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Abstract. The parallel mean free path of cosmic ray particles in partially turbulent electromagnetic fields is a key input param-
eter for cosmic ray transport. Here the parallel mean free paths of cosmic ray protons, electrons and positrons are calculated for
two particular turbulence models: slab-like dynamical and random sweeping turbulence. After outlining the general quasilinear
formalism for deriving the pitch-angle Fokker-Planck coefficient in weak turbulence from the particle’s equation of motion,
the rigidity dependence and the absolute value of the mean free path for these specific turbulence models are calculated.
Approximations for the mean free path for realistic Kolmogorov-type turbulence power spectra which include the steepening at
high wavenumbers due to turbulence dispersion and/or dissipation are given.
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1. Introduction

Besides field line random walk, drifts and non-resonant inter-
actions, resonant wave-particle interaction in the partially ran-
dom heliospheric magnetic field is regarded as one of the im-
portant mechanisms of cosmic ray transport in the heliosphere.
In the presence of low-frequency magnetohydrodynamic
electromagnetic field fluctuations, whose magnetic field com-
ponents are much larger than their electric field components,
the particle’s phase space density adjusts rapidly to a quasi-
equilibrium through pitch-angle diffusion, which is character-
ized by a nearly isotropic distribution. The isotropic part of the
phase space distribution function F(x, p, t) obeys the diffusion-
convection equation including as dominant terms spatial dif-
fusion in the partially irregular magnetic field as well as
spatial convection and adiabatic deceleration in the expanding
solar wind plasma. Since the pioneering work of Parker (1965),
Axford & Gleeson (1967) and Jokipii & Parker (1969) this
diffusion-convection transport equation has been the theoretical
basis to describe the modulation of galactic cosmic rays by the
Sun. In these studies the heliosphere is regarded as residing in a
constant, isotropic bath of galactic cosmic rays, and the electro-
magnetic fluctuations carried by the outflowing solar wind act
to partially exclude these particles from the inner heliosphere
in phase with solar activity. Then, the solar modulation may
be regarded as a balance between the inward random walk or
diffusion, the outward convection by the solar wind, gradient
and curvature drifts caused by the large-scale structure of the
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heliospheric magnetic field, and the adiabatic cooling to the
radial expansion of the solar wind (Jokipii 1983). Besides ana-
lytical solutions to the transport equation for idealized flow and
diffusion coefficient variations (e.g. Stawicki et al. 2000) so-
phisticated fully three-dimensional numerical solutions of the
transport equation (Kota & Jokipii 1983; Burger & Hattingh
1995) have been developed, incorporating the interplanetary
distribution of the solar wind and its entrained magnetic field,
which were successfully applied not only to the modulation of
galactic cosmic rays but also to the modulation of anomalous
cosmic rays (for review see Fichtner 2001) and Jovian electrons
(Ferreira et al. 2001a, 2001b).

A key input parameter for the cosmic ray transport is the
parallel spatial diffusion coefficient κ‖ = vλ/3 which is conven-
tionally expressed in terms of the mean free path λ along the
background magnetic field and the particle speed v. In many
studies the parallel mean free path also controls the perpen-
dicular spatial diffusion coefficient κ⊥ = ακ‖, which, due to the
lack of a rigorous theory of perpendicular diffusion, is assumed
to be proportional to κ‖. Numerical simulations of perpendicu-
lar transport (e.g. Giacalone & Jokipii 1999) indicate values of
α = 0.02−0.04.

Within quasilinear theory the parallel mean free path results
from the pitch-angle-cosine (µ = p‖/p) average of the inverse
of the pitch-angle Fokker-Planck coefficient Dµµ as (Jokipii
1966; Hasselmann & Wibberenz 1968; Earl 1974)

λ =
3v
8

∫ 1

−1
dµ

(1 − µ2)2

Dµµ(µ)
· (1)
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The pitch-angle Fokker-Planck coefficient is calculated from
the ensemble-averaged first-order corrections to the particle or-
bits in the weakly turbulent magnetic field (Hall & Sturrock
1968)

Dµµ(µ) = Re
∫ ∞

0
dξ < µ̇(t)µ̇∗(t + ξ) > (2)

and depends on the nature and statistical properties of the
electromagnetic turbulence and the turbulence-carrying back-
ground medium.

It is the purpose of this paper to calculate the parallel mean
free path of cosmic ray protons, electrons and positrons in two
particular turbulence models: slab-like dynamical and random
sweeping turbulence (Bieber et al. 1994). In Sect. 2 we present
the general quasilinear formalism for deriving the pitch-angle
Fokker-Planck coefficient in weak turbulence from the parti-
cle’s equation of motion. In Sect. 3 we specify to the paral-
lel propagating slab-like dynamical and random sweeping tur-
bulence models: analytical expressions for the parallel mean
free paths are derived for realistic Kolmogorov-type turbulence
power spectra which include the steepening at high wavenum-
bers due to turbulence dispersion and/or dissipation. The gen-
eral formalism given in Sect. 2 allows us to generalise to more
general (than slab-like) turbulence geometries which will be
the subject of forthcoming work.

2. Calculation of the cosmic ray Fokker-Planck
coefficient Dµµ

To obtain an equation for Dµµ we must calculate the derivative
of the pitch angle cosine µ. To do this we start with the equation
of motion

dp
dt
= e

[
E +
u × B

c

]
· (3)

Now we split the fields in a background and a turbulent
component:

B = B0 + δB

E = δE (4)

assuming magnetic turbulence and an ordered magnetic field:

δE = 0
δB , 0
B0 = B0ez.

(5)

We obtain for the individual components in Cartesian
coordinates:

dpx

dt =
Ω
B0

[
py(B0 + δBz) − pzδBy

]
dpy
dt =

Ω
B0

[−px(B0 + δBz) + pzδBx
]

dpz

dt =
Ω
B0

[
pxδBy − pyδBx

] (6)

with the gyrofrequency

Ω =
eB0

mcγ
(7)

where m is the particle mass and γ is the Lorentz factor. Using
spherical momentum coordinates

px = p
√

1 − µ2 cosΦ
py = p

√
1 − µ2 sinΦ

pz = pµ
(8)

(with the pitch angle cosine µ) we obtain

µ̇ =
dµ
dt
=
Ω

√
1 − µ2

B0

[
δBy cosΦ − δBx sinΦ

]
(9)

with

cosΦ = 1
2

[
eiΦ + e−iΦ

]
sinΦ = 1

2i

[
eiΦ − e−iΦ

] (10)

and using left-handed and right-handed components for the tur-
bulence field

δBL =
1√
2

(
δBx + iδBy

)
δBR =

1√
2

(
δBx − iδBy

) (11)

we find

µ̇ =
iΩ√
2B0

√
1 − µ2

[
δBR(x(t))eiΦ − δBL(x(t))e−iΦ

]
. (12)

Now we are using the quasilinear approximation:

µ̇ =
iΩ√
2B0

√
1 − µ2

[
δBR(x̄(t))eiΦ̄ − δBL(x̄(t))e−iΦ̄

]
(13)

with the unperturbed orbit (x̄, ȳ, z̄), which is the orbit with δB =
0, i.e.

x̄ = − v
Ω

√
1 − µ2 sin (Φ0 −Ωt)

ȳ = +
v

Ω

√
1 − µ2 cos (Φ0 −Ωt)

z̄ = v‖t with v‖ = vµ (14)

for the orbit and

ṗ = 0 ⇒ p̄ = p0 = const
µ̇ = 0 ⇒ µ̄ = µ0 = const
Φ̇ = −Ω ⇒ Φ̄ = Φ0 −Ωt

(15)

for the momentum. Introducing the Fourier-transforms of the
turbulent magnetic fields

δBL,R(x̄, t) =
∫

d3kδBL,R(k, t) exp [ik · x̄] (16)

with spherical coordinates for the wave vector

kx = k⊥ cosΨ = k sinΘ cosΨ
ky = k⊥ sinΨ = k sinΘ sinΨ
kz = k‖ = k cosΘ

(17)

we derive

k · x̄ = k⊥v⊥
Ω

sin (Φ1) + k‖v‖t (18)

with

Φ1 = Ψ −Φ0 + Ωt. (19)
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Using the identity with the Bessel functions Jn

eiz sinΦ1 =

+∞∑
n=−∞

Jn(z)einΦ1 (20)

we obtain

µ̇ =
iΩ√
2B0

√
1 − µ2

∫
d3k

+∞∑
n=−∞

ei(k‖v‖+nΩ)t+in(Ψ−Φ0 )

×
[
δBR(k, t)Jn+1

(
k⊥v⊥
Ω

)
eiΨ−δBL(k, t)Jn−1

(
k⊥v⊥
Ω

)
e−iΨ

]
.(21)

Now we are able to calculate the Fokker-Planck-coefficient
(see Eq. (2)). To do this, we introduce the correlation tensor
of the magnetic field fluctuations

〈δBα(k, t)δBβ(k′, t + ξ)〉 = δ(k − k′)Pαβ(k, ξ) (22)

where we have made the assumption that Fourier compo-
nents at different wave vectors are uncorrelated. So, we obtain
for Dµµ:

Dµµ =
Ω2(1 − µ2)

2B2
0

Re
+∞∑

n=−∞

∫ ∞

0
dξ

∫
d3ke−i(k‖v‖+nΩ)ξ

×
[
J2

n+1

(
k⊥v⊥
Ω

)
PRR(k, ξ) + J2

n−1

(
k⊥v⊥
Ω

)
PLL(k, ξ)

− Jn+1

(
k⊥v⊥
Ω

)
Jn−1

(
k⊥v⊥
Ω

) (
PRL(k, ξ)e+2iΨ+PLR(k, ξ)e−2iΨ

)]
(23)

where we also have averaged over the initial phase Φ0. To do
the time-integration ξ we have to specify the time dependence
of the tensor Pαβ. Using

Pαβ(k, ξ) = P0
αβ(k)F(ξ, k) (24)

we obtain

Dµµ =
Ω2(1 − µ2)

2B2
0

+∞∑
n=−∞

∫
d3k

×
[
J2

n+1

(
k⊥v⊥
Ω

)
P0

RR(k) + J2
n−1

(
k⊥v⊥
Ω

)
P0

LL(k)

− Jn+1

(
k⊥v⊥
Ω

)
Jn−1

(
k⊥v⊥
Ω

) (
P0

RL(k)e+2iΨ+P0
LR(k)e−2iΨ

)]
· Ri(25)

with

Ri = Re
∫ ∞

0
dξe−i(k‖v‖+nΩ)ξ · Fi(ξ, k). (26)

To proceed we must specify the function Fi(ξ, k) and the ten-
sor P0

αβ(k).

3. Slab-like dynamical and random sweeping
tubulence

3.1. Equations for Dµµ

For Fi we examine two different models. This first model is
called the damping model of dynamical turbulence, the second
model is called the random sweeping model.

3.1.1. Damping model of dynamical turbulence

In this model we use (Bieber et al. 1994)

F1(ξ) = e−ξ/qD (27)

with

qD =
1

αvA | k‖ | , 0 ≤ α ≤ 1. (28)

According to Eq. (26) we must solve the integral

R1 =<
∫ ∞

0
dξe−i(k‖v‖+nΩ)ξ−ξ/qD =

qD

1 + q2
D(k‖v‖ + nΩ)2

· (29)

3.1.2. Random sweeping model

In this model we use (Bieber et al. 1994)

F2(ξ) = e−(ξ/qD)2
(30)

with the same qD as for the damping model of dynamical tur-
bulence (Eq. (28)). In this case we find for the integral (26)

R2 = Re
∫ ∞

0
dξe−i(k‖v‖+nΩ)ξ−(ξ/qD)2

=

√
π

2
qDe−(k‖v‖+nΩ)2q2

D/4. (31)

3.1.3. Slab turbulence and Kolmogorov-type
turbulence spectrum

Next we also need to specify the geometry and polarisation of
the field fluctuations (the tensor P0

αβ). We use slab-turbulence,
i.e. that the wave vectors of the fluctuations are all parallel or
antiparallel to the background magnetic field (e.g. Jaekel &
Schlickeiser 1992):

Plm =

{
g(k‖) δ(k⊥)

k⊥
[δlm + iσεlm3]

0 for l,m = 3.
(32)

So we obtain for the turbulence tensor components:

P0
RR = (1 − σ)g(k‖)

δ(k⊥)
k⊥

P0
LL = (1 + σ)g(k‖)

δ(k⊥)
k⊥

P0
RL = P0

LR = 0. (33)

With Eq. (25) and using Jn(0) = δn0 we obtain for the Fokker-
Planck-coefficient

Dµµ =
πΩ2

(
1 − µ2

)
B2

0

∫ +∞

−∞
dk‖g

(
k‖

)
× [(1 − σ) R(n = −1) + (1 + σ) R(n = +1)] (34)

with the damping model of dynamical turbulence (DT ) and
g(k‖) = g(| k‖ |)

Dµµ(DT ) =
2πΩ2(1 − µ2)

B2
0

×
∫ ∞

0
dk‖g(| k‖ |)qD

 1

1+q2
D

(
k‖v‖−Ω)2

+
1

1+q2
D

(
k‖v‖+Ω

)2

(35)
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and for the random-sweeping model (RS )

Dµµ(RS ) =
π3/2Ω2

(
1 − µ2

)
B2

0

∫ ∞

0
dk‖g

(| k‖ |) qD

×
[
e−(k‖v‖+Ω)2q2

D/4 + e−(k‖v‖−Ω)2
q2

D/4
]
. (36)

For g(k‖) we assume a Kolmogorov-type turbulence spectrum
(see Fig. 1):

g(k‖) =



0 for | k‖ |≤ kmin

g0 | k‖ |−s for kmin ≤| k‖ |≤ kd

g1 | k‖ |−p for | k‖ |≥ kd

with g1 = g0kp−s
d , 1 < s < 2 , 2 < p and kmin � kd. For g0 we

can use the total fluctuating magnetic field strength:

(δB)2 =

3∑
m=1

(δBm)2 =

∫
d3k

∫
d3k′δBm(k)δB∗m(k

′
)ei(k−k′)x

=

3∑
m=1

∫
d3kPmm(k)=8πg0

[∫ kd

kmin

dkk−s+
g1

g0

∫ ∞

kd

dkk−p

]

=
8πg0

s − 1
k1−s

min

1 −
(

kmin

kd

)s−1

+
s − 1
p − 1

g1

g0

ks−1
min

kp−1
d



≈ 8πg0

s − 1
k1−s

min (37)

with qD = 1/αvA | k‖ | we derive

Dµµ(DT ) =
(s − 1)Ω2

(
1 − µ2

)
4αvA

(
δB
B0

)2

ks−1
min

×

∫ kd

kmin

dk k−s−1


1

1 +
(

kvµ−Ω
αvAk

)2
+

1

1 +
(

kvµ+Ω
αvAk

)2



+kp−s
d

∫ ∞

kd

dk k−p−1


1

1 +
(

kvµ−Ω
αvAk

)2
+

1

1 +
(

kvµ+Ω
αvAk

)2


 · (38)

Now it is useful to introduce the following parameters:

ε =
vA
v

a =
1
αε
=
v

αvA

b =
1

2αε
=
v

2αvA
=

a
2

RL =
v

Ω
=

pc
B0 | q | =

r
B0

R = RLkmin = r
kmin

B0

Q = RLkd = r
kd

B0
(39)

with the rigidity r = pc/ | q |. Rewriting Eq. (38) as

Dµµ(DT ) =
(s − 1)Ω2

(
1 − µ2

)
4αvA

(
δB
B0

)2

ks−1
min

×

∫ ∞

kmin

dk k−s−1


1

1 +
(

kvµ−Ω
αvAk

)2
+

1

1 +
(

kvµ+Ω
αvAk

)2



−
∫ ∞

kd

dk k−s−1


1

1 +
(

kvµ−Ω
αvAk

)2
+

1

1 +
(

kvµ+Ω
αvAk

)2



+kp−s
d

∫ ∞

kd

dk k−p−1


1

1 +
(

kvµ−Ω
αvAk

)2
+

1

1 +
(

kvµ+Ω
αvAk

)2


 (40)

and substituting x = kmin/k in the first integral and x = kd/k in
the second and third integral we find

Dµµ(DT ) =
(s − 1)v

(
1 − µ2

)
a

4kminR2
L

(
δB
B0

)2

×
{∫ 1

0
dx xs−1

[
1

1 + a2 (µ − x/R)2
+

1

1 + a2 (µ + x/R)2

]

−Rs

Qs

∫ 1

0
dx xs−1

[
1

1 + a2 (µ − x/Q)2
+

1

1 + a2 (µ + x/Q)2

]

+
Rs

Qs

∫ 1

0
dx xp−1

[
1

1+a2 (µ−x/Q)2
+

1

1+a2 (µ+x/Q)2

]}
· (41)

Now we do the same calculation for the RS - model:

Dµµ(RS ) =

√
π(s − 1)Ω2

(
1 − µ2

)
8αvA

(
δB
B0

)2

ks−1
min

×
{∫ kd

kmin

dk k−s−1
[
e−(k‖v‖−Ω)2

q2
D/4 + e−(k‖v‖+Ω)2

q2
D/4

]

+kp−s
d

∫ ∞

kd

dk k−p−1
[
e−(k‖v‖−Ω)2

q2
D/4 + e−(k‖v‖+Ω)2

q2
D/4

]}
(42)

what can be written as

Dµµ(RS ) =
√
π(s − 1)v(1 − µ2)b

4kminR2
L

(
δB
B0

)2

×
{∫ 1

0
dx xs−1

[
e−b2(µ−x/R)2

+ e−b2(µ+x/R)2]

−Rs

Qs

∫ 1

0
dx xs−1

[
e−b2(µ−x/Q)2

+ e−b2(µ+x/Q)2]

+
Rs

Qs

∫ 1

0
dx xp−1

[
e−b2(µ−x/Q)2

+e−b2(µ+x/Q)2]} · (43)

Note that both expressions (41) and (43) for Dµµ do not de-
pend of the charge sign. So we obtain the same λ for electrons
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Fig. 1. Power spectrum of slab model used in our calculations. For k‖ ≤ kmin we set g(k‖) = 0.

and positrons. Moreover, we notice that the Dµµ are symmetric
functions of µ:

Dµµ(−µ) = Dµµ(+µ). (44)

3.1.4. The damping model of dynamical turbulence

Here Dµµ(DT ) can be written as

Dµµ(DT ) =
(s − 1)v(1 − µ2)a

4kminR2
L

(
δB
B0

)2

· I(µ) (45)

with

I(µ) = A +

(
R
Q

)s

[C − B] (46)

where

A =
∫ 1

0
dxxs−1

[
1

1 + a2 (µ − x/R)2
+

1

1 + a2 (µ + x/R)2

]

B =
∫ 1

0
dxxs−1

[
1

1 + a2 (µ − x/Q)2
+

1

1 + a2 (µ + x/Q)2

]

C =
∫ 1

0
dxxp−1

[
1

1 + a2 (µ − x/Q)2
+

1

1 + a2 (µ + x/Q)2

]
·(47)

So we must solve integrals of the type

M=
∫ 1

0
dxxs−1

[
1

1+a2/R2 (µR−x)2
+

1

1+a2/R2 (µR+x)2

]
· (48)

As shown in Appendix A these integrals can be solved analyti-
cally in different pitch-angle regimes and we obtain

A (µR � 1) =
2
s

1
1 + a2µ2

A (µR � 1, aµ� 1) = π
Rs

a
µs−1 − 2

2 − s
R2

a2

A (µR � 1, aµ� 1, a/R� 1) =
π

sin ( πs
2 )

Rs

as
− 2

2 − s
R2

a2

A (µR � 1, aµ� 1, a/R� 1) = 2/s

B (µQ � 1) =
2
s

1
1 + a2µ2

B (µQ � 1, aµ� 1) = π
Qs

a
µs−1 − 2

2 − s
Q2

a2

B (µQ � 1, aµ� 1, a/Q� 1) =
π

sin ( πs
2 )

Qs

as
− 2

2 − s
Q2

a2

B (µQ � 1, aµ� 1, a/Q� 1) = 2/s

C (µQ � 1) =
2
p

1
1 + a2µ2

C (µQ � 1, aµ� 1) =
2

p − 2
Q2

a2
+ π

Qp

a
µp−1

C (µQ � 1, aµ� 1, a/Q� 1) =
2

p − 2
Q2

a2

C (µQ � 1, aµ� 1, a/Q� 1) = 2/p. (49)
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With Eq. (46) we obtain 8 different cases for I (and therefore
8 different cases for Dµµ) which are shown in Table 1.

3.1.5. The random sweeping model

In the RS -model Dµµ can be written as

Dµµ(RS ) =

√
π(s − 1)v

(
1 − µ2

)
b

4kminR2
L

(
δB
B0

)2

· I(µ) (50)

with

I(µ) = A +

(
R
Q

)s

[C − B] (51)

where

A =
∫ 1

0
dx xs−1

[
e−b2(µ−x/R)2

+ e−b2(µ+x/R)2]

B =
∫ 1

0
dx xs−1

[
e−b2(µ−x/Q)2

+ e−b2(µ+x/Q)2 ]

C =
∫ 1

0
dx xp−1

[
e−b2(µ−x/Q)2

+ e−b2(µ+x/Q)2]
. (52)

The integrals of the type

M =

∫ 1

0
dx xs−1

[
e−b2[µ−x/R]2

+ e−b2[µ+x/R]2
]

=

∫ 1

0
dx xs−1

[
e−b2/R2[µR−x]2

+ e−b2/R2[µR+x]2
]

(53)

will be solved by approximations for special cases again. This
is done in Appendix B and we obtain

A (µR � 1) =
2
s

e−µ
2b2

A (µR � 1, b/R� 1) =
2
s

A (µR � 1, b/R� 1, bµ� 1) =
√
πΓ(s)

2s−1Γ( s+1
2 )

Rs

bs

A (µR � 1, b/R� 1, bµ� 1) =
πΓ(s)

2s−1Γ( s
2 )Γ( s+1

2 )
(bµ)s−1 Rs

bs

B (µQ � 1) =
2
s

e−µ
2b2

B (µQ � 1, b/Q� 1) =
2
s

B (µQ � 1, b/Q� 1, bµ� 1) =
√
πΓ(s)

2s−1Γ( s+1
2 )

Qs

bs

B (µQ � 1, b/Q� 1, bµ� 1) =
πΓ(s)

2s−1Γ( s
2 )Γ( s+1

2 )
(bµ)s−1 Qs

bs

C (µQ � 1) =
2
p

e−µ
2b2

C (µQ � 1, b/Q� 1) =
2
p

C (µQ � 1, b/Q� 1, bµ� 1) =
√
πΓ(p)

2p−1Γ( p+1
2 )

Qp

bp

C (µQ�1, b/Q�1, bµ�1)=
πΓ(p)

2p−1Γ( p
2 )Γ(p+1

2 )
(bµ)p−1 Qp

bp
·(54)

With Eq. (51) we obtain 8 different cases for I (and therefore
for Dµµ) which are shown in Table 2.

3.2. Equations for the mean free path

With the above equations for Dµµ(DT ) and Dµµ(RS ) we are
able to calculate the parallel mean free path (1).

3.2.1. Damping model of dynamical turbulence

With Eqs. (1) and (44) we obtain

λ =
3v
8

∫ +1

−1
dµ

(
1 − µ2

)2

Dµµ(µ)
=

3v
4

∫ +1

0
dµ

(
1 − µ2

)2

Dµµ(µ)
· (55)

With

λ0 =

( B0

δB

)2

(56)

and

Dµµ =
(s − 1)kminav

4R2

(
δB
B0

)2 (
1 − µ2

)
I(µ) (57)

we derive

λ

λ0
=

3
s − 1

R2

kmin · a · K (58)

with the integral

K =
∫ 1

0
dµ

1 − µ2

I(µ)
· (59)

For K we obtain the 12 different cases listed in Table 3. With
Eq. (58) these yield the analytical approximations for the mean
free path. With the parameters defined in Eq. (39) it is very easy
to simplify the results for 1 < s < 2, 2 < p and R � Q, using
approximations like

K=
∫ 1

0
dµ

1 − µ2

I(µ)
≈
∫ 1/a

0
dµ

1 − µ2

I(aµ� 1)
+

∫ 1

1/a
dµ

1 − µ2

I(aµ� 1)
·(60)

The first three cases of Table 3 apply to large particle rigidities
(R = RLkmin � 1). If we calculate the mean free path for typical
heliospheric parameters, we find that the value of the mean free
path formally becomes larger than the size of the heliospere in
which case the diffusion approximation to cosmic ray transport
no longer is justified. The reason for this is the sharp cut-off of
the turbulence power spectrum at kmin. The second three cases
are not relevant for typical heliospheric parameters. So only
the last six cases are important for calculating the mean free
path and fulfil the restriction RLkmin < 1. To demonstrate what
happens at high rigidities, we consider this limit for special pa-
rameters in Appendix C.

3.2.2. Random sweeping model

For this model we can do similar approximations. But now we
have

Dµµ =
√
π(s − 1)kminbv

4R2

(
δB
B0

)2 (
1 − µ2

)
I(µ) (61)
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Table 1. This table shows the the function I(µ) for the DT-model, where we have introduced the functions f1(s, p) = 2
p−2+

2
2−s and f2(s) = π

sin ( πs
2 ) .

case I(µ)

µR� 1, µQ � 1 2
s

1
1+a2µ2

µR� 1, µQ � 1, aµ � 1 π Rs

a µ
s−1

µR� 1, µQ � 1, aµ � 1 f1
RsQ2−s

a2 + π Rs Qp−s

a µp−1

µR� 1, µQ � 1, aµ � 1, a/R � 1 f2
Rs

as

µR� 1, µQ � 1, aµ � 1, a/R � 1, a/Q � 1 f1
RsQ2−s

a2

µR� 1, µQ � 1, aµ � 1, a/R � 1, a/Q � 1 f2
Rs

as

µR� 1, µQ � 1, aµ � 1, a/R � 1 2/s

µR� 1, µQ � 1, aµ � 1, a/R � 1, a/Q � 1 2/s

Table 2. This table shows the function I(µ) for the RS-model.

case I(µ)

µR� 1, µQ� 1 2
s e−µ2b2

µR� 1, b/R� 1, µQ � 1 2/s

µR� 1, b/R� 1, µQ � 1, b/Q � 1 2/s

µR� 1, b/R� 1, bµ � 1, µQ � 1
√
πΓ(s)

2s−1Γ( s+1
2 )

Rs

bs

µR� 1, b/R� 1, bµ � 1, µQ � 1, b/Q � 1
√
πΓ(s)

2s−1Γ( s+1
2 )

Rs

bs

µR� 1, b/R� 1, bµ � 1, µQ � 1, b/Q � 1
√
πΓ(p)

2p−1Γ( p+1
2 )

Qp−sRs

bp

µR� 1, b/R� 1, bµ � 1, µQ � 1 πΓ(s)
2s−1Γ( s

2 )Γ( s+1
2 )

(Rµ)s

bµ

µR� 1, b/R� 1, bµ � 1, µQ � 1, b/Q � 1 πΓ(p)

2p−1Γ( p
2 )Γ( p+1

2 )

Rsµp−1

Qs−pb

so that
λ

λ0
=

3√
π(s − 1)

R2

bkmin
· K (62)

with the integral

K =
∫ 1

0
dµ

1 − µ2

I(µ)
· (63)

For K we obtain the 12 cases listed in Table 4, where we have
used the same approximations as for the damping model. We
can use these approximations for values of 1 < s < 2, 2 < p
and R � Q.

For the random sweeping model we also notice that for the
first three cases of Table 4 (R = RLkmin � 1) the mean free
path is unphysically large. The second three cases are not rele-
vant for typical heliosperic parameters again. Like for the DT-
model, only the last six cases are important for calculating the
mean free path in the limit RLkmin < 1.

3.3. Calculating the mean free path for special
parameters

Here we calculate λ for electrons, positrons and protons for
special parameters and compare it with numerical solutions

to test the approximations we have done. We use the follow-
ing set of parameters appropriate for interplanetary conditions
(Bieber et al. 1994):

B0 = 4.12 nT

kmin = 10−10 m−1

kd = 2 · 10−5 m−1

s = 5/3

p = 3

vA = 33.5 km s−1

α = 1. (64)

With these parameters and with Eq. (39) it is very easy to cal-
culate R, Q, a and b as functions of the rigidity r, and to derive
the parallel mean free path for the damping model of dynam-
ical turbulence (using Table 3) and for the random sweeping
model (using Table 4). For these special parameters, the restric-
tion RLkmin < 1 corresponds to rigidities r < 1.23 × 104MV '
104MV , but for the dynamical turbulence model we have also
calculated the mean free path at high rigidities in Appendix C.
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Table 3. These are the expressions for K and therefore the formulas for the mean free path for the DT-model. The functions f1 and f2 are
defined in Table 1.

case K

1 � a � R� Q s
15 a2

1 � R � Q � a s
15 a2

1 � R � a � Q s
15 a2

a � 1 � R� Q s
15 a2 + s

2R

a � R � Q � 1 s
3

a � R � 1 � Q s
3

R� Q� 1 � a a2

f1RsQ2−s

{
2F1

(
1, 1

p−1 ,
p

p−1 ,− πaf1 Qp−2
)
− 1

3 2F1

(
1, 3

p−1 ,
p+2
p−1 ,− πaf1 Qp−2

)}
R� Q� a � 1 2

3 f1
a2

Rs Q2−s

R� 1 � a � Q 1
π

[
1

2−s − 1
4−s

]
a

Rs

R� 1 � Q � a 1
π

[
1

2−s − 1
4−s

]
a

Rs +
a2

f1Rs Q3−s 2F1

(
1, 1

p−1 ,
p

p−1 ,− πaf1Q

)
R� a � 1 � Q 2

3 f2
as

Rs

R� a � Q � 1 2
3 f2

as

Rs

Table 4. These are the expressions for K and therefore the formulas for the mean free path for the RS -model.

case K

1 � b � R� Q
√
πs

4ib

(
1 − 1

2b2

)
erf(ib) + s

4b2 eb2

1 � R� Q � b
√
πs

4ib

(
1 − 1

2b2

)
erf(ib) + s

4b2 eb2

1 � R� b � Q
√
πs

4ib

(
1 − 1

2b2

)
erf(ib) + s

4b2 eb2

b � 1 � R� Q
√
πs

4ib

(
1 − 1

2b2

)
erf(ib) + s

4b2 eb2

b � R� Q � 1 s/3

b � R� 1 � Q s/3

R � Q � 1 � b
2p−1Γ( p+1

2 )√
πΓ(p)

[
1 + Γ(p/2)

(p−2)
√
π

]
bp−1

Qp−sRs

R � Q � b � 1
2pΓ( p+1

2 )

3
√
πΓ(p)

bp

Qp−sRs

R � 1 � b � Q
2s−1Γ(s/2)Γ( s+1

2 )

πΓ(s)

[
1

2−s − 1
4−s

]
b

Rs

R � 1 � Q � b
2p−1Γ( p+1

2 )√
πΓ(p)

[
1 + Γ(p/2)√

π (p−2)

]
bp−1

Rs Qp−s +
2s−1Γ( s+1

2 )Γ(s/2)

πΓ(s)

[
1

2−s − 1
4−s

]
b

Rs

R � b � 1 � Q
2sΓ( s+1

2 )

3
√
πΓ(s)

bs

Rs

R � b � Q � 1
2sΓ( s+1

2 )

3
√
πΓ(s)

bs

Rs

3.3.1. Damping model of dynamical turbulence

For protons we obtain two different ranges of λ:

λ

λ0

(
10−1MV � r � 104MV

)
≈ 0.0106 AU ·

( r
MV

)1/3

λ

λ0

(
r � 10−1MV

)
≈ 0.0062 AU ·

( r
MV

)
(65)

with r0 = 938 MV . For electrons and positrons we also obtain
two ranges:

λ

λ0

(
10−1MV � r � 104MV

)
≈ 0.0106 AU

×


( r

MV

)1/3
+

3.57((
r0

MV

)2
+

(
r

MV

)2
)1/4



λ

λ0

(
r � 10−1MV

)
≈ 0.0337 AU

×

1 +

(
0.003MV

r

)2 arctan
( r
0.003MV

)
− 0.003MV

r


with r0 = 0.511 MV . Figure 2 shows that the approximations
agree very well with the exact numerically integrated results
(crosses) for small and medium rigidities.

3.3.2. Random sweeping model

For protons we obtain two ranges of λ:

λ

λ0

(
10−1MV � r � 104MV

)
≈ 0.0107 AU ·

( r
MV

)1/3

λ

λ0

(
r � 10−1MV

)
≈ 0.0123 AU ·

( r
MV

)
(66)
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Fig. 2. Parallel mean free paths for electrons, positrons and protons in the damping model of dynamical turbulence. The crosses are the numerical
results, the lines are our approximations.
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Fig. 3. Parallel mean free paths for electrons, positrons and protons in the random sweeping model. The crosses are the numerical results, the
lines are our approximations.
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Fig. 4. The parallel spatial diffusion coefficient κ‖ for the damping model of dynamical turbulence.

with r0 = 938 MV . For electrons we also obtain the two ranges:

λ

λ0

(
10−4MV � r � 104MV

)
≈ 1.36 AU√(

r0
MV

)2
+

(
r

MV

)2

+0.0107 AU ·
( r

MV

)1/3

λ

λ0

(
r � 10−4MV

)
≈ 10.4 × 103 ·

( r
MV

)
(67)

with r0 = 0.511 MV . Figure 3 shows the analytic approxima-
tions in comparison with numerical results (crosses) for small
and medium rigidities. For both models (DT and RS) we have
very good agreement between the approximations and the nu-
merical results for the parallel mean free path. To obtain the
approximations for the mean free path we have only made the
assumptions that kmin is much smaller than kd, 1 < s < 2, 2 < p
and RLkmin < 1.

3.3.3. The parallel spatial diffusion coefficient

In this section we calculate the parallel spatial diffusion coeffi-
cient κ‖. With the equations for the mean free path and

κ‖ =
v

3
λ (68)

we can write the parallel spatial diffusion coefficient as

κ‖
κ0
=

r√
r2

0 + r2

λ

λ0
(69)

with

κ0 =
cλ0

3
· (70)

Figures 4 and 5 show κ‖/κ0 for the DT- and the RS-model,
respectively.

If we would adopt as in many previous studies the simple
relation κ⊥ = ακ‖ with constant α, Figs. 4 and 5 also show
the rigidity dependence of the perpendicular spatial diffusion
coefficient for the dynamical turbulence and random sweeping
turbulence model.

4. Summary and conclusion

The parallel mean free path of cosmic ray particles in par-
tially turbulent electromagnetic fields is a key input parameter
for cosmic ray transport. In this work we have calculated the
parallel mean free path of cosmic ray protons, electrons and
positrons in two particular turbulence models: slab-like dynam-
ical and random sweeping turbulence. After outlining the gen-
eral quasilinear formalism for deriving the pitch-angle Fokker-
Planck coefficient in weak turbulence from the particle’s
equation of motion, we explicitly determine the rigidity depen-
dence and the absolute value of the mean free path for differ-
ent cosmic ray particles for these specific turbulence models.
Besides illustrating the results we also derive approximations
for the mean free path for realistic Kolmogorov-type turbulence
power spectra which include the steepening at high wavenum-
bers due to turbulence dispersion and/or dissipation.
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Appendix A: Solving the integrals for the damping
model of dynamical turbulence

For the damping model of dynamical turbulence we must solve
integrals of the type

M=
∫ 1

0
dxxs−1

[
1

1+a2/R2 (µR−x)2
+

1

1+a2/R2 (µR+x)2

]
·(A.1)

While this integral can be solved exactly, for the µ-integration
we must employ approximations for three special cases.

A.1. The case µR � 1

In this case we can use µR � x

M1 ≈ 2
∫ 1

0
dx xs−1 1

1 + a2µ2
=

2
s

1
1 + a2µ2

· (A.2)

A.2. The case µR � 1 and a/R � 1

In this case we can use aµ� 1 so that

1

1 + a2/R2
[
µR ∓ x

]2
≈ 1. (A.3)

Hence we obtain

M2 ≈ 2
∫ 1

0
dx xs−1 =

2
s
· (A.4)

A.3. The case µR � 1 and a/R � 1

In the last case we write down the exact solution of the inte-
gral M

M3 =
1
s

{
1

1 − iaµ 2F1

(
1,

s
2
,

s + 2
2
,− a2

R2

1

(1 − iaµ)2

)

+
1

1 + iaµ 2F1

(
1,

s
2
,

s + 2
2
,− a2

R2

1

(1 + iaµ)2

)}
(A.5)

in terms of confluent hypergeometric functions 2F1. To con-
tinue with the calculations, we look at three special cases of
the integral M3. The first case is aµ� 1. Here we find

M3 ≈ 2
s 2F1

(
1,

s
2
,

s + 2
2
,− a2

R2

)
(A.6)

what can be approximated as

M3 (aµ� 1, 1 < s < 2) ≈ π

sin ( πs
2 )

Rs

as
− 2

2 − s
R2

a2

M3 (aµ� 1, 2 < s) ≈ 2
s − 2

R2

a2
· (A.7)

In the other case we transform the hypergeometric functions
to obtain

M3 (aµ� 1) ≈ πRs

a
µs−1 +

2
s − 2

R2

a2
· (A.8)
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Appendix B: Solving the integrals for the random
sweeping model

For the RS-model we must solve integrals of the type

M =

∫ 1

0
dxxs−1

[
e−b2[µ−x/R]2

+ e−b2[µ+x/R]2
]

=

∫ 1

0
dxxs−1

[
e−b2/R2[µR−x]2

+ e−b2/R2[µR+x]2
]
. (B.1)

The integrals can not be solved exactly, but we can again em-
ploy approximations for three special cases.

B.1. The case µR � 1

In this case we can use µR � x so that

M1 ≈ 2
∫ 1

0
dxxs−1e−µ

2b2
=

2
s

e−µ
2b2
. (B.2)

B.2. The case µR � 1 and b/R � 1

In this case we can use µb � 1 so that

e−b2[µ∓x/R]2

= e−[bµ∓xb/R]2 ≈ 1 (B.3)

and we obtain for the integral

M2 ≈ 2
∫ 1

0
dxxs−1 =

2
s
· (B.4)

B.3. The case µR � 1 and b/R � 1

For x = 1 we have

e−b2[µ∓x/R]2

= e−b2/R2[µR∓x]2 ≈ e−b2/R2
. (B.5)

So we can use

M3 =
Rs

bs

∫ b/R

0
dx xs−1

[
e−[bµ−x]2

+ e−[bµ+x]2
]

≈ Rs

bs

∫ ∞

0
dx xs−1

[
e−[bµ−x]2

+ e−[bµ+x]2
]
. (B.6)

The integrals can be solved in terms of parabolic cylinderfunc-
tions D−s

Rs

bs
e−b2µ2

∫ ∞

0
dx xs−1 · e−x2 · e±2bµx =

Rs

bs

Γ(s)
2s/2

e−b2µ2/2D−s(∓
√

2bµ) (B.7)

what can be expressed as Kummer’s functions:

Rs

bs
e−b2µ2

∫ ∞

0
dxxs−1 · e−x2 · e±2bµx =

Rs

bs

√
πΓ(s)

2sΓ( s+1
2 )

e−b2µ2

×
 1F1

(
s
2
,

1
2

; b2µ2
)
± 2Γ( s+1

2 )

Γ( s
2 )

bµ 1F1

(
s+1

2
,

3
2

; b2µ2
) .(B.8)

So we approximately obtain for the integral M3

M3 ≈ Rs

bs

√
πΓ(s)

2s−1Γ( s+1
2 )

e−b2µ2

1F1

(
s
2
,

1
2

; b2µ2

)
. (B.9)

To continue the calculations we must look at two special cases
of the integral M3. The first case is bµ � 1. Here we can use
the approximation

1F1

(
s
2
,

1
2

; b2µ2

)
≈ 1. (B.10)

In the case bµ� 1 we can use

1F1

(
s
2
,

1
2

; b2µ2
)
≈ Γ(

1
2 )

Γ( s
2 )

eb2µ2
(bµ)s−1 (B.11)

so that we obtain:

M3(bµ� 1) ≈ Rs

bs

√
πΓ(s)

2s−1Γ( s+1
2 )

e−b2µ2 ≈ Rs

bs

√
πΓ(s)

2s−1Γ( s+1
2 )

M3(bµ� 1) ≈ Rs

bs

πΓ(s)

2s−1Γ( s
2 )Γ( s+1

2 )
(bµ)s−1 . (B.12)

Appendix C: The mean free path for high rigidities

If we calculate the mean free path for R� 1 and for the damp-
ing model of dynamical turbulence we find with Table 3

λ

λ0
(R � 1) ≈ 3

s − 1
R2

kmina
s

15
a2 (C.1)

and for the special parameters of Sect. 3.3 we find for protons,
positrons and electrons

λ

λ0

(
r � 104MV

)
' 1.96 × 10−6 AU ·

( r
MV

)2
· (C.2)

Figure C.1 shows the analytical results in comparison with the
numerically integrated results (crosses). Using δB ≈ 0.33B0

so that λ0 = 10, Eq. (C.2) becomes

λ
(
r � 104MV

)
' 2 × 10−5 AU

( r
MV

)2
(C.3)

and we note that for rigidities larger than 104 MV , Eq. (C.3) im-
plies values of the mean free path λ > 2000 AU which is much
larger than the size of the heliosphere (L ' 100 AU). Although
formally mathematicaly correct, such large values of the mean
free path are unphysical because the diffusion approximation of
cosmic ray transport breaks down when the condition λ � L is
violated. In the random sweeping model we obtain even larger
values of the mean free path of high rigidities.

References

Axford, W. I., & Gleeson, L. J. 1967, ApJ, 149, L115
Abramowitz, M., & Stegun, I. A. 1972, Handbook of Mathematical

Functions, National Bureau of Standards, Washington
Bieber, J. W., Matthaeus, W. H., Smith, C. W., et al. 1994, ApJ, 420,

294
Burger, R. A., & Hattingh, M. 1995, Space Sci. Rev., 230, 375
Earl, J. A. 1974, ApJ, 193, 231
Ferreira, S. E. S., Potgieter, M. S., Burger, R. A., Heber, B., &

Fichtner, H. 2001a, J. Geophys. Res., 106, 24979
Ferreira, S. E. S., Potgieter, M. S., Burger, R. A., et al. 2001b, J.

Geophys. Res., 106, 29313
Fichtner, H. 2001, Space Sci. Rev., 95, 639



A. Teufel and R. Schlickeiser: Cosmic ray parallel mean free path. I. 715

10
3

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Rigidity (MV)

M
ea

n 
F

re
e 

P
at

h 
(A

U
)

The Mean Free Path for high Rigidities and for the DT−model

∝ r2 

∝ r1/3 

R
L
 k

min
 =1 

Fig. C.1. Parallel mean free paths for electrons, positrons and protons in the damping model of dynamical turbulence for high rigidities. The
crosses are the numerical results, the lines are our approximations.

Giacalone, J., & Jokipii, J. R. 1999, ApJ, 520, 204
Gradshteyn, I. S., & Ryzhik, I. M. 1965, Table of Integrals, Series, and

Products, Academic Press, New York 1966, Phys. Fluids, 9, 2377
Hall, D. E., & Sturrock, P. A. 1967, Phys. Fluids, 10, 2620
Hasselmann, K., & Wibberenz, G. 1968, Z. Geophys., 34, 353
Jaekel, U., & Schlickeiser, R. 1992, Ann. Geo., 10, 541
Jokipii, J. R. 1966, ApJ, 146, 480
Jokipii, J. R. 1983, Space Sci. Rev., 36, 27

Jokipii, J. R., & Parker, E. N. 1969, ApJ, 155, 799
Kota, J., & Jokipii, J. R. 1983, ApJ, 265, 573
Magnus, W., Oberhettinger, F., & Soni, R. P. 1966, Formulas and

Theorems for the Special Functions of Mathematical Physics
(Springer-Verlag, Berlin Heidelberg, New York)

Parker, E. N. 1965, Planet. Space Sci., 13, 9
Stawicki, O., Fichtner, H., & Schlickeiser, R. 2000, A&A, 358, 347


