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Abstract We present a method to calculate the radimce due to an isotropic poinr source in 
an infinite. homogeneous, anisotropically scattering medium. The method is an extension of a 
well known method far the case of isotropic scauering. Its basic mathematical ingredient is the 
Fourier transform. Its great advantage is that it also works very close to the source and not just 
far away from it, as is the case with most other methods. In principle, the method works for 
any phase function thal un be expanded 111 a finire number of Legendre polynomials. Here, 
the simple example of linear anisotropic scattering is worked out numerically and the result IS 
compared with Monte Carlo simulation. Good agreement is found between the two. 

1. Introduction 

Apart from the Monte Carlo method, nearly all theoretical methods used in tissue optics 
only work at a sufficiently large distance from the source and boundaries, diffusion theory 
being the most notable example [l-31. The regime close to the source is, however, precisely 
the region where the radiance contains most information about the scattering characteristics 
of the medium. Moreover, it has been shown [4] that the diffuse reflection from a half-space 
illuminated by a pencil beam, originates predominantly from the region that is very close 
to the incoming beam. We try to study the spatial distribution of the radiance analytically 
because this gives a deeper insight than the Monte Carlo simulation, which is also often 
quite time consuming. 

For the case of an isotropic point source in an unbounded, uniform, isotropically 
scattering medium a good approximation exists [5] which is good for small or large distances 
from the source and is fair throughout the whole medium. Unfortunately, it is not very useful 
for scattering in biological tissues which scatter highly anisotropically. In this paper we 
will extend the analysis to anisotropic scattering. 

Although polarization of the light is an important feature if we are working in the non- 
diffusive area, it is seldom taken into account in biomedical applications and we do not 
consider it in this work either. 

A similar remark can be made concerning coherence of the light, which has been 
discussed by MacKintosh and John [6] .  These authors discuss both polarization and 
coherence effects. 
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2 Formulation of the problem 

We consider an isotropic point source of unit strength in an unbounded, uniform 
anisotropically scattering medium. 

When measuring lengths in units of the mean free path (= (pa  t pZ)-l = pa,), in 
conventional notation) the equation of radiative transfer reads 

n . V L ( T ,  n) + L(r. n) = a L(r,SY)f(C2,W')d'2'+ S(r) (1) 

where L(T, n) denotes the radiance, defined as the power which at position T is emitted 
through a unit area perpendicular to the direction denoted by the unit vector a is the 
albedo, defined as the ratio aJut of the scattering cross section U, and the total cross section 
ut. f(a, Q') is the phase function which gives the probability that a photon incident from 
the direction is scattered into direction S I ' .  Here we assume that the scatterer is not 
oriented; in that case the scattering function only depends on the angle between and a'. 
6 ( ~ )  denotes the isotropic source of unit strength located at the origin of the coordinate 
system. The normalization of the phase function is taken to be 

(2) 

The physics of the situation involves radial symmetry with respect to the origin. Therefore 
L ( r ,  0) can only depend on the distance from the source, r ,  and the angle between the 
direction of T and S2 [71: 

(3) L ( r ,  a)  = L(r, + . 0) 
where r = I T ]  and + is the unit vector in the direction of T. This symmetry condition is 
fulfilled only because we consider unpolarized radiation. 

We will show that the transport equation (1) can be solved by considering the Fourier 
transform L(k,  a) of L(T, a). To this end we multiply (1) by exp[-ik . T] and integrate 
over T. Defining 

L(k.  S2) = d r  L(r ,  CL) exp[-ik. T I  (4) s 
we find from (1) 

(1 + ik  . n)L(k,  0) = a L(k, n')f(n, a') d o ' .  (5 ) s, 
In the derivation we used the regularity of L(r, a)  at infinity (see appendix A), but not the 
symmetry property (3). This symmetry property also leads to a corresponding symmetry for 
L(k, S2) (see equation (10)). This can be proved as follows: L(r ,  6. n) can be expanded 
in spherical harmonics: 
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where k is the unit vector in the direction of k .  Substituting (6) and (7) into (4) and using 
the orthonomality property of &,(+) we find 

From equation (8) and the addition theorem for spherical harmonics we see that 
m 

L(k, a) = L(k, k .  0) = 7 3 2 1  + l )Ll(k)Pl(P.n)  (10) 

where pn is the cosine of the angle between k and Cl .  Thus, t ( k ,  a) only depends on 
k = 1k1 and the angle between k and Cl, 

We will now use (5) to derive an equation for Ll(k). To this end we need the expansion 
in spherical harmonics of f(Sl. a‘): 

1=0 

where we assumed aj’inite summation over 1. Substitution of (10) and (11) into (5) yields 

Multiplying both sides of this equation by PI(/.Q) and integrating over p.n leads to a set of 
linear equations for Ll ( k ) :  

N 

4 ( k )  = T,r(k)4(k) + S#) (13) 
I=O 

where we abbreviated 

The solution scheme is now as follows: equation (13) can be written as the matrix equation 

L = T t + S  (16) 
which can be solved by Cramer’s rule: 

L = ( I  - T ) - ’ S  

where I is the identity mahix. From & ( k )  we can deduce L,(r) by inverting (9). according 
to the Fourier-Bessel theory [SI: 

When this program is completed we have from (6) the solution of our problem. In the 
following sections we will supply the details of the procedure. 
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3. Solution of the problem 

The final step in the solution of the radiative transfer equation (1) is the determination of 
L&) using (18). 

First we will show that the integration interval in (18) can be extended to -CO, +w: 
from (9) we see that &(k) bas odd (even) parity if 1 is odd (even), because of the same 
symmetry property of the spherical Bessel function j , ( k r ) .  Hence the integrand in (18) is 
even. Equation (18) can therefore be written as 

+m 

L/(r)  = i/ .C,(k)jI(kr)k'dk. (19) 
Jr -m 

We will calculate (19) by contour integration. To this end, it turns out to be convenient to 
consider the integral 

where hi')(kr) is the spherical Hankel function of the first kind: hjl'(kr) = jI(kr)+iyl(kr). 
The integral in (19) is thus seen to be the real part of that in (20). 

A useful representation of the function hy'(z)  is given by [9] 

In appendix B it is shown that &(k) behaves asymptotically as I l k  for k + iw. Because 
the functions hj l ) (kr )  behave asymptotically like e"'/kr, the integral in (21) appears to be 
divergent both at k = j;w and at k = 0. The divergence at k = fw is already present in 
(19) and will turn out to give rise to a singularity at r = 0. At this stage we can still ignore 
this singularity for reasons that will become evident soon. The divergence at k = 0 has to 
be treated more carefully: the divergence is removed by subtracting the principal part of 
the Laurent expansion of hj')(kr) at k = 0, aI(kr), from hj')(kr). So instead of (20) we 
define A(r )  (without a tilde) as 

(22) 

It should be noted that the subtraction of q(kr )  affects neither the real part of A,, nor LI(r) 
because the principal part of h!l)(kr) is due to the (real-valued) spherical Neumann function 

In appendix C we show that &(k) is a multi-valued function of k with branch points 
in k = h i .  The cut is chosen along tbe imaginary axis in the complex k-plane, extending 
from i to i w  and from -i to -iw (figure 1). 

We now calculate the integral in (22) by contour integration (figure 2). Let r be 
the contour in the complex k-plane consisting of the interval [-R, +RI on the real axis 
( R  + w), four segments called y1 to y4, and two segments [i. i w ]  on both sides of the 
cut, C+ and C-. 

In appendiw B it is shown that the contributions from the segments y2 and M tend to 
zero for R --f w and also that the joint contribution due to the segments y, and y4 oscillates 
about zero when R -+ w, without actually becoming zero. We interpret this contribution 
as the mean value i.e. zero. This complication was to be expected because the integrals in 
(19) and (22) are 'mildly' divergent at k = f w .  This divergence now manifests itself in 
the oscillatory contribution from y, and y4. 

+m 
&(r) = / .CI(k)(hj')(kr) - a,(kr))dk. 

-m 

yt (kr ) .  
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I Figure 2. Integration contour r in the complex k-plane for 

Figure 1. Cut in the complex k-plane, arising from the 
multi-valuedness of the functions 4 ( k )  (equations (22) and 
(a)). 

. I poles 

From equation (17) it is to be expected that L&) has poles inside r due to zeros of 
the determinant II - T 1. Let the residues in these poles be denoted by pi .  pz. .  . . , pn. Then 

The segments C+ and C- give the contributions from the cut. Denote LT and L; as the 
values of &(k)  on the right and on the left of the cut, respectively. In this way we find, 
putting k = is, 

The determination of the location and residues of the poles has to be done numerically. The 
integral in (24) can be expressed in terms of exponential inte-ds. Finally, the quantity of 
physical interest, Ll(r) is obtained f” the real part of (24). 

The full procedure will be presented in a simple example to be discussed in the next 
section. 



634 K Rinzema et a1 

4. A simple example: linear anisotropic scattering 

Linear anisotropic scattering refers to the phase function 

1 
4rr f ( n . n J ) = - ( i + 3 g c o ~ e )  (25) 

where g has to be less than f in order to ensure the positive definiteness of f. The 
choice (25) corresponds to fo = 1 and fi = g. 

The matrix elements T,, are obtained from (14). The integrals in this equation are 
worked out in appendix C. Here the matrix elements are given in the fom appropriate for 
use on both sides of the cut in the complex k-plane from i to i w  (figure 2); ‘+’ refers to 
the right-hand side of the cut, ‘-’ refers to the left-hand side: 

zi} 

s* - -- log- i x i )  
o - 2 ‘ I  1 + i j k  l-i’k 

We now follow the procedure described in section 3 for this specific case. We start with 
I = 0. In that case (19) reads 

Loo) = A -km &(k) jo(kr)k* dk . (32) 

This integral can be calculated by taking the real part of the following integral (note that 
&(k) is real according to (9)): 

z L  

+m 
Lk(r) = - 1 &(k)(ht)(kr) - &(kr))k*dk (33) 

-m 

here ht’(kr) is the spherical Hankel function of the first kind: 

(34) 
i 

kr 
and ao(kr) is simply -i/(kr). 

#’(kr) = --ear 

The integral in (33) can be calculated via the contour integral (see equation (23)) 

Ir  = - { ,Co(k)ht’(kr)k2 dk (35) 
x r  

n 
= 2 i C p j  

j=1 
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Table 1. Zeros of the denominator jl - TI. 

635 

K 

(2 0.05 0.1 0.15 0.2 0.25 0.3 

0.3 0.996 0.994 0,992 0.989 0.986 0.983 
0.4 0.981 0.976 0.971 0.965 0.958 0.951 
0.5 0.949 0.941 0.932 0.922 0.912 0.902 
0.6 0.896 0.884 0.872 0.860 0.847 0.834 
0.7 0.815 0.801 0.787 0.773 0.758 0.743 
0.8 0.697 0.682 0.668 0.653 0.637 0.622 
0.9 0.514 0501 0.489 0.476 0.463 0.449 

where r has been sketched in figure 2. The poles of the integrand are due to &(k), the 
residues of the integrand are denoted by pi. &(k) is obtained from (17): 

The denominator of (37). 11 -TI, may have zeros inside r which are poles of the integrand 
in (35). Numerically it turns out that for every combination of albedo a and anisotropy 
constant g there is one simple zero on the imaginary axis of the complex k-plane between 
0 and +i. This zero will be called < and has been tabulated in table 1. 

The residue is found to be 

which is purely imaginary when < is on the imaginary axis. For the evaluation of the 
contribution from the cut we expand Lo(k) in powers of ilk: 

where the f superscript refers to both sides of the cut. The analogue of (24) for this special 
case now reads 

where &(r) is the exponential integral defined by 

E,(r) = lw ds . 
The leading term in (40) is given by p = 1. Upon calculation it appears that this is by far 
the most important term in (40). Thus, if we terminate the series in (40) at p = 1 we find 
after a straightforward but tedious calculation using L t l  = 3zlj2iri 

1 
r z  

L;(r) = Zip0 + -e-' (42) 

(43) 
e-' 

L&) = Re[2ip0] 4- - 
rz 
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01 

e-tr 
Lo@) = C - t - 

r rz 
where C is a constant, to be determined from (38). 

It is seen that the real-space radiance consists of two parts. In the literature [5] the 
first term in (44) is called the diffusive part and the second one the non-asymptotic part. 
Only for large distances from the source and for albedos close to unity we can neglect the 
non-asymptotic part. 

The calculation of Ll(r)  proceeds entirely in the same way. Note that Ll(k) is purely 
imaginary because of (9). Ll(r)  is obtained by taking the real part of 

where 

Proceeding in the same way as explained for Lo(r) we find for the leading term using 

LI.1 = - 1  &.z = +ini(l -a) (48) 

(49) Ll(r)  = Re[2ipll+ - El ( r )  + 1 - a  1 -a 

where p1 is the residue of the integrand of (45) in the zero of the denominator of &(r)  in 
(47). Again, as in the case of Lo(r), the first term gives the diffusive part, and the other 
terms the non-asymptotic part. 

The calculation of the angular moments Lr(r) with 1 > 1, can be done in terms of the 
previously calculated quantities .C, and Ll. This can be seen from (13) and (14) and from 
the fact that f, = 0 for 1 > 1. Once the &(k) are known, the corresponding LI(r) can 
again be calculated by residue and branch-cut integration, analogous to the above. 

As a check on our results we compared the calculated Buence rate to the outcome of a 
Monte Carlo simulation. The calculated fluence is simply 41~Lo(r), which can be seen by 
integrating (6) over all solid angles. The simulated fluence is the number of photons in a 
unit of volume, with no regard to their directions. 

In the actual simulation we launched photons from the origin, in batches of 10 000. We 
let them propagate until a scattering event took place. Then we counted the total number of 
photons in each spherical shell of width Ar = $ (in units of scattering free path p;'). After 
that, a fraction 1 - a of the photons was 'killed' while the remainder survived and was 
propagated one more step, according to a linear anisotropic phase function. Meanwhile, 
a new batch of 10000 was launched. The whole procedure was repeated until the total 
number of photons reached an equilibrium. When this was the case we compared the 
photon numbers to the result of (44) with an additional p = 2 term added (equation 40). It 
appeared that adding this term did not significantly alter the result, nor was this the case if 
any terms p > 2 were added. 

The outcome is shown in figure 3. Here we used the values a = 0.7 and g = 0.3. The 
full circles are the numbers of photons obtained from the simulation. The full curve is the 
theoretical prediction of these numbers, up to second order in (i lk) (equation (40)). The 

E d r )  + '. . r 
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Figure 3. 
calculations. 

Comparison of second-order resuh in p (cf qumion (40)) wirh Monte Carlo 

agreement is quite satisfactory. Also shown (broken curve) is the result that would have 
been obtained from diffusion theory, namely [I l l ,  (equation (4)) 

(50) 
1 

Dr Lo@) = - exp[-~,ffrI .  

Here D and pef f  involve the corrected transport cross section wrr.  which is given by 
ptr = [p.+ps(l -g)]-' [121 (equations ( 9 ) 4 4 ) ) .  In terms of the dimensionless quantities 
a and g they are given by 

(51) 
1 - a  perf = [3(1 - a ) ( l  - ag)]''' and D=-. 
4 7  

For small distances the approximation breaks down completely, as was to be expected. 
However, for large distances (> 3pL;'), equation (50) is seen to be a reasonable 
approximation for the real result. This implies that in this region the radiance has become 
diffuse, and therefore nearly isotropic. 

Now, from the work of Dogariu and Asakura [13] it follows that the typical distance for 
the decay of polarization effects is about five transport mean free paths (p;'), if the medium 
is not too densely packed. This suggests that polarization effects decay at least as slowly 
as anisotropy. Consequently, neglecting polarization is justifiable only as an intermediate 
step. Including it is certainly feasible, but not easy. Accordingly, neglecting it is common 
practice in most biomedical applications. 

Acknowledgment 
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Appendix A. Proof of a partial integration in section I 

In going from ( I )  to (S), we took some steps involving the operator V, which are not 
altogether straightforward. In fact we used 
, ” 

/v d r  exp[-ik * TI (R VL(r,  R)) = - / d r L ( r ,  R)(R. V)exp[-ik. r]  

where V is the full three-dimensional space. This step can be justified as follows. 

vector field B :  

(AI) 
V 

First from the product rule for differentiation we have for a general scalar field @ and 

JVdr@(V.  B) = /, dr@ajBj  

= /, d r V .  (gB) - / , d r ( B .  V)@ 

in which we denoted the components of V by aj and adopted the summation convention. 
By Gauss’ theorem, applied to the surface S of V ,  we can rewrite the first term on the right 
hand side of (A2) as I,, d r  V . (@B) = j ,  @(E3 -d2), where 5 is directed along the outward 
normal on the surface element do. As 62 is a constant vector, L . VR = 0 and hence 

(A3) R .VL = v .  (RL). 

If we regard RL(r, R) as one vector field and use equations (Al) and (AZ), we find that 

1 d r  exp[-ik. r ]  R . V L ( r ,  R) 

d r  exp[-ik. r] V . (RL(r, R)) 

exp[-ik . T] ((RL(r, 43) . d2) - 
=/, 
=.L 1, d r  L ( r ,  R)(n. V)exp[-ik . 7-1. 

(A4) 
Assuming that L(T, R) decreases sufficiently fast for large distances, we see that the surface 
integral vanishes, which proves (Al). 

Appendix B. Interpretation of the divergent integral in (19) 

In this section we will investigate the large-k behaviour of &(k) and the way it affects the 
inverse Fourier-Bessel transform. For &(k) we had (17) 

L = ( I - T ) - 1 s .  (B1) 
From equation (14) it is easy to see that for large Ikl the matrix elements of T tend to 

zero. Hence, from equation (Bl), we see that to order Ilk, &(k) behaves like S,(k), i.e. 

&(k) = &(k) +O(k-’) for ~kl + W .  (B 2) 
The asymptotic behaviour of S&) can be obtained from its integral representation (15). 
Thus, (see figure 4) 
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I r i  Figure Al. Integration contour in the complex pplane for the derivation 
- I  ' 0  1 of the asymptotic behaviour of S ( k )  and LI(k) (equation (B3)) 

where r is the entire closed contour in figure 4 and y is only the semicircle. The first 
integral yields, by the theorem of residues 

d p  = :e(:) Rek > 0 
r 

= O  R e k c O .  (B5) 
In the second term of equation (B3), we put p = e@ and expand the fraction to get 

1 "  
= - z i  S(ei4)d@ + O(k-') Ikl + W .  (B6) 

For odd 1, the first term in (B3) is only of order k-2, or zero. The second term follows 
The results are different according as 1 is even or odd. 

from equation (B6). Thus 

lim - - d p  = - lr &(ei4) d@ + O(k-') . 
I4+m 2 ' / I  --I 1 '(') + ikp (B7) 

For even 1, the procedure is analogous, but now the first term in equation (B3) also 
contributes. From equations (B4) and (B5) we see that this contribution is either (n/k)e(O) 
or 0. For the second term we find from (B6) 

lim A j -  d p  + O(k-*) = 5 i* fi(ei4) d@ 
Ikl+m 2 

Y 

(B8) 

where the last line follows, because for even I all terms in Fj(e*) are an even power of e'+. 
Hence, in the integral only the zero-degree term survives and gives 2n Pl(0). Hence, from 
(B3)-@6) and (B8) we have 

II -- - 4(0) + O(k-') 
2k 

II 
= - _  fi(O)+O(k-') Rek C O .  (B10) 

2k 
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We see that both for 1 even and for I odd, $(f) and therefore also &(k)  behave 
asymptotically like I l k .  However, for even I there is a change in sign, according as 
Re k is either z 0 or < 0 

The real-space radiance was given by (19) and (20) 

Li(r) = Re - i’ /+mLI(k)(hjl)(kr) -ar(kr))kZdk 
-m 

If we use that hj”(kr) behaves asymptotically l i e  keikr(-i)‘ and the asymptotic behaviour 
of C.l(k),  deduced above, we see that the integral in (B11) is divergent fork -+ foo.  To 
get around this, we consider the principal value of the integral and assign to L&-) the value 
around which this oscillates as the limits in the integral tend to infinity, i.e. 

To justify the use of the contour in section 4, we now calculate the contributions due 
to yl-y+ Because for s large and positive, hy)(iir) behaves like e-“/sr, the contributions 
due to y2 and y3 vanish. For that due to y1 we have for even 1 (from equations (B9) and 
(B 10)) 

Similarly, the contribution of y4 is for even 1 

Adding these results together, for the joint contribution we find 

( B W  

We interpret this result as the mean value around which it keeps oscillating as R + 00, 

and for r f 0 this is seen to be zero. This is called interpretation in the Cesko sense. Thus 
interpreted. the contribution of y1-y4 is therefore zero, as was assumed in the main text. 

i‘ 2i 
lim - 1 &(k)  (hj”(kr) - ar(kr))k2dk = ;IPi(0) (-1 +e-R‘) cosrR. 

R+m K 
nw4 

A completely similar argument holds if I is odd. 

Appendix C. Analytic properties of the integrals in (14) and (15) 

We will study the integrals 

and 
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Both integrals represent functions in the complex k-domain with branch points in k = 24. 
This can be shown simply and explicitly by considering the integral 

Without actually calculating this integral we see that I, is positive if k lies on the imaginary 
axis between -i and +i. So there the argument of In can be chosen to be zero. The integral 
can also be calculated explicitly: 

"-1 ( - l ) j  
I ,  = CC? [ (1 + ik)"-j - (1 - ik)"-j) 

J (n - j)( ikp-j  
j=O 

+- (-'In (log(1 + ik) - log(1 - ik)) 
(ik)"+' 

where CT is the combinatorial factor n ! / ( n  - j ) !  j !  Now we have to choose the appropriate 
branch for the logarithm: as I.  is positive for imaginary values of k between -i and +i, 
we write 

( - l y  l + i k  
-{log(l + ik) - log(1 - ik)] = - log - (-1Y 
(ik)"+' (ik)"f' 1 - ik 
where the principal branch of the logarithm has been chosen for k between -i and +i. So 
the cuts in the complex plane have to be chosen as sketched in figure 1. The argument of 
the multi-valued function contained in I, is therefore +R on the right-hand side of the cut 
starting at +i and -R on its left-hand side. 

The integrals to be studied in this appendiw are known and involve the function Q.(z) 
[14], which for -1 c z < 1 is given by 

('3) 
1 1 - z  

Q ~ ( z )  = 2pa(z)log1+2 + w"-l(z). 

This is actually the arithmetic mean of the values immediately above and below the cut 
which, in the complex z-plane, runs from -1 to 1. In accordance with the above, we have 
fork immediately to the right of the cut in the k-plane 

+ xi] + ~ , - i  (i) . 

Here, W,,-I(Z) is a polynomial in z of degree n - 1 with real coefficients, which will not 
be specified any further. 
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