ(x, t) = − ρ2(x)

2(τ + δ − t) ≤ 0.

In particular, we can omit the factor eξ on the left hand side of (9.15) because
ξ = 0 when x ∈ BR, and omit the factor eξ in the first integral on the right hand
side of (9.15) for ξ ≤ 0. Since, for x ∈ B2R\B3R/2,

ρ(x) ≥ 1

2
R

and, for t ∈ (τ − δ, τ),
s− t = τ + δ − t ≤ 2δ,

we obtain for those x and t

ξ(x, t) ≤ − 1

16

R2

δ
.

We derive from (9.15)
∫

BR

u2(x, τ)dµ(x) ≤
∫

B2R

u2(x, τ − δ)dµ(x) +
2C2

R2

∫

C

u2 exp

{
− 1

16

R2

δ

}
dµdt.

Finally, we apply the hypothesis (9.4) which implies
∫

C

u2(x, t)dµ(x)dt ≤ exp (f(2R))

and, hence,
∫

BR

u2(x, τ)dµ(x) ≤
∫

B2R

u2(x, τ − δ)dµ(x) +
2C2

R2
exp

{
− 1

16

R2

δ
+ f(2R)

}
.

Now we choose δ so small that

1

16

R2

δ
≥ f(2R),

or

δ ≤ R2

16f(2R)
. (9.16)

For such δ, we have
∫

BR

u2(x, τ)dµ(x) ≤
∫

B2R

u2(x, τ − δ)dµ(x) +
2C2

R2
(9.17)

which coincides with (9.7).
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Xt

r

KrKrK
x

Figure 23. The event that the Brownian motion hits ∂Kr before
the time t

In the rest of this section, we briefly discuss another approach for proving sto-
chastic completeness. Let us assume that M is geodesically complete, and that for
some x0 and for all large enough r:

V (x0, r) ≤ exp
(
Cr2

)
. (9.18)

Takeda’s approach [177] is based on the following remarkable inequality which
was established in [177] and improved by Lyons [130]. For any compact set K ⊂M ,
we take Kr to be the open r-neighborhood of K. We denote by ψr(x, t) the Px-
probability that the process Xt hits M\Kr by time t (see Figure 23); i.e.

ψr(x, t) := Px {∃s ∈ [0, t] : Xs /∈ Kr} .

Theorem 9.3. (Takeda [177], Lyons [130]) Let M be geodesically complete. Then,
for any compact K and all t > 0, r > 0,

∫

K

ψr(x, t)dµ(x) ≤ 16 |Kr|
∫ ∞

r

1

(2πt)
1/2

exp

{
−ξ

2

2t

}
dξ. (9.19)

Remark. A similar estimate of the L2-norm of ψr can be found in [81].

Inequality (9.19) implies easily
∫

K

ψr(x, t)dµ(x) ≤ 16 |Kr| exp

{
−r

2

2t

}

and

inf
x∈K

ψr(x, t) ≤ 16
|Kr|
|K| exp

{
−r

2

2t

}
. (9.20)

Given (9.18), we see that, for r large enough, |Kr| ≤ exp
{
C′r2

}
, which together

with (9.20) implies that, for t < t0 := (2C′)−1
,

inf
x∈K

ψr(x, t) −→
r→∞

0. (9.21)

Intuitively, this is enough to conclude stochastic completeness. Indeed, (9.21) means
that, for some point x ∈ K, the Px-probability that Xt reaches the boundary ∂Kr

by time t is very small for large r. This leads us to believe that the Px-probability
that Xt escapes to ∞ in finite time should be 0.
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To make this argument rigorous, consider the heat kernel pKr(t, x, y) of Kr with
the Dirichlet condition on the boundary ∂Kr. The integral

∫

Kr

pKr (t, x, y)dµ(y)

is equal to the Px-probability that Xt stays in Kr up to time t, without touching
the boundary ∂Kr. Therefore,

ψr(x, t) +

∫

Kr

pKr(t, x, y)dµ(y) = 1,

which yields together with (9.21) and p(t, x, y) ≥ pKr(t, x, y)

sup
x∈K

∫

M

p(t, x, y)dµ(y) = 1, ∀t ∈ (0, t0).

By Theorem 6.2(1a), M is stochastically complete.

10. Transience and λ1

The main result of this section is Theorem 10.2, which provides a non-parabolicity
test in terms of certain property of the eigenvalues of the Laplace operator.

10.1. The first eigenvalue. For any precompact open set Ω ⊂ M, let us denote
by λ1(Ω) the first Dirichlet eigenvalue of the Laplace operator in Ω; i.e. λ1(Ω) is
the smallest number λ for which the problem

{
∆u + λu = 0 in Ω
u|∂Ω = 0

has a non-zero (weak) solution. Another (equivalent) definition is the following:
λ1(Ω) is the bottom of the spectrum of the operator −∆ in L2(Ω, µ) with the
domain C∞

0 (Ω). The latter definition is independent of compactness of Ω, so it
applies for any region Ω. In particular, Ω may be the whole space M. Yet another
definition of λ1(Ω) is given by the variational principle:

λ1(Ω) = inf
φ∈C∞

0 (Ω)
φ 6≡0

∫
Ω |∇φ|

2
dµ∫

Ω
φ2dµ

. (10.1)

It is easy to show that λ1 (Ω) is non-negative, that it decreases when Ω increases,
and that λ1 (Ek) −→

k→∞
λ1(M) for any exhaustion sequence {Ek}.

Example 10.1. We have in Rd for any ball λ1(B(x,R)) = cd

R2 and λ1(R
d) = 0. For

the hyperbolic space λ1(H
d) = (d−1)2

4 .

A theorem of McKean [137] says that if M is a Cartan-Hadamard manifold9 of
dimension d and if its sectional curvature is bounded above by −k2, then

λ1(M) ≥ 1

4
(d− 1)2k2 (10.2)

(see also [192]).

9A manifold is called a Cartan-Hadamard manifold if it is geodesically complete, simply con-
nected and has non-positive sectional curvature. Both Rd and Hd are Cartan-Hadamard manifolds.
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A theorem of Brooks [18] gives the following relation between λ1(M) and volume
growth of a geodesically complete manifold. If we denote, for a fixed x,

ν := lim sup
r→∞

logV (x, r)

r
,

then10

λ1(M) ≤ ν2

4
. (10.3)

In particular, λ1(M) = 0 for manifolds with subexponential volume growth. For
the manifolds Rd and Hd, both inequalities (10.2), (10.3) become equalities.

There is a well-known universal connection between λ1(M) and the heat kernel
long time behaviour: for all x, y ∈M ,

lim
t→∞

log p(t, x, y)

t
= −1

2
λ1(M); (10.4)

see [118] and [25]. It implies immediately

Proposition 10.1. If λ1(M) > 0 then M is non-parabolic.

Indeed, by (10.4), the heat kernel p(t, x, y) decays in t exponentially, whence the
integral (5.1) is convergent and M is non-parabolic, by Theorem 5.1(5).

There are interesting applications of the discrete analogue of this fact in the
paper of Dodziuk [49].

Remark. In the view of Proposition 10.1, one may wonder if λ1(M) > 0 implies
a stronger property than non-parabolicity, for example, existence of a non-trivial
bounded harmonic function on M (cf. Theorem 5.1(3)). The answer is negative.
There is a beautiful example of Benjamini and Cao [11] of a geodesically complete
manifold which is simply connected, has λ1(M) > 0 and bounded geometry but
admits no non-constant bounded harmonic function.

See [119, Section 13] for a survey on the existence of a non-trivial bounded
harmonic function on Cartan-Hadamard manifolds.

10.2. Faber-Krahn inequality and transience. In this section, we prove a far-
reaching extension of Proposition 10.1. Given a positive decreasing function Λ(·) on
(0,∞), we say that a manifold M satisfies a Faber-Krahn inequality with function
Λ if, for any precompact region Ω ⊂M ,

λ1(Ω) ≥ Λ (|Ω|) . (10.5)

This is motivated by the Faber-Krahn theorem, which says that, for any bounded
region Ω ⊂ Rd,

λ1(Ω) ≥ cd |Ω|−
2
d (10.6)

(see, for example, [21, Chapter IV]), with the constant cd such that equality in
(10.6) is attained for balls. In other words, Rd satisfies a Faber-Krahn inequality

with function Λ(v) = cdv
− 2

d .
Other examples of Faber-Krahn inequalities will be given below. In general, a

Faber-Krahn inequality need not be as sharp as (10.6) - in particular, we will not
use the exact value of cd.

10In fact, Brooks’ theorem states that even λess(M) ≤ ν2

4
where λess(M) is the bottom of

the essential spectrum of −∆.
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Theorem 10.2. ([80, Theorem 2.3]) Let Λ(v) be a positive monotone decreasing
function on (0,∞) such that

∫ ∞ dv

v2Λ(v)
<∞. (10.7)

Assume that the Faber-Krahn inequality (10.5) holds for all precompact open sets
Ω ⊂M with large enough volume, say |Ω| ≥ v0. Then M is non-parabolic.

Remark. Formally, the hypotheses of Theorem (10.2) allow the manifold M to have
finite volume. In this case Λ(v) is extended for v > |M | by the constant Λ(|M |). The
condition (10.7) amounts in this case to λ1(M) > 0. However, the most interesting
case of Theorem 10.2 is when |M | =∞ so that (10.7) is a lower bound on the rate
of the decay of Λ at ∞. For example, if Λ(v) ∼ v−β for large v, then (10.7) is
satisfied if and only if β < 1.

Theorem 10.2 contains Proposition 10.1. Indeed, if λ1(M) > 0 then we take
Λ(v) ≡ λ1(M), which satisfies (10.7).

Theorem 10.2 contains also Theorem 8.2, at least if f(v)
v is decreasing. Indeed,

under the hypothesis of Theorem 8.2, we have, by Cheeger’s inequality [26],

λ1(Ω) ≥ 1

4

(
inf

D⊂⊂Ω

|∂D|
|D|

)2

≥ 1

4

(
inf

D⊂⊂Ω

f (|D|)
|D|

)2

≥ 1

4

(
f(|Ω|)
|Ω|

)2

. (10.8)

Therefore, M admits a Faber-Krahn inequality with the function

Λ(v) :=
1

4

(
f(v)

v

)2

. (10.9)

Obviously, hypothesis (8.8) coincides with (10.7), whence M is non-parabolic by
Theorem 10.2.

Proof of Theorem 10.2. Let us first observe that, by modifying Λ(v) for v < v0, we
can show that the Faber-Krahn inequality (10.5) holds for all Ω, not only for those
with large volume. Indeed, let us redefine Λ(v) := Λ(v0) for all v < v0. Clearly, the
hypothesis (10.7) does not change when we modify Λ on (0, v0). If |Ω| < v0 then
find a set Ω′ ⊃ Ω of the volume v0 and notice that, by the monotonicity of λ1(Ω),

λ1(Ω) ≥ λ1(Ω
′) ≥ Λ(Ω′) = Λ(v0) = Λ(|Ω|).

Henceforth, we can assume that the Faber-Krahn inequality (10.5) holds for all Ω.
The following line of reasoning was designed to obtain pointwise upper bounds

of the heat kernel via the Faber-Krahn function Λ (see [91] and [80]). Since the
non-parabolicity is equivalent to

∫ ∞
p(t, x, x)dt <∞,

one gets a sufficient condition for non-parabolicity by integrating the upper bound
of p(t, x, x).

We start with the following consequence of the Faber-Krahn inequality (10.5).

Lemma 10.3. ([91], [80]) For any precompact region Ω ⊂M , for any non-negative
function u ∈ C2(Ω) ∩ C(Ω) vanishing on ∂Ω, and for any δ ∈ (0, 1), we have

∫

Ω

|∇u|2 dµ ≥ (1− δ)JΛ

(
2I2

δJ

)
(10.10)
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where

I :=

∫

Ω

udµ and J :=

∫

Ω

u2dµ.

Proof. For any positive s, we obviously have

u2 ≤ (u− s)2+ + 2su.

By integrating this inequality over Ω and using the definitions of I and J , we obtain

J ≤
∫

{u>s}

(u− s)2dµ+ 2sI. (10.11)

Applying the variational property (10.1) of the first eigenvalue in the region Ωs :=
{u > s} (observe that u − s vanishes on the boundary ∂Ωs) and the Faber-Krahn
inequality (10.5) , we get

∫

Ωs

(u− s)2dµ ≤
∫
Ωs
|∇u|2 dµ

Λ (|Ωs|)
.

Clearly,

|Ωs| ≤
1

s

∫

Ω

u dµ =
I

s
,

whence we obtain, by substituting into (10.11),

J ≤
∫
Ωs
|∇u|2 dµ

Λ (s−1I)
+ 2sI

and ∫

Ωs

|∇u|2 dµ ≥ (J − 2sI) Λ
(
s−1I

)
.

Choosing s = δJ
2I , we conclude (10.10).

Next, let us fix a point y ∈ Ω, and introduce the notation

u(x, t) := pΩ(t, x, y) and J(t) :=

∫

Ω

u2(x, t)dµ = pΩ(2t, y, y).

Applying inequality (10.10) to the function u(·, t) and observing that

I =

∫

Ω

u(x, t) =

∫

Ω

pΩ(t, x, y)dµ ≤ 1,

we obtain ∫

Ω

|∇u|2 dµ ≥ (1− δ)J(t)Λ

(
2

δJ(t)

)
. (10.12)

The function u(x, t) satisfies in Ω × (0,∞) the heat equation ∂u
∂t = 1

2∆u. By
multiplying it by u and by integrating over Ω, we obtain

∂

∂t

∫

Ω

u2dµ =

∫

Ω

u∆u = −
∫

Ω

|∇u|2 ,

which yields, together with (10.12), the differential inequality in the spirit of Nash’s
argument [147]:

−∂J
∂t
≥ (1 − δ)J(t)Λ

(
2

δJ(t)

)
. (10.13)
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To verify that M is non-parabolic we have to find an upper bound for
∞∫

a

pΩ(2t, y, y)dt =

∞∫

a

J(t)dt,

which would be independent of Ω. By using (10.13) with δ = 1
2 , we have, for all

b > a > 0

b∫

a

J(t)dt =

J(a)∫

J(b)

(
− dt
dJ

)
JdJ ≤ 2

J(a)∫

J(b)

dJ

Λ
(

4
J

) = 8

4
J(b)∫

4
J(a)

dv

v2Λ(v)

where we have changed in the last integral v = 4
J . Therefore, we have, for any

a > 0,
∞∫

a

pΩ(2t, y, y)dt =

∞∫

a

J(t)dt ≤ 8

∞∫

4
J(a)

dv

v2Λ(v)
.

Now let Ω ↑M. We have pΩ → p and J(a) = pΩ(2a, y, y) ≤ p(2a, y, y). Hence,

∞∫

a

p(2t, y, y)dt ≤ 8

∞∫

4
p(2a,y,y)

dv

v2Λ(v)
<∞,

whence the non-parabolicity of M follows.

10.3. Heat kernel’s upper bound. One can resolve (10.13) to produce pointwise
upper bounds of the heat kernel.

Proposition 10.4. Let the Faber-Krahn inequality (10.5) hold on M . Fix x ∈M ,
t0 ≥ 0, δ ∈ (0, 1) and assume that a non-negative function Φ(t) on [t0,∞) satisfies
the following conditions:

Φ(t0) ≤
2

δp(2t0, x, x)
, (10.14)

∫ Φ(t)

Φ(t0)

dv

vΛ(v)
= (1 − δ)(t− t0). (10.15)

Then, for all t > t0,

p(2t, x, x) ≤ 2

δΦ(t)
. (10.16)

Remark. If we let t0 = 0 and Φ(t0) = 0, then (10.14) is automatically satisfied. In
order to have (10.15) one has to assume

∫

0

dv

vΛ(v)
<∞. (10.17)

If this is the case, then the function Φ(t) is defined by the following identity
∫ Φ(t)

0

dv

vΛ(v)
= (1− δ)t, (10.18)

and (10.16) holds for all x ∈M (see also [80, Theorem 2.1]).
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However, if (10.17) is not true, then t0 should be positive, and in order to obtain
an upper bound of the heat kernel p(2t, x, x) for t > t0, one should know a priori
an upper bound for p(2t0, x, x) (given by (10.14)).

Proof. Take some Ω containing x, denote

J(t) :=

∫

Ω

p2
Ω(x, y, t)dµ(y) = pΩ(2t, x, x)

and continue the previous argument as follows. Dividing (10.13) by the right-hand
side, integrating in t and changing variable v = 2

δJ(t) , we obtain, for all t > t0 > 0,

∫ 2
δJ(t)

2
δJ(t0)

dv

vΛ (v)
≥ (1− δ) (t− t0) . (10.19)

Hypothesis (10.14) implies

Φ(t0) ≤
2

δp(2t0, x, x)
≤ 2

δpΩ(2t0, x, x)
=

2

δJ(t0)
. (10.20)

Comparing (10.19) and (10.15) we obtain that, for all t > t0,

Φ(t) ≤ 2

δJ(t)
=

2

δpΩ(2t, x, x)
,

whence

pΩ(2t, x, x) ≤ 2

δΦ(t)
.

By letting Ω→M , we obtain (10.16).

Example 10.2. For the Euclidean Faber-Krahn function

Λ(v) = cv−2/d , (10.21)

one gets from (10.18) Φ(t) = const (ct)
2/d

and from (10.16)

p(t, x, x) ≤ const

td/2
, (10.22)

for all x ∈M and t > 0.
If the Faber-Krahn inequality with the function (10.21) holds only for large v,

then as was explained above, we extend Λ to all smaller v by a constant. We cannot
use (10.18) anymore because (10.17) is no longer true, but we can still use (10.15)
to obtain (10.22), for t large enough.

Example 10.3. Let

Λ(v) =
const

logα v
, (10.23)

for v large enough. Then (10.15) yields, for t large enough and some c > 0,

Φ(t) ∼ exp
{
ct

1
1+α

}

and

p(t, x, x) ≤ const exp
{
−ct 1

1+α

}
.
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Example 10.4. Let Λ(v) ≡ λ where λ is a positive constant. Inequality (10.10) can
then be replaced in the argument above by the much simpler

∫

Ω

|∇u|2 ≥ λJ ,

which leads to −J ′ ≥ λJ and eventually to

p(t, x, x) ≤ e− 1
2λ(t−t0)p(t0, x, x).

In particular, for t large enough,

p(t, x, x) ≤ const exp (−λt) .
There is a vast literature on upper bounds of the heat kernel: see for example

[19], [34], [42], [46], [79], [80], [82], [126], [186].

11. Transience and volume growth

In this section, we describe two situations when the non-parabolicity ofM follows
from (and thus is equivalent to) the condition

∫ ∞ rdr

V (x, r)
<∞. (11.1)

11.1. Relative Faber-Krahn inequality.

Theorem 11.1. Let M be geodesically complete and non-compact. Assume that
for any ball B(x,R) and any region Ω ⊂⊂ B(x,R),

λ1 (Ω) ≥ a

R2

(
V (x,R)

|Ω|

)ν
(11.2)

where a > 0 and ν > 0 are some constants. Then (11.1) is equivalent to the
non-parabolicity of M .

Inequality (11.2) may look strange at first sight. However, it is useful because,
for example, it holds on any complete manifold of non-negative Ricci curvature
as well as on any manifold which is quasi-isometric to one of non-negative Ricci
curvature (see [78, Theorems 2.1 and 1.4] and discussion in [79, p.254]). It is easy
to see that (11.2) is valid in Rd with ν = 2/d (cf. (10.6)). For manifolds of non-
negative Ricci curvature, the fact that (11.1) is equivalent to non-parabolicity was
proved by Varopoulos [181].

Given a complete manifold of non-negative Ricci curvature, there may exist no
positive function Λ with which the Faber-Krahn inequality (10.5) would be valid
on M . The inequality (11.2) was designed to overcome this difficulty. It basically
says that, in each ball B(x,R), there is still a Faber-Krahn inequality (10.5) with
the function

Λx,R(v) =
aV (x,R)ν

R2
v−ν . (11.3)

Proof of Theorem 11.1. The proof follows immediately from [80, Proposition 5.2],
which says in particular that (11.2) implies the following upper bound of the heat
kernel:

p(t, x, x) ≤ const

V (x,
√
t)
. (11.4)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



198 ALEXANDER GRIGOR’YAN

Therefore, if (11.1) is true, then
∫ ∞

p(t, x, x)dt ≤
∫ ∞ const

V (x,
√
t)
dt = const

∫ ∞ rdr

V (x, r)
<∞,

whence M is non-parabolic.
If (11.1) is not true, thenM is parabolic by Theorem 7.3. Alternatively, it follows

also from the lower bound

p(t, x, x) ≥ const

V (x,
√
t)
, (11.5)

which is implied by (11.2) - see [36, Corollary 7.3].

Remark. The relative Faber-Krahn inequality (11.2) implies also the doubling prop-
erty of the volume function V (x, r), that is, V (x, 2r) ≤ CV (x, r). Moreover, the
doubling property and the heat kernel upper bound (11.4) are equivalent to (11.2)
- see [80, Proposition 5.2], [37, Theorem 1.1].

Remark. The relative Faber-Krahn inequality (11.2) together with the hypothesis

V (x, r) ≥ const rn, ∀x ∈M, r > 0, (11.6)

implies a uniform Faber-Krahn inequality

λ1(Ω) ≥ const |Ω|−2/n
. (11.7)

Indeed, (11.2) implies the upper bound (11.4) of the heat kernel, which together
with (11.6) yields

p(t, x, y) ≤ const

tn/2
. (11.8)

Finally, (11.8) implies (11.7) by [80, Theorem 2.2] or [20, Theorem 0.7].

Remark. Let us fix a point x ∈ M and a radius R and interpret the ball B(x,R)
as a manifold N which admits a uniform Faber-Krahn inequality (10.5) with the
function (11.3); that is Λ(v) = cv−ν , where

c =
aV (x,R)ν

R2
.

Similarly to Example 10.2, we can apply Proposition 10.4 to the manifold N =
B(x,R) and obtain, for any y ∈ B(x,R),

pN (t, y, y) ≤ const

(ct)1/ν
=

const

V (x,R)

(
R2

t

)1/ν

.

By taking R =
√
t and y = x, we conclude

pB(x,
√
t)(t, x, x) ≤

const

V (x,
√
t)
.

This estimate is clearly weaker than (11.5). One needs a more complicated argu-
ment as in [80, Proposition 5.2] to obtain such an estimate for the global heat kernel
p(t, x, x).
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11.2. Covering manifolds. Let M and K be Riemannian manifolds, K being
compact. A covering map F : M → K is regular if there is a discrete group Γ
of isometries of M such that F (x) = F (y) if and only if the points x, y belong
to the same orbit of Γ. Then we have K ∼= M�Γ. The group Γ is called a deck
transformation group of f .

One says that M is a regular cover of K if a regular covering map F : M → K
exists. A particular case of a regular cover is a universal cover for which Γ = π1(K).

Theorem 11.2. (Varopoulos [183], [188, Section X.3]) Let M be a geodesically
complete non-compact manifold which is a regular cover of a compact manifold K.
Then the non-parabolicity of M is equivalent to (11.1), that is

∫ ∞ rdr

V (x, r)
<∞, (11.9)

for some/all x ∈M .

Proof. The original proof of Varopoulos was rather involved and used algebraic
structure theorems for groups. The present proof is much easier and is based on
the following powerful isoperimetric inequality of Coulhon and Saloff-Coste.

Theorem 11.3. (Coulhon and Saloff-Coste [38, Theorem 4]) Let a geodesically
complete non-compact manifold M be a regular cover of a compact manifold K.
Set for some fixed x0

V (r) := V (x0, r). (11.10)

Then, for some (large) constant C > 0, the manifold M satisfies the isoperimetric
inequality (8.7) with the function

f(v) :=
v

CV −1(Cv)
, (11.11)

where V −1 is the inverse function.

Proof of Theorem 11.2. We need to show that the hypothesis (11.9) implies the
non-parabolicity of M (the other direction is covered by Theorem 7.3). By Theo-
rem 8.2, M is non-parabolic provided (8.8) holds. The integral in (8.8) is finitely
proportional to

∫ ∞ [
V −1(v)

]2
dv

v2
=

∫ ∞ r2dV (r)

V 2(r)

= −
∫ ∞

r2d

(
1

V (r)

)

= − r2

V (r)

∣∣∣∣
∞

+ 2

∫ ∞ rdr

V (r)

which is finite by (11.9).

Corollary 11.4. (Varopoulos [187]) Let a geodesically complete non-compact man-
ifold M be a regular cover of a compact manifold K with a deck transformation group
Γ. Then M is parabolic if and only if Γ contains a finite index subgroup isomorphic
with Z or Z2.
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Proof. Let γ(n) be the volume growth function of Γ; i.e. γ(n) is a cardinal number of
a combinatorial ball of radius n in Γ (associated with some fixed set of generators).
Then the behaviour of γ(n) and V (x, n) as n→∞ is the same so that the condition
(11.9) is equivalent to

∞∑ n

γ(n)
<∞. (11.12)

It is a consequence of Theorems of Bass [9] and Gromov [89] that, for all n ≥ 1,
either γ(n) ≥ cn3(and M is non-parabolic) or γ(n) ≤ Cn2(and M is parabolic). In
the latter case, the group Γ contains a finite index subgroup isomorphic with Z or
Z2 (see [190, Corollary 3.18] for more details).

12. Transience on manifolds with a pole

In this section, we assume that M is a geodesically complete manifold with a
pole o and prove a non-parabolicity test for such a manifold. As was mentioned
in Section 3.1, the domain of the polar coordinates (ρ, θ) is M \ {o}, and the
Riemannian metric of M has the form (3.1), that is

ds2 = dρ2 +Aij (ρ, θ) dθidθj . (12.1)

We assume in the sequel that θ1, θ2, ..., θd−1 are the normal coordinates on Sd−1.
Denote Bρ = B(o, ρ). As (3.2) says, the area element on the geodesic sphere ∂Bρ
is
√

det ‖Aij‖ |dθ| where |·| denotes here the standard volume on Sd−1. Let us set

D(ρ, θ) :=
√

det ‖Aij‖. (12.2)

The following result is essentially due to Doyle [52], who derived it in the two-
dimensional case by using a nice heuristic argument. Here we provide a rigorous
proof for any dimension, following [84].

Theorem 12.1. (Doyle [52]) If
∫

Sd−1

|dθ|∫∞
1 D−1(ρ, θ)dρ

> 0, (12.3)

then the manifold M is non-parabolic.

The condition (12.3) can be rewritten as

meas

(
θ ∈ Sd−1 :

∫ ∞ dρ

D(ρ, θ)
<∞

)
> 0. (12.4)

For comparison, the sufficient condition for parabolicity (7.15) can also be expressed
via D as follows ∫ ∞ dρ∫

Sd−1 D(ρ, θ) |dθ| =∞. (12.5)

Let ω be a small region on Sd−1. To satisfy (12.4), it suffices that D(ρ, θ) is
growing in ρ fast enough in a cone

Nω := {(ρ, θ) : θ ∈ ω} ,
regardless of the values of D outside the cone. This reflects the nature of the
transience for which it suffices that the Brownian motion has some escape root to
infinity, such as the cone Nω (cf. Theorem 5.1(2) and Proposition 14.1(i)). On the
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Figure 24. Capacitor (Bωr , B
ω
R) in Nω

contrary, in order to satisfy (12.5), D(ρ, θ) should be growing relatively slowly in ρ
after being averaged in θ.

The function D has especially clear meaning if d = 2, in which case the metric
(12.1) is expressed directly via D as follows

ds2 = dρ2 +D2 (ρ, θ) dθ2 .

Proof of Theorem 12.1. It suffices to prove the following capacity estimate

cap(Br, BR) ≥
∫

Sd−1

|dθ|
∫ R
r
D−1(ρ, θ)dρ

, (12.6)

and the rest will follow by Theorem 5.1(6).
We start with the following two lemmas. Let ω be a region with a smooth

boundary on Sd−1. Consider the cone

Nω =
{
(ρ, θ) ∈ Rd : ρ > 0 and θ ∈ ω

}
,

which is diffeomorphic to R+ × ω and can be regarded as a manifold with the
boundary ∂Nω = R+ × ∂ω. Let us endow Nω with the Riemannian metric (12.1)
so that Nω can be regarded as a geodesic cone in M with the vertex o.

Denote by Bωr the “ball” {(ρ, θ) ∈ Nω : ρ < r} (see Figure 24).

Lemma 12.2. If, for ρ ∈ [r,R], the function D(ρ, θ) does not depend on θ, then,
on the manifold Nω,

cap(Bωr , B
ω
R) = |ω|

(∫ R

r

dρ

D(ρ)

)−1

. (12.7)

Proof. The capacity cap(Bωr , B
ω
R) can be computed by (4.22), similarly to the case

of a model manifold, if we take

S(ρ) := |ω|D(ρ), (12.8)
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which is the boundary area of ∂Bωρ . Indeed, by (3.4), the radial part of the Laplace
operator has in the region r < ρ < R the form

∆radial =
∂2

∂ρ
+
D′

D

∂

∂ρ
=
∂2

∂ρ
+
S′

S

∂

∂ρ
.

Therefore, the function u(ρ) defined by (4.20), that is,

u(ρ) = a

∫ R

ρ

dξ

S(ξ)
, (12.9)

is harmonic in BωR \ Bωr . In addition, u satisfies the Neumann boundary condition
∂u
∂ν

∣∣
∂Nω = 0 because u is a constant on the sphere ∂Bωρ that is orthogonal to ∂Nω.

Furthermore, if

a :=

(∫ R

r

dξ

S(ξ)

)−1

,

then we have also u(r) = 1, u(R) = 0.
Hence, u is the capacity potential of the capacitor (Bωr , B

ω
R), whence

cap(Bωr , B
ω
R) = − flux

∂Bω
r

u =

∫

∂Bω
r

a

S(r)
dµ′ = a = |ω|

(∫ R

r

dξ

D(ξ)

)−1

,

which was to be proved.

Lemma 12.3. Let D̂(ρ) be a smooth positive function on [r,R] such that

D(ρ, θ) ≥ D̂(ρ), for all ρ ∈ [r,R], θ ∈ ω. (12.10)

Then

cap(Bωr , B
ω
R) ≥ |ω|

(∫ R

r

dρ

D̂(ρ)

)−1

. (12.11)

Proof. Denote by Lω(r,R) the set of test functions for the capacitor (Bωr , B
ω
R) on

Nω, that is all locally Lipschitz functions φ on Nω such that 0 ≤ φ ≤ 1, φ|Bω
r

= 1
and φ = 0 outside BωR. We have

|∇φ|2 ≥
∣∣∣∣
∂φ

∂ρ

∣∣∣∣
2

and

dµ = D(ρ, θ) |dθ| dρ,
whence

cap(Bωr , B
ω
R) = inf

φ∈Lω(r,R)

∫

Bω
R

|∇φ|2 dµ

≥ inf
φ∈Lω(r,R)

∫

Bω
R

∣∣∣∣
∂φ

∂ρ

∣∣∣∣
2

dµ

= inf
φ∈Lω(r,R)

∫ R

r

∫

ω

∣∣∣∣
∂φ

∂ρ

∣∣∣∣
2

D(ρ, θ) |dθ| dρ

≥ inf
φ∈Lω(r,R)

∫ R

r

∫

ω

∣∣∣∣
∂φ

∂ρ

∣∣∣∣
2

D̂(ρ) |dθ| dρ. (12.12)
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Let us consider another metric on Nω, which is given by

ds2 = dρ2 + σ2(ρ)dθ2, (12.13)

where σ is a smooth positive function on (0,∞) such that σd−1(ρ) = D̂(ρ) for

ρ ∈ [r,R]. Denote by Nω
σ the cone Nω with the metric (12.13). Then D̂(ρ) is the

area density function in the region r < ρ < R on Nω
σ .

It easy to see that the Euler-Lagrange equation for the functional (12.12) is

∂

∂ρ
(D̂(ρ)

∂φ

∂ρ
) = 0.

Its solution φ with the boundary conditions φ(r, θ) = 1 and φ(R, θ) = 0 is clearly
independent of θ and is equal to the capacity potential of the capacitor (Bωr , B

ω
R)

on the manifold Nω
σ (cf. (12.9)). Hence, the infimum in (12.12) is equal to the

capacity of (Bωr , B
ω
R) on the manifold Nω

σ . This capacity was computed in Lemma
12.2, whence (12.11) follows.

In order to prove (12.6), let us consider a finite family of small disjoint regions
ω1, ω2, ... on Sd−1. Then we have

cap(Br, BR) = inf
φ∈L(Br,BR)

∫

BR

|∇φ|2 dµ

≥ inf
φ∈L(Br,BR)

∑

i

∫

BR∩Nωi

|∇φ|2 dµ

≥
∑

i

inf
φ∈Lω(r,R)

∫

B
ωi
R

|∇φ|2 dµ

=
∑

i

capNωi (B
ωi
r , B

ωi

R ).

Assuming that, for any ωi, we have chosen a function D̂i(ρ) as in (12.10) and
applying (12.11) to all ωi, we obtain

cap(Br, BR) ≥
∑

i

|ωi|
(∫ R

r

dρ

D̂i(ρ)

)−1

. (12.14)

If ωi is small enough, then D̂i(ρ) can be arbitrarily close to D(ρ, θ), uniformly in
θ ∈ ωi and ρ ∈ [r,R]. Also, the sum on the right-hand side of (12.14) can be
replaced by integration as we refine the partition of Sd−1 into ωi. Therefore, the
sum in (12.14) can be made arbitrarily close to

∫

Sd−1

(∫ R

r

dρ

D(ρ, θ)

)−1

|dθ| ,

whence (12.6) follows.

13. Liouville properties

The classical Liouville theorem says that any bounded harmonic function in
Rd is identically constant. We will consider here various generalizations of this
property. Given a function class F on M and an elliptic operator L, by the Liouville
property of the pair (F , L) we mean an assertion that any function in F solving
the equation Lu = 0 is a constant. Examples of operators are the Laplace operator
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or a Schrödinger operator; examples of function classes are Lp(M,µ), non-negative
functions, etc.

There is a vast literature devoted to Liouville type theorems and their general-
izations. We have selected only those Liouville properties which relate to recurrence
or non-explosion properties.

13.1. Lp-sub(super)harmonic functions. Let u(x) be a non-negative C2 func-
tion on M. Fix a point x0 ∈M and denote for r > 0 and p ∈ R

vp(r) :=

∫

B(x0,r)

up(x)dµ(x).

One may wonder what growth of vp(r) as r → ∞ may occur provided u(x) is a
harmonic function. A partial answer is given by the following theorem:

Theorem 13.1. (Sturm [173, Theorem 1]) Assume that M is geodesically complete
and that

(a) either p ∈ (−∞, 1) and u ≥ 0 is superharmonic
(b) or p ∈ (1,∞) and u ≥ 0 is subharmonic.

Then the condition ∫ ∞ rdr

vp(r)
=∞ (13.1)

implies that u(x) ≡ const.

It is not accidental that (13.1) looks similar to the parabolicity condition (7.12).
Indeed, let us assume (7.12) and deduce from Theorem 13.1 that M is parabolic.
Let u be any bounded positive superharmonic function on M . Obviously, for this
function and for p = 0 we have vp(r) ≤ constV (x0, r), and the hypothesis (13.1)
is implied by (7.12). Theorem 13.1 says that u ≡ const. By Theorem 5.1(3), we
conclude that M is parabolic.

Thus, the case p = 0 corresponds to parabolicity. The case p > 1 is related to a
Lp-Liouville theorem of Yau [193] which says that any non-negative subharmonic
function u ∈ Lp(M,µ) is necessarily constant (see [120] for a detailed discussion
about Lp-harmonic functions). This is also contained in Theorem 13.1 because
u ∈ Lp(M,µ) implies boundedness of vp(r) and thus (13.1).

It turns out that stochastic completeness is also somewhat related to the state-
ment of Theorem 13.1: it corresponds to the case p = 1 which is not covered
by this theorem, though. It is known [31], [120], [75] that there exists a geodesi-
cally complete manifold which carries a non-constant positive harmonic function
u ∈ L1(M,µ). However, such a manifold is necessarily stochastically incomplete,
because of the following theorem.

Theorem 13.2. ([75, Theorem 3]) If M is stochastically complete, then any non-
negative superharmonic function u ∈ L1(M,µ) is a constant.

Proof. If M is parabolic, then u is constant by definition. Assume that M is non-
parabolic and prove that u ≡ 0. If u 6≡ 0 then u is strictly positive, by the strong
minimum principle. Take any precompact open set U ∈ M , a point y ∈ U and
find a large constant C such that, for all x ∈ ∂U ,

Cu(x) ≥ G(x, y). (13.2)
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The superharmonicity of u and the minimum principle imply that (13.2) holds for
all x ∈M \U (one should verify it first for GEk

and then pass to the limit as k →∞
- see Section 4.2). Hence, G(·, y) ∈ L1(M \U, µ) and M is stochastically incomplete
by Corollary 6.7.

The following theorem fills the gap between L1 and Lp, p > 1.

Theorem 13.3. (Nadirashvili [145]) Assume that M is geodesically complete and
u ≥ 0 is a subharmonic function satisfying the condition

∫

M

f(u(x))dµ(x)

1 + ρ2(x)
<∞ , (13.3)

where ρ(x) := dist(x, x0) with a fixed x0 ∈ M and f(·) ≥ 0 is a strictly monotoni-
cally increasing function on [0,∞) such that

∫ ∞ dt

f(t)
<∞. (13.4)

Then u ≡ const.

The condition (13.4) is satisfied, for example, by f(t) = tp, p > 1 and f(t) =
t log t (log log t)p (the latter is contained implicitly also in [120, p.291]). Theorem
13.3 implies that if, for all large r and some ε > 0,

∫

B(x0,r)

f(u(x))dµ(x) ≤ Cr2−ε, (13.5)

then u ≡ const. It would be interesting to relax the hypothesis (13.5) to match
(13.1) for f(t) = tp.

Note that (13.4) is sharp in the following sense: if f(t) does not satisfy (13.4),
then there is a manifold M (in fact, a model manifold) and a positive subharmonic
function u on M such that ∫

M

f(u(x))dµ(x) <∞.

It would also be interesting to see if the case (a) of Theorem 13.1 can be extended
in a similar way to fill the gap between Lp, p < 1 and L1.

See [120], [117], [119] for further results on Lp-subharmonic functions on mani-
folds.

13.2. Liouville property for Schrödinger equation. Let us consider on M the
stationary Schrödinger equation

∆u− q(x)u = 0 , (13.6)

where q(x) ≥ 0, q 6≡ 0 is a continuous function on M, and u ∈ C2(M). We say that
the function u is q-harmonic if it satisfies (13.6). Similar to the definition of super-
and subharmonic functions, one introduces q-superharmonic and q-subharmonic
functions (see Section 4.1). If u ∈ C2 then u is q-superharmonic if ∆u − qu ≤ 0
and q-subharmonic if ∆u − qu ≥ 0.

The question to be discussed here is whether there is a non-zero bounded q-
harmonic function11 on M . Let us say that M has the q-Liouville property if the
only bounded q-harmonic function is 0. The connection of the q-Liouville property

11Let us emphasize that no constant function is q-harmonic except for zero, due to q 6≡ 0.
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to recurrence and non-explosion follows from Theorems 5.1(7) and 6.2(3), which
say that

• if q ∈ C∞
0 (M) then the q-Liouville property is equivalent to the parabolicity

of M ;
• if q ≡ const > 0 then the q-Liouville property is equivalent to the stochastic

completeness of M .

There are the following relations between the q-Liouville properties with different
q.

Theorem 13.4. ([88], [85])

(a) If the q1-Liouville property holds and if q2 ≥ cq1 for some positive constant c,
then the q2-Liouville property is true as well.

(b) If the set {q1 6= q2} is precompact, then the q1-Liouville property is equivalent
to the q2-Liouville property.

In particular, parabolicity implies stochastic completeness, which we know oth-
erwise by Corollary 6.4.

Some tests for recurrence and stochastic completeness appear to be particular
cases of more general statements about the q-Liouville property.

Definition 13.1. An open set Ω ⊂ M is called q-massive if there is at least
one admissible q-subharmonic function for Ω, that is, a non-negative bounded q-
subharmonic function v on M such that v = 0 in M \Ω and supΩ v > 0 (cf. Sections
6 and 4.4).

Similarly to Proposition 6.1, the q-massiveness is preserved by increasing a set and
by reducing it by a compact. The following is a useful sufficient condition for
q-non-massiveness generalizing Corollaries 5.4 and 6.6.

Proposition 13.5. Let Ω be an open set in M . Assume that there exists in Ω a
non-negative q-superharmonic function v such that v(x) →∞ as x→∞. Then Ω
is not q-massive.

In the following theorem, we have collected various conditions for the absence of
the q-Liouville property.

Theorem 13.6. The following statements are equivalent:

(a) There exists a non-zero bounded q-harmonic function on M .
(b) There exists a positive q-harmonic function on M .
(c) Manifold M is q-massive (cf. Theorems 5.1 and 6.2).
(d) ([10], [85]) There exists a massive (not q-massive!) set Ω and a point x0 ∈M

such that
∫

Ω

G(x0, x)q(x)dµ(x) <∞. (13.7)

Corollary 13.7. Let Ω be an exterior of a compact set in M . Assume that there
exists in Ω a non-negative q-superharmonic function v such that v(x) → ∞ as
x→∞. Then the q-Liouville property holds for M .

Indeed, Ω is not q-massive by Proposition 13.5. Hence, M is not q-massive either,
and the q-Liouville property holds by Theorem 13.6.
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Corollary 13.8. ([76]) If, for some point x0 ∈M ,
∫

M

G(x0, x)q(x)dµ(x) <∞, (13.8)

then there exists a non-zero bounded q-harmonic function on M ; i.e. the q-Liouville
property fails.

If q ∈ C∞
0 then (13.8) is equivalent to the finiteness of the Green function (=non-

parabolicity) because the Green function on a manifold is always locally summable.
If q ≡ const > 0 then (13.8) is equivalent to the global summability of the Green
function which implies by Corollary 6.7 the stochastic incompleteness of M .

The following theorem unifies and generalizes the volume growth conditions
(7.12) and (9.1) for parabolicity and stochastic completeness.

Theorem 13.9. ([76]) Let M be geodesically complete and let us denote, for some
point x0 ∈M ,

Q(r) :=

∫ r

0

√
inf

x∈∂B(x0,s)
q(x)ds.

Assume that, for all r large enough and some C > 0,

V (x0, r) ≤ Cr2 exp
(
CQ2(r/2)

)
. (13.9)

Then the q-Liouville property holds on M.

For example, if q ∈ C∞
0 (M) then Q is uniformly bounded, and (13.9) becomes

V (x0, r) ≤ Cr2. (13.10)

Therefore, the fact that (13.10) implies parabolicity (see Theorem 7.3) is contained
in Theorem 13.9. If q ≡ 1 then Q(r) = r and (13.9) is equivalent to

V (x0, r) ≤ exp
(
Cr2

)
. (13.11)

Thus, we obtain again that (13.11) implies stochastic completeness (cf. Theorem
9.1).

Example 13.1. Suppose that M = Rd, d > 2, and q is a decreasing function of
r = |x|, at least for large |x|. Let o be the origin in Rd. Since G(o, x) = const r2−d

and V (0, r) = const rd−1, Corollary 13.8 implies that the q-Liouville property fails
to hold provided

∫ ∞
q(r)r dr <∞. (13.12)

On the other hand, Theorem 13.9 implies that the q-Liouville property is true
provided

∫ r

1

√
q(r)dr ≥ const

√
log r, (13.13)

for r large enough. For example, if q(r) = 1
r2 logα r , then (13.12) is satisfied if α > 1,

whereas (13.13) holds if α ≤ 1.
It is possible to prove in this case that if (13.12) does not hold, then the q-

Liouville property is true - see [76, Corollary 3.1]. There is also a generalization of
the hypothesis (13.9) to match (7.12) and (9.1).
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Figure 25. Connected sum of two copies of Rd

13.3. Bounded harmonic functions. We briefly discuss the relation between the
L∞-Liouville property and massive sets. By the L∞-Liouville property, we mean
an assertion that any bounded harmonic function on M is identically constant. It
holds, for example, in any Rd, and fails in Hd. Another example of a geodesically
complete manifold, which carries a non-trivial bounded harmonic function, is ob-
tained by gluing together two copies of Rd, d > 2, by a compact pipe as on Figure
25 (see [115]).

Let us denote by H(M) the space of all bounded harmonic functions on M. The
the L∞-Liouville property is equivalent to the fact that dimH(M) = 1. For compar-
ison, if we denote by Hq(M) the space of all bounded solutions to the Schrödinger
equation (13.6), then the q-Liouville property means that dimHq(M) = 0.

Despite many works devoted to the L∞-Liouville property, the major question of
its geometric background is still open. Here we cite only one of the results related
to our topic (see [119] for a thorough account of the L∞-Liouville property on
manifolds as well as [104] for the L∞-Liouville property on groups).

The following theorem shows that both parabolicity and the L∞-Liouville prop-
erty are controlled by a number of non-intersecting proper massive sets on M .

Theorem 13.10. (a) (Myrberg [144], Royden [163, Proposition 23]) The non-
parabolicity of M is equivalent to existence of a proper massive set on M (cf.
Theorem 5.1(2)).

(b) (Nevanlinna [151], Bader–Parreau [7], Mori [141], Royden [163, Proposition
24]) The negation of the L∞-Liouville property (=existence of a non-trivial
bounded harmonic function) is equivalent to the existence of two disjoint mas-
sive sets on M .12

(c) ([77]) dimH(M) is equal to the supremum of the number of disjoint massive
sets which can be put on M.13

For example, for the manifold on Figure 25, one has dimH(M) = 2 (provided
d > 2) because each of two sheets is massive, and none of them contains more than
one massive set (see [115]).

For further applications of the notion of massiveness see [73], [94], [125].

12Similarly, existence of a non-trivial harmonic function with a finite Dirichlet integral is
equivalent to the existence of two disjoint D-massive sets.

13Similarly, the dimension of the space of bounded harmonic functions with a finite Dirichlet
integral is equal to the maximum number of disjoint D-massive sets. The dimension here may
be finite or infinite. In the latter case, we do not distinguish between different sorts of infinite
cardinalities.
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13.4. Minimal surfaces. The celebrated theorem of Bernstein says that any min-
imal surface M in R3, which is a graph of a function in the whole R2, is necessarily
a plane. In other words, if

M := {(x, y, z) ∈ R3 : z = f(x, y), −∞ < x <∞, −∞ < y <∞}, f ∈ C∞

and if M is a minimal surface, then f is an affine function. L.Bers [13] and R.Finn
[62] observed that this statement is closely related to parabolicity of M as a mani-
fold. We sketch here the proof of Bernstein’s theorem following this approach.

The proof contains two essential ingredients.

(i) The observation that the function v = arctan fx (as well as arctan fy) satisfies
the equation ∆v = 0 on M .

(ii) The claim that M is parabolic.

As soon as we have (i) and (ii), we argue as follows. The function v is a bounded
harmonic function on M . Since M is parabolic, v should be a constant, by Theorem
5.1(3). Therefore, fx and fy are constants, and f is affine.

The fact that arctan fx is harmonic on M was observed by S.Bernstein [12]. The
proof can be found in [155, p.237].

Let us prove that M is parabolic. The Riemannian metric on M is inherited
from R3. Therefore, any geodesic ball B(x,R) on M lies in the Euclidean ball
Be(x,R) ⊂ R3. It is known that a minimal surface, which is a graph, is also an
area minimizer. Thus, the area of M ∩ Be(x,R) is bounded from above by the
area of ∂Be(x,R). Therefore, we obtain V (x,R) ≤ 4πR2. By Corollary 7.4, M is
parabolic.

Further relations between Bernstein’s type theorems and Liouville theorems can
be found in [17], [28], [138], [168]. See [157] for a general overview of minimal
surfaces.

13.5. Liouville property on Riemannian products. Let N be a Riemannian
manifold satisfying the L∞-Liouville property; i.e. any bounded harmonic function
on N is a constant. Let us ask the question whether the Riemannian product
N ×K possesses the same property, where K is a compact Riemannian manifold.
Surprisingly enough, the answer is in general no. A counterexample which will be
described below is based on an example of a manifold N constructed by Pinchover
[160], such that

(i) N is geodesically complete;
(ii) N satisfies the L∞-Liouville property;
(iii) N is stochastically incomplete.

In fact, the manifold of Pinchover has also λ1(N) = 0, but we will not use this.
Given a manifold N with properties (i)-(iii), let us show that N ×K possesses a

non-constant bounded harmonic function. The Laplace operator ∆K in L2(K) has
a discrete spectrum. Let λ > 0 be one of the eigenvalues with the eigenfunction w
so that

∆Kw + λw = 0.

Theorem 6.2 says that there is a bounded non-constant λ-harmonic function v on
the stochastically incomplete manifolds N , that is,

∆Nv − λv = 0.
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Figure 26. The jungle gym in R3

Therefore, the function u = v ⊗ w on N ×K satisfies the Laplace equation

∆N×Ku = (∆N + ∆K)u = 0,

is bounded and non-constant.
This argument can be extended so as to show that N × K possesses the L∞-

Liouville property if and only if N possesses the L∞-Liouville property and N is
stochastically complete.

Now we describe briefly the manifold of Pinchover with properties (i)-(iii). Let
M be a geodesically complete manifold such that

(a) for a fixed point o ∈M and for all large enough R

V (o,R) ≤ CR3; (13.14)

(b) for large enough r := dist(x, o)

G(x, o) ≤ C

r
; (13.15)

(c) M possesses the L∞-Liouville property;
(d) dimM = 2.

All (a)-(c) are valid if M = R3, but we need M to be two dimensional. One of
the ways of constructing such a manifold is to take M as a blown-up jungle gym in
R3 (see Figure 26) which is roughly isometric14 to R3 and thus possesses (a)-(d).

Denote by g the Riemannian metric of M . Given a positive smooth function
ρ(x), let us introduce a conformal metric ĝ = ρ2g and let N := (M, ĝ). Let us

denote by ∆̂, Ĝ, µ̂ the Laplace operator, the Green function and the Riemannian
measure on N respectively. If dimN = d then we have

µ̂ = ρdµ and ∆̂ = ρ−ddiv
(
ρd−2∇

)

which implies, for d = 2,

µ̂ = ρ2µ and ∆̂ = ρ−2∆. (13.16)

In particular, harmonic functions on M and N coincide, whence N satisfies the
L∞-Liouville property. The relations (13.16) imply for the Green kernel

Ĝ = G. (13.17)

14See the papers of Kanai [106] and [107] for the notion and the properties of a rough isometry.
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Let us show how to choose ρ to ensure geodesic completeness and stochastic
incompleteness of N . The function ρ(x) will depend only on r = dist(x, o) so that
we will write also ρ(r) (if r is not smooth enough, then one can use a smooth
approximation afterwards). Geodesic completeness of N will follow from

∫ ∞
ρ(r)dr =∞ (13.18)

(which implies that the length of a geodesic ray on N is ∞). Stochastic incom-
pleteness of N will follow, by Corollary 6.7, from

∫

N

Ĝ(o, x)dµ̂(x) <∞, (13.19)

which, by (13.17) and (13.16), is equivalent to
∫

M

G(o, x)ρ2(x)dµ(x) <∞. (13.20)

Due to the estimate (13.15), this amounts to

∞∫
ρ2(r)

r
dV (o, r) <∞. (13.21)

We are left to choose ρ(r) to satisfy (13.18) and (13.21). Let us set, for r large
enough,

ρ(r) =
1

r log r
. (13.22)

Then (13.18) is obvious, and (13.21) follows by integration-by-parts from (13.14) .
A minor modification of the above argument is required so as to have also

λ1(N) = 0. Now we assume in addition that (13.14) holds for any point o (which
is the case for the jungle gym). The function ρ will no longer be radial. We set,
instead of (13.22),

ρ(x) = ρ0(r) + δ(x),

where r = dist(x, o), the function ρ0(r) is defined by (13.22) and the function δ(x)
is defined as follows. Choose a sequence of points xi ∈ M , i = 1, 2, 3, ... so that
dist(xi, o) = 4i, and let

δ(x)






= 1, x ∈ B(xi, i)
∈ [0, 1], x ∈ B(xi, 2i) \B(xi, i)
= 0, otherwise,

assuming that δ ∈ C∞. Then (13.20) holds again because, by (13.14) and (13.15),
∫

M

G(o, x)δ2(x)dµ(x) ≤ const
∑

i

V (xi, 2i)

4i
≤ const

∑

i

i3

4i
<∞.

Finally, we have, for any i,

λ1(N) ≤ λ1(B(xi, i), ĝ) ≤ constλ1(B(xi, i), g) ≤
const

i2

(because the metric ĝ is nearly Euclidean in B(xi, i)), whence λ1(N) = 0.
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14. Harmonic functions on manifolds with ends

Let M be a geodesically complete non-compact manifold. We say that an open
set E ⊂ M is an end if it is connected, unbounded and if its boundary ∂E is
compact. When necessary, we will assume that ∂E is smooth enough. We say that
M is a manifold with ends if M is a union of a compact set and a finite number of
disjoint ends (see Figure 27).

The purpose of this section is to describe the sets of bounded and positive har-
monic functions on a manifold with ends, assuming that we have enough information
about the ends. As it turns out, the answer depends on the property of an end
being parabolic or not.

14.1. Parabolic subsets and ends. Let us define the notion of parabolicity of
an open subset E ⊂ M . The motivation behind this definition is a desire to treat
the closure E as a manifold with a boundary and to apply to E the notion of
parabolicity of a manifold, assuming the Neumann boundary condition on ∂E (see
the remark after Theorem 5.1). For an arbitrary open subset, it is convenient to
use the capacity definition of parabolicity since it requires no smoothness of the
boundary. Hence, we say that an open subset E ⊂ M is parabolic if, for any
compact K ⊂M ,

capE(K) = 0 (14.1)

(see Section 4.3 for the definition of capacity). Clearly, if M is a parabolic manifold,
then M is parabolic also as a subset.

In the next statement, we collect simple properties of parabolic subsets and ends.

Proposition 14.1. Let E and E′ be open subsets of a manifold M .

(a) If E ⊂ E′ and if E′ is parabolic, then E is parabolic, too. In particular, any
subset of a parabolic manifold M is a parabolic set.

(b) If E \ E′ is precompact and if E′ is parabolic, then E is parabolic, too.
(c) If ∂E is smooth, then the parabolicity of E coincides with the parabolicity of

E as a manifold with boundary.
(d) If E is a proper massive set, then E is non-parabolic. If E is an end of M

and E is non-parabolic, then E is massive.
(e) If an exterior of a compact of M consists of a disjoint union of a finite number

of parabolic sets, then M is parabolic. In particular, if M is a manifold with
ends, then its parabolicity is equivalent to parabolicity of all ends.

E

E

Figure 27. Manifold with ends
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Proof. (a) This follows from capE(K) ≤ capE′(K), which is a consequence of the
definition (4.18).

(b) By (a), we may assume that E′ ⊂ E. Let K be a big enough compact that
contains E \E′. Then the exterior of K in E and E′ coincide, whence capE(K) =
capE′(K) = 0 and E is parabolic.

(c) This follows from (4.19).
(d) If E is a proper massive set, then, as follows from Proposition 4.3(ii), there

exists a massive set E′ ⊂ E with smooth boundary. The subharmonic potential bE′

is a non-constant bounded subharmonic function on the manifold with boundary
E′. By Theorem 5.1(3), E′ is a non-parabolic manifold; by assertion (c), E′ is a
non-parabolic set; finally, by assertion (a), E is also non-parabolic.

Now let E be a non-parabolic end. Reducing E by a compact, we may assume
that ∂E is smooth (the non-parabolicity of E does not change). By assertion (c),
E is a parabolic manifold and, by Theorem 5.1(2a), an exterior of any compact in
E is massive. Therefore, E = E \ ∂E is massive, both in E and M .

In general, a non-parabolic set may be non-massive, as a half-space of Rd, d > 2.
(e) Let E1, E2, ..., En be such sets in M . If K is a big enough compact in M ,

then, obviously,

capM (K) =
∑

i

capEi
(K),

whence the statement follows.

We state the following result as an example of application of parabolic subsets.

Theorem 14.2. ([73, Theorem 1]) An open set Ω ⊂ M is D-massive if and only
if there is a non-parabolic open set E, such that E ⊂ Ω and cap(E,Ω) <∞.

As a consequence we see that the D-massiveness of Ω is invariant under a quasi-
isometry (cf. Corollary 5.3).

14.2. Spaces of harmonic functions on manifolds with ends. We denote by
H(M) (resp. H+(M)) the set of all bounded (resp. positive) harmonic functions
on M. The former is a linear space whereas the latter is a cone. We are interested
in the dimensions of these spaces.

If E is an open subset of M with smooth boundary, then we define H(E) and
H+(E) similarly, with the additional assumption that the harmonic functions vanish
on ∂E.

Theorem 14.3. (Sung, Tam, Wang [175, Theorem 3.2]) Let M be a complete
manifold with ends. Assume that M has s ≥ 0 parabolic ends P1, P2, ..., Ps and
l ≥ 1 non-parabolic ends N1, N2, ..., Nl. Then

dimH(M) =

l∑

j=1

dimH(Nj) (14.2)

and

dimH+(M) =

s∑

i=1

dimH+(Pi) +

l∑

j=1

dimH+(Nj) . (14.3)
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Remark. The hypothesis l ≥ 1 is equivalent to non-parabolicity of the manifold
M itself, by Proposition 14.1(e). If l = 0 and thus M is parabolic, then there
are no non-negative harmonic functions on M except constants, and dimH(M) =
dimH+(M) = 1, regardless of the number of ends.

It is remarkable that the parabolic ends do not contribute to dimH(M). One
of the ways to understand that is to observe that for any parabolic end P we have
dimH(P ) = 0. Indeed, if u is a bounded harmonic function P vanishing on ∂P ,
then the positive part u+ is an admissible subharmonic function for P . However,
the parabolicity of P implies its non-massiveness, whence u+ ≡ 0. Similarly, u− ≡ 0
and u ≡ 0.

Remark. If M is a manifold with boundary, then H(M) (resp. H+(M)) denotes
the space of bounded (resp. positive) harmonic functions on M with the Neumann
boundary condition on ∂M . For any end E, let us regard its closure E as a manifold
with boundary and consider the spaces H(E) and H+(E). We claim that, for any
non-parabolic end N ,

dimH+(N) = dimH+(N)

and

dimH(N) = dimH(N)

(this follows from [175, Theorem 2.6(a) and Proposition 2.7(a)]). For a parabolic
end P , we have

dimH(P ) = 0 < 1 = dimH(P ) = dimH+(P ) ≤ dimH+(P )

(see [175, Lemma 2.4]).

Corollary 14.4. ([123, Theorem 2.1]) Under the hypotheses of Theorem 14.3, we
have

dimH(M) ≥ l (14.4)

and

H+(M) ≥ s+ l. (14.5)

The estimate (14.4) follows also from Theorem 13.10(c). Indeed, l non-parabolic
ends provide l disjoint massive sets on M whence (14.4).

In the next section, we impose an additional hypothesis of regularity of an end
which will ensure that the end does not split further into two smaller massive
subsets.

14.3. Manifolds with regular ends. Given an end E, we denote, for any r ≥ 0,

Er := {x ∈ E : dist(x, ∂E) = r} .
We say that an end E is regular if, for all r large enough and for any positive
harmonic function u defined in

Ur :=
{
x ∈ E :

r

2
< dist(x, ∂E) < 2r

}
(14.6)

(see Figure 28) we have a Harnack type inequality on Er

sup
Er

u ≤ C inf
Er

u , (14.7)
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E
E Er

Ur

Figure 28. A regular end E

E

ν

E

M

E

\ E

Figure 29. Flux of u on the end E

where the constant C does not depend15 on r.
For example, the end E is regular if it is isometric to an exterior of a ball on

a complete Riemannian manifold with a non-negative Ricci curvature (see [124]).
Li and Tam [121, Theorem 3.2] proved that any manifold of non-negative sectional
curvature outside a compact set is a manifold with regular ends.

Let E be an end of M and u be a function on E. For any precompact open set
Ω ⊂ M containing ∂E and having a smooth boundary ∂Ω, consider the flux of u
through ∂Ω ∩E (see Figure 29), that is

flux
∂Ω∩E

u =

∫

∂Ω∩E

∂u

∂ν
dµ′.

If u is harmonic in E, then the flux does not depend on Ω, and we can define
the flux of u through E by

flux
E
u = flux

∂Ω∩E
u . (14.8)

Also, let us set

lim
E
u := lim

x∈E
x→∞

u(x), (14.9)

provided the limit on the right-hand side exists. It turns out that if E is regular16

and u is a non-negative harmonic function on E, then the limit (14.9) does exist,
finite or infinite (see [74, Proposition 1] or [95, 3.23]). Furthermore, the following
theorem holds.

15If Er is connected, then by the local Harnack inequality and by compactness of E(r), (14.7)
is always valid with some C = C(r). The purpose of the regularity hypothesis is to ensure a
uniform Harnack constant C as r → ∞.

16Let us note that, for Theorem 14.5 below, the definition of regularity can be slightly relaxed.
Namely, instead of being defined by (14.6), the set Ur may be any precompact open neighbourhood
of Er such that dist(∂E, Ur) → ∞ as r → ∞. See [95] for further results of this kind.
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harmonic function u

parabolic end Pinon-parabolic end Nj

lim u = bj

flux u = ai

Figure 30. Limits and fluxes of a harmonic function u

Theorem 14.5. ([74]) Let M be a manifold with regular ends. Assume that it
has s ≥ 0 parabolic ends Pi and l ≥ 1 non-parabolic ends Nj. Then, for any
non-negative harmonic function u on M , the numbers ai, bj defined by

ai = flux
Pi

u and bj = lim
Nj

u (14.10)

(i = 1, 2, ..., s and j = 1, 2, ..., l) exist and are non-negative. Conversely, given
a set (a1, a2, ..., as, b1, b2, ..., bl) of s + l non-negative numbers, there is a unique
non-negative harmonic function u on M satisfying (14.10) (see Figure 30).

Similarly, any bounded harmonic function u on M is uniquely characterized by
a set of real numbers (b1, b2, ..., bl) such that bj = limNj u .

Remark. If u is a non-negative harmonic function on M and if a flux ai is strictly
positive, then one can prove that limPi u = +∞; that is, u is unbounded. Therefore,
for a bounded u, all fluxes ai must vanish, which explains why a bounded harmonic
function u is uniquely determined by its limits bj on the non-parabolic ends.

Theorem 14.5 obviously implies that

dimH(M) = l

and

dimH+(M) = s+ l.

As a consequence we see that the Martin boundary of M consists of s+ l points.
For a manifold of non-negative sectional curvature outside a compact set, this

was proved by Li and Tam [121, Theorem 7.2]. The main part of their proof can
be interpreted as the proof of regularity of each end on such a manifold.

See [40], [50], [95], [96], [119], [121], [123], [124], [175] for further results on
harmonic functions on manifolds with ends.

14.4. Non-parabolicity of regular ends. We consider here the question how to
decide whether a given end E ⊂ M (so far not necessarily regular) is parabolic or
not. Let us denote

Br = {x ∈ E : dist(x, ∂E) < r} and VE(r) = µ (Br) .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



RECURRENCE AND NON-EXPLOSION 217

An extension of Theorem 7.3 to manifolds with a boundary (see [71]) says that E
is parabolic provided

∫ ∞ r dr

VE(r)
=∞. (14.11)

It is not known whether (14.11) is necessary for parabolicity of a regular end.
As was shown by Li and Tam [121], if M has a non-negative sectional curvature
outside a compact, then parabolicity of its end E is indeed equivalent to (14.11).
We discuss below some situations when (14.11) is equivalent to the parabolicity of
E.

The following statement is essentially an extract from the technique of Li and
Tam [121].

Theorem 14.6. Let E be a regular end. Then E is non-parabolic if and only if

∞∑

k=1

1

capE(B2k , B2k+1)
<∞. (14.12)

Proof. If the sum in (14.12) is divergent, then E is parabolic even without assuming
the regularity of E. Indeed, capacity satisfies the following universal inequality

capE(A,C)−1 ≥ capE(A,B)−1 + capE(B,C)−1, (14.13)

for any three open precompact sets A ⊂⊂ B ⊂⊂ C. Therefore, we have, for any
n > 1,

capE(B2n)−1 ≥
∞∑

k=n

capE(B2k , B2k+1)−1 =∞,

whence capE(B2n) = 0, and E is parabolic.
Assume now that (14.12) holds and prove that the regular end E is non-parabolic.

Denote by GR the Green function in BR with the Neumann condition on ∂E ∩BR
and the Dirichlet condition on ER = ∂BR ∩E. Fix some reference point o ∈ E and
show that, for any x ∈ E, GR(o, x) is bounded as R → ∞, which will imply the
non-parabolicity of E.

We start with the observation that, for any x ∈ Br and any R > r,

GR(o, x) −Gr(o, x) ≤ max
y∈Er

GR(o, y) . (14.14)

This follows from the maximum principle for the function GR(o, ·)−Gr(o, ·) which
is harmonic in B(r), bounded by the constant maxy∈Er GR(o, y) on Er and satisfies
the Neumann boundary condition on ∂E. If R = 2r then, by the Harnack inequality
(14.7),

max
y∈Er

GR(o, y) ≤ C min
y∈Er

GR(o, y). (14.15)

Recall that, by (8.9), we have

min
y∈Er

GR(o, y) ≤ capE (Br , BR)
−1
. (14.16)

Combining (14.16), (14.15) and (14.14), we derive

GR(o, x)−Gr(o, x) ≤
C

capE (Br , BR)
. (14.17)
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Applying (14.17) for R = 2k+1 and r = 2k and iterating for all large k = m, m+ 1,
m+ 2, ... , we conclude

G(o, x) −G2m(o, x) ≤
∞∑

k=m

C

capE (B2k , B2k+1)
<∞

and G(o, x) <∞.
If we know for a regular end E that

capE(Br, B2r) ≥ const
VE(r)

r2
, (14.18)

for all large r, then (14.12) easily amounts to
∫ ∞ r dr

VE(r)
<∞. (14.19)

It would be interesting to understand whether (14.18) follows from the hypothesis
of regularity of the end. If this is the case, then the assumption (14.12) of Theorem
14.6 can be replaced by (14.19).

Let us consider some examples where (14.18) can be proved.

Example 14.1. For any open set Ω ⊂ E, denote ∂EΩ = ∂Ω ∩ E. Let us assume
that, for any open set Ω ⊂ Br with smooth boundary,

µ′(∂EΩ) ≥ cµ(Ω)

r
, (14.20)

for all r large enough and for some c > 0. Then (14.18) holds, which follows from
Theorem 8.1 for the capacitor (Br, B2r) with the isoperimetric function f(v) = cv

2r .

Example 14.2. Assume that there exists a non-negative Lipschitz function ρ(x) on
E such that

ρ|∂E = 0, (14.21)

|∇ρ| ≤ 1 (14.22)

and

∆
(
ρ2
)
≥ 2c , (14.23)

with a positive constant c ((14.23) is understood in the sense of distributions). For
example, such a function was constructed in [121, Propositions 2.1, 2.2] assuming
that E is an end of a manifold M with non-negative curvature outside a compact.

Let us verify the isoperimetric inequality (14.20). Integrating (14.23) over Ω, we
obtain

c |Ω| ≤
∫

Ω

∆
(
ρ2
)

= 2

∫

∂Ω∩E
ρ
∂ρ

∂ν
+

∫

∂E∩Ω

ρ
∂ρ

∂ν
≤ 2(sup

Br

ρ) |∂EΩ| ,

where we have used the Green formula (2.6), (14.22) and (14.21). Since (14.21) and
(14.22) imply also supBr

ρ ≤ r, we conclude (14.20).

Example 14.3. Assume that the following three hypotheses hold for the end E.

(P) Poincaré inequality: for any ball B(x, 2r) ⊂ E and for any function f ∈
C1(B(x, 2r)),

inf
ξ∈R

∫

B(x,r)

(f(y)− ξ)2dµ(y) ≤ Cr2
∫

B(x,2r)

|∇f |2 dµ. (14.24)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



RECURRENCE AND NON-EXPLOSION 219

Figure 31. Capacitor (Br, B2r)

(D) Doubling property: for any ball B(x, 2r) ⊂ E,

V (x, 2r) ≤ CV (x, r). (14.25)

(VC) Volume comparison condition: for any point x ∈ Er,
VE(r) ≤ CV (x, r/2). (14.26)

Let us sketch the proof that (P ), (D) and (V C) imply (14.18). The key fact is
that (P ) and (D) imply the following inequality: for any harmonic function u in
B(x,R) ⊂ E,

(
osc

B(x,R/2)
u

)2

≤ C R2

V (x,R)

∫

B(x,R)

|∇u|2 (14.27)

(see [96, Lemma 2.6] for the proof). Let u be the equilibrium potential of the
capacitor (Br, B2r) and let x be any point on E3r/2 (see Figure 31). Then u is
harmonic in B(x, r/2) and osc

B(x,r/2)
u = 1.

By (14.27), we conclude

capE(Br, B2r) =

∫

B2r\Br

|∇u|2 ≥
∫

B(x,r/2)

|∇u|2 ≥ const
V (x, r/2)

r2
.

Applying (D) and (V C), we have

V (x, r/2) ≥ constV (x, 3r/4) ≥ constVE(3r/2) ≥ constVE(r),

whence (14.18) follows.
Holopainen [96, Theorems 2.25 and 4.4] proved that, under the hypotheses (P ),

(D) and (V C), the parabolicity of E is equivalent to (14.11). His proof does not
require regularity of the end. It is plausible that each end satisfying (P ), (D) and
(V C) can be split into a finite number of regular ends with the comparable volume
growth functions (cf. [124, Lemma 1.4]).

Li and Tam [124] proved that (D) and (P ) hold onE provided the Ricci curvature
on E satisfies

Ric(x) ≥ − C

ρ2(x)
, C > 0, (14.28)

where ρ(x) = dist(x, ∂E). Thus, assuming (14.28) and (V C), one finds that the
parabolicity of E is equivalent to (14.11). This is the result of [124, Theorem 1.9].
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15. Curvature and comparison theorems

We prove here some tests for parabolicity and non-explosion in terms of curvature
assumptions.

15.1. Mean curvature. Let us fix a point o on a geodesically complete manifold
M and consider the polar coordinates (ρ, θ) centered at o (see Section 3.1). In the
domain of the polar coordinates, the Laplace operator is given by (3.4), which we
rewrite as

∆ =
∂2

∂2ρ
+m(ρ, θ)

∂

∂ρ
+ ∆Sρ . (15.1)

Here ∆Sρ is the Laplace operator on the sphere ∂B(o, ρ) and m(ρ, θ) is a smooth

function on R+×Sd−1, which will be of primary interest for us. In fact, its geometric
meaning is the mean curvature of the sphere ∂B(o, ρ) in the radial direction (see
[69], [27], [169]).

We will compare the manifold M with a model manifold Mψ introduced in
Section 3.2. Let us equip by a hat all notation related to Mψ. In particular, we set

M̂ = Mψ. By (3.6), we have the following expression for a Laplace operator on M̂

∆̂ =
∂2

∂2ρ
+ m̂(ρ)

∂

∂ρ
+ ∆̂Sρ , (15.2)

where

m̂ = (d− 1)
ψ′

ψ
.

It is important that m̂(ρ) does not depend on θ.

Let us consider also the following Schrödinger operators on M and M̂ :

L = ∆− q(x)
and

L̂ = ∆̂− q̂(ρ) ,

where the functions q and q̂ are non-negative and continuous.

Theorem 15.1. Let M be a geodesically complete non-compact manifold, and o ∈
M.

(i) Assume that, for all (ρ, θ) in the domain of the polar coordinates centered at
o, with ρ being large enough,

m(ρ, θ) ≤ m̂(ρ) and q(ρ, θ) ≥ q̂(ρ). (15.3)

If the equation Lu = 0 has a non-zero bounded solution on all of M̂ , then so

does L̂u = 0.
(ii) Let o be a pole. Assume that, for all large enough ρ and all θ,

m(ρ, θ) ≥ m̂(ρ) and q(ρ, θ) ≤ q̂(ρ). (15.4)

If the equation L̂u = 0 has a non-zero bounded solution on all of M , then so
does Lu = 0.
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o
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ρ=lk( )

ρ=l( )

Uk

Figure 32. Approximation of the cut locus by a smooth hypersurface

For the case when o is a pole, this theorem was proved in [76]. The technical
difficulties which arise due to the cut locus can be handled by the method of Cheeger
and Yau [27] developed in the context of comparison of heat kernels (see also [193],
[192], [169, Section I.1]).

Proof. (i) Assume that the only bounded solution for the equation L̂u = 0 is u ≡ 0.
Take some R > 0 and define the function v(ρ) on [R,∞) to be the solution to the
Cauchy problem

v′′ + m̂v′ − q̂v = 0, v(R) = 0, v′(R) = 1.

Then L̂v = 0 in Ω̂ := M̂ \ B̂(o,R) and, by the maximum principle, the function
v(ρ) is monotone increasing. By Theorem 13.6, v must be unbounded, whence
v(ρ) → ∞ as ρ → ∞ (the converse to Corollary 13.7 for spherically symmetric
manifolds).

Let us consider now v(ρ) as a function on M. Due to (15.3) and v′ ≥ 0, we have
in Ω \ Cut(o) (where Ω := M \B(o,R))

Lv = v′′ +mv′ − qv ≤ v′′ + m̂v′ − q̂v = L̂v = 0.

If Cut(o) is empty, then, by Corollary 13.7, this finishes the proof because Lv ≤ 0
in Ω and v(x)→∞ as x→∞.

Let Cut(o) be non-empty. We will show that Lv ≤ 0 is still true in Ω in the
sense of distribution (which is enough for Corollary 13.7). More precisely, let us
prove that, for any non-negative test function φ ∈ C∞

0 (Ω),

〈Lv, φ〉 := −
∫

M

(∇v∇φ + qvφ) dµ ≤ 0. (15.5)

For any unit vector θ ∈ To(M), let us define l(θ) to be the length of the geodesics
which starts at o in the direction θ and ends at Cut(o) (see Figure 32). Since Cut(o)
is a closed set, the function l(θ) is lower semi-continuous. Let lk(θ) be an increasing
sequence of smooth positive functions on the unit sphere which converges to l(θ) as
k →∞. Denote by Uk the set of points (ρ, θ) ∈M \Cut(o) such that ρ < lk(θ). The
boundary ∂Uk is a smooth hypersurface given by the equation ρ = lk(θ). Clearly,
the sequence {Uk} is increasing and

⋃
k Uk = M \ Cut(o).

We have, by the Green formula (2.6),
∫

Uk

(∇v∇φ+ qvφ) dµ =

∫

Uk

(−∆vφ+ qvφ) dµ+

∫

∂Uk

∂v

∂ν
φ , (15.6)
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where ν is the unit outward normal vector field on ∂Ωk. The first term on the right
hand side of (15.6) is non-negative because

Lv ≤ 0 on Uk ∩ suppφ ⊂ Ω \ Cut(o) .
We claim that the second term is also non-negative. Indeed, the normal ν forms
an acute angle α with the radial direction ∂

∂ρ , and ∇v = v′(ρ) ∂∂ρ , whence

∂v

∂ν
= ν∇v = ν(v′(ρ)

∂

∂ρ
) = v′(ρ) cosα ≥ 0.

Thus, (15.6) yields
∫

Uk

(∇v∇φ + qvφ) dµ ≥ 0.

As k→∞, we can replace here Uk by M \Cut(o). Finally, Cut(o) has the measure
zero, whence we conclude (15.5).

(ii) By Theorem 13.6, there is also a positive bounded solution u to L̂u = 0 on

M̂ . By symmetrizing it, we can assume that u = u(ρ). By the maximum principle,
u(ρ) is increasing. Fix some R > 0, put v(ρ) = u(ρ) − u(R) and observe that

L̂v ≥ 0.
The function v is positive in the region Ω := {ρ > R}, and, by v′ ≥ 0 and (15.4),

we have Lv ≥ L̂v ≥ 0 in Ω. Therefore, v is a q-subharmonic function, which is
bounded, positive in Ω and vanishing on ∂Ω, whence we see that Ω is q-massive.
By Theorem 13.6, there is a non-zero bounded solution to Lu = 0 on M.

Combining Theorem 15.1 with the criteria for parabolicity and stochastic com-
pleteness in terms of the Liouville properties for the Schrödinger equations (see the
beginning of Section 13.2) and with Propositions 3.1, 3.2, we obtain the following
statement.

Corollary 15.2. Let M be a geodesically complete non-compact manifold, o ∈ M
and S(ρ) be a positive smooth function on (0,∞).

(a) If, for all (ρ, θ) in the domain of the polar coordinates with ρ being large
enough,

m(ρ, θ) ≤ S′(ρ)

S(ρ)
and

∫ ∞ dr

S(r)
=∞,

then M is parabolic (for example, if m(ρ, θ) ≤ 1
ρ , then the above hypotheses

are satisfied with S(ρ) = ρ).
(b) Let o be a pole. If, for all ρ large enough and all θ,

m(ρ, θ) ≥ S′(ρ)

S(ρ)
and

∫ ∞ dr

S(r)
<∞,

then M is non-parabolic (for example, if m(ρ, θ) ≥ 1+ε
ρ with ε > 0, then the

above hypotheses are satisfied with S(ρ) = ρ1+ε).
(c) If, for all (ρ, θ) in the domain of the polar coordinates with ρ being large

enough,

m(ρ, θ) ≤ S′(ρ)

S(ρ)
and

∫ ∞ V (r)

S(r)
dr =∞,
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where

V (r) :=

∫ r

0

S(ξ)dξ, (15.7)

then M is stochastically complete (for example, if m(ρ, θ) ≤ Cρ, then the
above hypotheses are satisfied with S(ρ) = exp

(
1
2Cρ

2
)
).

(d) Let o be a pole. If, for all ρ large enough and all θ

m(ρ, θ) ≥ S′(ρ)

S(ρ)
and

∫ ∞ V (r)

S(r)
dr <∞,

then M is stochastically incomplete (for example, if m(ρ, θ) ≥ cρ1+ε with pos-
itive c, ε, then the above hypotheses are satisfied with S(ρ) = exp

(
c′ρ2+ε

)
).

Note that the expression S′

S is equal to m̂ for a model manifold Mψ such that

S = ωdψ
d−1.

15.2. Sectional and Ricci curvature. Let us turn now to comparison results for
the sectional and Ricci curvature. For any x ∈M such that x /∈ Cut(o) and x 6= o,
denote by Rico(x) the Ricci curvature at x in the direction ∂

∂ρ . Let ω denote any

pair of tangent vectors from TxM having the form ( ∂∂ρ , X) where X is a unit vector

orthogonal to ∂
∂ρ . Denote by Kω(x) the sectional curvature at the point x ∈ M of

the 2-section determined by ω.

Example 15.1. A direct computation [15] yields that, on the model manifold Mψ,
the curvature Kω depends only on the polar radius ρ and is given by

Kω(ρ) = −ψ
′′

ψ
. (15.8)

Respectively, the Ricci curvature Rico on Mψ is given by

Rico(ρ) = −(d− 1)
ψ′′

ψ
. (15.9)

Theorem 15.3. (Ichihara [99], [100]) Let ψ(ρ) be a smooth positive function on
(0,∞) such that

ψ(0) = 0 and ψ′(0) = 1. (15.10)

Let M be a d-dimensional geodesically complete non-compact manifold, and o ∈M .
Denote

S(r) := ωdψ
d−1(r).

(a) If, for all x = (ρ, θ) /∈ Cut(o), x 6= o,

Rico(x) ≥ −(d− 1)
ψ′′(ρ)

ψ(ρ)
and

∫ ∞ dr

S(r)
=∞,

then M is parabolic.
(b) If o is a pole and, for all x 6= o and all ω,

Kω(x) ≤ −ψ
′′(ρ)

ψ(ρ)
and

∫ ∞ dr

S(r)
<∞,

then M is non-parabolic.
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(c) If, for all x /∈ Cut(o), x 6= o,

Rico(x) ≥ −(d− 1)
ψ′′(ρ)

ψ(ρ)
and

∫ ∞ V (r)

S(r)
dr =∞ (15.11)

(where V (r) is defined by (15.7)), then M is stochastically complete.
(d) If o is a pole and, for all x 6= o and all ω,

Kω(x) ≤ −ψ
′′(ρ)

ψ(ρ)
and

∫ ∞ V (r)

S(r)
dr <∞, (15.12)

then M is stochastically incomplete.

Theorem 15.3 can be deduced from Corollary 15.2, applying the Hessian compar-
ison theorem to M and Mψ (see [69, p.19] or [169, Theorem 1.1], or [22, Theorems
3.6, 3.8]). This theorem allows us to compare m(ρ, θ) and m̂(ρ) given the compar-
ison of the Ricci curvature or the sectional curvature as above. See [99] and [100]
for details.

Let us observe that all parts of Theorem 15.3 require information about the cur-
vature for all ρ > 0. The following theorem shows that, for stochastic completeness,
it suffices to control the curvature only for large ρ.

Theorem 15.4. Let M be a geodesically complete manifold.

(a) ( N.Varopoulos [184, Theorem 1], P.Hsu [97]) Assume that k(r) is a positive
increasing continuous function on (0,∞) such that

∫ ∞ dr

k(r)
=∞. (15.13)

Assume also that, for some point o ∈M and for all points x = (ρ, θ) /∈ Cut(o)
with ρ large enough, we have

Rico(x) ≥ −(d− 1) k2(ρ). (15.14)

Then M is stochastically complete.
(b) (N.Varopoulos [184, Theorem 3], M.Murata [143, Theorem B]) Let M be a

manifold with a pole o. Assume that k(r) is a non-negative increasing smooth
function on (0,∞) such that

∫ ∞ dr

k(r)
<∞ (15.15)

and

k′(r) ≤ Ck2(r), (15.16)

for all r large enough. Assume also that, for all x = (ρ, θ) 6= o and all ω,

Kω(x) ≤ − k2(ρ). (15.17)

Then M is not stochastically complete.

Remark. Historically, the first results of this kind were obtained by Azencott [6] and
Yau [194]. Azencott [6] proved that a Cartan-Hadamard manifold M is stochasti-
cally incomplete provided Kω(x) ≤ −ρ2+ε, ε > 0, and M is stochastically complete
provided its sectional curvature is uniformly bounded below. Yau [194] proved that
an arbitrary geodesically complete manifold is stochastically complete if its Ricci
curvature is uniformly bounded below.
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Proof. (a) This part of Theorem 15.4 can be deduced from Theorem 15.3(c). We
give another proof, using Theorem 9.1.

If k(r) is bounded, then (15.14) implies v(o, r) ≤ ecr, and M is stochastically
complete by Theorem 9.1. Assume in the sequel that k(r) is unbounded.

By redefining k(r) for small r, we may assume that (15.14) holds at any point
x /∈ Cut(o), x 6= o. Since k(r) is monotone increasing for large r and limr→∞ k(r) =
∞, (15.14) implies

Rico(x) ≥ −(d− 1)k2(R), ∀x ∈ B(o,R) \ Cut(o), x 6= o,

for all R large enough.
By the volume comparison theorem of Bishop (see [22, Theorems 3.8, 3.9]), we

obtain, for all r ≤ R,

V (o, r) ≤ Vk(R)(r) , (15.18)

where VK(r) is the volume of an r-ball in the hyperbolic space Hd
K of the constant

curvature −K2. This space is a model manifold Mσ with σ(r) = K−1 sinh(Kr),
whence we obtain

VK(r) = ωdK
1−d

∫ r

0

sinhd−1 (Kξ) dξ < ωdK
−d exp ((d− 1)Kr) .

Therefore, letting r = R in (15.18), we obtain, for R large enough,

V (o,R) ≤ const exp ((d− 1)k(R)R)

and

logV (o,R)

R
= O(k(R)), R→∞.

Hence, (15.13) implies
∫ ∞ RdR

logV (o,R)
=∞,

and the stochastic completeness follows by Theorem 9.1.
(b) We reduce this part of Theorem 15.4 to Theorem 15.3(d). To that end, we

need to construct a function ψ(r) satisfying (15.10) and (15.12). Let ψ(r) solve the
following Cauchy problem on [0,∞)






ψ(0) = 0 ,
ψ′(0) = 1 ,
ψ′′ = k2(r)ψ .

(15.19)

It is obvious that ψ(r) > 0 if r > 0. The hypotheses (15.17) and (15.19) imply
that, for all x 6= o,

Kω(x) ≤ − ψ′′(ρ)

ψ(ρ)
.

Therefore, in order to apply Theorem 15.3(d), we need to verify the second of the
conditions (15.12).

Suppose for a moment that we have proved that, for some ε > 0 and all r large
enough,

ψ′(r)

ψ(r)
≥ εk(r). (15.20)
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This would imply

S′(r)

S(r)
≥ (d− 1)εk(r) (15.21)

where S(r) = ωdψ
d−1(r). By l’Hospital’s rule, we obtain from (15.21), for large r,

S(r)

V (r)
≥ constk(r) , (15.22)

where V (r) =
∫ r
0
S(ξ)dξ. Finally, (15.22) and (15.15) yield

∫ ∞ V (r)

S(r)
dr <∞,

which, by Theorem 15.3(d), implies the stochastic incompleteness of M .
We are left to show that the solution ψ of (15.19) satisfies (15.20). If this is not

so, then, for any ε0 > 0 (to be chosen later), there exist a large enough r0 and
ε ∈ (0, ε0) such that

ψ′(r0)

ψ(r0)
= εk(r0). (15.23)

Denote v = ψ′

ψ . Then we have

k2 =
ψ′′

ψ
=

(
ψ′

ψ

)′
+

(
ψ′

ψ

)2

,

that is,

v′ + v2 = k2. (15.24)

Compare the function v with w(r) := εk(r). We have, by (15.23),

v(r0) = w(r0), (15.25)

and

w′ + w2 = εk′ + ε2k2.

Choosing ε0 (and thus ε) small enough, we obtain, by (15.16),

εk′ + ε2k2 ≤ 1

2
k2,

whence

w′ + w2 ≤ 1

2
k2. (15.26)

Comparing (15.25), (15.24) and (15.26), we conclude w(r) ≤ v(r) for all r large
enough, which is exactly (15.20).
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15.3. Parabolicity for two dimensional manifolds. Unlike Theorem 15.4, in
order to decide whether M is parabolic or not, it is generally not enough to control
the curvature Kω only for large ρ. We discuss here to what extent it is still possible.

The curvature Kω on a model manifold Mψ is computed by (15.8), that is

Kω(ρ) = −ψ
′′(ρ)

ψ(ρ)
. (15.27)

Suppose that we have another function φ such that

ψ′′(r)

ψ(r)
=
φ′′(r)

φ(r)
, for r > r0. (15.28)

Then the manifold Mφ will have the same curvature Kω(ρ) for large ρ.

Lemma 15.5. There exists a function φ satisfying (15.28) and such that one of
the integrals

∫ ∞ dr

ψ2(r)
,

∫ ∞ dr

φ2(r)
(15.29)

is divergent and the other is convergent.

Proof. Given a function ψ, it is easy to see that the function

φ(r) = ψ(r)

∫
dr

ψ2(r)
(15.30)

satisfies (15.28). Note that we need to define ψ and φ only for large r. The limits
in
∫

dr
ψ2(r) should be chosen so that it is positive and goes to either 0 or to ∞ as

r→∞. Let us show that one of the integrals in (15.29) is divergent and the other
is convergent. Define

f =
φ

ψ
=

∫
dr

ψ2(r)
and g =

1

f
.

Then, by (15.30), |f ′| = 1
ψ2 and |g′| =

∣∣∣ f
′

f2

∣∣∣ = 1
φ2 . Since both f ′ and g′ do not

change sign, we obtain
∫ ∞

r0

dr

ψ2(r)
=

∫ ∞

r0

|f ′| dr = |f(∞)− f(r0)|

and ∫ ∞

r0

dr

φ2(r)
=

∫ ∞

r0

|g′| dr = |g(∞)− g(r0)| .

Clearly, exactly one of the quantities f(∞) and g(∞) = 1
f(∞) is infinite (and the

other is zero), whence the claim follows.

Suppose that the dimension d = 3 and φ is chosen by Lemma 15.5. Then, by
Proposition 3.1, one of the manifolds Mψ, Mφ is parabolic whereas the other is not.
For example, the functions

ψ(r) =
√
r log r and φ(r) =

√
r

satisfy (15.28), Mψ and Mφ have the same curvature profile

Kω(ρ) =
1

4ρ2
, for all large ρ (15.31)

whereas Mψ is non-parabolic and Mφ is parabolic.
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Hence, in the dimension d = 3, the statements (a) and (b) of Theorem 15.3
cannot be true for any function ψ (even in the class of model manifolds) if the
curvature assumption is to be assumed only for large ρ.

If d > 3 then one of the integrals
∫ ∞ dr

ψd−1(r)
,

∫ ∞ dr

φd−1(r)
(15.32)

has to be convergent (as follows from Lemma 15.5); that is, one of the manifolds
Mψ, Mφ is non-parabolic (note that in the case d > 3, both integrals in (15.32) can

converge, for example, if ψ(r) = r
1−ε
2 with |ε| < d−3

d−1 ).
Hence, if d > 3 then one cannot claim the parabolicity of a model manifold given

the curvature Kω(ρ) for large ρ. Neither can one claim the non-parabolicity of a
model manifold given an upper bound for Kω(ρ) (as in Theorem 15.3(b)) only for
large ρ. Indeed, let us set ψ(r) = rα and χ(r) = rβ , where 0 < β < 1

d−1 < α < 1
2 .

Then, for the model manifold Mχ,

Kω(ρ) = −χ
′′

χ
=
β (1− β)

ρ2
<
α(1 − α)

ρ2
= −ψ

′′

ψ
.

Despite
∫∞ dr

ψd−1(r)
<∞, the manifold Mχ is parabolic, due to β < 1

d−1 .

This discussion shows that in order to extend the statements (a) and (b) of
Theorem 15.3 to situations where the curvature is controlled only for large ρ, one
has to involve some non-curvature hypotheses. To the best of our knowledge, such
results are unknown yet, except for the case d = 2. The next theorem shows that,
in the dimension d = 2, in order to deduce the parabolicity of M , it suffices to
control the curvature only for large ρ, whereas for the non-parabolicity, a certain
additional assumption is required.

We suppress the subscript ω in Kω(x) because in the case d = 2, there is only
one ω, and K(x) is the Gauss curvature at x.

Theorem 15.6. ([84]) Let M be a two-dimensional geodesically complete manifold
and o ∈M . Let ψ(ρ) be a smooth positive increasing function on (1,∞).

(a) Assume that, for all x ∈M with ρ := dist(x, o) being large enough,

K(x) ≥ −ψ
′′(ρ)

ψ(ρ)
, (15.33)

and ∫ ∞ dr

ψ(r)
=∞. (15.34)

Then M is parabolic.
(b) Let o be a pole. Assume that, for all ρ large enough and all θ ∈ S1,

K(ρ, θ) ≤ −ψ
′′(ρ)

ψ(ρ)
, (15.35)

and ∫ ∞ dr

ψ(r)
<∞ . (15.36)

Assume in addition that

lim sup
r→∞

L(r) > 0, (15.37)
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where L(r) := µ′(∂B(o, r)). Then M is non-parabolic.

Remark. The hypothesis (15.37) allows us to exclude the “dual” manifoldMφ where
φ is defined by (15.30). For example, if ψ(r) = rα, where α > 1, then φ(r) = cr1−α

and L(r) = 2πφ(r) → 0 as r → ∞, so that (15.37) fails to hold for M = Mφ.
Clearly, Mφ is parabolic, despite both (15.35) and (15.36) being true for Mφ.

Example 15.2. Let us set ψ(r) = r log r. Then the parabolicity test (15.33) becomes

K(ρ, θ) ≥ − 1

ρ2 log ρ
.

Let us set ψ(r) = r log1+ε r, ε > 0, and assume that M is a manifold with a pole,
satisfying (15.37). Then the non-parabolicity test (15.35) becomes

K(ρ, θ) ≤ − 1 + ε

ρ2 log ρ
. (15.38)

These two tests were first proved by Milnor [139] for model manifolds and then
by Doyle [52] for manifolds with a pole. The proof of Theorem 15.6 below is also
inspired by these two works.

Proof of Theorem 15.6. (a) In the domain of the polar coordinates, the Riemann-
ian metric of M has the form (3.1), which in the case d = 2 amounts to

ds2 = dρ2 + σ2(ρ, θ)dθ2,

where σ(ρ, θ) is a smooth positive function on R+ × S1. A straightforward compu-
tation of the Gauss curvature yields

K(ρ, θ) = −σ
′′(ρ, θ)

σ(ρ, θ)
,

where σ′′ means ∂2σ/∂ρ2. The hypothesis (15.33) implies

σ′′(ρ, θ)

σ(ρ, θ)
≤ ψ′′(ρ)

ψ(ρ)
, (15.39)

in the domain of the polar coordinates and for ρ large enough.
Let us denote

L(r) :=

∫

S1

σ(r, θ)dθ;

that is L(r) is the length of the geodesic circle ∂B(o, r) outside the cut locus Cut(o).
Since the cut locus has measure zero, we have

L(r) =
d

dr
V (o, r).

The parabolicity of M will follow by Theorem 7.5 if we prove that
∫ ∞ dr

L(r)
=∞. (15.40)

Integrating (15.39) in θ, pre-multiplied by σψ, we obtain

L′′ψ − Lψ′′ ≤ 0,

whence

(L′ψ − Lψ′)
′ ≤ 0,
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and the function L′(r)ψ(r) − L(r)ψ′(r) is decreasing, for large r. Therefore, it is
bounded by a constant C, which yields

(
L

ψ

)′
=
L′ψ − Lψ′

ψ2
≤ C

ψ2
. (15.41)

Integrating (15.41) from r0 (being a large enough number) to r > r0, we obtain

L

ψ
(r) ≤ L

ψ
(r0) + C

∫ r

r0

dξ

ψ2(ξ)
. (15.42)

Assume first that ψ satisfies
∫ ∞ dr

ψ2(r)
<∞. (15.43)

Then the right-hand side of (15.42) is bounded by a constant, and we obtain L(r) ≤
constψ(r). Therefore, (15.40) follows from the hypothesis (15.34).

If ψ does not satisfy (15.43), that is, if
∫ ∞ dr

ψ2(r)
=∞, (15.44)

then we define the function φ by

φ(r) = ψ(r)

∫ r

r0

dξ

ψ2(ξ)
(15.45)

and rewrite (15.42) as

L(r) ≤ L(r0)

ψ(r0)
ψ(r) + Cφ(r). (15.46)

Since (15.44) and (15.45) imply ψ(r) = o(φ(r)) as r →∞, (15.46) yields, for r large
enough, L(r) ≤ constφ(r).

We are left to verify that
∫ ∞ dr

φ(r)
=∞.

Since ψ is increasing, we may assume that c := inf(r0,∞) ψ > 0, whence ψ(r) ≤
c−1ψ2(r). By setting f := φ

ψ =
∫ r
r0

dξ
ψ2(ξ) , we obtain

∫ ∞ dr

φ(r)
=

∫ ∞ dr

f(r)ψ(r)
≥
∫ ∞ cdr

f(r)ψ2(r)

= c

∫ ∞ f ′(r)dr

f(r)
= c log f(∞) + const =∞.

(b) In the previous notation, we have now

σ′′(ρ, θ)

σ(ρ, θ)
≥ ψ′′(ρ)

ψ(ρ)
, (15.47)

for all ρ large enough. By Theorem 12.1, the non-parabolicity of a manifold with a
pole follows from

∫

S1

dθ∫∞
1
σ−1(r, θ)dr

> 0, (15.48)
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which is equivalent to

meas

{
θ ∈ S1 :

∫ ∞

1

dr

σ(r, θ)
<∞

}
> 0. (15.49)

As in the previous proof, we see that the function σ′(r, θ)ψ(r) − ψ′(r)σ(r, θ) is
increasing in r and, therefore, is bounded below by a constant −C, uniformly for
all θ ∈ S1 and r ≥ R, where R is a large enough number. This implies

(
σ

ψ

)′
=
σ′ψ − ψσ′

ψ2
≥ − C

ψ2
. (15.50)

The hypothesis (15.36) and the monotonicity of ψ imply (15.43). Therefore, we
obtain from (15.50), for all r ≥ r0 ≥ R,

σ(r, θ)

ψ(r)
≥ σ(r0, θ)

ψ(r0)
− C

∫ ∞

r0

dξ

ψ2(ξ)
. (15.51)

Defining the function φ by

φ(r) = ψ(r)

∫ ∞

r

dξ

ψ2(ξ)
, (15.52)

we rewrite (15.51) as

σ(r, θ)

ψ(r)
ψ(r0) ≥ σ(r0, θ)− Cφ(r0). (15.53)

Let us split the set of all θ into two parts:

Θ0 =
{
θ ∈ S1 : σ(r, θ) < 2Cφ(r) , for all r ≥ R

}
(15.54)

and Θ1 = S1 \Θ0.
If θ ∈ Θ1 then, for some r0 ≥ R, we have

σ(r0, θ) ≥ 2Cφ(r0).

By (15.53), we obtain, for any r ≥ r0,
σ(r, θ)

ψ(r)
ψ(r0) ≥ Cφ(r0),

whence σ(r, θ) ≥ constψ(r) and, by (15.36),
∫ ∞

1

dr

σ(r, θ)
<∞. (15.55)

We are left to show that meas(Θ1) > 0, which will imply (15.49).
If θ ∈ Θ0 then, by (15.54), σ(r, θ) ≤ 2Cφ(r), for r large enough, whence

∫

Θ0

σ(r, θ)dθ ≤ constφ(r). (15.56)

Since ψ is increasing, we have, by (15.52) and (15.36),

φ(r) ≤
∫ ∞

r

dξ

ψ(ξ)
−→ 0, r →∞.

Thus, (15.56) and (15.37) imply

lim sup
r→∞

∫

Θ1

σ(r, θ)dθ > 0, (15.57)

whence Θ1 has positive measure.
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Remark. As is clear from the proof, the hypothesis (15.37) can be relaxed as follows:

lim sup
r→∞

L(r)

φ(r)
=∞,

where φ is defined by (15.52). For example, if ψ(r) = r logα r, α > 1, then φ(r) ≍
log−α r. Therefore, (15.37) can be replaced in this case by

lim sup
r→∞

L(r) logα r =∞.

16. Heat kernel’s lower bounds and recurrence of α-process

Given a lower bound of the heat kernel on M , one may be able to prove that M
is parabolic, using Theorem 5.1(5). The latter says that M is parabolic provided

∫ ∞
p(t, x, x)dt =∞. (16.1)

In general, obtaining pointwise lower bounds of the heat kernel p(t, x, y) may be
difficult and requires restrictive geometric assumptions (see [126], [78], [164], [165]).
However, the parabolicity test (16.1) requires only an on-diagonal lower bound,
which is much easier. The following theorem provides such an estimate assuming
only a knowledge of the volume growth.

Theorem 16.1. (Coulhon and Grigor’yan [36, Theorem 6.1], [35]) Let M be geo-
desically complete. Assume that, for some point x ∈M and all r ≥ r0 > 0,

V (x, r) ≤ CrN ,

for some (large) positive C,N . Then, for all t ≥ t0 = t0(r0) > 0,

p(t, x, x) ≥ 0.5

V
(
x,
√
at log t

) , (16.2)

with some positive constant a which depends on C,N as well as on certain intrinsic
properties of the ball B(x, r0).

As an immediate consequence, we see that the hypothesis

V (x, r) ≤ Cr2 (16.3)

implies the parabolicity of M . Indeed, (16.3) and (16.2) imply, for large t,

p(t, x, x) ≥ const

t log t
,

whence (16.1) follows.
However, this method does not give the sharp integral condition (7.12) because

of the excessive log t in the estimate (16.2). As was shown in [36, Section 9], this
log t cannot be eliminated.

Given a pointwise on-diagonal lower bound of the heat kernel, we can get for
free the recurrence of some stochastic processes other than the Brownian motion.

It is known [135, Theorem 3.2] that for any α ∈ (0, 2), the operator (−∆)α/2 is
a generator of a Hunt process on M. Let us call it the α-process. It is a natural
generalization of the α-stable process in Rd. As follows from a general semigroup
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theory of subordinated processes17 (see [195, IX.11] and [135, p.234]) the Green

function G(α)(x, y) of (−∆)
α/2

is given by

G(α)(x, y) =

∫ ∞

0

tα/2−1p(t, x, y)dt,

and the recurrence of the α-process is equivalent to G(α) ≡ ∞. The latter amounts
easily to

∞∫
tα/2−1p(t, x, x)dt =∞ (16.4)

(cf. the proof of Theorem 5.1, part (4)⇐⇒(5)).
For example, if

V (x, r) ≤ Crα, (16.5)

then, by Theorem 16.1,

p(t, x, x) ≥ const

tα/2 logα/2 t
,

and we see that (16.4) is satisfied. Thus, we have

Theorem 16.2. Let M be a geodesically complete manifold, and assume that (16.5)
holds for some x and all large r. Then the α-process is recurrent.

A slightly weaker result was proved by I.McGillivray [135].
In the same way, we derive the following statement from the estimates (11.4)

and (11.5) of the heat kernel.

Theorem 16.3. Let M be geodesically complete and assume that the relative Faber-
Krahn inequality (11.2) holds on M . Then the recurrence of the α-process is equiv-
alent to ∫ ∞ dt

V (x, t1/α)
=∞.

Similarly, one can produce a transience test for the α-process by using the upper
bound of the heat kernel (10.16).

Theorem 16.4. Let M satisfy a uniform Faber-Krahn inequality (10.5) and as-
sume

∫ ∞ [∫ v

1

dξ

ξΛ(ξ)

]α/2−1
dv

v2Λ(v)
<∞. (16.6)

Then the α-process is transient.

In particular, if Λ(v) ∼ v−β , for large v, then (16.6) holds if and only if αβ < 2. A
nice application of this theorem occurs on a manifold of bounded geometry which is,
by definition, a manifold with Ricci curvature bounded below and with a positive
injectivity radius. A complete manifold of bounded geometry always admits a
Faber-Krahn inequality with the function

Λ(v) = const v−2, (16.7)

17The author is obliged to Ivor McGillivray for explaining the particulars of subordinated
processes.
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for large enough v; see [82, Theorem 2.1].18 Therefore, if α < 1 then the α-process
is transient on any complete manifold of bounded geometry.

17. Escape rate as a measure of transience

The transience of the process Xt means that, with Px-probability 1, it leaves
any ball B(x, r) forever after some (random) t. One may wonder if the radius r
can be time-dependent. In other words, is there an increasing function r(t) such
that Xt /∈ B(x, r(t)), for all t large enough Px-a.s.? We will call such a function a
lower radius for Xt. A sphere ∂B(x, r(t)) can then be regarded as a rear front of
the diffusion process.

There is a natural counterpart to a lower radius - an upper radius. An increasing
function R(t) is called an upper radius if, with Px-probability 1, we have Xt ∈
B(x,R(t)), for all t large enough. The sphere ∂B(x,R(t)) can be regarded as a
forefront of the Brownian motion (see Figure 33).

A sharp estimate of a lower radius in Rd was obtained by Dvoretzky and Erdös
[54]. Namely, if r(r)/

√
t is a decreasing function, then r(t) is a lower radius for the

Brownian motion in Rd, d > 2, if and only if
∫ ∞ (r(t)√

t

)d−2
dt

t
<∞. (17.1)

In particular, the function

r(t) =
C
√
t

log
1+ε
d−2 t

, C > 0 (17.2)

is a lower radius if ε > 0 and is not if ε ≤ 0. Note that the restriction d > 2 is
essential; otherwise the process is recurrent, and there is no increasing lower radius.

Figure 33. A lower radius r(t) and an upper radius R(t)

18In fact, the hypothesis of a positive injectivity radius can be relaxed as to the assumption

that, for some positive ρ, v0, all balls of radius ρ have the volume at least v0 > 0. Note that the
function (16.7) is the same as in R1 and as in a cylinder R1 × K where K is compact. It reflects
the fact that a manifold of bounded geometry has at least dimension 1 at infinity. See [185], [24],
[33].
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The celebrated Khinchin’s theorem - the law of the iterated logarithm - says that
the function

R(t) =
√

(2 + ε)t log log t (17.3)

is an upper radius in Rd if ε > 0 and is not if ε ≤ 0 (see [103, Section 4.12] and [14]
for further results in this direction).

We briefly outline similar results for Riemannian manifolds.

Theorem 17.1. (the law of the single logarithm - [86], [83]) Let M be a geodesically
complete manifold of at most polynomial volume growth; i.e., for some x ∈M and
all r large enough,

V (x, r) ≤ const rN ,

with some N > 0. Then the function

R(t) =
√

2Nt log t (17.4)

is an upper radius for Xt.

Note that there are counterexamples which show that the function (17.4) cannot
in general be replaced by

√
Ct log log t - see [8], [87]. However, if the relative Faber-

Krahn inequality (11.2) holds, then one does have the upper radius (17.3) - see [86,
Theorem 1.3].

For a lower radius, there is the following test.

Theorem 17.2. ([83, Theorem 5.1]) Let M be geodesically complete and let us
assume that the relative Faber-Krahn inequality (11.2) holds on M. Assume also
that M is non-parabolic and denote, for some x ∈M ,

γ(r) :=

(∫ ∞

r

sds

V (x, s)

)−1

. (17.5)

Let r(t) be an increasing positive function on (0,∞) such that
∫ ∞ γ(r(t))

V (x,
√
t)
dt <∞. (17.6)

Then r(t) is a lower radius for the process Xt started at x.

The hypothesis of non-parabolicity ensures that the integral in (17.5) is conver-
gent. Moreover, given the relative Faber-Krahn inequality, the non-parabolicity of
M is equivalent to the convergence of the integral in (17.5) as is stated by Theorem
11.1.

Let us recall that the relative Faber-Krahn inequality holds on manifolds of
non-negative Ricci curvature. Thus, Theorem 17.2 applies on such manifolds.

Example 17.1. Let V (x, r) ∼ rν for large r and some ν > 2. We obtain from (17.5)
γ(t) ∼ tν−2, and (17.6) amounts to

∫ ∞ rν−2(t)dt

tν/2
<∞ ,

which coincides with the Dvoretzky–Erdös condition (17.1) for d = ν.
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Example 17.2. Let V (x, r) ∼ r2 logν r for large r with some ν > 1. We find γ(t) ∼
logν−1 t for large t, and (17.6) acquires the form

∫ ∞ logν−1 r(t)

t logν t
dt <∞.

For example, we can put r(t) = t(log log t)−α

, for large t, with any α > 1
ν−1 .

See [4], [5, p.60], [83], [86], [93] for other situations when the escape rate can be
estimated.

18. Problem section

We suggest here some open problems related to the topics of the paper. Their
difficulty varies from very hard to apparently accessible for graduate students spe-
cializing in the area.

Manifold M is always assumed geodesically complete and non-compact.
Parabolicity
1. Let M be a manifold with a pole and (ρ, θ) be the polar coordinates on M .

Theorem 12.1 says that M is non-parabolic provided

meas

(
θ ∈ Sd−1 :

∫ ∞ dρ

D(ρ, θ)
<∞

)
> 0

where D(ρ, θ) is the angular density of the boundary area function (see (12.2)).
Prove (or disprove) the converse: if, for almost all θ ∈ Sd−1,

∫ ∞ dρ

D(ρ, θ)
=∞,

then M is parabolic.
If this is not true, then find another condition which would be both necessary

and sufficient for the parabolicity of M . The question is open even for the two-
dimensional M .

2. Let a smooth hypersurface Γ divide a manifold M into two open subsets
N1, N2. Suppose that each subset N1, N2 is parabolic (see Section 14.1 for the
definition of parabolic subsets). Is it true that M is parabolic?

If Γ is compact, then the affirmative answer is given by Proposition 14.1(e). If
Γ is not compact, then some additional hypotheses about the structure of Γ may
be required.

The same question for M being partitioned into a finite number of open sub-
sets N1, N2, ..., Nn: when is it true that M is parabolic provided all sets Ni
are parabolic? This is related to Question 1. Indeed, let the sphere Sd−1 be
partitioned into cells ω1, ..., ωn. This induces partitioning of M into the cones
Nωi = {(ρ, θ) : ρ > 0, θ ∈ ωi}. Assume that, in any cone Nωi , the boundary area
density D(ρ, θ) is given by D(ρ, θ) = Di(ρ) , neglecting the smoothness of D on the
boundaries ∂Nωi . Then the parabolicity of Nωi is equivalent to

∫ ∞ dρ

Di(ρ)
=∞ (18.1)

(cf. Lemma 12.2). Suppose that (18.1) holds for all i = 1, 2, ..., n. Is it true that
M is parabolic?
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If we knew that ∫ ∞ dρ∑
iDi(ρ) |ωi|

=∞, (18.2)

then M would be parabolic by Theorem 7.5. However, (18.1) does not necessarily
imply (18.2) (cf. Example 7.3).

3. How to extend Theorem 12.1 to arbitrary geodesically complete manifolds
(without a pole)? This amounts to obtaining a lower bound of capacity gener-
alizing (12.6). Let v(x) be a smooth exhaustion function on M and let Br :=
{x ∈M : v(x) < r}. A heuristic analogue of (12.6) would be the estimate

cap(Br, BR) ≥
∫ (∫ R

r

(dρ)2

|∇v|2 dµ

)−1

, (18.3)

which, however, does not make sense in this form. It is obtained similarly to the
proof of Theorem 12.1, by splitting BR \ Br into thin tubes connecting ∂Br and
∂BR and estimating the capacity inside each tube by

cap (Bωr , B
ω
R) ∼=




∫ R

r

dρ

flux
∂Bω

ρ

v




−1

(cf. (7.6) and Lemma 12.2). For a small piece of surface ∂Bωρ , we have

flux
∂Bω

ρ

v ∼= |∇v| dµ′ ∼= |∇v|2 dµ
dρ

,

whence

cap (Bωr , B
ω
R) ∼=

(∫ R

r

(dρ)
2

|∇v|2 dµ

)−1

,

and (18.3) follows by summing up the above estimate over all tubes. The question
is whether it is possible to make all this rigorous.

4. Let M be a geodesically complete manifold with a pole o. Denote S(r) =
µ′(∂B(o, r)) and assume that

∫ ∞ dr

S(r)
<∞. (18.4)

Suppose also that

Kω(x) ≤ −ψ
′′(ρ)

ψ(ρ)
, for all large enough ρ := dist(x, o), (18.5)

where Kω(x) is the sectional curvature as in Section 15.2 and ψ is a function as in
Theorem 15.3 and such that ∫ ∞ dr

ψd−1(r)
<∞. (18.6)

Is it true that M is non-parabolic?
Example 7.3 shows that (18.4) alone is not sufficient for the non-parabolicity

of M . As was explained in Section 15.3, (18.5) and (18.6) do not imply the non-
parabolicity either (unless (18.5) holds for all ρ > 0 – see Theorem 15.3(b)). If d = 2
then all three conditions (18.4), (18.5) and (18.6) do imply that M is non-parabolic,
by Theorem 15.6(b). The question is whether the same is true for d > 2.
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Consider the particular case d = 3 and ψ = rα with α > 1/2, which ensures
(18.6). Then the question becomes as follows: is it true that (18.4) and

Kω(x) ≤ 1− ε
4ρ2

, for all large enough ρ,

where ε > 0, imply that M is non-parabolic?
5. (Milnor [139]) Let M be a graph of a smooth function z = f(x, y) defined for

all (x, y) ∈ R2. Find a criterion for parabolicity of M in terms of the function f .
Examples of non-parabolic surfaces of this kind can be found in [156].

6. Consider a domain of revolution in Rd:

Df :=
{
x ∈ Rd : 0 ≤ x1 <∞ and |x′| ≤ f(x1)

}
, (18.7)

where x′ = (x2, ..., xd) and f is a smooth function. The set Df can be considered
as a manifold with boundary (make it smooth near the origin). Find a criterion for
parabolicity of Df in terms of the function f .

If f is “slowly” changing, then one expects that the parabolicity of Df is equiv-
alent to

∫ ∞ dx

fd−1(x)
=∞, (18.8)

that is analogous to Proposition 3.1. However, if f oscillates then it is not clear
whether (18.8) is a good guess.

Explosion
7. Does there exist an explosion criterion which would be similar to the capacity

criterion for transience given by Theorem 5.1(6)? T.Lyons [131] constructed an
example of a manifold where the explosion is not stable under a quasi isometry.
Therefore, the corresponding “capacity” should not be a quasi-isometric invariant
either.

8. Theorem 5.7(b) says that M is non-parabolic if and only if there exists a
smooth vector field v on M such that |v| ∈ L2(M,µ), div v ∈ L1(M,µ) and

∫

M

div v dµ 6= 0 .

Find a criterion for explosion similar to the above criterion for transience. A state-
ment should run like this: “If there is a vector field on M with such that ..., then
M is stochastically incomplete.” The idea is to replace the Brownian trajectories
by a deterministic vector field which should resemble in a large scale the velocity
of the Brownian motion in the case of explosion.

9. Prove (or disprove) that the condition
∫ ∞ V (x, r)

V ′(x, r)
=∞, (18.9)

for some x ∈M , implies stochastic completeness of M . By Proposition 3.2, this is
true for model manifolds.

The condition (18.9) is analogous to the condition (7.15) for parabolicity. The
best known non-explosion test in terms of the volume function is given by Theorem
9.1.

10. Let M be a Cartan-Hadamard manifold and let k(r) be a positive increasing
function on (0,∞) such that the sectional curvature at any point x ∈ M at any
2-section is bounded above by −Cρ2+ε where ρ = ρ(x) = dist(x, o), o being a
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reference point, and C > 0. Then, by Theorem 15.4(b), M is not stochastically
complete.

On the other hand, denote λe(r) := λ1(M \ B(o, r)). Since the curvature in

M \B(o, r) is bounded above by −Cr2+ε, the eigenvalue comparison results [137],
[192] imply that

λe(r) ≥ C′r2+ε, (18.10)

where C′ = (d−1)2

4 C. The question is whether (18.10) alone implies the explosion,
without having to assume the curvature growth. In short, given a Cartan-Hadamard
manifold M satisfying (18.10), prove that M is stochastically incomplete.

Presumably, one could show that the Green function on M is summable (see
Corollary 6.7). There is a heat kernel upper bound [80, Theorem 5.3] which takes
into account the growth of λe(r), but it is not good enough to show that G is
summable. Maybe one should assume also a matching upper bound of the volume
V (o, r).

Liouville properties
11. Give an efficient characterization of massive sets (see Section 4.4) in terms

of their intrinsic geometry. For D-massive sets, such a characterization is given by
Theorem 14.2. Since Theorem 13.10 provides a straightforward link of massive sets
to bounded harmonic functions, there is a hope to obtain in this way a criterion for
the L∞-Liouville property for harmonic functions.

12. Similarly, give characterizations of λ-massive sets (see Section 6) and q-
massive sets (Section 13.2). The former may be used to produce a geometric crite-
rion for stochastic completeness.

13. Suppose that M has at most polynomial volume growth and bounded geom-
etry. What is the necessary and sufficient geometric condition for the L∞-Liouville
property for harmonic functions?

14. Generalize Theorem 13.10(c) to solutions to the Schrödinger equation (13.6).
For example, prove or disprove that if M contains k disjoint q-massive sets (see
Section 13.2), then the space of all bounded solutions to ∆u − q(x)u = 0 has the
dimension at least k.

Similarly, can one state an analogue of Theorem 14.5 for the Schrödinger equa-
tion?

15. If manifolds M and N are stochastically complete, then the Riemannian
product M × N is also stochastically complete (this follows from the fact that
the heat kernel on M × N is the product of the heat kernels on M and N). For
parabolicity, this is not true: R1 and R2 are parabolic whereas their product R3 is
not.

Suppose thatM admits the q1-Liouville property (see Section 13.2) andN admits
the q2-Liouville property. What q-Liouville property can be proved on M ×N?

It is natural to define the function q = q(x, y) (where x ∈ M , y ∈ N) as
follows: q(x, y) = f(q1(x), q2(y)), where f is a function in two variables. Recall
that parabolicity is equivalent to the q-Liouville property with q ∈ C∞

0 , whereas
stochastic completeness is equivalent to that for q ≡ 1.

16. Prove (or disprove) that if manifolds M and N are parabolic, then the Rie-
mannian product M ×N possesses no bounded harmonic function except constant.
This would explain (to some extent) why Rd admits the L∞-Liouville property for
harmonic functions.
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It is not enough to assume that both M and N admit the L∞-Liouville property
- see Section 13.5 for a counterexample.

17. Is the q-Liouville property (see Section 13.2) stable under quasi-isometry?
If q is compactly supported, then, by Theorem 5.1(7), the q-Liouville property
is equivalent to parabolicity of M and, therefore, is stable by Corollary 5.3. On
the other hand, if q ≡ 1 then the q-Liouville property is equivalent to stochastic
completeness that may be unstable.

Where is the borderline between these two possibilities? For example, let q(x) =
1

1+r2 where r := dist(x, x0). Is it true that the q-Liouville property with this
particular q is stable under a quasi-isometry?

Note that the q-Liouville property is always preserved by a change of the metric
and/or of q within a compact set [88].

18. Theorem 8.2 ensures non-parabolicity provided a certain isoperimetric in-
equality holds on M . Is it possible to state a similar result for existence of a
non-trivial bounded solution to the Schrödinger equation ∆u − q(x)u = 0?

19. Find a criterion for the L∞-Liouville property in the domain of revolution
Df given by (18.7). In other words, for what functions f is any bounded harmonic
function in Df with the Neumann boundary condition on ∂Df identically constant?
For a model manifold Mσ, the L∞-Liouville property is equivalent to

∫ ∞ dr

σd−1(r)

∫ r

1

σd−3(ξ)dξ =∞

(see [128] and [142]).
20. (M.Barlow) LetM be non-parabolic. Prove (or disprove) that there exists an

open subset E ⊂M with smooth boundary which admits a non-constant bounded
harmonic function in E with the Neumann boundary condition on ∂E. In other
words, the L∞-Liouville property must fail in E.

An intuition behind this conjecture is the following. Presumably, the set E can be
found so that it contains a “bottleneck” which separates E into two subsets massive
in E. By Theorem 13.10(b), this will imply existence of a nontrivial bounded
harmonic function on E.

The assumption of non-parabolicity of M is necessary since otherwise any subset
E is parabolic and so is the manifold E, by Proposition 14.1. If M = Rd, d > 2,
then E can be constructed by gluing together two disjoint half-spaces via a compact
tube. Another example of such a set E being in addition diffeomorphic to a half-
space can be found in [73, Section 3].

Faber-Krahn inequality and capacity
21. Prove the following estimate of capacity

cap(B(x, r), B(x,R)) ≥ const

(∫ R

r

sds

V (x, s)

)−1

assuming the relative Faber-Krahn inequality (11.2). This will provide an alterna-
tive proof of Theorem 11.1.

22. Prove the following estimate of capacity (cf. (8.2))

cap(K,Ω) ≥ const

(∫ |Ω|

|K|

dv

v2Λ(v)

)−1

(18.11)
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assuming the uniform Faber-Krahn inequality (10.5). This will provide an alterna-
tive proof of Theorem 10.2.

What is easy to prove is the following inequality:

cap(K,Ω) ≥ |K|λ1(Ω) ≥ |K|Λ(|Ω|), (18.12)

which follows from the definitions (4.12) of the capacity and (10.1) of λ1, and which
is clearly weaker than (18.11).

23. Given the Faber-Krahn inequality (10.5), prove an upper bound of the Green
kernel

G(x, y) ≤ C
∞∫

V (y,r)

dv

v2Λ(v)
, (18.13)

where r = dist(x, y). The motivation behind (18.13) is the following. The Faber-
Krahn inequality (10.5) follows from the isoperimetric inequality (8.1) if we set

Λ(v) :=
1

4

(
f(v)

v

)2

(see (10.9)). Assuming (8.1) and combining (4.24) with (8.2), we obtain

inf
x∈∂B(y,r)

G(x, y) ≤
∞∫

V (y,r)

dv

f2(v)
=

1

4

∞∫

V (y,r)

dv

v2Λ(v)
.

The point is, firstly, to obtain a pointwise upper bound for G rather than an upper
bound for inf G as above; secondly, to assume a Faber-Krahn inequality rather than
an isoperimetric inequality.

The Faber-Krahn inequality (10.5) implies an upper bound of the heat kernel
[80, Theorem 5.1], which yields an upper estimate for G upon integrating in time.
However, this method does not give a very sharp result in the case when G(x, y)
decays superpolynomially as r →∞.

Regular ends
24. Assuming that E is a regular end of M (see Sections 14.3, 14.4), prove that

the hypothesis
∫ ∞ sds

VE(s)
<∞

implies non-parabolicity of E. Due to Theorem 14.6, it suffices to show that, for a
regular end,

capE(Br, B2r) ≥ const
VE(r)

r2
,

for all large r. By (18.12), this in turn would follow from λ1(Br) ≥ const
r2 .

25. (P.Li [119]) Let E be an end of a geodesically complete manifold M and
assume that the Ricci curvature is non-negative on E. Does this imply that the end
E is regular? (See Section 14.3 for the definitions.) The answer is “yes” if E has a
non-negative sectional curvature - see [121, Theorem 3.2]. Should the answer be in
general “no”, let us assume in addition that the volume comparison condition (VC)
holds on E (see Example 14.3 at the end of Section 14.4) and ask again whether E
is regular. More generally, do the conditions (P), (D) and (VC) (see Example 14.3)
imply that E is regular, without any curvature assumption?
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Recurrence of the α-process
26. (I.McGillivray) Prove that if

∫ ∞ dt

V (x, t1/α)
=∞ , (18.14)

for some x ∈ M , then the α-process on M is recurrent (see Section 16 for the
definition of the α-process). Theorem 16.2 guarantees the recurrence of the α-
process under the stronger assumption V (x, r) ≤ Crα. Theorem 16.3 says that
(18.14) is equivalent to the recurrence provided M admits the relative Faber-Krahn
inequality.

Escape rate
27. Produce a lower radius function r(t) for the Brownian motion on manifolds

with superpolynomial volume growth (see Section 17 for the definition of r(t)).
What is a lower radius r(t) on a model manifold Mσ (see Section 3.2) with

σ(r) ∼ exp(rα)? The answer may be substantially different for small α > 0 and for
α > 2. In the latter case, Mσ is stochastically incomplete, by Proposition 3.2.

What is a lower radius on a covering manifold (see Section 11.2) given the volume
growth function V (r) ∼ exp(rα), 0 < α < 1? See [93] for the case of a polynomial
volume growth.

Does there exist a manifold with a fast growing lower radius, say, r(t) = t2?
28. Suppose that r(t) is a lower radius for the Brownian motion on an arbitrary

complete Riemannian manifold. Is it true that 2r(t) is also a lower radius? For
Rd, this follows from the test (17.1) of Dvoretzky and Erdös (if M is a manifold of
non-negative Ricci curvature, then the sufficient condition (17.6) for a function r(t)
to be a lower radius is also stable under the change to 2r(t)). However, no direct
way is known to see why 2r(t) should be a lower radius in general.

Is there a manifold for which the following is true: if R(t) is an upper radius,
then 1

2R(t) is also an upper radius? In Rd this clearly fails.
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[38] Coulhon T., Saloff-Coste L., Isopérimétrie pour les groupes et les variétés, Revista
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Fläche, Göttinger Nachr., 1 no.14, (1939)

[149] Nevanlinna R., Ein Satz über offenen Riemannsche Flächen, Ann. Acad. Sci. Fenn. Part
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