PHYSICAL REVIEW D, VOLUME 70, 053010

Analytic approach to the wave packet formalism in oscillation phenomena
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We introduce an approximation scheme to perform an analytic study of the oscillation phenomena in
a pedagogical and comprehensive way. By using Gaussian wave packets, we show that the oscillation is
bounded by a time-dependent vanishing function which characterizes the slippage between the mass-
eigenstate wave packets. We also demonstrate that the wave packet spreading represents a secondary
effect which plays a significant role only in the nonrelativistic limit. In our analysis, we note the
presence of a new time-dependent phase and calculate how this additional term modifies the oscillating
character of the flavor conversion formula. Finally, by considering box and sine wave packets we study
how the choice of different functions to describe the particle localization changes the oscillation

probability.
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L. INTRODUCTION

Recently the great interest in the quantum oscillation
phenomena [1-3] has stirred up an increasing number of
works devoted to several theoretical approaches to parti-
cle mixing and oscillations [4—6]. Notwithstanding the
exceptional ferment in this field, the conceptual difficul-
ties hidden in the oscillation formulas represent an in-
triguing, and sometimes embarrassing, challenge for
physicists.

The standard plane wave treatment [7,8] is the most
elementary approach used to study the flavor oscillation
problem. However, despite being physically intuitive and
simple, it is, strictly speaking, neither rigorous nor suffi-
cient for a complete understanding of the physics involved
in quantum oscillations. The plane wave approach implies
a perfectly well-known energy-momentum and an infi-
nite uncertainty on the space-time localization of the
oscillating particle. Oscillations are destroyed under
these assumptions [9]. In order to overcome such diffi-
culties, an intermediate wave packet model for ultrare-
lavistic neutrinos was introduced by Kayser [9] and
followed by other authors [2,6,10]. Meanwhile, a common
argument against this approach is that oscillating parti-
cles are not, and cannot be, directly observed [11]. It
would be more convincing to write a transition probabil-
ity between observable particles involved in the produc-
tion and detection of the oscillating particle in an external
wave packet framework [3,12]. The particle to be studied
is represented by a relativistic propagator; it propagates
between a source and a detector, where wave packets
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representing the external particles are in interaction.
The function which represents the overlap of the incom-
ing and outgoing wave packets in the external wave
packet model corresponds to the wave function of the
propagating mass-eigenstate in the intermediate wave
packet formalism. Remarkably, it could be shown that
the probability densities for ultrarelativistic stable oscil-
lating particles in both frameworks are mathematically
equivalent [3]. Thus, it makes sense, in the external wave
packet framework, to consider a wave packet associated
with the propagating particle. However, this wave packet
picture brings up a problem, as the overlap function takes
into account not only the properties of the source, but also
of the detector. This is unusual for a wave packet inter-
pretation and not satisfying for causality [3]. This point
was clarified by Giunti [13], who solves this problem by
proposing an improved version of the intermediate wave
packet model where the wave packet of the oscillating
particle is explicitly computed with field-theoretical
methods in terms of external wave packets. Despite not
being applied in a completely free way, the (intermediate)
wave packet treatment commonly simplifies the discus-
sion of some physical aspects going with the oscillation
phenomena [14-16]. In this context, we just establish a
condensed scheme to analytically study the flavor oscil-
lation phenomena, since, in the literature, numerous pre-
scriptions are somewhat confusing.

Quite generally, the analytical approaches for the mass-
eigenstate time evolution do not concern with the wave
packet limitations. In particular, Gaussian wave packets
[6,13] enable us to quantify the first and the second-order
corrections to the oscillation character of propagating
particles. In Sec. II, we introduce Gaussian wave packets
and assume a sharply peaked momentum distribution.
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Then we approximate the mass-eigenstate energy in order
to analytically obtain the expressions for the wave packet
time evolution and for the flavor oscillation probability.
The energy expansion is taken up to the second-order
term and the wave packet spreading and slippage effects
are quantified in both nonrelativistic (NR) and ultrarela-
tivistic (UR) propagation regimes. We also identify an
additional time-dependent phase which changes the stan-
dard oscillating character of the flavor conversion for-
mula. In Sec. III, we introduce box and smoothly
vanishing sine wave packets and study how the choice
of a different function in describing the particle localiza-
tion could play a significant role in the oscillation proba-
bility. We draw our conclusions in Sec. IV.

II. GAUSSIAN WAVE PACKETS

The main aspects of oscillation phenomena can be
understood by studying the two flavor problem. In addi-
tion, substantial mathematical simplifications result from
the assumption that the space dependence of wave func-
tions is one-dimensional (z-axis). Therefore, we shall use
these simplifications to calculate the oscillation probabil-
ities. In this context, the time evolution of flavor wave
packets can be described by

D(z, 1) = ¢y (2, 1) cosOvy + (2, 1) sinbv,
= [¢1(z, D)cos?d + ¢,(z, 1)sin?0]v,
1z, 1) — ¢a(z, 1)]cosh sinfuvg
= ¢4z, 1;0)vy + Pz, 1;0)vg, (1)

where v, and vg are flavor eigenstates and v; and v, are
mass eigenstates. The probability of finding a flavor state
vp at the instant ¢ is equal to the integrated squared
modulus of the vg coefficient

+o00
P(v, — vg;1) = ] dz|¢p(z, 1;0)1

_ sin’[26]
2

{1 — Int(2)}, (2)

where Int(z) represents the mass-eigenstate interference
term given by

Int(t) = Re|:f+:dz¢;r(z, Dz, t):| 3)

Let us consider mass-eigenstate wave packets given at
time ¢t = 0 by

$4(2,0) = (22)1/4 eXp[ - } explipsl (@)

ma a2

where s = 1, 2. The wave functions which describe their
time evolution are
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b,z 1) = f_m 4p: e(p. — py)

o 27T
Xexpl—i E(p., my)t + ip.z], (5)
where
E(p,,m;) = (p? + m})'/?
and

V22
¢(p. — py) = Qma®)'/* exp[_W}.

In order to obtain the oscillation probability, we can
calculate the interference term Int(f) by solving the fol-
lowing integral

fm 9 o(p.~ pelp. — p2) expl—iAE(p)i] =

—w 21T
2 0
= exp[— (aAgp) } X f+ %@2(1& = Do)
— 00 ar
X exp[ —iAE(p,)t], (6)

where we have changed the z-integration into a

p.-integration and introduced the quantities

1
Ap=p; — ps pOZE(pl + p2)

and

AE(p,) = E(p,, m;) — E(p_, my).

The oscillation term is bounded by the exponential func-
tion of aAp at any instant of time. Under this condition
we could never observe a pure flavor eigenstate. Besides,
oscillations are considerably suppressed if aAp >1. A
necessary condition to observe oscillations is that aA p <
1. This constraint can also be expressed by ép > Ap
where 6p is the momentum uncertainty of the particle.
The overlap between the momentum distributions is in-
deed relevant only for 6§ p > Ap. Consequently, without
loss of generality, we can assume

+o00
) = kel [ L.~ pexol—isE(p). @)
In literature, this equation is often obtained by assuming
two mass-eigenstate wave packets described by the
“same”” momentum distribution centered around the av-
erage momentum p,. This simplifying hypothesis also
guarantees the instantaneous creation of a pure flavor
eigenstate v, at t = 0 [15], hence, in what follows, we
shall use this simplification.

A. The analytical approach

In order to obtain an expression for ¢,(z, ) by analyti-
cally solving the integral in Eq. (5) we firstly rewrite the

053010-2



ANALYTIC APPROACH TO THE WAVE PACKET ...

energy E(p,, my) as

2 _ 2 1/2
P 14
E(pz» mx) = Es|:1 + ZEZ oi|

N

where
p p;— D
E, = (m2 + p2)'/2, v, = E—Z and o, ="-"° £ e,

By assuming a sharply peaked momentum distribution,
ie, (aE,)"' ~o, <1, we can expand the energy
E(p., m,) in a power series of 0. Meanwhile, the integral
in Eq. (5) can be analytically solved only if we consider
terms up to order o2 in the series expansion. In this case,
the energy E(p,, my) is approximated by

2
Epom) = E| 1+ o + 50 =) | + 00

2

~ E, + p,0, + 502 ©)

The zero-order term in the previous expansion, E, gives
the standard plane wave oscillation phase. The first-order
term, p,o, will be responsible for the slippage due to the
different group velocities of the mass-eigenstate wave
packets and represents a linear correction to the standard
oscillation phase [15]. Finally, the second-order term,
z'";x o2, which is a (quadratic) secondary correction will
give the well-known spreading effects in the time propa-
gation of the wave packet and will be also responsible for
a “new” additional phase to be computed in the final
calculation. In the case of Gaussian momentum distribu-
tions for the mass-eigenstate wave packets, these terms
can all be analytically quantified. By substituting (9) in
Eq. (5) and changing the p_ -integration into a
o -integration, we obtain the explicit form of the mass-
eigenstate wave packet time evolution,

b(z, 1) = (2ma®)* exp[—i(E;t — p,2)]

% +oo dO‘sE . _azEgag
'/‘700 21T § Xp|: 4 i|

2
m2t

X exp|:—i(p0t — Egz)o, — if a’§:|
s

N [#"‘(t)}m exp[—i(Est = p,2)]

s

(Z - Vs[)2 .
X ——————16,(t,2) |, 10
eXp|: a%(t) l S( Z)i| ( )
where
4m? 1/2
ay(t) = a(l + a‘:qll;é t2>
and
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[met} _2mit (z — Vst)z}

a’E3 a’E3  al(r)

The time-dependent quantities a,(¢) and 6,(z, z) contain
all the physically significant information which arises
from the second-order term in the power series expansion
(9). The spreading of the propagating wave packet can be
immediately quantified by interpreting a,(¢) as a time-
dependent width, i.e., the spatial localization of the prop-
agating particle is effectively given by a,(r) which in-
creases during the time evolution. In the NR propagation
regime, a,(?) is approximated by

f 4
NR(j) — 2
al®(H) =a 1+a4m§t

[17]. For times t > a’m, the effective wave packet width
aNR(f) becomes much larger than the initial width a.
Otherwise, the wave packet spreading in the UR propa-
gation regime is approximated by

4 4
aVR(r) = a‘II +4ls612 ~ q.
apo

The UR spreading is practically negligible if we consider
the same time-scale T for both NR and UR cases, i.e.,
aVR(T) < aR(T). To illustrate this characteristic, we
plot the time-dependence of a,(¢) in Fig. 1 where we
have assumed a particle with a definite mass value my.
By computing the squared modulus of the mass-
eigenstate wave function,

1
0,(t,z) = {5 arctan

|, (z, D* = < 2 )1/2 ex [_ 2(z — v,1)?

() roml B
we illustrate the wave packet spreading in both NR and
UR propagation regimes in Fig. 2 which is in correspon-
dence with Fig. 1. It confirms that the wave packet spread-
ing is irrelevant for UR particles.

Returning to Eq. (10), we could interpret another
second-order effect by observing the time behavior of
the phase (s, z). By taking into account the wave packet
localization, we assume that the amplitude of the wave
function is relevant in the interval |z — v | = a,(?).
Because of the z-dependence, each wave packet space-
point z evolves in time in a different way. If we observe
the propagation of the space-point z = v,t, the crescent
function 0,(z, v,¢) assume values limited by the interval
[0, 7[. Otherwise, for any other space-point given by z =
vt + Ka,(t),0 < |K| = 1, the phase 0,(t, z) does not have
a lower limit. We shall show in the next subsection that the
presence of a time-dependent phase can modify the os-
cillation character of the flavor conversion formula.
Anyway, the phase 6,(z,z) is not influent on the free
mass-eigenstate wave packet propagation as we can see
from Eq. (11).
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w0l p}/m?=10"
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a (t)/a

t/ azms

FIG. 1. The time-dependence of the wave packet width a,(z)
is given for different values of the ratio p,/m,. By considering
a fixed mass value m,, we compare the nonrelativistic (p, <
m,) and the ultrarelativistic (p, > m,) propagation regimes.
We observe that the spreading is much more relevant in the
former case. In the ultrarelativistic limit (m,; = 0), the wave
packet does not spread and a,(f) assumes a constant value a.

B. The oscillation probability

After having analytically quantified the second-order
corrections to the time evolving mass-eigenstate wave
packets, we now compute the interference term Int(¢) in

....... p2/m*=01
—e p/m =1
s p”/m7=10
t=4a’m_

@ (2, )

FIG. 2. The wave packet spreading in both nonrelativistic and
ultrarelativistic propagation regimes is described at time r =
4a’my in correspondence with Fig. 1. The solid line represents
the shape of the wave packet at time ¢ = 0. In the case of an
ultrarelativistic propagation expressed in terms of r’;—é = 10, the

s

spreading is indeed irrelevant.
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order to obtain an explicit expression for the flavor con-
version probability. By solving the integral (7) with the
approximation (8) and performing some mathematical
manipulations, we obtain

Int(r) = Bnd(z) X Osc(r), (12)

where we have factored the time-vanishing bound of the
interference term given by
[Ave]?

Bl’ld([) = [1 + sz(t)]_1/4 exp[— m} (13)

and the time-oscillating character of the flavor conversion
formula given by

Osc(t) = Refexp[—iAEt — iO®1)]}

= cos[AEt + O(1)] (14)
where
t  (/m? Avt
Sp(r)=;A(§)=paz—po (15)
and
T _a’p;  Sp(1)
(1) = [2 arctan[Sp(#)] 2 11 sz(t)]} (16)

with

27 p2 _
p=1—[3+<A—EE> }% and E=JE B (7

The time-dependent quantities Sp(¢) and O(r) carry the
second-order corrections and, consequently, the spread-
ing effect to the oscillation probability formula. If AE <«
E, the parameter p is limited by the interval [1, —2] and it
assumes the zero value when Z——% =~ % Therefore, by con-
sidering increasing values of p,, from NR to UR propa-
gation regimes, and fixing AE/a?E?, the time derivatives
of Sp(#) and O(r) have their signals inverted when p2/E?
reaches the value %

To simplify our presentation, let us study separately the
time-dependent functions Bnd(#) and Osc(z). The slippage
between the mass-eigenstate wave packets is quantified by
the vanishing behavior of Bnd(r).

In order to compare Bnd(z) with the correspondent
function without the second-order corrections (without
spreading),

(18)

2
Bnd (1) = exp|: - (AZZ? :|

we substitute Sp(z) given by the expression (14) in
Eq. (13) and we obtain the ratio
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Bnd(z7) 142 AEt\27-1/4
Bndyy (1) [ P <02E2> }
2.2 4
p°p,(AEt)
X t . 19
o [Zaf’Eg[l +p2<—;§a>2]} 4

The NR limit is obtained by setting p> = 1 and p, = 0 in
Eq. (19). In the same way, the UR limit is obtained by
setting p> = 4 and p, = E.

In fact, the minimal influence due to second-order
corrections occurs when p3/E? =~ 1(p =~ 0). Returning
to the exponential term of Eq. (13), we observe that the
oscillation amplitude is more relevant when Avs < a. It
characterizes the minimal slippage between the mass-
eigenstate wave packets which occur when the complete
spatial intersection between themselves starts to dimin-

ish during the time evolution. Anyway, under minimal
Bnd(t) ~ 1
Bndys(1) )

We plot the ratio given in Eq. (19) for different propa-
gation regimes in Fig. 3 where we have arbitrarily set
aE = 10. For asymptotic times, the time-dependent term
Sp(?) effectively extends the interference between the
mass-eigenstate wave packets since

Bnd(?) i, aE |:p,2,(AEt)2

slippage conditions, we always have

~ - ex
(pAEt):

— ~ = > 1, (20
Bndws(l) 202E4 :| ( )

but, in this case, the oscillations are almost completely
destroyed by Bnd(z) [see Fig. (5)]. The oscillating function

10
: Standard
8
c |
Z 6l
Q L
<
= L
= ir
S L
< L
S L
2
O I n n n 1 n n n 1 n n n 1 n n n 1 n n n
0 12 24 36 48 €0

AEt/w

FIG. 3. The comparison between the vanishing behavior with
[Bnd(7)] and without [Bndws(#)] the second-order corrections
for different propagation regimes. In order to have a realistic
interpretation of the information carried by the second-order
corrections we arbitrarily fix aE = 10. The second-order cor-
rections could indeed be effective for both nonrelativistic and
(ultra)relativistic propagation regimes, however, the oscilla-
tions are destroyed much more rapidly in the latter case. If Z—i =~
%, the second-order corrections are minimal.
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Osc(t) of the interference term Int(z) differs from the
standard oscillating term, cos[AEf], by the presence of
the additional phase ®(r) which is essentially a second-
order correction. The modifications introduced by the
additional phase O(r) are presented in Fig. 4 where we
have compared the time behavior of Osc(z) to cos[AEf]
for different propagation regimes. To study the phase
O(r), let us conveniently define a time ¢ = ¢, > 0 which
sets the zero of O(r), i.e., O(t,) = 0. If r = 1, the modu-
lus of the phase O(¢) reaches an upper limit when
ey o

PR SO U
P2 [( azp%) azp%}

2 \11/2
p
o)

therefore, the maximum of |®(r)| depends, not only on the
propagation regime (p, value), but also on the wave
packet width a.

Anyway, the values assumed by |O(7)| are restricted to
the interval [0, Z[. Otherwise, if > t,, the phase O(z)
does not have a limit and its time-dependence is essen-
tially given by the second term of Eq. (16). However, it is
important to notice that for # > ¢, the oscillating charac-
ter is gradually destroyed by Bnd(#). Consequently, an-
other bound effective value assumed by O(r) is
determined by the vanishing behavior of Bnd(z). To illus-
trate this point, we plot both the curves representing
Bnd(¢) and O(¢) in Fig. 5 by considering the same pa-
rameters used in the study of Bnd(z). We note the phase
slowly changing in the NR regime. The modulus of the
phase |O ()| rapidly reaches its upper limit when p2/E* >

|AEt =

Standard

0.01

OSC(1)

AEt/n

FIG. 4. The time behavior of Osc(f) compared with the stan-
dard plane wave oscillation given by cos[AE?] for different
propagation regimes. The additional phase ©(r) changes the
oscillating character after some time of propagation. The maxi-

Lo 2
mal deviation occurs for % = %
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FIG. 5. The time behavior of the additional phase ®(z). The
values assumed by O(r) are effective while the interference
term does not vanish. In the upper box we can observe the
behavior of Bnd(#) which determines the limit values effec-
tively assumed by O(f) for each propagation regime. For
relativistic regimes with £ >1, the function ©(z) rapidly
reaches its lower limit as we can observe in the small box
above. We have used aE = 10.

% and, after a time ¢ = 1, it continues to evolve approxi-
mately linearly in time. But, effectively, the oscillations
rapidly vanishes after t = ¢,.

By superposing the effects of Bnd(z) and the oscillating
character Osc(z) expressed in Fig. 5, we immediately
obtain the flavor oscillation probability which is explicitly
given by

Py, — vgit) = @{1 —[1+sp*(n]~/*
(Avi)?
X exp[ — m} cos[AE:r + G)(t)]}. (22)
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Obviously, the larger is the value of aE, the smaller are
the wave packet effects. If it was sufficiently larger to not
consider the second-order corrections expressed in
Eq. (8), we could compute the oscillation probability
with the leading corrections due to the slippage effect,

P(vg — vp31)

N sin2[260] v {1 B exp{— (Avi)?

5 } cos[AEt]}
(23)

which corresponds to the same result obtained by [15].
Under minimal slippage conditions (Avt < a), the above
expression reproduces the standard plane wave result,

2

P — 1) = sin22[20] {1 3 (szt)2 cos[AE t]}
~ @{1 — cos[AEt]}, (24)

since we have assumed aE > 1.

IIL. ANALYSIS WITH DIFFERENT WAVE
PACKETS

In this section we verify in what circumstances the
form of the wave function can change the flavor oscilla-
tion probability. To describe the wave packet time evolu-
tion, let us now consider a box function and a (smoothly
vanishing) sine function in the place of a Gaussian func-
tion. In the previous section, we have noticed it is remark-
ably simple to perform an analytical study with a
Gaussian wave packet since its Fourier transformation
in the momentum space is also a Gaussian function. In
opposition, the analytical study with box and sine func-
tions constrain us to perform the calculations by consid-
ering only the first-order corrections in Eq. (9), ie.,

E(p,mg) = E; + p,o; (25)

which only sets the slippage leading term. We can observe
from Fig. 5 that considering only the first-order correc-
tions results in a good approximation for propagation
regimes where p2/E* > % since the oscillations are almost
completely destroyed after any relevant second-order
correction takes place. Besides, for NR propagation re-
gimes, i.e., when p2/E* <1, by observing the Fig. 3, we
have already noticed that the first and second-order ap-
proximations are equivalent under minimal slippage con-

Bl’ld([) ~ 1
Bndyys(1) :

ditions

To simplify the discussion, we shall adopt the follow-
ing definition for the initial state,

#(z,0) = F(z) explip,z], (26)

where i = G, B, S correspond, respectively, to Gaussian,
box, and sine functions. The wave packet time evolution
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will be expressed in terms of ¢®(p, — p,) which is the

Fourier transformation of d)@(z, 0), and the oscillation
probability will be immediately computed through the
expression (2).

As we have seen in the previous section, in the case of a
Gaussian function, we have

2 \l/4 2
o ) "ol 3]
ma ag

G

and

ag(p. — p,)’*
¢ (p. = p,) = 2mag)"* eXp[— sz}
In this case, the wave packet has the form

69 1) ~ (Wiaz)” b expl—i(E,t — py2)]

G
_ 2
<exo| - (Zz”)} @7)
ag

and the oscillation probability is reproduced by Eq. (23).
Obviously, such results could be directly obtained by
setting a,(f) = a and 0,(z, z) = 0 in Eq. (10).

In the case of a box function we have

F®(z) =

and
2 s'n[a —
i
a113/2(pz - pa) 2

In this case, the wave packet has the form

e®(p, — p,) =

(2, 1) = ag " exp[—i(E,t — p,2)] (28)
if z € [vgt — %, vt + 2] or
Bz 1) =~0 (28b)

if z& [vy —%,v, + %] and the oscillation probability
becomes

PO, — v 1)

sin’[26] AVt
=~ X —-[1-—— AE
5 { [ B }cos[ t]},
(29a)
if t =3 or
. 2 2
PO (v, — vgi1) = sz[ ‘] (29b)

. ag
1ft>m.
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Finally, in the case of a sine function we have

FO(z) = (c;:)lﬁ sin[zag ']

z
and
12 €[-11]
(S)( —p,) = {(asﬂ') as(Pz ) )
TP o sl pE -1 1]
In this case, the wave packet has the form
ag\1/2 .
00 = (2) expl—i(Et ~ p,2)]
y sinfag '(z — v,1)] 30)

(z = v)
and the oscillation probability becomes

PO vy — w3 1)

_sin?[20] (. /ag\ . [AVs
= > {1 (A—w> Sll’l|:a—si| COS[AEI]}.
3D

The above results deserve some comments. First, we
observe that all the three wave packet forms give the same
oscillating character. In a simplified analysis, indepen-
dently of the propagation regime and without setting any
parameter value, we can compare the vanishing character
of each oscillation probability in terms of a common

variable x(t) = AV’ . By defining the coefficients ag = ”S
and ag = %4 and recovermg the definition of Bnd(z), we
can wrlte
2t
Bnd ©(r) = exp|:— XT()}
(B) — 1 - CYB.X([) CYB)C(Z) =1

Bnd (1) {0 apx(r) >1

and
Bnd (1) — sin[asx(t)]’
agx(1)

under minimal slippage conditions, i.e., when x(f) < 1,
Bnd©)(¢), and Bnd®)(r) vanish quadratically. Particularly,
if we had set ag = /3, we would have

2
Bnd©(1) = BndS) (1) = 1 — XT(t) (32)

i.e., under minimal slippage conditions, Gaussian and sine
functions would give exactly the same oscillation
probabilities.

To summarize the above results, we show the oscilla-
tion probabilities by considering the three wave packet
forms in Fig. 6 where we have adopted ag = 1 and ag =
/3. Predominantly for sine functions, there will always
be a reminiscent oscillating character during the particle
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FIG. 6. The flavor conversion probabilities for Gaussian, box,
and sine wave packets by taking into account the first-order
correction in an analytical calculation of Int(z). By assuming
ag = ag :%as, the Gaussian and the sine wave packets
provide exactly the same quadratic time-dependence under
minimal slippage conditions whereas the box wave packets
give a completely different behavior where the oscillation
probability vanishes much more rapidly. We have fixed the

=

mixing angle T

propagation. In opposition, Bnd(r)®(f) vanishes linearly
and the correspondent oscillation probability goes much
more rapidly to zero. Its oscillating character is suddenly
ended when x(¢) = aia . The sine wave packets still provide

another peculiar behavior. Their correspondent oscilla-
tions vanish at each zero of sin[x(z)] but the probability
returns to oscillate. After each intermediary zero,
the function sin[x(¢)] changes the signal itself, conse-
quently, its maximum and minimum values are inter-
changed. In Fig. 7 we illustrate the correspondent
slippage between the mass-eigenstate wave packets for
each case.

IV. CONCLUSIONS

In this paper we have analytically computed the
second-order modifications to the flavor conversion for-
mula by using Gaussian wave packets. Under the particu-
lar assumption of a sharply peaked momentum
distribution, we have obtained an explicit expression for
the time evolution of the mass eigenstates and identified
the wave packet spreading for (U)R and NR propagation
regimes. In particular, we have observed that the spread-
ing represents a minor modification effect which is prac-
tically irrelevant for (ultra)relativistic propagating
particles. We have also observed the presence of an addi-
tional time-dependent phase in the oscillating term of the
flavor conversion formula. Such an additional phase
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Slippage between mass-eigenstate wave packets

FIG. 7. The slippage between Gaussian, box, and sine wave
packets. We can observe that the interference between the box
wave packets is abruptly interrupted while the other two wave
packets continue to interfere during longer times. It completes
the explanation of the oscillation behavior illustrated in Fig. 6.

presents an analytic dependence on time which changes
the oscillating character in a peculiar way. These mod-
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ifications are less relevant when p2 =~ {E? and more
relevant for NR propagation regimes. Anyway, they be-
come completely irrelevant for UR propagatiton regimes
due to the vanishing behavior of the interference term in
the oscillation probability formula. Some influences of
this additional phase on the oscillation problem were al-
ready appointed in Ref. [18].

We know, however, that our results are strongly influ-
enced by the Gaussian wave packet choice. In order to
understand how the wave packet form modifies the oscil-
lation probability, we have quantified the slippage be-
tween the mass-eigenstate wave packets by studying a
box and a sine localization. In fact, by following a first-
order analytic approximation, a simple comparison
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among the different vanishing character of the oscillation
probability formulas has illustrated that, under minimal
slippage conditions, the sine and the Gaussian functions
provide similar results whereas the box function makes
the oscillations vanish more rapidly.

To conclude, we emphasize that an analytical study
complements and clears up several aspects already intro-
duced in the study of quantum oscillation phenomena.
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