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Images of the inside of the human body can be obtained non-
invasively using tomographic acquisition and processing tech-
niques. In particular, these techniques are commonly used to
obtain images of a !-emitter distribution after its administration
in the human body. The reconstructed images are obtained
given a set of their projections, acquired using rotating gamma
cameras. A general overview of analytic and iterative methods
of reconstruction in SPECT is presented with a special focus on
filter backprojection (FBP), conjugate gradient, maximum likeli-
hood expectation maximization, and maximum a posteriori ex-
pectation maximization algorithms. The FBP algorithm is faster
than iterative algorithms, with the latter providing a framework
for accurately modeling the emission and detection processes.
Key Words: iterative reconstruction algorithms; analytic recon-
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The basic principle of nuclear medicine imaging is the
following: a !-emitter–labeled pharmaceutical is administered
to a subject and an external device, the gamma camera, detects
the radioactivity stemming from the body, from 1 or several
angles of views. The image obtained at 1 angle of view is the
projection of the 3-dimensional (3D) distribution onto the
2-dimensional (2D) detector plane. Because of the projection
operation, no information regarding the depth at which disin-
tegrations occur is available; moreover, activities stemming
from separate structures may overlap each other on the detector
plane, and the contrast may be low. With only 1 projection
image, it is impossible to determine the activity distribution
because an infinite number of distributions can yield the same
projection. It is as difficult as to find 2 values knowing only
their sum. However, the overlap observed in the projections
depends on the relative positions of the detector and of the
structures inside the body. So, more information about the

relative positions can be obtained by acquiring projections over
a large number of angles of view around the subject. The basic
idea of SPECT is to obtain, as accurately as possible, an image
of the !-emitter distribution in any slice of the body, using
projections of this image acquired by a rotating gamma camera
from several angles of view.
Although many different algorithms for SPECT exist (1),

this article presents the basics of the more widely used
algorithms: filtered backprojection (FBP), conjugate gradi-
ent (CG), maximum likelihood expectation maximization
(MLEM), and maximum a posteriori expectation maximi-
zation (MAPEM) algorithms. It is not an exhaustive pre-
sentation of reconstruction algorithms and, in particular, it
does not deal with the 2D Fourier reconstruction (2,3), the
algorithms using linograms (4,5), Chebyshev polynomials
(6), nonlinear backprojection (7), or those used when pro-
jections are acquired with a pinhole collimator (8). We shall
not specifically address the reconstruction with fanbeam
collimators, because in this case the projection data are
usually rebinned to yield parallel projections (9) and, hence,
the same reconstruction algorithm can be used for both sets
of projections. Also, physical phenomena such as attenua-
tion, scattering, and so forth are not under consideration
here. Presentations of image reconstruction, without math-
ematics, can be read before reading this article (10,11). The
appendices at the end of this article contain some important
equations, very useful to better understand the principles
described in the body of the text. In-depth, mathematic
presentations of principles of CT can be found (1,12,13).

PRESENTATION

The 3D dataset of !-emitter distribution is obtained in
SPECT by piling up many slices usually reconstructed inde-
pendently. For this reason, we will consider in the following
the reconstruction of 1 slice only. Data acquisition is schemat-
ically illustrated in Figure 1. The detector rotates around the
object of interest and allows one to observe the pattern of
!-emission in the field of view for many angles. We define
g(s, ") as the number of scintillations detected at any location
s along the detector when the detector head is at an angular
position ". We also define the quantity f (x, y) as the estimated
number of photons emitted at any point (x, y) of the transverse
slice in the field of view. This unknown quantity is assumed to
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be proportional to the tracer concentration we are interested in.
The function g is the projection of f onto the crystal as allowed
by the collimator. This means that g(s, ") is the sum of the
radioactive counts recorded in any time interval at point swhen
the detector is at angle ". The collimator defines the kind of
projection (e.g., an orthogonal projection for parallel collima-
tors) and determines the direction of the incident photon for
any scintillation in the crystal. The difficulty is that photons
emitted at different depths, but along the same direction, can
potentially produce scintillations at the same location in the
crystal; thus, the distance between the emission site and the

scintillation site is unfortunately unknown. As a consequence,
the amount of information brought by only 1 projection is
insufficient to obtain an image of the tracer distribution in the
organ of interest, because a large number of radioactive distri-
butions can generate the same pattern in a single projection.
Fortunately, the number of possible solutions can be reduced in
acquiring projections for many distinct angular positions of the
detector. Moreover, as the number of projections increases, the
possible solutions are increasingly alike.
At the end of the acquisition process, each point of the

detector, for each angular position, contains the number of

FIGURE 1. Principle of tomographic ac-
quisition and geometric considerations. At
each angle, data are projection of radioac-
tivity distribution onto detector. Note that
location of any scintillation onto crystal al-
lows one to find out direction of incident
photon (dashed line) but not to know dis-
tance between detector and emission site
of photon.

FIGURE 2. (Left) Shepp–Logan phantom
slice (256 # 256 pixels). (Right) Corre-
sponding sinogram, with 256 pixels per
row and 256 angles equally spaced be-
tween 0° and 359°. Each row of sinogram
is projection of slice at given angular posi-
tion of detector.
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scintillations, or counts. A common representation for the
projection data g corresponding to a slice is the sinogram
(Fig. 2). A sinogram is a 2D image, in which the horizontal
axis represents the count location on the detector, and the
vertical axis corresponds to the angular position of the
detector. The corresponding number of counts is assigned to
each point of the sinogram. The problem is: Given a sino-
gram g, what is the distribution of radioactivity f in the slice
of interest? We shall first describe the projection process
when a parallel collimator is used and then see how an
estimate of the activity distribution in the slice can be found
using the FBP, CG, MLEM, and MAPEM algorithms.

PROJECTION OPERATOR

Geometric Considerations
The collimator allows only photons whose direction is par-

allel to the axis of its holes to be potentially detected. For each
detector angle ", and for each location s on the detector, this
direction is defined by a lineD$ whose equation is (Appendix 1):

s ! x cos " " y sin ". Eq. 1

Let us first consider the projection operation, giving the
number of counts detected in any point of the detector line
g(s, ") as a function of the number of counts f (x, y) emitted
in any point of the field of view (here, we consider the ideal
case, without noise, attenuation, scattering, numerical ap-
proximations, and so forth).

Radon Transform
Mathematically, the projection operator can be defined by

the Radon transform (13,14). The Radon transform g(s, ")
of a function f (x, y) is the line integral of the values of
f (x, y) along the line inclined at an angle " from the x-axis
at a distance s from the origin:

g%s, "& !

!
'(

)(

f %s cos " # u sin ", s sin " " u cos "&du. Eq. 2

Because an integral is basically a sum of values, the value
g(s, ") is the sum of the values f (x, y) along D$. For this
reason, g(s, ") is called a ray-sum. The variable u defines the
location of the points to be summed (the points along D$).
Because computers can only deal with a finite number of

elements in the detector and in the field of view, g(s, ") and
f (x, y) are in practice functions of discrete variables—that
is, the variables s, ", x, and y have a finite number of
possible values. In this presentation, the elements of the
slice are the pixels, and each point of measurement on the
detector, for each projection angle, is called a bin. So the
number of bins equals the number of points of measurement
multiplied by the number of angles. Figure 3 presents an
example of a discrete projection for a 3 # 3 image at 2
angles. The result is a sinogram with 2 rows (corresponding
to 2 projection angles) and 3 columns (corresponding to 3
points of measurements on the detector), so there are 6 bins.
From a mathematic point of view, the sets of values in the

sinogram and the reconstructed slice can be considered as
matrices or vectors. A matrix is a set of values organized in
rows and columns; a vector is a set of values in 1 column.
Readers unfamiliar with matrices should pay special atten-
tion to the easy concept of matrix product defined in Ap-
pendix 2, because it is a fundamental tool to understand
image reconstruction. In Table 1 is listed the notation we
will use throughout this presentation.
In the following, we will consider the sinogram and the

slice as 2 vectors; the vectors are formed by stacking the
rows of the matrices. In these vectors, the location of a bin
is known by its index i and the location of a pixel by its
index j. It can be shown that the vector g is the matrix
product of matrix A and vector f (Appendix 3). The value gi
of any bin is a weighted sum of the m pixel values in the
image:

gi ! ai1 f1 " ai2 f2 " . . ." aim fm ! "
j*1

m

aij fj. Eq. 3

FIGURE 3. (Left) Principle of projection
for one 3 # 3 slice at angle " * 0 and " *
90°. Value in each bin is sum of values of
pixels that project onto that bin. (Right)
Example: g1 * f3 ) f6 ) f9 * 2 ) 2 ) 3 *
7. Result of projection is sinogram with 2
rows, whose values are (7, 9, 7) and (6, 9,
8).
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This is the discrete formula for the projection operation, and
the essential point here is that the discrete projection oper-
ation can be defined as a matrix product. This product can
be concisely written as g* Af, where A is called the forward
projection operator (the adjective “forward” is usually omit-
ted). In other words, the projection operation allows one to
find the sinogram given the slice. An element of the matrix
A is located in this matrix according to its row and its
column. For example, the element aij is located at the ith
row and jth column of the matrix. The point here is that any
aij can be seen as a weighting factor representing the con-
tribution of pixel j to the number of counts detected in bin
i, or as the probability that a photon emitted from pixel j is
detected in bin i. The use of zeros or ones in the matrix A
can be interpreted as the binary choice “a given pixel
contributes or does not contribute to the number of counts
detected in any bin.” However, to get a more realistic
model, we want to be able to modulate this contribution. To
do so, the aijs may not be necessarily equal to 0 or 1 but can
be any real values between 0 and 1. As we shall see below,
the correct determination of the aijs is important because the
iterative algorithms use the projection operation. The values
are carefully chosen to take into account the geometry of
acquisition and, more precisely, the fact that a variable

fraction of a pixel contributes to the counts detected in a
given bin, depending on their relative positions and the
angle of acquisition. Moreover, the camera response (that
especially depends on the collimator) and physical phenom-
ena such as attenuation and scatter can be efficiently mod-
eled by choosing the appropriate values for the aijs. The
capability to account for physical phenomena and for a
nonideal imaging system is one of the advantages of itera-
tive approaches compared with the FBP method.
Theoretically, direct methods exist to solve the system

g * Af. A method called direct inversion consists in the
determination of the invert of A, noted A'1, because f *
A'1g. This method has several flaws: (a) It is computation-
ally intensive for current computers, even for 64 # 64
images; (b) A'1 may not exist; (c) A'1 may be not unique;
(d) A'1 may be ill-conditioned—i.e., small changes in the
data g may produce large differences in the result f—for
example, when g is noisy.
Unfortunately, in practice, the matrix A is ill-conditioned,

because of the noise in the projections. Thus, the direct
methods are not widely employed. We shall present now the
algorithms commonly used in SPECT: the FBP, CG,
MLEM, and MAPEM algorithms.

ANALYTIC RECONSTRUCTION METHODS

Backprojection Operator
Associated with the projection, the backprojection oper-

ation is defined as:

b%x, y& ! !
0

+

g%s, "&d". Eq. 4

Backprojection represents the accumulation of the ray-sums
of all the rays that pass through any point M(x, y). Remem-
ber that for a given point M and for a given projection angle
", s is given by Equation 1. Applying backprojection to
projection data is called the summation algorithm. In ideal
conditions (in particular, without attenuation), the projec-
tions acquired at angles between + radians (180°) and 2+
radians (360°) do not provide new information, because

FIGURE 4. (Left) Principle of backprojec-
tion for one 2 # 3 sinogram. Value in each
pixel is sum of values of bins that, given
angle of detector, can receive photons
from that pixel and is divided by number of
rows of sinogram. (Right) Example: f1 *
(g3 ) g4)/2 * (7 ) 6)/2 * 6.5. Compare this
slice with that of Figure 3, and note that
after 1 projection and 1 backprojection, ini-
tial slice is not retrieved.

TABLE 1
Notations

g Vector of projection data
f Vector of image data
A Matrix such that g * Af
aij Value of element located at ith row and jth column

of matrix A
i Projection subscript
j Pixel subscript
gi Number of counts in ith bin of a projection dataset
g! i Mean value of gi, assuming gi is a Poisson

random variable
fj Number of disintegrations in jth pixel of a slice
f!j Mean value of fj assuming fj is a Poisson random

variable
m Number of pixels
n Number of bins
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they are only the symmetric of the projections acquired at
angles between 0 and +. This is why the orbit can be here
limited to + radians. This redundancy of information is
illustrated in Figure 2, where the lower half of the sinogram
is identical to the upper half after symmetry along the
vertical axis (inverting the left and the right).
Replacing the integral in Equation 4 by a sum, the im-

plementation for a discrete backprojection is given by:

b̃%x, y& ! "
k*1

p

g%sk, "k&,", Eq. 5

where p is the number of projections acquired over +
radians, "k is the kth angular position of the detector, sk is the
location along the detector, and ," is the angular step
between 2 successive projections (," * +/p). In the fol-
lowing, for sake of simplicity, we will use 1/p as the angular
step and will ignore the factor +. Equation 5 can be inter-
preted as follows: The goal is to find b̃(x, y), the result of the
backprojection at point M(x, y). For each angle "k, using
Equation 1, find the location sk (on the detector) that is the
projection location of point M(x, y). Add the value g(sk, "k)
to the current value of point M(x, y) (initial value should be
0). Repeat this process for all angles, and divide the sum by
the number of projection angles. A simplified example of
backprojection can be seen in Figure 4. Distinct images can

yield the same projection(s), but only for a limited set of
angles; if 2 images are distinct, then one can find 1 or more
angles at which their projections are different (Fig. 5). An
infinite number of projections is theoretically required to
perfectly reconstruct an object. When the number of pro-
jections is small relative to the matrix size, a particular
artifact may be visible: the star (or streak) artifact. An
illustration of this artifact is presented Figure 6. It can be
reduced by increasing the number of acquired projections,
or by interpolation (15).
The contribution of a given pixel to a given bin is vari-

able, because it depends on their relative positions and the
angle of acquisition. This has to be taken into account
during the backprojection. At least 3 practical solutions
exist: With the ray-driven method (16), the value in each bin
(i.e., the ray-sum) is added to the image at pixels the ray
goes through, but the addition is weighted according to the
ray length in each pixel (Fig. 7A). With the pixel-driven
approach, the projection site of the center of each pixel is
calculated; the ray-sum value at this particular projection
site is determined by interpolation using the values in the
closest bins (Fig. 7B). A third approach is implemented in 3
steps: A line of the sinogram is replicated into the columns
of a matrix (i.e., the line is backprojected). Then, this matrix
is rotated about the center of rotation of the imaging system.

FIGURE 5. Example of 2 distinct images
that can yield same projection at angle 0.
This illustrates the fact that when number
of projections is insufficient, solution (i.e.,
slice that yields projections) may be not
unique.

FIGURE 6. Illustration of star (or streak)
artifact. (A) Slice used to create projec-
tions. (B–G) 1, 3, 4, 16, 32, and 64 projec-
tions equally distributed over 360° are used
to reconstruct slice using backprojection
algorithm. Activity in reconstructed image
is not located exclusively in original source
location, but part of it is also present along
each line of backprojection. As number of
projections increases, star artifact de-
creases.
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Finally, this matrix is added to the matrix of the image under
reconstruction (17).
The main point of this part is that the backprojection

operation is not the inverse of the projection operation. This
means that applying backprojection to the ray-sums g(s, ")
does not yield f (x, y) but a blurred f (x, y) (Figs. 8 and 9).
This problem is due to the fact that during the backprojec-
tion process, each bin value is attributed to all pixels that
project onto that bin and not only to the pixel(s) the activity
is coming from (because the source location is unknown). In
the following, we shall see how to reduce this blur.

Backprojection Filtering and FBP
It is important to understand the concept of spatial fre-

quency to apprehend the role of filtering in image recon-

struction. The frequencies of an image are similar to the
frequencies of a sound. A high frequency in a sound is heard
when its amplitude varies quickly over a given period. A
high frequency in an image is seen when its amplitude in
any direction varies quickly over a given distance (and that
is why the frequencies in an image are called spatial fre-
quencies). A checkerboard with 4 large squares or with 64
small squares is an example of an image with low or high
spatial frequencies, respectively. Any image will usually
include several frequencies, when there are large and small
objects in it. Using a mathematic tool called the Fourier
transform, an image can be split up in several components,
each corresponding to a given frequency. For sake of sim-
plicity, we shall consider here only 2 components, the low-

FIGURE 7. Modelization of geometry of backprojection. (A) With ray-driven backprojection, value attributed to each pixel along
path is proportional to line length (l1, l2 . . . l5). (B) With pixel-driven backprojection, center of each pixel is projected (dashed lines)
and value attributed to each pixel is given by linear interpolation of values of closest bins (‚).

FIGURE 8. Blur introduced by back-
projection. (A) Projection data are given. (B)
Backprojection allows one to find values
for 9 pixels. (C) Original image, whose pro-
jections are given in A, is shown. To com-
pare original image and reconstructed
image, image in B has been arbitrarily nor-
malized to same maximum as original im-
age: (D) Result is presented. Note how ab-
solute difference between any 2 pixels is
lower in D than in C.
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and high-frequency components. If we add the 2 compo-
nents, we will get the original image back. Let us now
imagine that the image is rebuilt by adding the 2 compo-
nents, but suppose that, before the addition, we change the
relative weights of the 2 components: For example, we may
divide the low-frequency component by a factor of 5 to de-
crease the blur that is typically present in the low-frequency
components. Thus, the image has been filtered to reduce the
amplitude of the low-frequency component (the same way as

you reduce the bass of your hi-fi using its graphic equalizer),
and the result is an image in which the edges are better defined
(Fig. 10). Coming back to our problem of image reconstruc-
tion, a first solution to decrease the blur is to backproject the
projection dataset (using the summation algorithm) and then
to filter the result: This is the backprojection filtering (BPF)
algorithm. In practice, the image is split up in a large
number of frequency components, and a filter defines the
weight assigned to each of the components.
With the more commonly used FBP algorithm, the order

of filtering and backprojection is reversed: Each line of the
sinogram is filtered first, and the filtered projections are
backprojected (18). This is mathematically expressed as:

f%x, y& ! !
0

+

ĝ%s, "&d", Eq. 6

where ĝ(s, ") is g(s, ") filtered with the ramp filter, which
gives a weight proportional to its frequency to each of the
components. Notice that with this approach, the amplitude
of the low-frequency components is reduced in the sino-
gram, row by row, before the backprojection. The action of
filtering in FBP can be understood as follows: After filter-
ing, the projections may contain negative values; the blur is
reduced because negative and positive values cancel each
other in the vicinity of the edges of the image, so that the
edges are sharpened (19) (Fig. 11). Therefore, in the recon-
structed image the high-frequency components correspond-
ing to the sharp edges in the image are enhanced, but

FIGURE 9. Activity profiles drawn along dashed lines in Figure
8. More gentle curve of profile after backprojection is illustration
of blur.

FIGURE 10. Simplified illustration of fil-
tering process. (A) Model (128 # 128 pix-
els). (B) Image obtained after backprojec-
tion of 128 projections. (C) Low-frequency
component of image presented in B. Only
overall aspect of image is visible. (D) High-
frequency component of image presented
in B. Edges are emphasized. Dark rings
correspond to negative pixel values. Sum
of images in C and D yields image in B. (E)
Images in C and D are added, but after C is
given low weight to reduce amplitude of
low-frequency component.
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unfortunately much of the image noise is present at these
frequencies. This problem can be partially solved by replac-
ing the ramp filter with a filter that also reduces the weight
of the highest-frequency components (Fig. 12). As always,

there are trade-offs involved; the reduction in noise comes
at the cost of a loss of spatial resolution. More details on
image filtering in nuclear medicine can be found elsewhere
(18–20).

ITERATIVE RECONSTRUCTION METHODS

General Concept of Iterative Methods
We are interested in finding a vector f that is a solution of

g * Af. The principle of the iterative algorithms is to find a
solution by successive estimates. The projections corre-
sponding to the current estimate are compared with the
measured projections. The result of the comparison is used
to modify the current estimate, thereby creating a new
estimate. The algorithms differ in the way the measured and
estimated projections are compared and the kind of correc-
tion applied to the current estimate. The process is initiated
by arbitrarily creating a first estimate—for example, a uni-
form image initialized to 0 or 1 (depending on whether the
correction is carried out under the form of an addition or a
multiplication).
For illustration purpose, we shall start with the additive

form of the algebraic reconstruction technique (ART) as an
example of iterative algorithm (21). The iterative process is
given by:

f j(k)1) ! f j%k& "

gi # "
j*1

N

f ji%k&

N , Eq. 7

FIGURE 11. (A) Two projections are
same as in Figure 8. (B) Filtering of projec-
tions using ramp filter yields negative val-
ues. (C) Original image. (D) Image obtained
after backprojection of filtered projections.
Note how negative and positive values
substantially cancel each other, yielding re-
sult closer to original image that can be
seen in Figure 8D.

FIGURE 12. Some filters currently used in FBP and their
shape. Value on y-axis indicates to what extent contribution of
each frequency to image is modified by filters. These filters,
except ramp filter, simultaneously reduce high-frequency com-
ponents (containing much noise) and low-frequency component
(containing blur introduced by summation algorithm).
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where f j(k) and f j(k)1) are the current and the new estimates,
respectively; N is the number of pixels along ray i; ¥j*1

N f ji(k)
is the sum of counts in the N pixels along ray i, for the kth
iteration; and gi is the measured number of counts for ray i.
Observing Equation 7, we see that (a) the new estimate is

found by adding a correction term to the current estimate
and (b) the comparison method consists in the subtraction of
the estimated projections from the measured projections.
Notice that when the projections of the current estimate

are close to the measured projections, the correction factor
is close to zero. This algorithm is applied to a 2 # 2 image
(Fig. 13). The solution is found by successively applying the
Equation 6 to the measured projections. The algorithms
described below work basically the same way.
In the following, the CG algorithm (18,22) and the

MLEM algorithm (23–27) are discussed. Both are optimi-
zation methods—that is, they find the best estimate for the
solution fitting a given criterion; in the CG algorithm, the

criterion is the minimization of the difference between g and
Af, whereas in the MLEM algorithm, the criterion is the
maximization of the likelihood of the reconstructed image.

Gradient and CG Algorithms
Let us imagine that we have a huge number of images.

For each of these images, we compute their projections, and
we compare these projections to the measured projections
by computing their difference. For some images this differ-
ence is large, for other images it is small. So if we plot this
difference as a function of the values in the images, we can
visualize the plot as a mountainous terrain. The visualiza-
tion is easier if we first assume that an image has only 2
pixels, because in this case we can create a 3D plot, where
the 2 horizontal axes are used to indicate the value of each
pixel, and the vertical axis is used to plot the difference.
However, the reasoning still holds for a larger number of
pixels in the images, although the visualization is much

FIGURE 13. How ART algorithm works. (A) Problem is to find values of 4 pixels given values in 6 bins. (B) ART algorithm:
Difference between estimated and measured projections is computed and divided by number of pixels in given direction. Result
is added to current estimate. (C) First step: Project initial estimate (zeros) in vertical direction, apply ART algorithm, and update pixel
values. Repeat this process for oblique (D) and horizontal (E) rays. (F) Solution is obtained after 1 full iteration. However, with larger
images, more iterations are typically required.
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more difficult because the number of dimensions of the plot
is equal to the number of pixels in the images. The differ-
ence is minimal at the point of the lowest altitude. Our goal
is to find the location of that point, because the coordinates
of that point are the pixel values of the solution image. In
the following, we present a method to find this point.
Actually, computing the difference for thousands of im-

ages would be a tedious and lengthy process. Again, we use
the analogy with the mountainous terrain to devise a more
efficient method: Basically, from a starting point on the
mountain, we look for a point of lower altitude, we jump to
this point, and this process is repeated until the point with
the lowest altitude is reached. The problem is to optimize
the direction and the length of the steps, so that the lowest
point is reached in a minimal number of steps. Let us
imagine the contours—that is, the curved lines joining the
points with the same altitude. The gradient lines are curved
lines perpendicular to the contours and along which the
slope is constant. The more intuitive way to find, as quickly
as possible, the point with the lowest altitude is to follow the
steepest descent, whose direction is the opposite to the
gradient. So, from an arbitrary location, we step in that
direction, and the step length can be optimally chosen so
that we stop before we are about to ascend (when the
direction is parallel to a contour). Then, the gradient found
for the new location indicates the new direction to follow,
the new step length is found, and the process is repeated
until the lowest location is found (22) (Fig. 14). This algo-
rithm is called the gradient algorithm, or steepest-descent
algorithm.
Mathematically, this algorithm iteratively searches for f

using the equation:

f %k)1& ! f %k& " -%k&p%k&. Eq. 8

This means that the new estimate f (k)1) is equal to the
previous estimate f (k) plus a vector p(k) indicating the new

direction (chosen to be opposite to the local gradient, and
therefore directed toward the steepest descent), weighted by
a coefficient -(k) representing the step length. This coeffi-
cient can be chosen to optimize the convergence of the
process.
However, the direction given by the gradient method is

only locally the best, and the gradient algorithm is not very
efficient (i.e., a large number of iterations is usually re-
quired). The more efficient conjugate gradient algorithm is
basically identical, but it uses a different vector p(k). In this
case, the direction of descent is not opposite to the gradient
at the current location, but opposite to a combination of this
gradient with the gradient found at the previous location. In
both gradient and CG algorithms, the correction is additive
(each new estimate is found by adding a quantity to the
current estimate). Notice that these algorithms may generate
negative values in the reconstructed image.
In theory, the conjugate gradient algorithm applied to g *

Af converges in a number of iterations equal to the number
m of equations of the system (i.e., the number of pixels
here). Actually, because of rounding errors in the determi-
nation of the conjugate directions, the solution is not
reached in m iterations. However, it can be shown that the
convergence rate of reconstruction (reflected by the number
of iterations required to reach a given estimate of the solu-
tion) can be increased by using C'1g * C'1Af instead of
g * Af, where C'1 is a matrix judiciously chosen. In this
case, A is said to be preconditioned (28,29).

MLEM Algorithm
Again, one wants to solve g * Af, where g is the vector

of values in the sinogram, A is a given matrix, and f is the
unknown vector of pixel values in the image to be recon-
structed. Measurements are subject to variations due to the
Poisson probabilistic phenomena of the radioactive disinte-
grations. As a consequence, a dataset g corresponds to a

FIGURE 14. Gradient algorithm. This
plot displays difference between estimated
and measured projections (vertical axis) as
function of values in 2 pixels of an image.
Black lines are contour lines. Goal of algo-
rithm is to find lowest point. From initial
estimate for image (point A), step along
steepest descent (dashed arrow) to reach
point B. Then, at B, step along steepest
descent (solid arrow) to reach minimum
(point C). Values for 2 pixels at location C
give solution. Note that, depending on lo-
cation for starting point A, minimum can be
different.
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particular measurement; when the probabilistic phenomena
are not taken into account, f is the particular solution cor-
responding to that particular measurement g. The goal of the
MLEM algorithm is to find a “general” solution as the best
estimate for f: the mean number of radioactive disintegra-
tions f! in the image that can produce the sinogram g with the
highest likelihood (23–27). This can be done using the
Poisson law that allows one to predict the probability of a
realized number of detected counts, given the mean number
of disintegrations. Thus, each iteration of the algorithm is
divided in 2 steps: in the expectation step (E step), the
formula expressing the likelihood of any reconstructed im-
age given the measured data is formed, and in the maximi-
zation step (M step), the image that has the greatest likeli-
hood to give the measured data is found (26).
This leads to the MLEM algorithm as described by Lange

and Carson (24) (Appendix 4):

f! j
%k)1& !

f! j%k&

"
i*1

n

aij

"
i*1

n gi

"
j$*1

m

aij$f! j$%k&
aij. Eq. 9

The first image f! (0) can be a uniform disk enclosed in the
field of view (30) or an image obtained by FBP (in this case
the negative values, if any, must be set to zero or some small
positive value). Notice that because the first image is posi-
tive (negative values do not make sense) and because each
new value is found by multiplying the current value by a
positive factor, any f! (k) cannot have negative values and that
any values set initially to zero will remain zero.
The EM algorithm can be seen as a set of successive

projections/backprojections (31): The factor gi /(¥j$*1
m aij$f! j$(k))

is the ratio of the measured number of counts to the current
estimate of the mean number of counts in bin i. ¥i*1

n (gi /¥j$*1
m

aij$f! j$(k))aij is the backprojection of this ratio for pixel j. Equation
9, which is to be applied pixel by pixel, can be extended to the
whole image and interpreted as:

Image%k)1& ! Image%k& $ Normalized Backprojection of

#Measured projectionsProjections of image%k&$. Eq. 10

In other words, at each iteration k, a current estimate of the
image is available. Using a system model (which may include
attenuation and blur), it is possible to simulate what projections
of this current estimate should look like. The measured pro-
jections are then compared with simulated projections of the
current estimate, and the ratio between these simulated and
measured projections is used to modify the current estimate to
produce an updated (and hopefully more accurate) estimate,
which becomes iteration k ) 1. This process is then repeated
many times. The MLEM algorithm converges slowly and may
require 50–200 iterations.
The ordered-subsets expectation maximization (OSEM)

has been proposed by Hudson and Larkin (32) to accelerate

the reconstruction process using the MLEM algorithm.
With this method, the set of projections is divided into
subsets (or blocks). For example, if there were 64 projections
(acquired at 64 angles about the patient), they might be divided
as into 16 subsets as follows, each containing 4 images:

Subset 1: Projections 1, 17, 33, 49
Subset 2: Projections 2, 18, 34, 50

. . .
Subset 16: Projections 16, 32, 48, 64.

It is useful for each subset to contain projections equally
distributed about the patient, to help promote convergence
of the algorithm. The MLEM is then applied to each subset
in turn, as a subiteration. The first full iteration is complete
when all subsets have been processed. Use of 16 subsets in
OSEM, as in this example, would accelerate convergence
by nearly a factor of 16 compared with standard MLEM and
thus considerably shorten the computing time needed for
reconstruction.
Maximum A Posteriori (MAP) Algorithms
Actually, the reconstructed images obtained using the

MLEM algorithm tend to become noisy as the number of
iterations increases, because noisy reconstructed images
may yield projections that are very close to the measured
noisy projections. Thus, the criterion “estimated projections
have to be as close as possible to measured projections” is
not the best criterion to obtain subjectively high-quality
images. A better criterion may be “(a) estimated projections
have to be as close as possible to measured projections
AND (b) the reconstructed images have to be not too noisy.”
The introduction of a prior knowledge as a constraint that

may favor convergence of the EM process is called regu-
larization. The prior, based on an assumption of what the
true image is, is usually chosen to penalize the noisy im-
ages. The goal is now to find f! so that the requirements (a)
and (b) above are simultaneously maximized (Appendix 5).
The maximization leads to an iterative scheme called the
one-step-late (OSL) algorithm, described by Green (31):

f! j
%k)1& !

f! j%k&

"
i*1

n

aij " .
/

/fj
U% f! j%k&&

"
i*1

n gi

"
j$*1

m

aij$ f! j$%k&
aij, Eq. 11

where (///fj)U( f! j(k)) (the prior term) is the derivative of a
function U, called an energy function, and chosen to enforce
smoothing and . is a value chosen to modulate the impor-
tance of the prior. This modified EM algorithm is called the
MAPEM algorithm using the OSL approach.
To understand how the MAPEM algorithm favors smooth

images, we shall use as an example the quadratic prior (33).
The energy function U in this case is defined as:

/

/f! j
%k& U% f! j%k&& ! "

b!Nj

wjb% f! j%k& # f! b%k&&, Eq. 12

where Nj is a set of pixels in the neighborhood of pixel j.
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Observe that the only difference between the MLEM and
MAPEM algorithms resides in the additional term .(///f! j(k))#
U( f! j(k)) in the denominator (compare Eqs. 9 and 11); if all
pixels in the neighborhood of pixel j have the same value
(i.e., the image in this neighborhood is smooth), then
.(///f! j(k))U( f! j(k)) * 0 and the new value is the same as when
the MLEM algorithm is used. If the value for pixel j is in
average higher than its neighbors, then the derivative of the
energy function is positive. Then, the denominator is larger
than ¥i*1

n aji, and the new value f! j(k)1) is forced to be lower
than it would be if the MLEM would be used. On the
contrary, if the value for pixel j is in average lower than its
neighbors, the denominator is lower than ¥i*1

n aij, and the
new value f! j(k)1) is forced to be higher than it would be if the
MLEM were used.
A first remark is that the denominator can be negative,

and, in this case, the new pixel value may become negative,
which does not make sense when this value is a number of
photons. Negative values can be avoided by keeping the
weight of the prior . low enough or using an algorithm that
avoids the OSL trick—for example, the interior point algo-
rithm of Byrne (34) or the algorithm using surrogate func-
tions of De Pierro (35).
Second, the quadratic prior forces the image to be smooth

on the edges too, and this leads to a blurring of the image.
To overcome this problem, many other priors have been
proposed. When information about the edges is not avail-
able (for example, from anatomic images), the basic as-
sumption is that if the difference between pixel values in the
potential function is very high, then one considers that it is
likely that the pixel is on an edge, and in this case the
smoothing term .(///f! j(k))U( f! j(k)) has to be as close to zero as
possible. One way to keep the smoothing term low when the
difference f!j ' f!b becomes too high is to use nonlinear
functions as potential function, so that this term does not
grow proportionally to the pixel differences (31,36–38).
Another possibility is to compare the current pixel value
with the median value of the neighborhood (39). If anatomic
information is available (e.g., from CT or MRI), then a
simple way to avoid edge smoothing is to consider for a
neighborhood only the pixels that belong to the same ana-
tomic area as the current pixel. However, because edges
within scintigraphic and MRI or CT images may be differ-
ent, more sophisticated approaches have been described
(40–42).

CONCLUSION

Three algorithms are presented here: the FBP, CG, and
MLEM algorithms. The first applications of FBP (43,44) and
iterative algorithms (45) were both described in the 1960s, but
for a long time, and despite the advantages of iterative algo-
rithms, the FBP algorithm was preferred because it was com-
putationally faster (46). However, in clinical practice, the FBP
algorithm has several flaws: A smoothing filter is usually

required to reduce the noise, resulting in a loss of resolution.
Also, an optimal filter has to be chosen (47,48) to provide the
best trade-off between image noise and image resolution (al-
though iterative algorithms may also require optimization—for
example, by choosing the value of the. coefficient). TheMAP
algorithm can give better image quality compared with the
FBP algorithm as shown in a simulation study (49). Moreover,
the streak artifact observed when a region of the body is highly
radioactive relative to the neighborhood (e.g., the bladder) has
been shown to be intense with FBP but strongly reduced when
OSEM is used in bone SPECT studies (50). Given the current
computational power of modern computers, iterative recon-
struction algorithms have become feasible for routine clinical
use. Practical implementations of FBP, CG algorithm, and
other algorithms can be found in the Donner Algorithms for
Reconstruction Tomography. This package includes a detailed
user’s manual and program sources in Fortran and can be
freely downloaded from the Web site http://cfi.
lbl.gov/cfi_software.html. Also freely available is the Kansas
University Image Processing (KUIM) package (http://www.
ittc.ukans.edu/0jgauch/research/kuim/html/), which provides
C source for many image processing tools—in particular,
projection and backprojection. Commercial softwares IDL
(Research Systems, Inc., Boulder, CO) and Matlab (The
MathWorks, Inc., Natick, MA) include projection and back-
projection functions.

APPENDIX 1

The goal of the calculations below is to find in the field of
view the set of points M(x, y) that perpendicularly projects
on D at P (Fig. 15). Using the usual trigonometric formulas,
we have:

% xI ! s cos "
yI ! s sin " Eq. A1.1

and

% xI # x ! u sin "
y # yI ! u cos ". Eq. A1.2

Then, combining these 2 equations to eliminate xI and yI, we
obtain:

% x ! s cos " # u sin "
y ! s sin " " u cos " Eq. A1.3

or equivalently

% s ! x cos " " y sin "
u ! 'x sin " " y cos ". Eq. A1.4

The line D$ defined by the equation s * x cos " ) y sin "
perpendicularly projects on D at P. Thus, this line D$ is the
set of points M(x, y) in the field of view whose photons can
be detected at a distance s from the middle of the detector
when the detector is at an angle ".
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APPENDIX 2

Let us consider 2 matrices B(n, m) (i.e., with n rows and
m columns) and C(m, l). The matrix product of B and C is
the matrix D such that the value of any element dij (at the
intersection of the ith row and jth column) of D is dij *
bi1c1j ) bi2c2j ) . . . ) bimcmj * ¥k*1

m bikckj.

Example: if B * & 1 2
3 4
5 6

' and C * & 7 8
9 10 ', then

D * BC * & %1$ 7& " %2$ 9& %1$ 8& " %2$ 10&
%3$ 7& " %4$ 9& %3$ 8& " %4$ 10&
%5$ 7& " %6$ 9& %5$ 8& " %6$ 10&

'
* & 25 28

57 64
89 100

'.

APPENDIX 3

In the example presented in Figure 3, we have the fol-
lowing relationships between values in the slice and in the
sinogram:

(
g1 ! f3 " f6 " f9
g2 ! f2 " f5 " f8
g3 ! f1 " f4 " f7
g4 ! f1 " f2 " f3
g5 ! f4 " f5 " f6
g6 ! f7 " f8 " f9.

Eq. A3.1

This set of equations can be equivalently expressed as a
matrix product:

FIGURE 15. Geometric considerations. Point O is center of rotation of detector, and A is middle of detector line symbolized by
line D. Angle " marks angular position of detector. Line D$ is set of points M in field of view that projects perpendicularly on D in
P. Distance from I to M is u. Distance from A to P is s. Note that (s, ") are not polar coordinates of M or P.
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)
g1
g2
g3
g4
g5
g6

* ! )
001001001
010010010
100100100
111000000
000111000
000000111

* )
f1
f2
f3
f4
f5
f6
f7
f8
f9

*. Eq. A3.2

g A f

The number of rows and columns of A equals the number
of pixels and bins, respectively. The values in matrix A
are appropriately chosen so that, using the definition of
matrix product (Appendix 2), it can be verified that the
product of A by f yields g1, g2 . . . g6 as presented in
Equation A3.1.

APPENDIX 4

The following is a simplified description of the MLEM
algorithm as presented by Shepp and Vardi (23) and by
Lange and Carson (24). In these works, the numbers of both
the emitted and the detected disintegrations are assumed to
be Poisson random variables.
Let us consider f!j, the mean number of disintegrations in

pixel j, and the element aij of the matrix A, the probability
that bin i detects a photon emitted from pixel j. The mean
number of photons emitted from pixel j and detected by bin
i is aij f!j. The mean number of photons g! i detected by bin i
is the sum of the mean numbers of photons emitted from
each pixel:

g! i ! "
j*1

m

aij f!j. Eq. A4.1

It can be shown that the number of photons emitted from
the m pixels and detected by bin i is a Poisson variable.
Thus, the probability of detecting gi photons is given by:

P%gi& !
e'g! ig! i

gi

gi!
, Eq. A4.2

where ! denotes the factorial operator defined for any pos-
itive integer n as n! * n # (n ' 1) # . . . # 1, and 0! * 1.
For example, if the mean number of photons detected in bin
i is g! i * 3, then the probability to detect zero, 1, or 5
photons is, respectively, P(0) * (e'330)/0! 1 0.050, P(1) *
(e'331)/1! 1 0.149, and P(5) * (e'335)/5! 1 0.101. The
maximal probability is reached when the number of counts
is equal to the mean number P(gi * g! i); here P(3) *
(e'333)/3! 1 0.224.
The i Poisson variables are independent, and the con-

ditional probability P(g + f!) of observing the vector g when
the emission map is f! is the product of the individual

probabilities P(gi). The likelihood function L( f! ) is
given by:

L% f! & ! P%g+ f! &

! P%g1&P%g2& . . . P%gn&

! ,
i*1

n

P%gi&

! ,
i*1

n e'g! ig! i
gi

gi!
. Eq. A4.3

The highest value for the likelihood L( f! ) is found by
computing its derivative. To maximize the expectation, one
usually considers l( f ) * ln (L( f )), where ln denotes the
natural logarithm. Remembering that for any non-null, pos-
itive real values x1, x2 . . . xn we have:

(1) ln (x1x2 . . . xn) * ln (x1) ) ln (x2) ) . . . ) ln (xn),
(2) ln (ex1) * x1,
(3) ln (1/x1) * 'ln (x1),

Equation A4.3 becomes:

l% f! & ! "
i*1

n

%'g! i " gi ln %g! i& # ln %gi!&&, Eq. A4.4

and using Equation A4.1 to introduce f!j, we obtain:

l% f! & ! "
i*1

n

%'"
j*1

m

aij f!j " gi ln %"
j*1

m

aij f!j& # ln %gi!&&.

Eq. A4.5
This equation, called the likelihood function, is of fun-
damental importance in the MLEM algorithm, because it
allows one to calculate the probability to observe a pro-
jection dataset for any mean image f!. Obviously, we want
the image that has the highest probability to yield g, so
the essential point here is that the vector f! for which l( f! )
is maximal is considered as the best estimate for the
solution.
It can be shown that l( f! ) has 1 and only 1 maximum

(26). This maximum is found when the derivative of l( f! )
is zero:

/l% f! &

/f!j
! '"

i*1

n

aij " "
i*1

n gi

"
j$*1

m

aij$f!j$

aij ! 0. Eq. A4.6

One can also write:

f!j
/l% f! &

/f!j
! 'f!j "

i*1

n

aij " f!j "
i*1

n gi

"
j$*1

m

aij$f!j$

aij ! 0, Eq. A4.7
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that is

f!j !
f!j

"
i*1

n

aij

"
i*1

n gi

"
j$*1

m

aij$f!j$

aij. Eq. A4.8

This leads to the iterative scheme of the MLEM algorithm
as described by Lange and Carson (24):

f! j
%k)1& !

f! j%k&

"
i*1

n

aij

"
i*1

n gi

"
j$*1

m

aij$f! j$%k&
aij. Eq. A4.9

APPENDIX 5

The prior knowledge of what the reconstructed image
should be is introduced in the EM algorithm using Bayes’
theorem. It states that:

P% f! +g& !
P%g+ f! &P% f! &

P%g& , Eq. A5.1

where P(g+ f! ) is the likelihood function as defined in Equa-
tion A4.3. P( f! ), the prior function, defines the a priori
knowledge of the image; P(g) is the a priori probability
distribution of the measurements; P( f! +g) is the a posteriori
probability distribution of the image.
Taking the logarithm of both sides of Equation A5.1

yields:

ln P% f! +g& ! ln P%g+ f! & " ln P% f! & # ln P%g&. Eq. A5.2

A common Bayesian prior to enforce local smoothness is
the Gibbs prior, with P( f! ) * Ce'.U( f! ), where U is an
energy function of f!, . is the weight of the prior, and C is a
normalizing constant. Using Equation A4.1, we obtain:

ln P% f! +g& ! "
i*1

n

%'"
j*1

m

aij f!j " gi ln %"
j*1

m

aij f!j& # ln %gi!&&

# .U% f! & " K, Eq. A5.3

where K * ln C ' ln P(g) is a constant independent of f!.
Again, the derivative of P( f! +g) is used to find the image

f! maximizing P( f! +g):

/ ln P% f! +g&
/f!j

!

'"
i*1

n

aij " "
i*1

n gi

"
j$*1

m

aij$f!j$

aij # .
/

/f!j
U% f!j &. Eq. A5.4

The OSL algorithm uses the current image when calculating
the energy. With this simplification, U( f!j ) is replaced by
U( f! j(k)) in Equation A5.4.

ACKNOWLEDGMENTS

The author is grateful to Jacques Sau for the invaluable
discussions about this manuscript. The author also thanks
Michael A. King and Stephen J. Glick for their assistance in
improving this manuscript.

REFERENCES

1. Brooks RA, Di Chiro G. Principles of computer assisted tomography (CAT) in
radiographic and radioisotopic imaging. Phys Med Biol. 1976;21:689–732.

2. Kay DB, Keyes JW Jr, Simon W. Radionuclide tomographic image reconstruc-
tion using Fourier transform techniques. J Nucl Med. 1974;15:981–986.

3. Kak AC, Slaney M. Algorithms for reconstruction with non-diffracting sources.
In: Cotellessa R, ed. Principles of Computerized Tomographic Imaging. New
York, NY: IEEP Press; 1988:49–112.

4. Edholm PR, Herman GT. Linograms in image reconstruction from projections.
IEEE Trans Med Imaging. 1987;MI-6:301–307.

5. Edholm PR, Herman GT, Roberts DA. Image reconstruction from linograms:
implementation and evaluation. IEEE Trans Med Imaging. 1988;7:239–246.

6. Bortfeld T, Oelfke U. Fast and exact 2D image reconstruction by means of
Chebyshev decomposition and backprojection. Phys Med Biol. 1999;44:1105–
1120.

7. Andia BI, Sauer KD, Bouman CA. Nonlinear backprojection for tomographic
reconstruction. IEEE Trans Nucl Sci. 2002;49:61–68.

8. Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. J Opt Soc
Am. 1984;1:612–619.

9. Perter TM, Lewitt RM. Computed tomography with fan bean geometry. J Com-
put Assist Tomogr. 1977;1:429–436.

10. Zeng GL. Image reconstruction: a tutorial. Comput Med Imaging Graph. 2001;
25:97–103.

11. Vandenberghe S, D’Asseler Y, Van de Walle R, et al. Iterative reconstruction
algorithms in nuclear medicine. Comput Med Imaging Graph. 2001;25:105–111.

12. Rowland SW. Computer implementation of image reconstruction formulas. In:
Herman GT, ed. Topics in Applied Physics: Image Reconstruction from Projec-
tions. Vol. 32. Heidelberg, Germany: Springer-Verlag Heidelberg; 1979:29–79.

13. Jain AK. Image reconstruction from projections. In: Thomas Kailath, ed. Fun-
damentals of Digital Image Processing. Englewood Cliffs, NJ: Prentice-Hall;
1989:431–475.

14. Radon J. On the determination of functions from their integrals along certain
manifolds [in German]. Math Phys Klass. 1917;69:262–277.

15. Bruyant PP, Sau J, Mallet JJ. Streak artifact reduction in filtered backprojection
using a level line-based interpolation method. J Nucl Med. 2000;41:1913–1919.

16. Siddon RL. Fast calculation of the exact radiological path for a three-dimensional
CT array. Med Phys. 1985;12:252–255.

17. Wallis JW, Miller TR. An optimal rotator for iterative reconstruction. IEEE Trans
Med Imaging. 1997;16:118–123.

18. Budinger TF, Gullberg GT, Huesman RH. Emission computed tomography. In:
Herman GT, ed. Topics in Applied Physics: Image Reconstruction from Projec-
tions. Vol. 32. Heidelberg, Germany: Springer-Verlag Heidelberg; 1979:147–
246.

19. Van Laere K, Koole M, Lemahieu I, Dierckx R. Image filtering in single-photon
emission computed tomography: principles and applications. Comput Med Im-
aging Graph. 2001;25:127–133.

20. Germano G. Technical aspects of myocardial SPECT imaging. J Nucl Med.
2001;42:1499–1507.

21. Macovski A. Tomography. In: Kailath T, ed. Medical Imaging Systems. Engle-
woods Cliffs, NJ: Prentice-Hall; 1997:106–144.

22. Press WH, Teukolski SA, Vetterling WT, Flannery BP. Minimization or maxi-
mization of functions. In: Press W, ed. Numerical Recipes in C. Cambridge, MA:
Cambridge University Press; 1996:394–455.

23. Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomogra-
phy. IEEE Trans Med Imaging. 1982;MI-1:113–122.

24. Lange K, Carson R. EM reconstruction algorithms for emission and transmission
tomography. J Comput Assist Tomogr. 1984;8:306–316.

25. Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via
the EM algorithm. J R Stat Soc [B]. 1977;39:1–38.

26. Kaufman L. Implementing and accelerating the EM algorithm for positron
emission tomography. IEEE Trans Med Imaging. 1987;MI-6:37–51.

27. Kaufman L. Maximum likelihood, least squares and penalized least squares for
PET. IEEE Trans Med Imaging. 1993;12:200–214.

28. Clinthorne NH, Pan T-S, Chiao P-C, Rogers WL, Stamos JA. Preconditioning

RECONSTRUCTION ALGORITHMS IN SPECT • Bruyant 1357



methods for improved convergence rates in iterative reconstructions. IEEE Trans
Med Imaging. 1993;12:78–83.

29. Chinn G, Huang SC. A general class of preconditioners for statistical iterative
reconstruction of emission computed tomography. IEEE Trans Med Imaging.
1997;16:1–10.

30. Llacer J, Veklerov E, Coakley K, Hoffman E, Nunez J. Statistical analysis of
maximum likelihood estimator images of human brain FDG PET studies. IEEE
Trans Med Imaging. 1993;12:215–231.

31. Green PJ. Bayesian reconstructions from emission tomography data using a
modified EM algorithm. IEEE Trans Med Imaging. 1990;9:84–93.

32. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets
of projection data. IEEE Trans Med Imaging. 1994;13:601–609.

33. Geman S, Geman D. Stochastic relaxation, Gibbs distributions and the Bayesian
restoration of images. IEEE Trans Pattern Anal Machine Intell. 1984;6:721–741.

34. Byrne CL. Block-iterative interior point optimization methods for image recon-
struction from limited data. Inverse Problems. 2000;16:1405–1419.

35. De Pierro AR. A modified expectation maximization algorithm for penalized
likelihood estimation in emission tomography. IEEE Trans Med Imaging. 1995;
14:132–137.

36. Geman S, MacClure D. Bayesian image analysis: an application to single photon
emission tomography. In: Proceedings of the Statistical Computing Section,
American Statistical Association. Alexandria, VA: American Statistical Associ-
ation; 1985;12–18.

37. Hebert T, Leahy R. A generalized EM algorithm for 3-D Bayesian reconstruction
from Poisson data using Gibbs priors. IEEE Trans Med Imaging. 1989;8:194–202.

38. Lalush DS, Tsui BMW. Simulation evaluation of Gibbs prior distributions for use
in maximum a posteriori SPECT reconstructions. IEEE Trans Med Imaging.
1992;11:267–275.

39. Alenius S, Ruotsalainen U. Bayesian image reconstruction for emission tomog-
raphy based on median root prior. Eur J Nucl Med. 1997;24:258–265.

40. Ardekani BA, Braun M, Hutton BF, Kanno I, Iida H. Minimum cross-entropy
reconstruction of PET images using prior anatomical information. Phys Med Biol.
1996;41:2497–2517.

41. Gindi G, Rangarajan A, Zubal G. Bayesian reconstruction of functional images
using anatomical information as priors. IEEE Trans Med Imaging. 1993;12:670–
680.

42. Bowsher JE, Johnson VE, Turkington TG, Jaszczak RJ, Floyd CE Jr, Coleman
RE. Bayesian reconstruction and use of anatomical a priori information for
emission tomography. IEEE Trans Med Imaging. 1996;15:673–686.

43. Cormack AM. Representation of a function by its line integrals with some
radiological applications. J Appl Phys. 1963;34:2722–2727.

44. Cormack AM. Representation of a function by its line integrals with some
radiological applications. II. J Appl Phys. 1964;35:2908–2913.

45. Kuhl DE, Edwards RQ. Image separation radioisotope scanning. Radiology.
1963;80:653–662.

46. Hutton BF, Hudson HM, Beekman FJ. A clinical perspective of accelerated
statistical reconstruction. Eur J Nucl Med. 1997;24:797–808.

47. King MA, Glick SJ, Penney BC, Schwinger RB, Doherty PW. Interactive visual
optimization of SPECT prereconstruction filtering. J Nucl Med. 1987;28:1192–
1198.

48. Gilland DR, Tsui BMW, MacCartney WH, Perry JR, Berg J. Determination of
the optimum filter function for SPECT imaging. J Nucl Med. 1988;29:643–650.

49. Wang CX, Snyder WE, Bilbro G, Santago P. Performance evaluation of filtered
backprojection reconstruction and iterative reconstruction methods for PET im-
ages. Comput Biol Med. 1998;28:13–24.

50. Blocklet D, Seret A, Popa N, Schoutens A. Maximum-likelihood reconstruction
with ordered subsets in bone SPECT. J Nucl Med. 1999;40:1978–1984.

1358 THE JOURNAL OF NUCLEAR MEDICINE • Vol. 43 • No. 10 • October 2002


