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1 Introduction

Over the last few years there has been a resurgent interest in conformal bootstrap meth-

ods [1–9] using the seminal work on conformal blocks by Dolan and Osborn [10–12]. Using

numerical methods, interesting constraints have been placed on conformal field theories in

– 1 –



J
H
E
P
1
1
(
2
0
1
5
)
0
8
3

diverse dimensions [1–6]. Applications have been found in diverse field theories ranging

from supersymmetric conformal field theories [13–17] to the 3d-Ising model at critical-

ity [18–21]. The lessons learnt using these methods transcend any underlying Lagrangian

formulation and are hoped to be very general. Our aim in this paper is to present new

analytic results for conformal field theories in four dimensions.

Analytic bootstrap methods have been used in [22, 23] to study the four point function

of four identical scalar operators. It has been shown that there must exist towers of

operators at large spins with twists 2∆φ + 2n with ∆φ being the conformal dimension of

the scalar and n ≥ 0 is an integer. For the case where a single tower of operator exists with

twists 2∆φ + 2n and there is a twist gap between these operators and any other operator,

one can calculate the anomalous dimensions of such operators. In four dimensions, the

anomalous dimensions in the large spin (` � 1) limit for these operators for n = 0 are

given by [22–24],

γ(0, `) = −c0

`2
, (1.1)

where c0 > 0. This conclusion is consistent with the Nachtmann theorem [25] which

predicts that the leading operators at a given ` should have twists increasing with `.

However it is not known if this behaviour persists for arbitrary n introduced above (for a

recent study1 see [26]).

Recently it has been pointed out that in the context of the AdS/CFT correspondence,

there is a connection between the CFT anomalous dimensions and the bulk Shapiro time

delay [27–30]. In [30] it was argued that to preserve causality, the Shapiro time delay

should be positive and hence the anomalous dimensions of double trace operators negative.

Thus it is of interest to see what happens to γ(n, `) for n > 0. In the literature, it has

been shown using input from AdS/CFT that using the results for the four point functions

of dimension-2 and dimension-3 half-BPS multiplets in N = 4 supersymmetric SU(N)

Yang-Mills theories, to leading order in 1/N2, γ(n, `) ≤ 0 for all n — see [31] for a recent

calculation for the dimension-2 case and [32] for earlier work related to the dimension-3

case. Furthermore, in [27–29], using Eikonal approximation methods pertaining to 2-2

scattering with spin-`m exchange in the gravity dual, the anomalous dimensions of large-`

and large-n operators have been calculated.

In this paper we examine γ(n, `) and OPE coefficients for general CFTs follow-

ing [22, 23]. Our findings are consistent with AdS/CFT predictions [27–29] where it was

found that for ` � n � 1, γ(n, `) ∝ −n4/`2 while for n � ` � 1, γ(n, `) ∝ −n3/` for

graviton exchange dominance in the five dimensional bulk.

Summary of the results. As we will summarize below, we can calculate the anomalous

dimensions and OPE coefficients for the single tower of twist 2∆φ+2n operators with large

spin-` which contribute to one side of the bootstrap equation in an appropriate limit with

the other side being dominated by certain minimal twist operators. In this paper we will

focus on the case where the minimal twist τm = 2. One can consider various spins `m for

1In [26] the dependence of n in the limit ` � n � 1 is extracted numerically from a recursion relation

but from that approach it is not possible to make general conclusions. After our paper appeared on the

arXiv, [26] furthered the analysis to agree perfectly with our findings.
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these operators. We will present our findings for various spins separately; the case where

different spins `m contribute together can be computed by adding up our results. We begin

by summarizing the ` � n case. We note that, as was pointed out in [22], in this limit

we do not need to have an explicit 1/N2 expansion parameter to make these claims. The

1/`2 suppression in both the anomalous dimensions and OPE coefficients does the job of a

small expansion parameter.2

For the dominant τm = 2, `m = 0 contribution, the anomalous dimension becomes

independent of n and is given by,

γ(n, `) = −
Pm(∆φ − 1)2

2`2
. (1.2)

while the correction to the OPE coefficient can be shown to approximate to,

Cn =
1

q̃∆φ,n
∂n(q̃∆φ,nγn) , (1.3)

in the large n limit similar to the observation made in [7]. The coefficient q̃∆φ,n is related

to the MFT coefficients as shown in (2.12) later. Here Pm is related to the OPE coefficient

corresponding to the τm = 2, `m = 0 operator. For the dominant τm = 2 = `m contribution,

the anomalous dimension is given by,

γ(n, `) =
γn
`2
, (1.4)

where,

γn =− 15Pm
∆2
φ

[6n4 + 12n3(2∆φ − 3) + 6n2(11− 14∆φ + 5∆2
φ)

+ 6n(2∆φ − 3)(∆2
φ − 2∆φ + 2) + ∆2

φ(∆φ − 1)2] .

(1.5)

Using the standard normalization (see [23]), Pm = 2∆2
φ/(45N2) and hence Pm/∆

2
φ becomes

independent of ∆φ. Thus for n � 1, γ(n, `)N2 ≈ −4n4/`2, independent of ∆φ. The

coefficients γn are negative for arbitrary n and ∆φ ≥ 1. Interestingly (as shown in figure 1)

some γn’s – n = 1, 2 — can become positive if 0 < ∆φ < 1, i.e., for ∆φ violating the unitarity

bound. To make a connection between the unitarity bound and the sign of the anomalous

dimension, having the exact analytic expression above was crucial. For example, without

the exact expression it would not be possible to conclude that all anomalous dimensions

above n = 2 will be negative. Further, without such a formula, it would not be possible to

infer the universality, i.e., independence of ∆φ in the `� n� 1 regime. Let us emphasise

two points. First, that while the Eikonal approximation methods in AdS/CFT agree with

our general formula above in this limit, the subleading terms in n are in fact a prediction

from bootstrap which will be interesting to verify using a gravity calculation. Second, the

fact that 1/` plays the proxy for a small expansion parameter makes it clear that this

result is valid not just for a large N theory but for any theory satisfying the minimal set

of assumptions about the spectrum mentioned above.

2Strictly speaking we will need `2 � n4 for this to hold. Otherwise we will assume that there is a small

expansion parameter.
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Figure 1. The variation of the anomalous dimensions γn with ∆φ showing that some of the

anomalous dimensions become positive when ∆φ < (d− 2)/2.

For general `m we find that the anomalous dimension behaves like

γ(n, `) ∝ −n
2`m

`2
, (1.6)

for large n. The proportionality constant is related to the corresponding OPE coefficient.

Even for this case, the anomalous dimensions are all negative for ∆φ respecting the unitarity

bound and can be positive otherwise. Thus there appears to be an interesting correlation

between CFT unitarity and bulk causality (in the sense that the sign of the anomalous

dimension is correlated with the bulk Shapiro time delay [30]).

Let us make some observations. If we assume that `m ≤ 2 as in [22], our results suggest

that since the ∆φ dependence drops out in γn for n� 1, the findings are universal for any

4d CFT with a scalar of conformal dimension ∆φ and where in the `� 1 limit the spectrum

is populated with a single tower of operators with twists 2∆φ + 2n separated by a twist

gap from other operators. The explicit results given in [31, 32] are indeed consistent with

the universal form of our result at large n. Furthermore our result is consistent with the

AdS/CFT calculations in the Eikonal approximation. This gives credence to our finding

that in the limit ` � n � 1 the anomalous dimensions and the OPE coefficients for the

`m = 2 exchange indeed take on a universal form.

We will further extract the subleading 1/`3 correction to the anomalous dimension for

stress tensor exchange dominance and show that in the limit ` � n � 1, the result is

universal as well. For this we will provide a systematic way to compute the corrections to

the conformal blocks starting with the differential equation.

Our paper is organized as follows: we start with the review of the analytical bootstrap

methods used in [22, 23] in section 2. In section 3 we apply these methods in the limit

when the spin is much larger than the twist, to cases where the l.h.s. of the bootstrap
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equation is dominated by either the twist-2, spin-2 operator exchange or a twist-2 scalar

operator exchange. In 4 as a further extension, we consider the subleading terms in the 1/`

expansion and compare with known results. In section 5 we compare our results with the

ones from AdS/CFT. Specifically we find that our results are in agreement with the results

in [27–29] in both the limits. We end the paper with a brief discussion of open questions

in 6. Certain useful relations and formulae used for 2 are discussed in appendices A

and B. In appendix C we give a brief detail of the n dependence of the coefficients γn for

`m > 2 cases. In appendix D we consider the differential equations which will lead to the

extensions of the large ` results in the subleading orders in ` in 4. In appendix E we discuss

the behaviour of the corrections to the OPE coefficients Cn for `� n limit where we show

that asymptotically ( for large n), the coefficients Cn approach the relation (1.3) while at

low n there are deviations. Finally in appendices F and G we address the other limit where

the twist is much larger than the spin. These aim to provide an unified approach to handle

both the limits (`� n and n� `) using a saddle point analysis and our findings there are

preliminary.

2 Review of the analytical approach

We begin by reviewing the key results of [22] (see also [23]) which will help us set the

notation as well. Consider the scalar 4-point correlation function 〈φ(x1)φ(x2)φ(x3)φ(x4)〉.
In an arbitrary conformal field theory, we have a 12→ 34 OPE decomposition (s-channel)

given by,

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
1

x2
12x

2
34

∑
O
PO gτO,`O(u, v) . (2.1)

Here we have used the notation xij = xi − xj . The variables u and v are the conformal

cross ratios defined by,

u =
x2

12x
2
34

x2
24x

2
13

, and v =
x2

14x
2
23

x2
24x

2
13

, (2.2)

The functions gτO,`O(u, v) are called conformal blocks or conformal partial waves [10–12],

and they depend on the spin `O and twist τO of the operators O appearing in the OPE

spectrum. The twist is given by τO = ∆O − `O, where ∆O is the conformal dimension of

O. PO is a positive quantity related to the OPE coefficient. The sum goes over all the

twists τ and spins ` that characterize the operators.

The 4-point function will also have a decomposition in the 14 → 23 channel (t-channel),

and equating the two channels we will have the bootstrap equation,

1 +
∑
τ,`

Pτ,` gτ,`(u, v) =
(u
v

)∆φ

1 +
∑
τ,`

Pτ,` gτ,`(v, u)

 . (2.3)

We will work in the limit u � v < 1. In this limit the leading term on the l.h.s. is the 1.

However on the r.h.s. gτ,` has no negative power of u in the small u limit and all terms

are vanishingly small. So we cannot reproduce the leading 1 from the r.h.s. from a finite

number of terms. In mean field theory it was shown [22] that the large ` operators produce
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the leading term. For a general CFT, the authors of [22] argued that in order to satisfy

the leading behavior,

1 ≈
(u
v

)∆φ∑
τ,`

Pτ,`gτ,`(v, u) , (2.4)

the twists τ must have the same pattern as in MFT. To show this we have to look at the

large ` and small u limit of the conformal blocks,

gτ,`(v, u) = k2`(1− z)vτ/2F (d)(τ, v) , (when |u| � 1 and `� 1)

kβ(x) = xβ/22F1(β/2, β/2, β, x) . (2.5)

Here z is defined by u = zz̄ , v = (1 − z)(1 − z̄); and F (d)(τ, v) is a positive and analytic

function near v = 0 whose exact expression is not necessary for the discussion. We derive

the above result later in this section. For now, we just use this to rewrite (2.4),

1 ≈
∑
τ

(
lim
z→0

z∆φ
∑
`

Pτ,`k2`(1− z)

)
vτ/2−∆φ(1− v)∆φF (d)(τ, v) . (2.6)

The term in brackets are independent of z and ` after taking the limit and doing the sum

(over `). Then what is left is just a function of τ with a sum over τ . The function F (d)(τ, v)

around small v begins with a constant. Thus we must have τ/2 = ∆φ in the spectrum.

Next since F (d)(τ, v)has terms with higher powers in v, we must have τ = 2∆φ + 2n for

every integer n, to cancel these terms. This shows that there are operators with twists

τ = 2∆φ + 2n. Since these are operators in MFT, Pτ,` = PMFT
τ,` at leading order. We will

now focus our attention on the subleading terms of the bootstrap equation.

The subleading corrections to the bootstrap equation are characterized by the anoma-

lous dimension γ(n, `) and corrected OPE coefficients Cn. We will assume that for each

` there is a single operator having twist τ ≈ 2∆φ + 2n. The bootstrap equation takes

the form,3

1 +
∑
`m

Pm
4
uτm/2fτm,`m(0, v) ≈

∑
τ,`

Pτ,`v
τ/2−∆φu∆φfτ,`(v, u) , (2.7)

which is valid upto subleading corrections in u as u → 0. Note that the l.h.s. demands

the existence of an operator of minimal twist τm = ∆m − `m which is non-zero. We set

u = z(1 − v) + O(z2) and consider u → 0 to be z → 0. The explicit form of the function

fτm,`m(v) is given by,

fτm,`m(v) =
Γ(τm + 2`m)

Γ
(
τm + `m

2

)2 (1− v)`m
∞∑
n=0

(
(τm + 2`m)n

n!

)2

×vn
[
2

[
ψ(n+ 1)− ψ

(
τm
2

+ `m + n

)]
− log v

]
. (2.8)

Later we will set τm = 2 because we are particularly interested in the twist 2 primary

operator or the stress tensor in the theory.

3Our conventions for Pm differ from [22] by a factor of 1/4.
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Let us now focus on the r.h.s. where we have an infinite sum over all twists and spins.

In the limit `� n� 1 we can simplify the r.h.s. considerably. Note that we will be working

in d = 4 since in the d = 2 case there is no minimal twist operator with a twist gap from

the identity operator (τd=2
min = 0). To proceed we first need to find the behaviour of the

conformal blocks in the above limit ( in other words τm = 2) and when |u| � |v| < 1. With

u = z(1 − v) + O(z2) since z̄ = (1 − v) + O(z), we can form a small z expansion around

z = 0 and then a small v expansion. To find the anomalous dimension γ(n, `) for each `

we need to match the coefficients of the terms vn log v on both sides of (2.7). Considering

τ(n, `) = 2∆φ + 2n+ γ(n, `), we can see that the log v arises from the next to the leading

term in the perturbative expansion around small v given by,

vτ(n,`)/2−∆φ → γ(n, `)

2
vn log v . (2.9)

The MFT coefficients take the following form in the `� n limit,

P2∆φ+2n,`
`�1
≈ q∆φ,n

√
π

22∆φ+2n+2`
`2∆φ−3/2 , (2.10)

where the coefficient q∆φ,n is given by,

q∆φ,n =
8

Γ(∆φ)2

(1− d/2 + ∆φ)2
n

n!(1− d+ n+ 2∆φ)n
. (2.11)

Here (a)b = Γ(a + b)/Γ(a) is the Pochhammer symbol. We will also use another notation

for convenience in the later part of the work,

q̃∆φ,n = 2−2∆φ−2nq∆φ,n . (2.12)

The d = 4 crossed conformal blocks are given by

gτ,`(v, u) =
(1− z)(1− z̄)

z̄ − z
[k2`+τ (1− z)kτ−2(1− z̄)− k2`+τ (1− z̄)kτ−2(1− z)] , (2.13)

where we have already defined kβ(x) in (2.5). As already mentioned, in the large ` limit,

the conformal blocks simplify to give (2.5). For `� n we can decompose k2`+τ (1− z) even

further to get,

k2`+τ (1− z)
`→∞
≈ 2τ+2`−1`1/2√

π
K0(2`

√
z) . (2.14)

We will also need the expression for F (d)(τ, v). In d = 4 we have,

F (4) =
2τ

1− v 2F1

[
τ

2
− 1,

τ

2
− 1, τ − 2, v

]
. (2.15)

With this, the entire (log v dependent part of) r.h.s. of (2.7) in the limit ` � n can be

organized into the following form,∑
τ,`

Pτ,`v
τ/2−∆φu∆φfτ,`(v, u) =

∞∑
n=0,`=`0

q∆φ,n

2
`2∆φ− 3

2

[
γ(n, `)

2

]
vn log v `1/2K0(2`

√
z)z∆φ

(1− v)∆φ−1
2F1(∆φ + n− 1,∆φ + n− 1, 2∆φ + 2n− 2; v) .

(2.16)
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Now the overall factor of u∆φ sitting on the r.h.s. of (2.7) is translated into an overall

factor of z∆φ(1 − v)∆φ . We assume that the anomalous dimension has the form γ(n, `) =

γn/`
α. Now in the large ` limit we can convert the sum over ` in (2.16) into an integral

given by,∫ ∞
`0

d` `−1−α+2∆φz∆φK0(2`
√
z) ≈ zα/2

4
Γ2

(
∆φ −

α

2

)
+O(z∆φ log z) . (2.17)

In order to do this integral, it is convenient to use an upper cutoff L. The integral works out

to be in terms of regularized Hypergeometric functions. By expanding the result assuming

L
√
z � 1 and `0

√
z � 1 we get the leading and subleading terms in the above equation.

For ∆φ > 1, the O(z∆
φ log z) terms can be ignored. This reproduces4 the factor of z

τm
2

exactly if α = τm. If we take the minimal nonzero twist to be τm = 2, the anomalous

dimension behaves as,

γ(n, `) =
γn
`2
. (2.18)

Once again the interested reader should refer to [22, 23] for the mathematical details of the

above algebra and approximations. In the next section, we demonstrate how the expression

for γn can be given in terms of an exact sum for all n. This sum enables us to extract the

exact behaviour of the anomalous dimensions for all n when ` � n. Later in appendix F

we have also considered anomalous dimensions for the other limit `� n� 1.

3 The ` � n case

We begin by determining γn appearing in (2.18) in the limit ` � n. To get γn, we have

to match the power of vn log v on both sides of (2.7). To do that we take the (1 − v)∆φ−1

of (2.16) to the l.h.s. of (2.7) and expand (1 − v)`m+τm/2−∆φ+1 in powers of v. Thus the

l.h.s. of (2.7) becomes,

− (1− v)τm/2+`m+1−∆φ
Pm
4

Γ(2`m + τm)

Γ(`m + τm/2)2

∞∑
n=0

(
(τm/2 + `m)n

n!

)2

vn log v , (3.1)

where (a)b is the Pochhammer symbol. Expanding the term (1− v)`m+τm/2−∆φ+1, we get,

(1− v)`m+τm/2−∆φ+1 =

∞∑
α=0

(−1)k
b!

α!(b− α)!
vα where b = `m +

τm
2

+ 1−∆φ . (3.2)

Now set n+α = k whereby the l.h.s. can be arranged as
∑∞

n=0 Lnv
n log v where to find Lk

we need to perform the α sum explicitly.

This gives, the coefficient of vn log v to be,

Ln = −4Pm
Γ(τm + 2`m)

Γ

(
τm
2 + `m

)2

∞∑
α=0

(−1)α
(

(τm/2 + `m)(n−α)

(n− α)!

)2 b!

(b− α)!α!
, (3.3)

4Note that for ∆φ = 1 and τm = 2, this does not work as the Gamma function blows up. This is

presumably indicative of a log ` scaling for the operators [34] in this case.
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where we have multiplied the l.h.s. of (2.7) with an overall numerical factor of 16 coming

from the r.h.s. of (2.7). This finite sum is given by,

Ln = −
4PmΓ (2`m + τm) Γ

(
n+ `m + τm

2

)
2

3F2

(
−n,−n,−1− `m + ∆φ − τm

2

1− n− `m − τm
2 , 1− n− `m −

τm
2

, 1

)
Γ(1 + n)2Γ

(
`m + τm

2

)4 .

(3.4)

To get the same coefficient of vn log v on the r.h.s. of (2.7), we expand the hypergeometric

function in powers of v given by

2F1(τ/2− 1, τ/2− 1, τ − 2, v) =

∞∑
α=0

(τ/2− 1)2
α

(τ − 2)α α!
vα , (3.5)

where (a)b is the Pochhammer symbol given by (a)b = Γ(a + b)/Γ(a). On the r.h.s. we

have two infinite sums Σ∞k=0Σ∞α=0fα,kv
k+α. To put the r.h.s. in the form Σ∞n=0Rnv

n we will

regroup the terms in the double sum in increasing powers of vn. This is achieved by setting

k + α = n where α runs from 0 to n giving,

r.h.s. =

∞∑
n=0

Rn v
n log v , (3.6)

where, the coefficients Rk can be written as

Rn = Γ
(

∆φ −
τm
2

)2
n∑

α=0

q∆φ,n−αγn−α

( (
τ
2 − 1

)2
n−α

(n− α)!(τ − 2)n−α

)
, (3.7)

where the extra factor of 1
2 comes from the normalization 22`+τ−1 when we consider the

large ` approximation of the conformal blocks. Equating the coefficients Rn = Ln we can

find the corresponding coefficients γn. Thus, in principle, we would know γn if we know γk
for all k ≤ n− 1. In figure 2 we have plotted the log γn vs. log n for a twist-2 scalar and a

twist-2 and spin-2 field.

We find that the slope of the curve for the twist-2, spin-2 exchange is ≈ 4 while that

for the twist-2 scalar is a constant. So γn ∼ n4 for large values of n for spin-2 field. To

show this behavior explicitly, we notice that γn can be written as an exact sum over the

coefficients Rm appearing on the l.h.s. . This formula can be guessed by looking at the first

few γns. We give the form of the first few γns. These take the form,5

γ0 =
(∆φ − 1)2

8
L0 ,

γ1 = −
(∆φ − 1)2

8
L0 +

∆φ − 1

4
L1 ,

γ2 =
(∆φ − 1)2

8
L0 −

2∆φ − 1

4
L1 +

2∆φ − 1

2∆φ
L2 etc.

(3.8)

5We will assume ∆φ > 1. See footnote 4.
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Figure 2. log |γn| vs. log n plot showing the dependence of γn on n for n� 1. γT is the anomalous

dimension for the spin-2 operator exchange and γS for the scalar operator exchange. The slope of

the blue straight line for spin-2 exchange is 3.998 while the red line denotes the scalar exchange for

which γn is constant for all n. We have used ∆φ = 2 in the above plots.

We observe that the above terms follow a definite pattern which can be written as,

γn =

n∑
m=0

an,m with an,m = cn,mLm . (3.9)

where for general τm and `m the coefficients cn,m are given by,

cn,m =
1

8

(
Γ (∆φ)

Γ (∆φ +m− 1)

)2 (2∆φ + n− 3)m (−1)n+mn!

(n−m)!

(
Γ(∆φ − 1)

Γ(∆φ − τm/2)

)2

. (3.10)

We have checked the analytic expression for the coefficients γn agrees with the solutions of

γn found from solving the equations Rk = Lk order by order for arbitrary values of n.

3.1 Case I: τm = 2, `m = 0

We now consider the case where the l.h.s. of (2.7) is dominated by the exchange of a twist-2

scalar operator. For this case

3F2

[
−m,−m,−2 + ∆φ

−m,−m
, 1

]
=

m∑
k=0

Γ(k + ∆φ − 2)

Γ(∆φ − 2)k!
=

Γ(∆φ +m− 1)

Γ(m+ 1)Γ(∆φ − 1)
. (3.11)

The coefficients an,m can thus be written as,

an,m = −Pm
2

(−1)m+n(∆φ − 1)Γ(n+ 1)Γ(∆φ)Γ(2∆φ +m+ n− 3)

Γ(m+ 1)Γ(n+ 1−m)Γ(∆φ +m− 1)Γ(2∆φ + n− 3)
. (3.12)

We sum over the coefficients an,m to get,

γn =

n∑
m=0

an,m = −Pm
2

(∆φ − 1)2 . (3.13)

Note that the coefficients γn appearing in the expression for the anomalous dimension

become independent of n in this case. The details can be found in appendices A and B.
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3.2 Case II: τm = 2, `m = 2

Here we consider the case where the l.h.s. of (2.7) is dominated by the exchange of a twist-2

and spin-2 operator exchange. In the language of AdS/CFT, the particle is a graviton that

dominates the scattering amplitude in the Eikonal limit [27–29]. As in the previous case

the anomalous dimension goes as ∼ 1/`2 for large spin in the r.h.s. of (2.7). Performing

the ` integration we are left with a single sum on the r.h.s. from which we can determine

the coefficients γn as a function of n. Using relation (3.9) we can evaluate the coefficients

Lm for the case when τm = 2 and `m = 2 respectively which we proceed to show below.

We defer the details of the calculation to the appendix and present here with only the final

results. First we write

3F2

[
−m,−m,−4 + ∆φ

−2−m,−2−m
, 1

]
=

m∑
k=0

(m+ 1− k)2(m+ 2− k)2Γ(∆φ − 4 + k)

(m+ 1)2(m+ 2)2Γ(k + 1)Γ(∆φ − 4)
(3.14)

=
4(6m2 + 6m(∆φ − 1) + ∆φ(∆φ − 1))Γ(m+ ∆φ − 1)

(m+ 1)(m+ 2)Γ(m+ 3)Γ(∆φ + 1)
.

The combined coefficients an,m, after putting in the proper normalizations, can be writ-

ten as,

an,m =− (−1)m+n 15Pm
∆φ

(6m2 + 6m(∆φ − 1) + ∆φ(∆φ − 1))

×
Γ(n+ 1)Γ(∆φ)Γ(2∆φ +m+ n− 3)

Γ(m+ 1)Γ(n+ 1−m)Γ(∆φ +m− 1)Γ(2∆φ + n− 3)
.

(3.15)

We can now perform the summation, over the coefficients an,m to get,

γn =
n∑

m=0

an,m =− 15Pm
∆2
φ

[6n4 + ∆2
φ(∆φ − 1)2 + 12n3(2∆φ − 3) + 6n2(11−14∆φ + 5∆2

φ)

+ 6n(2∆φ − 3)(∆2
φ − 2∆φ + 2)] . (3.16)

The above formula negative and monotonic for all values of n and ∆φ > 1 (see appendices A

and B for details). Until this point we did not need the explicit form of the coefficient Pm
but we can choose the conventions [23]. Pm for any general d is given by

Pm =
d2

(d− 1)2

∆2
φ

CT
. (3.17)

This result follows from the conformal Ward identity;6 as a consequence the ∆φ indepen-

dence of the n4 term in the anomalous dimension is a general result. For our case we put

d = 4 and CT = 40N2, which correspond to the AdS5/CFT4 normalization and where CT
is the central charge. Putting all these together, we get, Pm = 2

45N2 ∆2
φ. Note that the n4

term in γn becomes independent of ∆φ using this convention. Thus when n is large, the

result is independent of ∆φ and hence universal.

6We thank Joao Penedones for reminding us of this fact.
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3.3 Comment on the N = 4 result

In [31], the authors showed that for dimension-2 half-BPS multiplet the anomalous dimen-

sion in N = 4 SYM, for ∆φ = 2, has the form,

γ(n, `)N2 = −4(n+ 1)(n+ 2)(n+ 3)(n+ 4)

(`+ 1)(`+ 6 + 2n)
. (3.18)

To compare this with our result (3.16) we put Pm = 2/(45N2)∆2
φ (See for eg. [23]), and

set ∆φ = 4. This gives,

γ(n, `)N2 ≈ −4(n+ 1)(n+ 2)(n+ 3)(n+ 4)

`2
. (3.19)

for large values of `. Quite curiously this form matches with the supergravity result, for

large spin and finite n. The reason for this agreement is not clear to us although [31]

made a similar observation that the extra solutions to the bootstrap equation they find

(for ∆φ = 2) match exactly with the solutions in [7] for ∆φ = 4.

4 Subleading terms at large spin and large twist

So far we have concentrated on the leading n dependence in the anomalous dimensions for

large spin operators, when the l.h.s. of the bootstrap equation is dominated by the stress

tensor exchange. Let us now see how to derive the first subleading term with the stress

tensor exchange. In [35], this problem for leading twist was considered. By considering

large twists we will extract universal results. It turns out that just keeping the leading

` dependence of the r.h.s. is not sufficient anymore. We will assume a 1/N expansion so

that we can use the 1/` corrections in PMFT — without the large N we would need to

keep track of corrections to these coefficients as well. In PMFT the subleading corrections

at large ` take the form,

PMFT =

√
π`2∆φ−3/2

22∆φ+2`

[
q∆φ,n +

1

`
r∆φ,n

]
, (4.1)

where the coefficients q∆φ,n and r∆φ,n are given by,

q∆φ,n =
8(∆φ − 1)n

2

(2∆φ + n− 3)nΓ(n+ 1)Γ(∆φ)2
,

r∆φ,n =
(∆φ − 1)n

2

(2∆φ + n− 3)nΓ(n+ 1)Γ(∆φ)2
[5− 20∆φ + 16∆2

φ + 4n(4∆φ − 3)] . (4.2)

The conformal blocks in the crossed channel, in the large ` and u→ 0 limit is,

gτ,`(v, u)
`�1
≈
u�1

k2`+τ (1− z)vτ/2F (d)(τ, v) , (4.3)

where we have neglected the second term in above expression since even at subleading order

in `, those terms will be exponentially suppressed. We can write k2`+τ (1− z) as follows,

k2`+τ (1− z) =
Γ(2`+ τ)

Γ(τ/2 + `)2

∫ 1

0

dt

t(1− t)

(
(1− z)t(1− t)

1− t(1− z)

)`+τ/2
. (4.4)
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As we show in the appendix D, for `� n� 1,

k2`+τ (1− z) =
Γ(2`+ τ)

Γ(`+ τ
2 )2

K0((2`+ τ)
√
z) +O(z) . (4.5)

We can further approximate the K0 function in the limit of small τ/` upto first order

and similarly for the Γ-functions. The relevant part of the conformal block in the crossed

channel takes the form,

k2`+τ (1− z) =
22`+τ−1

√
π

`1/2
[
1 +

2τ − 1

8`

]
[K0(2`

√
z)−

√
zτK1(2`

√
z)] . (4.6)

Upto this order is sufficient for the calculation of the first subleading order in z after zτm/2.

Let us assume that the anomalous dimensions can be expanded in the form,

γ(n, `) =
γ0
n

`τm
+

γ1
n

`τm+1
+

γ2
n

`τm+2
+ . . . . (4.7)

From the first subleading correction we should be able to determine γ1
n. We already know

the coefficient γ0
n as an exact function of n and ∆φ. Similar to the leading order case, we

can perform the large ` summation (as an integral) and then evaluate the coefficients of

the subleading powers of z resulting from these extra terms. On the l.h.s., the subleading

powers of z take the form,

1 +
1

4
Pmz

τm/2gτm,`m(u, v) = 1 + zτm/2f1(v) log v + zτm/2+1f2(v) log v +O(zτm/2+2) . (4.8)

Thus on the l.h.s. only integer powers of z are there in the subleading pieces. Whereas on

the r.h.s., after the large ` integral, the first subleading power after the leading term in

zτm/2 begins with z(τm+1)/2 with the coefficient,

z(τm+1)/2
∑
n

[(1− 2∆φ + (2n+ 2∆φ)τm)γ0
n + 2γ1

n]
(∆φ − 1)n

2Γ
(
∆φ − 1

2 −
τm
2

)2
2Γ(n+ 1)Γ(∆φ)2Γ(2∆φ + n− 3)n

× vn log v F (d)[2∆φ + 2n, v] . (4.9)

Since there is no z(τm+1)/2 term on the l.h.s., we must have for large n,

γ1
n = −nτmγ0

n . (4.10)

Thus specializing to the case of τm = 2 (stress tensor), to the first subleading order in ` we

have for the anomalous dimensions,

γ(n, `) = γ0(n, `)

(
1− 2n

`

)
. (4.11)

where γ0(n, `) = −4n4/(N2`2). The main result of [35] is still consistent with this finding.7

For n = 0 for large ` the Casimir is j2 ≈ `2. For general n the Casimir will become

j2 ≈ (`+ n)2. The main conclusion of [35] is that only even powers of j should appear in

7We thank Fernando Alday for the following observation.
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the large spin limit — this was explicitly shown for leading twists. In terms of j (for τm = 2)

we could have 1/j2 ∼ 1/(` + n)2 or 1/(j2 − n2) ∼ 1/(`(` + 2n)) so that in the j variable

only even powers of j appear — both these forms are compatible with the subleading term

we have derived. We will find the latter behaviour in what follows which is also consistent

with the results of [31] for the supersymmetric N = 4 case.

5 Comparison with AdS/CFT

AdS/CFT provides us with a formula for the anomalous dimensions in terms of the variables

h̄ = ∆φ + n, h = h̄ + `. In the limit h, h̄ → ∞, the form of the anomalous dimension is

given by [27–29],

γh,h̄ = −c 22`m−2(hh̄)`m−1Π(h, h̄) , (5.1)

where `m is the spin of the minimal twist operator, Π(h, h̄) is a particular function of h, h̄.

In d = 4 the function Π(h, h̄) is given by

Π(h, h̄) =
1

2π

h2

h2 − h̄2

(
h

h̄

)1−∆m

, (5.2)

where ∆m is the dimension of the minimal twist operator. Using ∆m = τm + `m for

operators with minimal twist-τm and spin-`m, the expression for the anomalous dimension

in 4d becomes,

γh,h̄ = −22`m−3 c

π

h̄−2+2`m+τmh2−τm

h2 − h̄2
. (5.3)

Neglecting the factor of ∆φ when both n, ` � 1 we can write the above formula in terms

n, ` giving,

γ(n, `) = −22`m−3 c

π

n−2+2`m+τm(n+ `)2−τm

`(2n+ `)
. (5.4)

The functional dependence on `, n is exactly what we found from the CFT analy-

sis. For τm = 2, in the limit ` � n � 1 we can see that the above formula re-

duces to γ(n, `) = −(22`m−3c/π)(n2`m/`2) while in the opposite limit it gives, γ(n, `) =

−(22`m−4c/π)(n2`m−1/`), where `m is the spin of the minimal twist operator. Further for

`m = 2, with c = 2π/N2 our results for the two limits match exactly with the above predic-

tion from AdS/CFT for the graviton (stress tensor) exchange. Also for `m > 2 the n and `

dependence of the above expression is the same as given by our analysis (see appendix C).

6 Discussion

We conclude by listing some open problems.

• It will be nice to extend our results to other dimensions, especially odd dimensions

where the conformal blocks are not known in closed form.8

8We have recently done this in [36].
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• It will be interesting to understand if and how stringy modes can make the anoma-

lous dimensions in the limit n � ` � 1 small. We have made some preliminary

observations about this limit in appendix F.

• One could use the results of our paper to develop the large spin, large twist sys-

tematics at subleading order along the lines of [35] which considered only leading

twists.

• Our results used the scalar four point function as the starting point. Whether a

similar conclusion can be reached by bootstrapping other four point functions of

operators with spin ` 6= 0 is an interesting open problem.

• Our results agreed exactly with the large-n behaviour found using the Eikonal ap-

proximation in AdS/CFT. On the dual gravity side, one can try to get the subleading

terms in n for the case `� n.

• It will be very interesting to verify our claims for the n � ` � 1 limit using an

effective field theory approach as in [33]. In that paper it was shown how for the

zero spin but large twist form of the anomalous dimension changes due to a massive

mode. There it was assumed that there is no stress tensor exchange. To compare

with our claims one will need to extend their analysis to arbitrary spin and allowing

for a stress tensor exchange.

• It will be interesting to see if Nachtmann’s original proof [25] can be extended to the

n 6= 0 case.
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A Calculation details

To clearly see the expressions for the anomalous dimensions discussed in the main text

we now take a mathematical detour a little to explain some of the steps and the useful

formulae that goes into the derivation of the above expressions. Note that in the following

calculations we will not put the overall factor of 4Pm for convenience. Each of the above

expressions use the summation of the generic type

a(x,m, ε) =

m∑
k=0

Γ(x+ k)

k!Γ(x)
εk. (A.1)

– 15 –



J
H
E
P
1
1
(
2
0
1
5
)
0
8
3

Using the integral representaion of the Γ-function, the summation on the r.h.s. can be

converted into,

a(x,m, ε) =
1

Γ(x)

∫ ∞
0

dt e−t
m∑
k=0

tx+k−1

k!
εk. (A.2)

The summation inside the integral can be written as,

m∑
k=0

tx+k−1

k!
εk = eεttx−1 Γ(m+ 1, εt)

Γ(m+ 1)
= eεttx−1

∫ ∞
εt

zme−zdz , (A.3)

where Γ(a, x) is the incomplete Gamma function given by Γ(a, x) =
∫∞
x za−1e−zdz. Thus

the function a(x,m) becomes after the above substitution as,

a(x,m, ε) =
1

Γ(x)Γ(m+ 1)

∫ ∞
0

dt e(ε−1)ttx−1

∫ ∞
εt

dz zme−z . (A.4)

At this point we do a change of variable from z to z = y + εt whereby we notice that the

limits of the integral on z changes to y = 0 and y =∞ respectively. Thus we get,

a(x,m, ε) =
1

Γ(x)Γ(m+ 1)

∫ ∞
0

∫ ∞
0

dt dy (y + εt)me−(t+y)tx−1 . (A.5)

Whatever summation formulae we have derived in the text are linear combinations of the

above function and its derivatives. For example,

a(x,m, ε = 1) =
Γ(x)Γ(m+ x+ 1)

Γ(x+ 1)Γ(m+ 1)
. (A.6)

Again a polynomial arranged like,

m∑
k=0

[c0 + c1k + c2k(k − 1) + c3k(k − 1)(k − 2) + c4k(k − 1)(k − 2)(k − 3) + · · · ]Γ(k + x)

k!Γ(x)

= c0a(x,m, ε)|ε=1 + c1∂εa(x,m, ε)|ε=1 + c2∂
2
ε a(x,m, ε)|ε=1 + c3∂

3
ε a(x,m, ε)|ε=1

+ c4∂
4
ε a(x,m, ε)|ε=1 + · · · , (A.7)

where,

∂iεa(x,m, ε)|ε=1 =

m∑
k=0

k(k − 1) · · · (k − i+ 1)
Γ(x+ k)

k!Γ(x)
=

Γ(m+ x+ 1)

(x+ i)Γ(m− i+ 1)Γ(x)
. (A.8)

B Verification of some useful formulae

With the definitions of the formula in the previous section we can now apply them to our

cases specific to the exchange of the twist-2 scalar and a spin-2, twist-2 field.
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B.1 `m = 0 and τm = 2

We will first deal with the case of a twist-2 scalar exchange. The formulae are much simpler

for this case.

1.
(−m)2

k(−1− `m + ∆− τm
2 )k

(1− `m −m− τm
2 )2

kk!
=

Γ(−2 + k + ∆)

k!Γ(−2 + ∆)
. (B.1)

This formula needs no verification. We can simply put `m = 0 and τm = 2 to see

that the r.h.s. is produced.

2.
m∑
k=0

Γ(x+ k)

k!Γ(x)
=

Γ(1 +m+ x)

Γ(1 +m)Γ(1 + x)
. (B.2)

To see this we recall from the previous section that

m∑
k=0

Γ(x+ k)

k!Γ(x)
= a(x,m, ε = 1) . (B.3)

Performing the integrals at ε = 1, fixes the form on the r.h.s. of the above formula.

3.

γn =

n∑
m=0

an,m , (B.4)

In this case the coefficients an,m are given by,

an,m = −(−1)m+n

8

(∆φ − 1)Γ(n+ 1)Γ(∆φ)Γ(2∆φ + n+m− 3)

m!(n−m)!Γ(∆φ +m− 1)Γ(2∆φ + n− 3)
. (B.5)

We will now use the reflection formula for the Γ-functions to obtain,

Γ(m+ ∆φ − 1) = (−1)−(m+1) π

sin(π∆φ)Γ(2−∆φ −m)
. (B.6)

Separating out the m independent parts and using the integral representation of the

product of the Γ-functions given by,

Γ(n+m+ 2∆φ − 3)Γ(2−∆φ −m) =

∫ ∞
0

∫ ∞
0
dxdye−(x+y)xm+n+2∆φ−4y−m+1−∆φ ,

(B.7)

we can perform the sum over m to get,

n∑
m=0

(x/y)m
n!

m!(n−m)!
=

1

n!

(
x+ y

y

)n
≡ b(n, x, y) . (B.8)

Hence the coefficient γn associated with the anomalous dimensions become,

γn =
(−1)n+1 sin(π∆φ)

π

(∆φ − 1)Γ(n+ 1)Γ(∆φ)

8Γ(n+ 2∆φ − 3)

×
∫ ∞

0
dxdy b(n, x, y)e−(x+y)xn+2∆φ−4y1−∆φ . (B.9)
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Using the transformation of variables for x = r2 cos2 θ and y = r2 sin2 θ and perform-

ing the integral over only the first quadrant, the integration limits change from r = 0

to r =∞ and θ = 0 to θ = π/2. The integral thus becomes,∫ ∞
0

dxdy b(n, x, y)e−(x+y)xn+2∆φ−4y1−∆φ = −
(−1)n−1π csc(π∆φ)Γ(n+ 2∆φ − 3)

Γ(n+ 1)Γ(∆φ − 1)
.

(B.10)

Putting this with the overall factors we get,

γn = −1

8
(∆φ − 1)2 . (B.11)

which is independent of n. Here we have not taken into account the overall factor of

4Pm that we should multiply with the expression for γn to match the result with the

main text.

B.2 `m = 2 and τm = 2

We list below the derivation of important formulae required pertaining to this case.

1.

(−m)2
k(−1− `m + ∆− τm

2 )k

(1− `m −m− τm
2 )2

kk!
=

(1− k +m)2(2− k +m)2Γ(−4 + k + ∆)

(1 +m)2(2 +m)2Γ(1 + k)Γ(−4 + ∆)
. (B.12)

As in the scalar case we put τm = 2 and `m = 2 for this case to retrieve the r.h.s. of

the above formula.

2.
m∑
k=0

(1− k +m)2(2− k +m)2

k!(1 +m)2(2 +m)2

Γ(x+ k)

Γ(x)

=
4[6m2 + 6m(3 + x) + (3 + x)(4 + x)]Γ(3 +m+ x)

(1 +m)(2 +m)Γ(3 +m)Γ(5 + x)
. (B.13)

To get to this, we will appeal to (A.7), by noticing that the factor (1 − k +m)2(2−
k +m)2 can be arranged as,

(1− k +m)2(2− k +m)2 = Ak(k − 1)(k − 2)(k − 3) +Bk(k − 1)(k − 2)

+Ck(k − 1) +Dk + E , (B.14)

where A = 1, B = −4m, C = 6m2+6m+2, D = −4(m+1)3 and E = (2+3m+m2)2.

Thus the sum becomes,

∞∑
k=0

(1− k +m)2(2− k +m)2

(m+ 1)2(m+ 2)2

Γ(x+ k)

k!Γ(x)
=A∂4

ε a(x,m, ε)|ε=1 +B∂3
ε a(x,m, ε)|ε=1

+ C∂2
ε a(x,m, ε)|ε=1 +D∂εa(x,m, ε)|ε=1

+ Ea(x,m, ε)|ε=1 . (B.15)

We know how the each of the terms go by looking at (A.8). By combining the

coefficients we find that the r.h.s. is produced.
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3.

γn =

n∑
m=0

an,m . (B.16)

We will now prove the final piece of the analytic puzzle as follows. First note that

an,m for `m = 2 and τm = 2 is given in a closed form expression as

an,m = (−1)n+m 15(6m2 + 6m(∆φ − 1) + ∆φ(∆φ − 1))

4∆φ

×
Γ(n+ 1)Γ(∆φ)Γ(n+m+ 2∆φ − 3)

m!(n−m)!Γ(m+ ∆φ − 1)Γ(n+ 2∆φ − 3)
. (B.17)

We will now use the reflection formula for the Γ-functions to obtain,

Γ(m+ ∆φ − 1) = (−1)−(m+1) π

sin(π∆φ)Γ(2−∆φ −m)
. (B.18)

Separating out the m-independent parts we have

γn =
(−1)n+1 sin(π∆φ)

π

15Γ(n+ 1)Γ(∆φ)

Γ(n+ 2∆φ − 3)4∆φ

n∑
m=0

1

m!(n−m)!
[6m2 + 6m(∆φ − 1)

+∆φ(∆φ − 1)]Γ(n+m+ 2∆φ − 3)Γ(2−∆φ −m) . (B.19)

The integral representation of the product of the two Γ-functions is given by

Γ(n+m+ 2∆φ − 3)Γ(2−∆φ −m) =

∫ ∞
0

∫ ∞
0
dxdye−(x+y)xm+n+2∆φ−4y−m+1−∆φ .

(B.20)

Performing the sum over m inside the integral for a polynomial multiplying the Γ-

functions of the form f(m) = c0 + c1m+ c2m
2 we get,

n∑
m=0

(
x

y

)m f(m)

m!(n−m)!
=

(
x+ y

y

)n c0(x+ y)2 + c1nx(x+ y) + c2nx(nx+ y)

(x+ y)2n!

≡ b(n, x, y) . (B.21)

Thus the expression for γn becomes,

γn=
(−1)n+1 sin(π∆φ)

π

15Γ(n+ 1)Γ(∆φ)

Γ(n+2∆φ−3)4∆φ

∫ ∞
0
dxdy b(n, x, y)e−(x+y)xn+2∆φ−4y1−∆φ .

(B.22)

Using the transformation of variables for x = r2 cos2 θ and y = r2 sin2 θ and per-

forming the integral over only the first quadrant, the integration limits change from

r = 0 to r =∞ and θ = 0 to θ = π/2. Thus, putting the values of c0 = ∆φ(∆φ − 1),

c1 = 6(∆φ − 1) and c2 = 6, we have∫ ∞
0

dxdy b(n, x, y)e−(x+y)xn+2∆φ−4y1−∆φ

= −
(−1)n−1π csc(π∆φ)Γ(n+ 2∆φ − 3)

Γ(n+ 1)Γ(∆φ + 1)
[6n(n+ 2∆φ − 3)(2−∆φ + n(n+ 2∆φ − 3))

+ ∆φ(∆φ − 1)(∆φ(∆φ − 1) + 6n(n+ 2∆φ − 3))] .

(B.23)
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Multiplying this by the overall n-dependent factors outside we have,

γn =− 15

4∆2
φ

[6n4 + ∆2
φ(∆φ − 1)2 + 12n3(2∆φ − 3) + 6n2(11− 14∆φ + 5∆2

φ)

+ 6n(2∆φ − 3)(∆2
φ − 2∆φ + 2)] ,

(B.24)

which is the precise formula for γn in d = 4 dimensions. Note that the final expression

for γn derived above needs to be multiplied by an overall factor of 4Pm to match with

that in the main text.

C n dependence of γn for `m > 2

In this section we will give an overview on the leading n dependence of the coefficients

of the anomalous dimensions viz. γn. We will consider two cases with twist-2 and spins

`m = 4, 6. For `m = 4, the coefficients an,m are given by,

an,m =−
315Pm(−1)m+nΓ(n+ 1)Γ(∆φ)2Γ(2∆φ +m+ n− 3)

Γ(m+ 1)Γ(n−m+ 1)Γ(∆φ + 3)Γ(∆φ +m− 1)Γ(2∆φ + n− 3)

× [70m4+140m3(∆φ−1)+10m2(9∆2
φ − 15∆φ+11)+10m(2∆3

φ − 3∆2
φ + 5∆φ − 4)

∆φ(∆2
φ − 1)(∆φ + 2)] . (C.1)

To calculate the leading n dependence in the coefficient γn, we take the leading term

proportional to m4 in an,m and do the sum over m to get,

γn =

n∑
m=0

an,m = − 22050Pmn
8

∆2
φ(∆φ + 1)2(∆φ + 2)2

− · · · . (C.2)

Thus the leading n dependence of the coefficients γn for `m = 4 is ∼ −n8. Similarly for

`m = 6, the coefficients an,m are given by,

an,m =−
6006Pm(−1)m+nΓ(n+ 1)Γ(∆φ)2Γ(2∆φ +m+ n− 3)

Γ(m+ 1)Γ(n−m+ 1)Γ(∆φ + 5)Γ(∆φ +m− 1)Γ(2∆φ + n− 3)
(C.3)

× [924m6 + 2772m5(∆φ − 1) + 210m4(15∆2
φ − 27∆φ + 26) + 420m3(∆φ − 1)

(4∆2
φ − 5∆φ + 15) + 42m2(10∆4

φ − 20∆3
φ + 95∆2

φ − 145∆φ + 88) + 42m(∆5
φ

15∆3
φ − 30∆2

φ + 38∆φ − 24) + (∆φ + 4)(∆φ + 3)(∆φ + 2)(∆φ + 1)∆φ(∆φ − 1)] .

Again, we take the leading term in m in an,m and sum over m to get,

γn =
n∑

m=0

an,m = − 5549544Pmn
12

∆2
φ(∆φ + 1)2(∆φ + 2)2(∆φ + 3)2(∆φ + 4)2

− · · · . (C.4)

All the above expressions for γn are upto overall normalization constants. Thus for a

generic `m we find that the coefficient γn has an n dependence given by,

γn ∼ −n2`m . (C.5)
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D Subleading correction at large ` and large n

In this section we will provide an argument why it is sufficient to consider the expansion

of the Bessel functions in (4.6) upto the order we did. To see that, consider the differential

equation for the hypergeometric function 2F1(β/2, β/2;β; 1− z),

z(1− z)
d2w

dz2
+ [1− (β + 1)z]

dw

dz
− β2

4
w = 0 . (D.1)

Here β = τ + 2`. The large ` limit,is same as the large β limit. We can then expand the

solution in the form,

w = w0 +
1

β
w1 +O

(
1

β2

)
. (D.2)

Consider the change of variables as y = β2z in which the differential equation takes

the form,

y

(
1− y

β2

)
d2w

dy2
+

[
1− (β + 1)

y

β2

]
dw

dy
− 1

4
w = 0 . (D.3)

The differential equations for the functions w0 and w1 are given by,

yw′′0 + w′0 − w0 = 0 ,

yw′′1 + w′1 − w1 − 2yw′0 = 0 . (D.4)

The solutions are given by,

w0 = c0K0(2
√
y) , w1 = f1(2

√
y) , (D.5)

where
√
y = β

√
z. Thus for large ` we can expand the full solution w(y) as,

w(y) = c0K0(2
√
y) +

(
1

2`
− n

2`2

)
f1(2
√
y) +O

(
1

`3

)
. (D.6)

Further now if we consider the expansion of the variable y,

w(z) = c0K0[(2`+ τ)
√
z] +

(
1

2`
− n

2`2

)
f1[(2`+ τ)

√
z] +O

(
1

`3

)
. (D.7)

In the limit `� n� 1, we have,

w(z) = c0(K0(2`
√
z)−

√
zτK1(2`

√
z)) +O(n/`2) . (D.8)

The terms coming from w1 are hence subleading compared to the leading order result in

the limit of large `. The overall constant c0 is given by,

c0 =
Γ(2`+ τ)

Γ(`+ τ
2 )2

=
22`+τ−1

√
π

`1/2
(

1 +
2τ − 1

8`

)
. (D.9)

Combined with the leading order expansion for w(z) gives (4.6).
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E Correction to OPE coefficients for ` � n � 1

We now turn to the question about what happens to the leading corrections to the OPE

coefficients for the `� n� 1 case. The starting point of the calculation is,∑
n,`

PMFT
2∆φ+2n,`

(
δP2∆φ+2n,` +

1

2
γ(n, `)

∂

∂n

)
vn4``1/2K0(2`

√
z)F (4)[2∆φ + 2n, v]=

∑
α

Aαv
α ,

(E.1)

where we are now only considering the terms without the log v term in (2.8). As before we

can perform the integration over the spins to eliminate one of the sums. To get the same

leading order in z as explained in [22], the coefficients δP2∆φ+2n,` should go like,

δP2∆φ+2n,` =
Cn
`τm

. (E.2)

Thus the above equation becomes, after performing the ` integration,

1

8
Γ

(
∆φ −

τm
2

)2∑
n

q∆φ,n

[
Cn +

1

2
γn

∂

∂n

]
vnF (4)[2∆φ + 2n, v] =

∑
α

Aαv
α . (E.3)

Acting the derivatives of n on vn obtains a vn log v term and the terms containing only vn

come from considering,

1

8
Γ

(
∆φ −

τm
2

)2∑
n

q∆φ,n

(
CnF (4)[2∆φ + 2n, v] +

1

2
γn∂nF

(4)[2∆φ + 2n, v]

)
vn =

∑
α

Aαv
α .

(E.4)

At this point note that the function F (4)[2∆φ+2n, v] = 2τ 2F1(∆φ+n−1,∆φ+n−1, 2∆φ+

2n− 2; v) has a separate n dependent part coming from the 2τ . So the n-derivative should

act on this part as well. Thus equation (E.4) becomes,

1

8
Γ

(
∆φ −

τm
2

)2 ∞∑
n=0

∞∑
k=0

q∆φ,ndn,k(Cn + γn(log 2 + gn,k))v
n+k =

∞∑
α=0

Aαv
α . (E.5)

where the function gn,k, dn,k are defined as,

gn,k = ψ(2∆φ+2n−2) + ψ(n+∆φ+k−1)− ψ(∆φ+n−1)− ψ(2∆φ+2n+k−2) , (E.6)

dn,k =
(∆φ + n− 1)2

k

(2∆φ + 2n− 2)kk!
, (E.7)

and ψ(z) = Γ′(z)/Γ(z) is the digamma function. To regroup the terms in (E.5) increasing

powers of vα, we set n+ k = α and the l.h.s. of the above equation becomes
∑∞

α=0 fα,∆φ
vα

where,

fα,∆φ
=

α∑
k=0

qα−k,∆φ
dα−k,kCα−k + bα, where bα =

α∑
k=0

qα−k,∆φ
dα−k,kγα−k(log 2 + gα−k,k)) .

(E.8)

By equating the two sides of the above equation via fα,∆φ
= Aα, we can get the coefficients

Cn once we know the anomalous dimensions γn. On the l.h.s. of (E.4), the coefficients Aα
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are determined as follows. We have absorbed the term (1− v)∆φ−1 in to the l.h.s. of (2.7)

to obtain,

(1−v)τm/2+`m+1−∆φ
PmΓ(`m+2τm)

4Γ(`m + τm
2 )2

∞∑
n=0

(
(`m+τm/2)n

n!

)2

(2(ψ(n+1)− ψ(τm/2+`m + n))vn

=

∞∑
α=0

Aαv
α . (E.9)

The coefficients Aα can be written (after transposing the overall factor of 1/8 to the r.h.s.

of (E.5) for the two cases of scalar and spin-2 operators as,

Aα =

 0 `m = 0

−2Pm
3Γ(τm+2`m)

Γ(τm/2+`m)2Γ(∆φ−1)2
(∆φ+2α−1)Γ(∆φ+α−1)

Γ(α+1)Γ(∆φ) `m = 2

We can thus write (E.8) as,

α∑
k=0

qα−k,∆φ
dα−k,kCα−k = Aα − bα ≡ Bα , (E.10)

with bα given in (E.8). This relation can be inverted in the same spirit as we did for

the anomalous dimensions. After inversion the corrections to the OPE coefficients can be

written as,

Cn = Γ(∆φ − 1)2
n∑

m=0

cn,mBm , (E.11)

where we have defined the coefficients Bα above and cn,m is the same coefficient as given

in (3.10). Unfortunately to extract a closed form for the coefficients Cn from the above

sum appears difficult. Nevertheless the behaviour of the OPE corrections can be inferred

from (E.11). In figure 3 below we have done a comparative study of the OPE corrections

for N = 4 SYM [31], when the l.h.s. of (2.7) is dominated by a twist-2, spin-2 operator

and for twist-2 scalar operators. From the figure we see that at large n, Cn tend to follow

the relation,

Cn =
1

2q̃∆φ,n
∂n(q̃∆φ,nγn) . (E.12)

whereas for small n there are deviations from the N = 4 case. From the inset in figure 3

we see that for low lying values of n, Cn for the twist-2, spin-2 operator exchange becomes

negative while those for the N = 4 case are positive. Cn for the scalar exchange case is a

constant positive value.

We were unable to extend our calculations to the n� `� 1 case. The reason is that

in order to compute the coefficient Cn using the methods in this section we would need to

know all the coefficients C0 · · · Cn−1. This is not possible since we only know the leading

order form of γn in this limit.
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Figure 3. Plot for Cn for three cases. The blue curve is for N = 4, the red curve for the twist-2,

spin-2 operator exchange and the yellow for the twist-2 scalar. We have scaled down the OPE

coefficients by a factor 108 in this figure.

F The n � ` � 1 case

We will now turn to the n � ` � 1 case. This is an interesting limit since the impact

parameter in the dual gravity side now is small and one could expect to see non-universality

corresponding to contributions from higher spin, higher twist exchanges on the l.h.s. of the

bootstrap equation which correspond to “stringy” modes. It will not be possible to give a

rigorous derivation for the behaviour of the anomalous dimensions in this limit. We will

make an ansatz for the anomalous dimension and then using a saddle point approximation

extract the behaviour in this limit. It will turn out that this ansatz correctly captures the

`� n� 1 case and is in exact agreement with the Eikonal calculation in AdS/CFT. First

we will make a change of variables and check that these operators exist.

F.1 Existence of double trace operators for n� `� 1 limit

Let us demonstrate that for n � ` � 1, double trace operators exist in large N theories.

We first make a change of variables h̄ = ∆φ + n, h = h̄+ `. These are the same variables

used in the AdS/CFT Eikonal approximation [29]. The reason for making a change of

variables to h, h̄ should be obvious — whenever, n, ` are large, irrespective of which is

bigger, h, h̄ are both large and h� h̄. The PMFT in terms of these variables is,

PMFT =
27−2(h+h̄)π(h+ h̄− 2)(h−h̄+1)

Γ(∆φ − 1)2Γ(∆φ)2

Γ(h)Γ(h̄− 1)Γ(h+ ∆φ − 2)Γ(h̄+ ∆φ − 3)

Γ(h− 1
2)Γ(h̄− 3

2)Γ(h+2−∆φ)Γ(h̄+1−∆φ)
.

(F.1)
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For large h, the conformal block in the crossed channel is,

gh,h̄(v, u) =
22h−1

√
π
h1/2K0(2h

√
z)vh̄F (h̄, v) , (F.2)

where,

F (h̄, v) =
1

1− v 2F1(h̄− 1, h̄− 1, 2h̄− 2, v) . (F.3)

PMFT in the limit of large h can be written as,

PMFT ≈
27−2(h+h̄)πΓ(h̄− 1)Γ(h̄+ ∆φ − 3)

Γ(h̄− 3
2)Γ(h̄+ 1−∆φ)Γ(∆φ − 1)2Γ(∆φ)2

h2∆φ−3/2 . (F.4)

Combining this together we find,(
u

v

)∆φ∑
h,h̄

PMFTgh,h̄(v, u) =
43√πz∆φ

Γ(∆φ)2Γ(∆φ − 1)2

∑
large h

h2∆φ−1K0(2h
√
z) (F.5)

×
∑
h̄

4−h̄(1− v)∆φvh̄−∆φΓ(h̄− 1)Γ(h̄+ ∆φ − 3)

Γ(h̄− 3/2)Γ(h̄−∆φ + 1)
F (h̄, v) .

Performing the sum (integral) over large h we get the remaining sum in h̄ as,

A(n, v)=

(
u

v

)∆φ∑
h,h̄

PMFTgh,h̄(v, u) (F.6)

=

∆φ+n∑
h̄=∆φ

42−h̄√π(1− v)∆φ−1vh̄−∆φΓ(h̄−1)Γ(h̄+ ∆φ − 3)

Γ(h̄− 3/2)Γ(h̄+ ∆φ − 1)Γ(∆φ − 1)2 2F1(h̄−1, h̄−1, 2h̄−2, v) .

We can expand the sum to arbitrarily high orders in v in mathematica and show that the

factor of unity is reproduced on the l.h.s. . This gives evidence of the existence of these

n� `� 1 operators.

However this is not enough. These operators in the limit n � ` � 1 must also be

consistent with the bootstrap equation even at the subleading order. Next we must argue

that the anomalous dimension is small since we are assuming perturbation theory to be

able to expand vγ . We will find that for a stress tensor exchange, the anomalous dimension

goes like n3/`. So our results will only be valid in the large N limit with a gap, for some

n < nmax. Since there are all powers of v on the l.h.s., the question now becomes how

to reproduce all the powers. A natural way would be to argue that the operators above

the gap (higher spin modes, “string modes”) will somehow alter the n-dependence and

allow us to consider any value for n as needed from the l.h.s. . We will initiate a study of

this problem.

F.2 Subleading bootstrap equation in terms of h and h̄

Since in the PMFT only particular combinations of h and h̄ appear, we will assume a general

form of the anomalous dimensions in terms of h and h̄ to be,

γ(h, h̄) ∝ hαh̄β(h+ h̄)χ(h− h̄)δ , (F.7)
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where α, β, χ and δ are unknown constants.9 We expect that the form of the anomalous

dimension in the limits `� n� 1 and n� `� 1 case will pertain to special cases of the

above expression. Using the Stirling approximations for the Γ-functions,

Γ(a+ b) ≈
√

2π

a1/2−b

(
a

e

)a
, (F.8)

we can write the PMFT as,

PMFT h,h̄→∞
≈ 27−2(h+h̄)π(h− h̄+ 1)(h+ h̄− 2)

Γ(∆φ)2Γ(∆φ − 1)2
(hh̄)2∆φ− 7

2 . (F.9)

Further for large h, h̄ and z → 0 the conformal blocks in the crossed channel take the form,

gh,h̄(v, u) = 22h−1h
1/2

√
π
K0(2h

√
z)

vh̄

1− v 2F1(h̄− 1, h̄− 1, 2h̄− 2, v) . (F.10)

Using the anomalous dimensions in terms of h and h̄, the r.h.s. of the bootstrap equation

takes the form,
√
πz∆φ

Γ(∆φ)2Γ(∆φ − 1)2

∫
dh̄ 25−2h̄h̄2∆φ−7+βvh̄−∆φ(1− v)∆φ−1

2F1(h̄− 1, h̄− 1, 2h̄− 2, v)

×
∫
dh h2∆φ−3+α(h+ h̄)χ+1(h− h̄)δ+1K0(2h

√
z) . (F.11)

To sort out the unknown exponents α, β, χ and δ we will primarily need the h integral

which we write out separately for the convenience of the reader.∫
dh h2∆φ−3+α(h+ h̄)χ+1(h− h̄)δ+1K0(2h

√
z) . (F.12)

For large h such that h
√
z � 1, we can approximate the Bessel function by,

K0(2h
√
z) ≈

√
π

2h1/2

e−2h
√
z

z1/4
. (F.13)

Plugging this in the h integral, we can write,
√
π

2
z∆φ−1/4

∫
dh h2∆φ−7/2+α(h+ h̄)χ+1(h− h̄)δ+1e−2h

√
z . (F.14)

This integral can be solved in the two limits by taking the appropriate approximations of

the quantity h+ h̄. For the limit `� n� 1 case, h� h̄ and we can write,

h+ h̄ ≈ h , (F.15)

whereas for n� `� 1 case,

h+ h̄ ≈ 2h̄

(
1 +

h− h̄
2h̄

)
≈ 2h̄ . (F.16)

The subleading part (∝ `/n) is neglected in this limit. We will now consider the different

limits separately.

9This form is an assumption. In PMFT, h, h̄, h − h̄, h + h̄ appear so we will make an ansatz that in the

large h, h̄ limit, we will get the above form. This form is consistent with the Eikonal result of [29] as we

will find.
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F.3 `� n� 1

In this limit h� h̄ and hence we can write the h integral as (with α+ χ+ δ = m),

I(h) =

√
π

2
z∆φ−1/4

∫
dh h2∆φ−3/2+me−2h

√
z . (F.17)

We can consider the entire function as eg(h) where,

g(h) = −2
√
z + (2∆φ − 3/2 +m) log h . (F.18)

The saddle is located at,

h0 =
2∆φ − 3/2 +m

2
√
z

. (F.19)

Using saddle point approximation, we find that I(h) takes the form,

I(h) =

√
π

2
z∆φ−1/4

√
2π

−g′′(h0)
eg(h0) =

π

4
z−m/2

√
2

(
2∆φ − 3/2 +m

e

)2∆φ−3/2+m

× (2∆φ − 3/2 +m)1/22−(2∆φ−3/2+m) . (F.20)

Matching the power of z on both sides we see that m = α + χ + δ = −τm. The overall

coefficient is the same as what we would get if we replace the Bessel function with its

exponential form and expand for large ∆φ. Thus the h integral takes the form,

I(h) = c∆φ
zτm/2 , (F.21)

where combining with the overall factors,

c∆φ,τm =

√
π

2

21/2+τm−2∆φΓ(2∆φ − (1/2 + τm))

Γ(∆φ)2Γ(∆φ − 1)2
. (F.22)

This is the same overall factor for the ` � n � 1 case if we had replaced the function

K0(2`
√
z) with its exponential form and expanded in large ∆φ. Thus the h̄ integral

becomes,

I(h̄) =
1

4
c∆φ,τmz

τm/2

∫
dh̄ 27−2h̄h̄2∆φ−7/2+βvh̄−∆φ(1− v)∆φ−1

2F1(h̄− 1, h̄− 1, 2h̄− 2, v)

(F.23)

We can now convert this into the summation form by noting that the factor h2∆φ−7/227−2h̄

is the asymptotic form of,

q∆φ,n =
8Γ(∆φ + n− 1)2Γ(n+ 2∆φ − 3)

Γ(n+ 1)Γ(2∆φ + 2n− 3)Γ(∆φ)2Γ(∆φ − 1)2

n�1
≈ n2∆φ−7/227−2h̄

Γ(∆φ)2Γ(∆φ − 1)2
, (F.24)

where for n � ∆φ we can take h̄ = ∆φ + n ≈ n. We can further replace h̄β by γn by the

γn part of γ(n, `). Apart from this the other factors in the h̄ integral are exactly the same

as for the n summation. Finally,

1

4
Γ(∆φ)2Γ(∆φ−1)2c∆φ,τmz

τm/2
∞∑
n

γnq∆φ,nv
n(1−v)∆φ−1F (d)(2∆φ+ 2n, v) = lhs . (F.25)

This summation thus reproduces the correct n dependence of the γn functions for this limit

as we saw earlier. This argument also fixes the overall sign of the anomalous dimension to

be negative.
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F.4 n� `� 1

In this limit we will neglect the term (h− h̄)/2h̄� 1. Thus the h integral takes the form,

I(h) =

∫
dh h2∆φ−2+α+δK0(2h

√
z) . (F.26)

Here we have also approximated h− h̄ by h since we are still in the limit of large `. We will

further approximate the Bessel function by its exponential form and consider the entire

function as eg(h) where,

g(h) = −2
√
z + (2∆φ − 5/2 + α+ δ) log h . (F.27)

Equating g′(h) = 0 gives the location of the saddle (α+ δ = p),

h0 =
2∆φ − 5/2 + p

2
√
z

. (F.28)

Thus,

I(h) =

√
π

2
z∆φ−1/4

√
2π

−g′′(h0)
eg(h0) =

π

4
z−(p−1)/2

√
2

(
2∆φ − 5/2 + p

e

)2∆φ−5/2+p

× (2∆φ − 5/2 + p)1/22−(2∆φ−5/2+p) . (F.29)

Thus here p = α+ δ = 1− τm and further, the overall coefficient is the same c∆φ,τm defined

in (F.22). Thus,

I(h̄) =
1

2
c∆φ,τmz

τm/2

∫
dh̄ 27+χ−2h̄h̄2∆φ−5/2+β+χvh̄−∆φ(1−v)∆φ−1

2F1(h̄−1, h̄−1, 2h̄−2, v)

(F.30)

Again from our previous discussion we can convert this integral into a summation giving

the required behaviour for the limit n� `� 1.

Note that using the two relations,

α+ χ+ δ = −τm , and α+ δ = 1− τm , gives χ = −1 , (F.31)

for both the limits. Thus we have partially fixed the form of the anomalous dimension to be,

γ(h, h̄) ∼ −(`+ n)αnβ`δ

(`+ 2n)
. (F.32)

From calculating the subleading terms for `� n� 1 the results from the previous section

gives us,

γ(h, h̄) ∼ − nβ

`1−α−δ

(
1 + (α− 2)

n

`

)
, (F.33)

so that α = 2− τm which further gives δ = −1. Thus in terms of n and `,

γ(n, `) ∼ −n
β(`+ n)2−τm

`(`+ 2n)
. (F.34)
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The remaining exponent can be obtained (see appendix G) by calculating the leading n

dependences for various twists. It works out to be,

β = −2 + 2`m + τm . (F.35)

Thus the full expression for the anomalous dimension in the large h, h̄ limit in terms of

`, n, modulo overall factors, takes the form,

γ(n, `) ∼ −n
−2+2`m+τm(`+ n)2−τm

`(`+ 2n)
. (F.36)

This expression is precisely what emerges from the Eikonal approximation in AdS/CFT [27]

for a generic spin exchange. We can see that for the two different limits being considered

in our paper, it takes the following forms at the leading order,

γ(n, `)
`�n∼ −n

−2+2`m+τm

`τm
, γ(n, `)

n�`∼ −n
2`m−1

2`
. (F.37)

Note that in the n� `� 1 case the form just depends on the spin with no dependence on

the twist. Moreover, the `-dependence is independent of both τm, `m. In particular, in the

limit n� `� 1 if we have the leading contribution as that coming from a stress tensor10

for large N we have

γ(n, `) ∼ −n
3

`

 1

N2
+

∞∑
`m=2

n2`m−4P
(m)
`m

[
1 +O

(
`

n

)] (F.38)

where P
(m)
`m

are related to the square of the OPE coefficients for massive spin-`m (`m
even) modes on the l.h.s. of the bootstrap equation. We are assuming that we have added

generic spin and twist on the l.h.s. so that to produce the appropriate powers of u, v,

namely uτm/2vn log v with n being a natural number,11 we will need to modify the form of

the anomalous dimension to what we have indicated above. The leading 1/N2 dependence

thus will be the leading contribution only if the P
(m)
`m

’s suppress the contributions from

the positive powers of n. In other words for this result to hold there has to be a gap

in the spectrum with the contributions from operators above the gap being suppressed.

Evidently, this suppression will only work for the n-dependent operators below the gap.

The O(`/n) terms will depend on τm, `m and are small in this limit. As we keep increasing

n ∼ O(N), the assumption that the anomalous dimensions are small will break down (due

to the negative sign, one can also be in danger of violating unitarity but this cannot be

concluded yet since the anomalous dimension result cannot be trusted when this happens).

The interesting question is if adding a single (or a finite number of) higher spin (massive)

operator(s) can make the anomalous dimensions small again. The form we have derived

above suggests that this is not possible. If we insisted that the operators for all n have

10Note that the problem that we allude to in this paragraph does not arise for the `m = 0 case. This

is reminiscent of the discussion in [30] where the polarization of the graviton was crucial for the causality

arguments.
11Of course, for specific values of τm these subleading powers of u will also mix with subleading u-powers

arising from some leading twist. We are ignoring this possibility.
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Figure 4. Plot for the numerical estimate of the exponent of n for τm = 4 for a range of ∆φ.

perturbatively small anomalous dimensions, this can only be possible if we resum the

contributions from the higher spin modes. The above result seems to suggest that for this

to happen one will need an infinite number of higher spin modes since each contribution

from the higher spin modes comes with a positive power of n. A more complete analysis

of this very important problem is however beyond the scope of this paper (for instance at

the level of what we have done we cannot say what the OPE coefficients are for us to be

able to resum the series).

G General τm and `m

The remaining exponent β for n in the expression for the anomalous dimension is deter-

mined by doing the following exercise. To start with the anomalous dimension looks like,

γ(n, `) ∼ −n
β(`+ n)2−τm

`(`+ 2n)
. (G.1)

In the limit `� n� 1, the anomalous dimensions take the form,

γ(n, `) ∼ −n
β

`2
. (G.2)

We can assume a form of β = a + b`m + cτm. Putting this back in and calculating for

τm = 2 and `m = 2 (stress tensor) and `m = 0 (scalar) for which β = 4 and 0 respectively,

we get the leading term,

a+ 2b+ 2c = 4 , a+ 2c = 0 ,⇒ b = 2 . (G.3)

To find the other coefficients a and c we need one more data point. In the plot 4 for τm = 4

and `m = 2, β = 6. Thus,

a+ 2b+ 4c = 6 ,⇒ c = 2 and a = −2 . (G.4)
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Thus with `m = ∆m − τm for the minimal twist operator,

β = −2 + 2∆m − τm . (G.5)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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