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Abstract 
 

Daftardar Gejji and Hossein Jafari have proposed a new iterative method for solving many of the linear and nonlinear  equations namely 

(DJM). This method proved already the effectiveness in solved many of the ordinary differential equations, partial differential equations 

and integral equations. The main aim from this paper is to propose the Daftardar-Jafari method (DJM) to solve the Duffing equations and 
to find the exact solution and numerical solutions. The proposed (DJM) is very effective and reliable, and the solution is  obtained in the 

series form with easily computed components. The software used for the calculations in this study was MATHEMATICA ® 9.0. 
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1. Introduction 

Duffing equation is a nonlinear differential equation, which is 

used in many sciences such as  physical, engineering, and even 

biological problems. It is discovered by electrical engineer Ger-

man Duffing in 1918 and has named after him.  

It is worth to mention, this equation is founded both with Van der 
pol's equation, and Van der pol's considered as most well-known 

examples of nonlinear oscillation in research papers. Also, the 

Japanese scientist Ueda proposed excellent Poincare` maps of the 

Duffing equation which called Japanese attractor or Ueda attractor 

[1]. Duffing equation occurs  as a result of the motion of a body 
subjected to a nonlinear spring power, linear sticky damping, and 

periodic powering. Oscillations of mechanical systems under the 

action of a periodic external force can be revealed given by using 

Duffing equation, see [2] and references therein.  

 The reason behind the importance of Duffing equations is used in 
many of the areas such as physical, engineering, and even biologi-

cal problems [1], such as research large amplitude oscillation of 

centrifugal governor systems, nonlinear vibration of beams and 

plates [3, 4],], magnetic-pliancy mechanical systems [4], classical 

oscillator in chaotic systems [5], periodic orbit extraction, nonlin-
ear mechanical oscillators and prediction of diseases [5, 6].. Duff-

ing equation produces a helpful model for researching nonlinear 

oscillations and chaotic dynamical systems [3]. Both chaos and 

chaotic system are nonlinear by nature. In addition, we can find 

them in many natural and artificial systems, and differentiate by 
sensitivity to initial condition [7].  

 In this paper, the general form of Duffing equation [2] will be 

solved which given in the following form: 

 

u''(x) +k1  u'(x) +k2u(x) + k3u3(x) =f(x).                                   (1) 
 

With initial conditions: 
 

u (0)=a, and u'(0)=b.  

where k1 , k2 , k3 , a and b are real constants. In this equation clearly 
is a nonlinear ordinary differential equation and it is from the sec-

ond order [1]. The mean of, k1controls the size of damping, k2 

controls of size stiffness, k3  controls of size amount of non-

linearity in the restoring force, r controls the amplitude of the p e-
riodic driving force, w controls frequency of the periodic driving 

force [8]. Duffing equation it resolves in many of new process in 

the open literature such as homotopy perturbation transform meth-

od [7], variational iteration method [9], an effective approach [6], 

modified differential transform method [4], a new approach meth-
od [10] and homotopy analysis method [1]. Some of these meth-

ods are used to find numerical, approximate and analytic solu-

tions. It is worth to mention some of these methods is Adomain 

decomposition method (ADM) [11], this method needs to calcu-

late the so-called Adomain polynomial for treat the nonlinear 
term.  

In 2006, Daftardar and Jafari have proposed a new iterative meth-

od namely (DJM) [12]. This method solved many equations such 

as algebraic equations, ordinary differential equations, partial 

differential equations and integral equations. The main goal of this 
article is to apply the DJM for solving Duffing equations in two 

kind, damping and undamping. The present paper has been ar-

ranged as follows, in section 2, the basic idea of DJM. In section 

3, solving Duffing equation is discussed. In section 4, some exam-

ple for damping and undamping Duffing equations are solved and 
finally in section 5; the conclusion is presented. 

2. Basic concept of DJM 

Consider the following general functional equation [12]:  
 

u = N (u) + f,                                                                                 (2) 
 

Where N is nonlinear operator from a Banach space B → B, u is an 
unknown function and f is a known function.  

We must find the solution for u of Eq. (2) having the series from:  

 u = ∑ ui , ∞i=0                                                                                  (3) 

 

The nonlinear operator N can be decomposed as:  
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 N (∑ ui∞i=0 ) = N (u0) + ∑ {N (∑ ujij=0 ) − N (∑ uji−1j=0 )}∞I=1 .        (4) 

 

From  
Eq. (3) and Eq. (4), Eq. (2) is equivalent to  

 ∑ ui = f + N (u0) + ∑ {N(∑ ujij=0 ) − N (∑ uji−1j=0 )}∞i=0 .∞i=0          (5) 

 

We define the recurrence relation:  

 

{ u0 = f,u1 = N (u0) … um+1 = N(u0 + ⋯ + um) − N(u0 + ⋯ + um−1),m = 1, 2, … . .                     (6) 

 
Then 

 u = f + ∑ ui.∞i=0   
 

For the convergence of the  DJM, we refer the reader to [13].  

3. Solving duffing equation by using DJM 

In this section, we apply the DJM for Duffing equation. Let us 

consider a form of Duffing equation given in Eq. (1).  

Equation (1) can be written in an operator form as:  

 Lxxu(x) + k1Lxu(x) + k2 u(x) + k3 u3(x) = f(x).                      (8) 
 

Where Lxx = d2dx2 , and Lx = ddx. 
 

We assume that the inverse operator Lx−1 and Lxx−1, exist and it can 
be taken with respect x from 0 to x, 

i.e.  
 Lxx−1(. ) = ∫ ∫ (. )dxdx, and Lx−1(. ) = ∫ (. )dx.x0x0x0                           (9) 

 

Then, by taking the invers operator Lxx−1, to both sides of the equa-

tion (8) leads to: 
 Lxx−1Lxxu(x) + k1Lxx−1Lxu(x) + Lxx−1(k2u(x) + k3u3(x)) =Lxx−1f(x),                                                                                       (10) 

 

Then, by applying the initial conditions, we obtain:  
 

u(x)=a+k1ax + bx + g(x) − Lx−1k1u(x) − Lxx−1(k2u(x) +k3u3(x)),                                                                                    (11) 

 

Where, g(x) = ∫ ∫ f(t)dtdtx0x0  .  
 

We convert Lxx−1 from double integral to single integral from the 
relation [14]:  

 ∫ ∫ … ∫ u(xn)dxndxn−1… dx1 = 1(n−1)!∫ (x −x0xn−10x10x0t)n−1u(t)dt,                                                                                (12) 
 

Then for double integral: 
 Lxx−1 = ∫ ∫ u(t)dt dt = ∫ (x − t)u(t)dx.x0x0x0                                 (13) 

 By using Eqs.(6)and (7),we obtain the following components: 
 u0 (x) = a + k1ax + bx + g(x),                                                 (14) 
 u1(x) = N(u0) = − ∫ (k1u0(t))dtx0 − ∫ (x − t)x0 (k2u0(t) +k3u03(t)) dt,                                                                                (15) 

 u2(x) = N(u0 + u1) − u1,                                                         (16) 
 u2(x) = −∫ (k1(u0 + u1)(t))dtx0 − ∫ (x − t)x0   

 (k2(u0 + u1)(t) + k3(u03 + u13)(t))dt − u1 ,  
  u3(x) =  − ∫ (k1(u0 + u1 + u2)(t)dtx0 − ∫ (x − t)x0   

 + ∫ (k1(u0 + u1)(t)dt + ∫ (x − t)x0 (k2 (u0 + u1)(t))x0   

 +k3(u0 + u1)(t))                                                                       (19) 
 

and so on.  
Continuing in this manner, the (n+1)th approximation of the exact 

solution for the unknown function u(x) can be achieved as:  

 un+1(x) = N (u0 + u1 + ⋯ + un) −  
 N(u0 + u1 + ⋯ + un−1),.                                                           (20) 
 un+1(x) = − ∫ (k1(u0 + ⋯ + un)(t)dtx0 − ∫ (x − t)x0 (k2(u0 +⋯ + un)(t) +  
 k3(u03 + ⋯ + un3)(t)dt + ∫ (k1(u0+. . +un−1)(t)dtx0 +∫ (x − t)x0 (k2 (u0 + ⋯+un−1 ) (t) + k3(u03 + ⋯ + un−13 )(t))dt.         (21) 

 

Then, 

 u(x) = ∑ un.∞n=0                                                                         (22) 

4. Test examples 

In this section, the applications of the DJM for the damping and 

undamping Duffing equations will be shown in some examples to 

assess the efficiency of the DJM. Some of these examples have 

exact solutions, and the others have numerical solutions. Also we 

calculate the error remainder with the maximal error remainder 
parameters and the approximate solution. The convenience func-

tion of the error remainder will be [15], [16]:  

 ERn (x) = un′′(x) + k1un′ (x) + k2un + k3un3 − f(x),                (23) 
 

and the maximal error remainder parameters are:  

 MERn = max0≤x≤1|ERn (x)|.                                                     (24) 

4.1. Damping duffing equations  

Example 1:  

Consider the damping Duffing equation [17]: 

 u′′(x) + 2u′(x) + u(x) + 8(u)3(x) = 1 − 3x.                          (25) 
 

With initial conditions:  

 

u (0) = 12, and u'(0)= − 12. 

 

By using the initial conditions, we obtain:  
 u(x) = 12 + x2 + x22 − x32 − 2 ∫ u(t)dtx0 − ∫ (x − t)x0 (u(t) +8u3(t))dt,                                                                                   (26) 

 
Following the algorithm given in section 2, we obtain: 
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 u0(x) = 12 + x2 + x22 − x32 ,                                                             (27) 

 un+1(x) = N (u0 + u1 + ⋯ + un)  
 −N(u0 + u1 + ⋯ + un−1),                                                         (28) 
 un+1 =  −2 ∫ (u0 + ⋯ + un)(t)dt −x0 ∫ (x − t)x0 ((u0 + ⋯ +un)(t) + (8(u0)3 + ⋯ + (un)3)(t))dt + 2 ∫ (u0 + ⋯ +x0un−1)(t)dt + ∫ (x − t)x0 (u0 + ⋯ + un−1) + 8((u0)3 + ⋯ +(un−1)3)dt,                                                                                 (29) 
 

Then, 

 u1(x) = N(u0) = −2 ∫ u0(t)dtx0 − ∫ (x − t)x0 (u0(t) +8(u0)3(t))dt,                                                                              (30) 

 u1(x) = −x − 5x24 − 11x312 − 7x424 + 7x540 + ⋯,                               (31) 

 u2(x) = N(u0 + u1) − N(u0),                                                   (32) 
 u2(x) = −2 ∫ (u0 + u1)(t)dt −x0 ∫ (x − t)x0 ((u0 + u1)(t) −8(u0 + u1)3(t))dt − u1,                                                            (33) 
 u2(x) = x 2 + 2x 3 + 19x416 + 31x580 − 371x6720 − ⋯,                           (34) 

 

and so on.  

Continuing in this technique, the approximation of the exact solu-

tion for the unknown functions u(x) can be achieved as: 

 u(x) = u0 + u1 + u2 + ⋯,                                                         (35) 

 u(x) = 12 (1 − x + x22 − x36 + x424 − ⋯ ),                                       (36) 

 

This has the closed form:  

 u(x) = 12  e−x                                                                              (37) 

 

Which the exact solution for Eq. (25) [17].  

 
Example 2:  

Consider damping Duffing equation [10]: 

 

u''(x)+u' (x)+u3(x)=0.                                                                  (38) 

 
With initial conditions:  

 

u (0)=1, and u'(0)=1. 

 

By applying the initial condition in the Eq. (38), we have: 
 u(x) = 1 + 2x − ∫ u(t)dtx0 − ∫ (x − t)(u3(t)x0 dt,                     (39) 

 
According to the DJM, we obtain the following components: 

 u0(x)=1+2x,                                                                                (40) 
 un+1(x) = − ∫ (u0 + ⋯ + un)(t)dtx0 − ∫ (x − t)x0 ((u0)3+. ..  
 +(un)3(t))dt + ∫ ((u0 + ⋯ + un−1)(t)x0 )dt + ∫ (x −x0t) ((u0)3+. . . +(un−1)3(t))dt,                                                   (41) 

 u1(x) = N(u0) = − ∫ (u0(t))dtx0 − ∫ (x − t)x0 (u0)3(t))dt,      (42) 

 u1(x) = −x − 3x22 − x 3 − x 4 − 2x55 ,                                            (43) 

 u2(x) = N(u0 + u1) − N(u0),                                                   (44) 
 u2(x) = −∫ ((u0 + u1)(t))dtx0 − ∫ (x − t)((u0)3 + (u1)3(t))x0 dt  
 −u1,                                                                                            (45) 
 u2(x) = x22 + x 3 + 11x48 + 23x520 + 7x624 − ⋯,                                 (46) 

 

and so on.  

The solution in a series form is given by:  

 u(x) = u0 + u1 + u2 + u3 + ⋯,                                                (47) 

 u(x) = 1 + x − x 2 − x36 + x424 + 11x540 + ⋯,                                  (48) 

 

The approximate solution in Eq.(48) can be further examined by 

evaluating the maximal error remainder in Table 1. It can be clear-
ly seen that from Figure (1) the points are lay on a straight lines 

which mean exponential rate of convergence is achieved. 

 
Table 1: The Maximal Error Remainder for Eq. (38) Using DJM. Where 
N=1... 6.  

n MER 

1 1.78881 

2 0.157888 

3 0.00756497 

4 0.000246801 

5 6.09094×10−6  

6         1.20778 × 10−7    

 

 

 
Fig. 1: Logarithmic plots of MER versus N Is 1 through 6. 

4.2. Undamping duffing equations 

Example 3: 

Let us consider the undamping Duffing equation [10]:  
 

u''(x)+ 3u(x) − 2𝑢3(𝑥) = 𝑐𝑜𝑥(𝑥) 𝑠𝑖𝑛(2𝑥).                               (49) 

 
With initial conditions:  

 

u (0) =0, and u'(0)=1.  

 

We apply the initial conditions in Eq. (49), and by taking the 
product of the series of both sin x and cos(x) (generates a power 

series expansion for both about the point x=0 to order 10), then we 

have:  𝑢(𝑥) = 𝑥 + 𝑥33 − 7𝑥560 + 61𝑥72520 −  547𝑥9181440 + 703𝑥112851200 − ∫ (𝑥 −𝑥0𝑡) (3𝑢(𝑡) + 2𝑢3(𝑡))𝑑𝑡,                                                              (50) 

By using the DJM, we get the recurrence relation: 
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 𝑢0(𝑥) = 𝑥 + 𝑥33 −  7𝑥560 + 61𝑥72520 − 547𝑥9181440 + 703𝑥112851200 ,                     (51) 𝑢1(𝑥) = 𝑁(𝑢0) =  − ∫ (𝑥 − 𝑡)𝑥0 (3𝑢0 − 2(𝑢0)3(𝑡))𝑑𝑡,            (52) 

 𝑢1(𝑥) = −𝑥32 + 𝑥520 + 47𝑥7840 − 89𝑥960480 − 2059𝑥11950400 + ⋯,                      (53) 

 𝑢2(𝑥) = 𝑁(𝑢0 + 𝑢1) − 𝑁(𝑢0),                                                  (54) 
 𝑢2(𝑥) = − ∫ (𝑥 − 𝑡)𝑥0 ( 3(𝑢0 + 𝑢1)(𝑡)−2(𝑢03 + 𝑢03)(𝑡))𝑑𝑡 − 𝑢1,                    (55) 

 𝑢2(𝑥) = 3𝑥540 − 3𝑥740 − 103𝑥920160 + 17273𝑥112217600 + ⋯,                               (56) 

 

and so on. The solution in a series form is given by:  

 𝑢(𝑥) = 𝑢0 + 𝑢1 + 𝑢2 + 𝑢3 + ⋯,                                               (57) 
 𝑢(𝑥) = 𝑥 − 𝑥36 + 𝑥5120 − 𝑥75040 − 𝑥94536 + 691𝑥111247400 − ⋯,                  (58) 

 
We get an infinite Taylor series:  

 𝑢𝑁(𝑥) = ∑ 𝑢𝑛𝑥𝑛 ,𝑁𝑛=0                                                                   (59) 
 

u (x)=sin(x).                                                                                (60) 

 

Which the exact solution for Eq. (49) [6], obtained upon using the 

Taylor expansion for sin x in Eq. (59).  
 

Example 4:  

Consider undamming Duffing equation [11]: 

 𝑢′′(𝑥) + 𝑢(𝑥) + 𝑢3(𝑥) = 0.                                                      (61) 
 

With initial conditions:  

 
u (0)=1, and u'(0)=5 

 

We write the equation after apply the initial condition in Eq. (61):  

 𝑢(𝑥) = 1 + 5𝑥 − ∫ (𝑥 − 𝑡)𝑥0 (𝑢(𝑡) + 𝑢3(𝑡)),                            (62) 

 

Now, we apply the algorithm of DJM, then we have:  

 𝑢0(𝑥) = 1 + 5𝑥,                                                                         (63) 
 𝑢𝑛+1(𝑥) =− ∫ (𝑥 − 𝑡)𝑥0 ((𝑢0 + ⋯ + 𝑢𝑛 )(𝑡)) + ((𝑢0)3+. . . +(𝑢𝑛)3(𝑡))𝑑𝑡  

 + ∫ (𝑥 − 𝑡)𝑥0 ((2(𝑢0 + ⋯ + 𝑢𝑛−1)(𝑡)) +((𝑢0)3+. . . +(𝑢𝑛−1)3(𝑡))𝑑𝑡,                                                     (64) 

 𝑢1(𝑥) = 𝑁(𝑢0) = − ∫ (𝑥 − 𝑡)𝑥0 (𝑢(𝑡)+𝑢3(𝑡))𝑑𝑡,                     (65) 

 𝑢1(𝑥) = −𝑥2 − 10𝑥33 − 25x44 − 25x54 ,                                            (66) 

 u2(x) = N(u0 + u1) − N(u0),                                                   (67) 
 u2(x) = −∫ (x − t)x0 ((u0 + u1)(t) + (u03 + u03)(t)) dt − u1,  (68) 

 u2(x) = x43 + 13x56 + 197x630 + 285x228 + 5837x8672   

 − 455x9864 − 9625x10864 − ⋯,                                                                (69) 

 

and so on. The solution in a series form is given by:  

 

 u(x) = u0 + u1 + u2 + u3 + ⋯,                                               (70) 
 u(x) = 1 + 5x − x 2 − 10x33 − 25x44 + 25x54 + ⋯,                         (71) 

 

The obtained series solution in Eq.(71) can be used for numerical 
purposes. The more components that we determine the higher 

accuracy level that we can achieve. This can be clearly seen in 

Table 2 and Figure 2. 

 

Table 2: The Maximal Error Remainder for Eq. (61) Using DJM. Where n 
= 1… 6. 

n MER 

1 0.10778 
2 0.000477836 
3 8.78127 × 10−7 

4 8.75019 × 10−10 
5 5.44897 × 10−13   
6 8.88178 × 10−16   

 

 
Fig. 2: Logarithmic plots of MER versus N Is 1 through 6. 

5. Conclusion 

In this paper, the DJM has been successfully applied for solving 
Duffing equations in two cases: damping and undamping. The 

analytic and approximate solutions are obtained without any  re-

strictive assumptions for nonlinear terms as required by some 

existing techniques. Moreover, by solving some examples, it is 

seems that the DJM appears to be very accurate to employ with 
reliable results. The software used for the calculations in this study 

was MATHEMATICA® 9.0. 
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