
Algorithmica (2020) 82:386–428

https://doi.org/10.1007/s00453-019-00623-3

Analytic Combinatorics of Lattice Paths with Forbidden
Patterns, the Vectorial Kernel Method, and Generating
Functions for Pushdown Automata

Andrei Asinowski1,2 · Axel Bacher3 · Cyril Banderier3 ·

Bernhard Gittenberger1

Received: 1 November 2018 / Accepted: 24 August 2019 / Published online: 13 October 2019

© The Author(s) 2019

Abstract

In this article we develop a vectorial kernel method—a powerful method which solves
in a unified framework all the problems related to the enumeration of words generated
by a pushdown automaton. We apply it for the enumeration of lattice paths that avoid
a fixed word (a pattern), or for counting the occurrences of a given pattern. We unify
results from numerous articles concerning patterns like peaks, valleys, humps, etc.,
in Dyck and Motzkin paths. This refines the study by Banderier and Flajolet from
2002 on enumeration and asymptotics of lattice paths: we extend here their results
to pattern-avoiding walks/bridges/meanders/excursions. We show that the autocorre-
lation polynomial of this forbidden pattern, as introduced by Guibas and Odlyzko
in 1981 in the context of rational languages, still plays a crucial role for our alge-
braic languages. En passant, our results give the enumeration of some classes of
self-avoiding walks, and prove several conjectures from the On-Line Encyclopedia
of Integer Sequences. Finally, we also give the trivariate generating function (length,
final altitude, number of occurrences of the pattern p), and we prove that the number
of occurrences is normally distributed and linear with respect to the length of the walk:
this is what Flajolet and Sedgewick call an instance of Borges’s theorem.

Keywords Lattice paths · Dyck paths · Motzkin paths · Łukasiewicz paths · Pattern
avoidance · Autocorrelation · Finite automata · Markov chains · Pushdown
automata · Generating functions · Wiener–Hopf factorization · Kernel method ·
Asymptotic analysis · Gaussian limit law · Borges’ theorem

We dedicate this article to the memory of Philippe Flajolet, our cheerful and inspiring mentor, founder of
analytic combinatorics.

B Andrei Asinowski
andrei.asinowski@aau.at
https://me.aau.at/~anasinowski/

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-019-00623-3&domain=pdf
http://orcid.org/0000-0002-0689-0775
http://orcid.org/0000-0002-9789-7074
http://orcid.org/0000-0003-0755-3022
http://orcid.org/0000-0002-2639-8227

Algorithmica (2020) 82:386–428 387

1 Introduction

Combinatorial structures having a rational or an algebraic generating function play a
key role in many fields: computer science (e.g. for the analysis of algorithms involving
trees, lists, words), computational geometry (integer points in polytopes, maps, graph
decomposition), bioinformatics (RNA structure, pattern matching), number theory
(integer compositions, automatic sequences and modular properties, integer solutions
of varieties), probability theory (Markov chains, directed random walks); see e.g.
[8,22,42,78]. Rational functions are often the trace of a structure encodable by an
automaton, while algebraic generating functions are often the trace of a structure
which has a tree-like recursive specification (typically, a context-free grammar), or
which satisfies a functional equation solvable by variants of the kernel method.

One of the origin of this method goes back to 1968, when Knuth introduced it to
enumerate permutations sortable by a stack; see the solution to Exercise 2.2.1–4 in
The Art of Computer Programming [52, pp. 536–537], which presents a “new method
for solving the ballot problem”. For this problem, the solution involves the root of a
quadratic polynomial (the so-called kernel). The method was later extended to more
general equations (see e.g. [9,24,39,40]). We refer to [14] for more on the long history
and the numerous evolutions of this method, which found many applications e.g. for
planar maps, permutations, lattice paths, directed animals, polymers, may it be in
combinatorics, statistical mechanics, computer algebra, or in probability theory.

In this article, we show how a new extension of this method, which we call vec-

torial kernel method, allows us to solve the enumeration of languages generated by
any pushdown automaton. Since the seminal article by Chomsky and Schützenberger
on the link between context-free grammars and algebraic functions [27], which also
holds for pushdown automata [76], many articles tackled the enumeration of combi-
natorial structures via a formal language approach. See e.g. [36,56,61] for such an
approach on the so-called generalized Dyck languages. The words generated by these
languages are in bijection with directed lattice paths, and we show how these funda-
mental objects can be enumerated when they have the additional constraint to avoid a
given pattern. For sure, such a class of objects can be described as the intersection of a
context-free language and a rational language; therefore, classical closure properties
imply that they are directly generated by another (but huge and clumsy) context-free
language. Unfortunately, despite the fact that the algebraic system associated with the
corresponding context-free grammar is in theory solvable by a resultant computation
or by Gröbner bases, this leads in practice to equations which are so big that no current
computer could handle them in memory, even for generalized Dyck languages with
only 20 different letters.

Our vectorial kernel method offers a generic and efficient way to tackle such enu-
meration and bypass these intractable equations. Our approach thus generalizes the
enumeration and asymptotics obtained by Banderier and Flajolet [9] for classical
lattice paths to lattice paths avoiding a given pattern. This work continues the tra-
dition of investigation of enumerative and asymptotic properties of lattice paths via
analytic combinatorics [9,10,12,14]. This allows us to unify the considerations of
many articles which investigated natural patterns like peaks, valleys, humps, etc., in

123

388 Algorithmica (2020) 82:386–428

Dyck and Motzkin paths, corresponding patterns in trees, compositions, …; see e.g.
[5,16,25,33,38,53,57,60,62,66,69] and all the examples mentioned in our Sect. 8.

2 Definitions, Notations, Autocorrelation Polynomial

Let S, the set of steps, be some finite subset of Z, that contains at least one negative
and at least one positive number.1 A lattice path with steps from S is a finite word
w = [v1, v2, . . . , vn] in which all letters vi belong to S, visualized as a directed
polygonal line in the plane, which starts at the origin and is formed by successive
appending of vectors (1, v1), (1, v2), . . . , (1, vn). The letters that form the path are
referred to as its steps. The length of w = [v1, v2, . . . , vn], to be denoted by |w|, is
the number of steps in w (that is, n).

The final altitude of w, to be denoted by alt(w), is the sum of all steps in w (that
is, v1 + v2 + · · · + vn). Visually, (|w|, alt(w)) is the point where w terminates.

Under this setting, it is usual to consider two possible restrictions: that the whole
path be (weakly) above the x-axis and that the final altitude be 0 (that is, the path
terminates at the x-axis). Consequently, one considers four classes of lattice paths
(see Table 1, p. 6 for an illustration):

1. A walk is any path as described above.
The corresponding generating function is denoted by W (t, u).
Nota bene: in all our generating functions, the variable t encodes the length of the
paths, and the variable u the final altitude.

2. A bridge is a path that terminates at the x-axis.
The corresponding generating function is denoted by B(t). One has2 B(t) =
[u0]W (t, u).

3. A meander is a path that stays (weakly) above the x-axis.
The corresponding generating function is denoted by M(t, u).

4. An excursion is a path that stays (weakly) above the x-axis and also terminates at
the x-axis. In other words, an excursion satisfies both restrictions.
The corresponding generating function is denoted by E(t). One has E(t) =
M(t, 0).

For each of these classes, Banderier and Flajolet [9] gave general expressions for
the corresponding generating functions and the asymptotics of their coefficients. The
step polynomial of the set of steps S, denoted by P(u), is defined by

P(u) =
∑

s∈S

us . (1)

1 Without this assumption, the corresponding models are easy to solve: they are leading to rational gener-
ating functions. Our enumeration results still hold in these easy cases, but are then just classical folklore.
2 The notation [tn]F(t) stands for the coefficient of tn in the power series F(t).

123

Algorithmica (2020) 82:386–428 389

The smallest (negative) number in S is denoted by −c, and the largest (positive)
number in S is denoted by d: that is,3 if one orders the terms of P(u) by the powers
of u, one has P(u) = u−c + · · · + ud .

We extend the study of Banderier and Flajolet by considering lattice paths with step
set S that avoid a certain pattern of length ℓ, that is, an a priori fixed path

p = [a1, a2, . . . , aℓ] (where the ai ’s belong to S). (2)

To be precise, we define an occurrence of p in a lattice path w as a (contiguous)
substring which coincides with p. If there is no occurrence of p in w, we say that w

avoids p. For example, the path [1, 1, 1, 2,−3, 1, 2] has two occurrences of [1, 1],
two occurrences of [1, 2], and it avoids [2, 1].

Before we state our results, we introduce some notations.
A presuffix of p is a non-empty string that occurs in p both as a prefix and as a

suffix. In particular, the whole word p is a (trivial) presuffix of itself. If p has one or
several non-trivial presuffixes, we say that p exhibits an autocorrelation phenomenon.
For example, the pattern p = [1, 1,−2, 1,−2] has no autocorrelation. In contrast, the
pattern p = [1, 1, 2,−3, 1, 1, 2,−3, 1, 1] has three non-trivial presuffixes: [1], [1, 1],
and [1, 1, 2,−3, 1, 1], and thus in this case we have autocorrelation.

While analysing the Boyer–Moore string searching algorithm and properties of peri-
odic words, Guibas and Odlyzko introduced in 1981 [45] what turns out to be one of the
key characters of our article, the autocorrelation polynomial4 of the pattern p. For any
given word p, let Q be the set of its presuffixes; the autocorrelation polynomial of p is

R(t, u) :=
∑

q∈Q

t |q̄|ualt(q̄), (3)

where q̄ denotes the complement of q in p (i.e., p = qq̄). The choice of the letter R

to denote this polynomial is a mnemonic of the fact that it encodes the relations of the
pattern p.

For example, consider the pattern p = [1, 1, 2, 3, 1, 1, 2, 3, 1, 1]. Its four presuf-
fixes produce four terms of R(t, u) as follows:

Presuffix Length of its complement Final altitude of its complement
q |q̄| alt(q̄)

[1] 9 15
[1, 1] 8 14
[1, 1, 2, 3, 1, 1] 4 7
[1, 1, 2, 3, 1, 1, 2, 3, 1, 1] 0 0

3 Some weights (or probabilities) could be associated with each step. Most of the results would generalize
accordingly, we omit them in this article to keep readability.
4 A similar notion also appears in the work of Schützenberger on synchronizing words [77]. It should also
be added that the autocorrelations of a pattern allow to explain some famous paradoxes, e.g. why, in a
random sequence of coin tosses, the pattern HTT is likely to occur much sooner (after 8 tosses on average)
than the pattern HHH (needing 14 tosses on average): “All patterns are not born equal!” as Flajolet and
Sedgewick pleasantly write in [42, Example IV.11].

123

390 Algorithmica (2020) 82:386–428

Therefore, for this p we have R(t, u) = 1 + t4u7 + t8u14 + t9u15.
Notice that if for some p no autocorrelation occurs, then we have Q = {p} and

therefore R(t, u) = 1.
Finally, we define the kernel as the following Laurent polynomial:

K (t, u) := (1 − t P(u))R(t, u) + t |p|ualt(p). (4)

It will be shown in Proposition 4.4 of Sect. 4.2 that each root u(t) of K (t, u) = 0
is either small (meaning limt→0 u(t) = 0) or large (meaning limt→0 |u(t)| = ∞).
Moreover, the number of small roots (to be denoted by e) is the absolute value of the
lowest power of u, and the number of large roots (to be denoted by f) is the highest
power of u in K (t, u). In particular, if R(t, u) = 1, then we have e = max{c,− alt(p)},
and f = max{d, alt(p)}.

Equipped with these definitions, we can give a first illustration of some of our results
in Table 1. From now on, we use the notations W/B/M/E for generating functions
enumerating paths constrained to avoid a pattern p.

In the next section, we present in a more detailed way the generating functions of
all these paths.

Table 1 Summary of our results

For the four classes of paths and for any set of steps encoded by P(u), we find the generating functions of
such lattice paths that avoid a pattern p. The formulas involve the autocorrelation polynomial R(t, u) of p,
and the e small roots ui (t) of the kernel K (t, u). For meanders and excursions, the table shows the formula
for the special case when p is a meander itself; in the general case, these formulas might have a different
prefactor (see Theorem 3.2 below)

123

Algorithmica (2020) 82:386–428 391

3 Lattice Paths with Forbidden Patterns

In this section, we state our main results for the generating functions W/B/M/E of
walks, bridges, meanders, excursions, constrained to avoid a given pattern p. In all the
theorems, we denote by ℓ the length of the pattern p, and by alt(p) its final altitude.

Theorem 3.1 (Generating function of walks, generic pattern) Let S be a set of steps,

and let p be a pattern with steps from S.

1. The bivariate generating function for walks avoiding the pattern p is

W (t, u) = R(t, u)

K (t, u)
. (5)

If one does not keep track of the final altitude, this yields

W (t) = W (t, 1) = 1

1 − t P(1) + tℓ/R(t, 1)
. (6)

2. The generating function for bridges avoiding the pattern p is

B(t) = −
e

∑

i=1

u′
i (t)

ui (t)

R(t, ui)

Kt (t, ui)
, (7)

where u1(t), . . . , ue(t) are the small roots of the kernel K (t, u), as defined in (4).

In order to find the generating functions of meanders and excursions, we shall
use a novel approach that we call vectorial kernel method. With this method, we
obtain formulas that generalize those from the Banderier–Flajolet study (in which
they considered classical paths, without the additional pattern constraint).

Theorem 3.2 (Generating function of meanders and excursions, generic pattern) The

bivariate generating function of meanders avoiding the pattern p is

M(t, u) = G(t, u)

ue K (t, u)

e
∏

i=1

(

u − ui (t)
)

, (8)

where u1(t), . . . , ue(t) are the small roots of K (t, u) = 0, G(t, u) is a polynomial in

u (and a formal power series in t) which will be characterized in (27).
For excursions, just take the above closed form for u → 0.

Although we present here this formula under the paradigm of patterns in lattice
paths, it holds in fact much more generally for the enumeration of words generated by
any pushdown automaton. This shall become transparent via the proof given Sect. 5
and via the examples from Sect. 8.

We now introduce two classes of patterns for which the factor G(t, u) in Formula (8)
has a very nice simple shape.

123

392 Algorithmica (2020) 82:386–428

Definition 3.3 (Quasimeanders, reversed meanders) A quasimeander is a lattice path
which does not cross the x-axis, except, possibly, at the last step. A reversed meander

is a lattice path whose terminal point has a (strictly) smaller y-coordinate than all other
points. (Notice that the empty path is both a quasimeander and a reversed meander.)

Theorem 3.4 (Generating function of meanders, quasimeander pattern subcase) Let p

be a quasimeander.

1. The bivariate generating function of meanders avoiding the pattern p is

M(t, u) = R(t, u)

uc K (t, u)

c
∏

i=1

(

u − ui (t)
)

, (9)

where u1(t), . . . , uc(t) are the small roots5 of K (t, u) = 0. If one does not keep

track of the final altitude, this yields

M(t) = M(t, 1) = R(t, 1)

K (t, 1)

c
∏

i=1

(

1 − ui (t)
)

. (10)

2. The generating function for excursions avoiding the pattern p is

E(t) = M(t, 0) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(−1)c

−t

c
∏

i=1

ui (t) if alt(p) > −c,

(−1)c

tℓ − t

c
∏

i=1

ui (t) if alt(p) = −c.

(11)

Theorem 3.5 (Generating function of meanders, reversed meander pattern subcase)
Let p be a reversed meander.

1. The bivariate generating function for meanders avoiding the pattern p is

M(t, u) = 1

ue K (t, u)

e
∏

i=1

(

u − ui (t)
)

, (12)

where u1(t), . . . , ue(t) are the small roots of K (t, u) = 0.

If one does not keep track of the final altitude, this yields

M(t) = M(t, 1) = 1

K (t, 1)

e
∏

i=1

(

1 − ui (t)
)

. (13)

5 It will be shown in the proof that in this case we have e = c.

123

Algorithmica (2020) 82:386–428 393

2. The generating function for excursions avoiding the pattern p is

E(t) = M(t, 0) = (−1)e

D(t)

e
∏

i=1

ui (t), (14)

where D(t) := [u0]ue K (t, u) is either some power of t , or a difference of two

powers of t (similarly to (11), but with more cases that will be specified in the

proof in Sect. 5).

Remark 3.6 (Compatibility with the literature on classical lattice paths) Notice that
for these four classes of lattice paths, if one forbids a pattern of length 1 or if one
uses symbolic weights for each step, this recovers the formulas from Banderier and
Flajolet [9].

The proof will involve the adjacency matrix of a finite automaton which encodes
accumulating the prefixes of the forbidden pattern. This will be introduced in the next
section.

4 Automaton, AdjacencyMatrix A, and Kernel K = |I − tA|

4.1 The Automaton and Its Adjacency Matrix

In this section, we introduce an automaton which will allow us to tackle pattern avoid-
ance. As explained in Sect. 2, any path is seen as word (the steps are transformed into
alphabet letters). Let p = [a1, . . ., aℓ] be the “forbidden” pattern. Sharing the spirit of
the Knuth–Morris–Pratt algorithm, we build an automaton with ℓ states, where each
state corresponds to a proper prefix of p collected so far. We label these states X1,
. . ., Xℓ: the first state is labelled by the empty word (namely, X1 = ǫ) and the next
states are labelled by proper prefixes of p (namely, X i = [a1, a2, . . . , ai−1]). If the
automaton reads a path w, then it ends in the state labelled by the longest prefix of p

that coincides with a suffix of w. Note that the automaton is completely determined
by P(u) and p.

Let us describe the transitions of this automaton more precisely. For i, j ∈
{1, . . . , ℓ}, we have an arrow labelled λ from the state X i to the state X j if j is
the maximum number such that X j is a suffix of X iλ. Its adjacency matrix (also called
transition or transfer matrix by some authors) will be denoted by A: it is an ℓ×ℓ matrix,
and its (i, j)-entry is the sum of all terms uλ such that there is an arrow labelled λ

from X i to X j . See Fig. 1 for an example. The following general properties of A are
an easy consequence of its combinatorial definition:

• For all i, j such that j > i + 1, we have Ai, j = 0.
• The superdiagonal entries are Ai,i+1 = uai .
• For each j such that 2 ≤ j ≤ ℓ, every entry in the j-th column is either 0 or ua j−1 ,

depending on a procedure explained below.

123

394 Algorithmica (2020) 82:386–428

[1,2,1,2][1,2,1][1,2][1]ǫ

X1 X2 X3 X41 2 1 2

−1, 2 1−1 −1, 2 1 −1 1 2

u−1 + u2

u−1

u−1 + u2

u−1

u2

u

u

u

u

u

u2

u2

A =

d = 0

d = 1

d = 2

d = 3

1 2 1 2
2 1 2

1 2

2

1 2 1

1 2

1

A2,2 = u

A5,4 = u

A4,2 = u

A5,2 = 0

because we already have u

to the right of this entry

X5

-1

-1

-1

-1

Fig. 1 The automaton and the adjacency matrix A for S = {−1, 1, 2} and the pattern p = [1, 2, 1, 2, −1].
(The 0 entries of A are replaced by dots.) The powers of u in the superdiagonal (in red) correspond to
the pattern. For each other diagonal (consisting of entries surrounded in colour), there is only one nonzero
entry, according to a property illustrated in the bottom right part of the figure and explained hereafter (Color
figure online)

• The first column is such that all rows sum to P(u), except for the last row, where
this entry is P(u) − uaℓ (because the transition with aℓ is forbidden in this row, as
it would create an occurrence of the pattern p).

The entries of A along the diagonals surrounded in colour can be determined by
the following procedure, which is also illustrated in the bottom right of Fig. 1. For
d = 0, . . . , ℓ − 2:

1. If [a1, a2, . . . , aℓ−d−1] = [ad+2, ad+3, . . . , aℓ], then all the entries Ai, j with
i − j = d, j ≥ 2, are 0.

2. Otherwise, if k is the smallest number such that ak �= ad+1+k , then Ad+k+1,k+1 =
uk , unless a smaller d yielded uk in the same row, to the right of this position (if
this happens, Ad+k+1,k+1 = 0).

This more intimate knowledge of the structure of the adjacency matrix A will help
us to compute some related determinants.

4.2 Algebraic Properties of the Kernel: Link with the Autocorrelation Polynomial

It is well known that the matrix 1/(I − t A) = adj(I − t A)/ det(I − t A) (where I is
the identity matrix) plays an important role in the enumeration of walks. We will see
that this adjoint and this determinant also play a fundamental role in the enumeration
of meanders. In fact, the role of det(I − t A) in our study is the analogue of the role

123

Algorithmica (2020) 82:386–428 395

played by 1 − t P(u) in the study of Banderier and Flajolet [9], but, as we shall see,
the situation is more involved in our case.

Proposition 4.1 (Structure of the kernel) Let S be a set of steps, and let p be a pattern

with steps from S. Then the adjacency matrix A of the automaton satisfies

(1 0 · · · 0) adj(I − t A) (1 1 · · · 1)⊤ = R(t, u), (15)

det(I − t A) = K (t, u) = (1 − t P(u))R(t, u) + t |p|ualt(p), (16)

where R(t, u) and K (t, u) are the kernel and the autocorrelation polynomial, as

defined in (3) and (4). In particular, in the case without autocorrelation we have

det(I − t A) = 1 − t P(u) + t |p|ualt(p), and the sum of the entries in the first row of

adj(I − t A) is 1.

Proof Equations (15) and (16) will be proven in the course of the proof of Theorem 3.1.

Another important quantity related to the adjacency matrix is what we call the
autocorrelation vector, defined as
v := adj(I − t A) ·
1, where
1 denotes the column
vector (1, 1, . . . , 1)⊤ of size ℓ × 1. In Proposition 4.2 we give a simple combinatorial
description of this vector
v; in particular, this description has the advantage of smaller
computational cost than getting it via a case-by-case matrix inversion.

Proposition 4.2 (Structure of the autocorrelation vector) The autocorrelation vector

v := adj(I − t A) ·
1 satisfies

v = R(t, u)
1 −
s(t, u),

where the j-th entry of
s(t, u) is a polynomial, the generating function of a finite set

S j of walks (which we call the “subtracted set” of walks). The subtracted set S j is

the finite set of walks of length smaller than ℓ having the factorization w.aℓ.q̄ , where

1. w is any walk starting in state X j and ending in state Xℓ,

2. aℓ is the last step of the pattern p,

3. q̄ corresponds to a term of R(t, u) (that is, q̄ is the complement of some presuffix

q of p).

As this proposition is a little bit hard to digest, we give an example after the proof
(Example 4.3), and the reader will see that the situation is in fact simpler than what
she may have feared.

Proof First note that (I − t A)
v = K (t, u)
1 and A
1 = P(u)
1 − uaℓ
eℓ, where
eℓ =
(0, . . . , 0, 1)⊤.

Now define
s by
s := R(t, u)
1 −
v. Then

(I − t A)
s = −(I − t A)
v + (I − t A)R(t, u)
1
= −K (t, u)
1 + R(t, u)
1 − t R(t, u)A
1
= tuaℓ R(t, u)
eℓ − tℓualt(p)
1

where
eℓ = (0, . . . , 0, 1). This implies

123

396 Algorithmica (2020) 82:386–428

s = (I − t A)−1
eℓ tuaℓ R(t, u) − (I − t A)−1
1 tℓualt(p). (17)

In this form, it is now easy to give a combinatorial interpretation to the column vector
s:
its j-th component is the generating function of certain lattice paths for which the
associated automaton is in state X j before the walk does its first step.

The entries of (I −t A)−1 are the generating functions of lattice paths not containing
the pattern p = [a1, a2, . . . , aℓ], specifically: the (i, j)-entry of this matrix is the
generating function of such walks that start in state X i and end in state X j . Therefore,
the j-th component of (I − t A)−1
eℓ tuaℓ R(t, u) is the generating function of all lattice
paths that are composed as follows: first, start with a p-avoiding walk w that begins
in the state X j and ends in state Xℓ, followed by the single step aℓ, and then finally
by some complement q̄ of some presuffix q of the pattern p. Note that if the walk w

is long enough and q̄ is not the empty sequence, then adding the step aℓ to w makes
it end with q. So, w.aℓ.q̄ has an occurrence of p at the very end. Furthermore, having
added the step aℓ to w an occurrence of p is created unless w was shorter than ℓ.

The second term, (I − t A)−1
1tℓualt(p), is the generating function of all walks
avoiding p to which we add p at their end. We may have a single occurrence of p at
the end of the walk or two overlapping patterns if the first part of the walk ended with
some prefix of p, which needs only a presuffix to complete p; the completion is done
by the final occurrence of p.

We observed that the two terms on the right-hand side of (17) correspond to sets of
lattice paths. Clearly, any walk ending with p and having only one occurrence of p is
in both sets. And so is any walk having two overlapping occurrences of p at its very
end. However, the first set contains in addition paths being too short for having an
occurrence of p: they are precisely the set of paths described in the assertion. Since
this set is finite, its generating function is a polynomial.

Example 4.3 Consider as an example the lattice path model with some step set
S ⊇ {1, 2} and the pattern p = [1, 2, 1, 1, 2, 1]. The autocorrelation polynomial
is R(t, u) = 1 + t3u4 + t5u7, and the autocorrelation vector
v = adj(I − t A) ·
1 has
the following structure:

v=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 + t3u4 + t5u7

1 + t3u4

1 + t3u4 − t4u5 + t5u7

1
1 − t2u3 + t3u4

1 − tu + t3u4 − t4u5 + t5u7

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=(1 + t3u4 + t5u7)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
1
1
1
1
1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

−

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
t5u7

t4u5

t3u4 + t5u7

t2u3 + t5u7

tu + t4u5

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

↑ ↑
R(t, u)
s(t, u) (18)

Now, let us interpret the polynomials subtracted from R(t, u) according to Proposi-
tion 4.2. To this end, it is convenient to introduce a variant of the automaton defined at
the beginning of this section (see Fig. 1), in which we add a transition with the letter
aℓ from the last state to the state indexed by the longest presuffix which is shorter than

123

Algorithmica (2020) 82:386–428 397

[1,2,1,1][1,2,1][1,2][1]ǫ

X1 X2 X3 X41 2 1 1

2 1

[1,2,1,1,2]

X5 2

2 12 1 2

X6

Fig. 2 Illustration to Example 4.3: the automaton marking occurrences of the pattern 121121 (Color figure
online)

the whole pattern (in our case, it is the state labelled by [1, 2, 1]). Marking this new
transition allows us to count the occurrences of the pattern p, instead of just counting
walks avoiding this pattern. (Section 7 will be dedicated to this topic.) This gives the
automaton shown in Fig. 2.

With this automaton, it is easy to exhaustively list the walks having the factorization
w.aℓ.q̄ mentioned in Proposition 4.2 (n.b.: the suffix w does not contain the pattern
p, i.e., it is a word generated by the automaton without the added red transition); this
gives a combinatorial explanation of the components of the vector
s(t, u).

• For the first component of
s, the subtracted set of walks is in fact empty. Indeed,
each path w from X1 to X6, followed by the step aℓ, has at least length 6. So, there
are no walks that satisfy the condition of being shorter than ℓ. Therefore, we have

s1 = 0 (which holds in full generality, implying
v1 = R(t, u) for any pattern).

• For the second component of
s, we start in state X2. The length of the prefactor
w has to be smaller than ℓ − 1, and the only way to reach X6 in strictly fewer
than 5 steps is the path X2 → X3 → X4 → X5 → X6, which generates 2112,
to which we append the last letter aℓ = 1. Then the only possible q̄ is the empty
one (otherwise the path will be too long). Thus, the subtracted set of walks is
S2 = {2112.1.ε}, and its generating function is t5u7.

• For the third component of
s, the only sufficiently short walk from X3 to X6

is X3 → X4 → X5 → X6, and the only possible choice of q̄ is ε. Thus, the
subtracted set of walks is S3 = {112.1.ε}, and its generating function is t4u5.

• For the fourth component of
s, we have two ways to go from X4 to X6: X4 →
X5 → X6 and X4 → X3 → X4 → X5 → X6. In both cases, the only possible
choice of q̄ is ε. Thus, the subtracted set of walks is S4 = {12.1.ε, 2112.1.ε}, and
its generating function is t3u4 + t5u7.

• For the fifth component of
s, starting in X5, only one short path to X6 is possible:
X5 → X6, but in this case we have two choices for q̄: ε and 121. This gives
the subtracted set of walks S5 = {2.1.ε, 2.1.121}, and its generating function is
t2u3 + t5u7.

• For the sixth component of
s, starting in X6, the subtracted set of walks is S6 =
{ε.1.ε, ε.1.121}, and its generating function is tu + t4u5.

In conclusion, we combinatorially got
s = (0, t5u7, t4u5, t3u4 + t5u7, t2u3 +
t5u7, tu + t4u5)⊤, which agrees with Formula (18).

This autocorrelation vector
v plays a role for many problems of lattice path pat-
tern enumeration: it allows rewriting the initial functional equation associated to the
problem in a condensed system, with less unknowns. We shall see in the proof of The-

123

398 Algorithmica (2020) 82:386–428

Fig. 3 Three possibilities for the Newton polygon of the kernel K (t, u). This classification depends on
the final altitude h of the pattern p, and is exhaustive if R(t, u) = 1. Each point (i, j) corresponds to a
monomial t i u j of the numerator of K . The slopes of the convex hull segments on the left give the Puiseux
behaviour at 0 of the small and large roots ui and v j (Color figure online)

orem 3.2 (for the generating function of meanders) that
v will act as an eigenvector

for a system playing a key role in our enumeration.

4.3 Analytic Properties of the Kernel: Newton Polygons and Geometry of Branches

Let us end this section with the proof of an important property of the kernel, the number
of “small” and “large” roots u(t) of K (t, u) = 0:

Proposition 4.4 (Small and large roots of the kernel K) All roots u(t) of K (t, u) are

either small (meaning limt→0 u(t) = 0) or large (meaning limt→0 |u(t)| = ∞). Let

dK denote the degree of K (t, u) in u, i.e., dK = max{ j | [u j]K (t, u) �= 0}, and let lK

denote the lowest power of u in the monomials of K , i.e., lK = min{ j | [u j]K (t, u) �=
0}. Then, K has e small roots and f large roots, where e = max(0,−lK) and f =
max(0, dK)

Remark 4.5 The nested max / min is needed for the cases where either lK > 0 or
dK < 0. An example for such a model is S = {−1, 3} and p = [−1,−1], where we
have K = 1 − u3t − u2t2.

Proof Recall that the kernel K is defined as K (t, u) = (1 − t P(u))R(u) + tℓualt(p).

Now, consider ue K (t, u), which is a polynomial, and draw for each of its monomials
tr1ur2 a point (r1, r2) in the plane. This gives a set of points P . The Newton polygon6

of K is the boundary of the convex hull of P; of particular interest to us are the
segments of this polygon that are visible when we look from the left: their slope (it is
always a rational number) will give the exponent of the Puiseux expansions of each
root of K . Figure 3 shows schematically all possible shapes for the case R(t, u) = 1
(if R(t, u) �= 1, the possible shapes are more diverse). Each segment (in green) which
lies below the point (0, e) (they all have a negative slope) gives the Puiseux expansion
of a set of small roots. Each segment (in red) which lies above the point (0, e) (they
all have a positive slope) gives the Puiseux expansion of a set of large roots. We now
focus on the small roots and prove the proposition for them. (The proof for large
roots is similar and can be obtained from this one by the replacement u
→ 1

u
, which

corresponds to the vertical reflection of the Newton polygon.)

6 See [34, pp. 106–112] or [51, Chapter 6.3] for a nice presentation of the theory of Newton polygons.

123

Algorithmica (2020) 82:386–428 399

If the Newton polygon has no segment of negative slope (the ones drawn in green
in Fig. 3), then K is a polynomial in u (and in t as well) having the constant term 1.
Hence, K (t, u) = 1 + Q(t, u) where Q(t, u) is a polynomial in t and u with
lim(t,u)→(0,0) Q(t, u) = 0. This implies that small functions u(t) can never com-
pensate the constant term near t = 0, and so there are zero small roots and dK large
roots, in accordance with e = 0 and f = dK .

If the Newton polygon has at least one such segment of negative slope, then consider
one of them, denote it by �, and let −β/α be its slope. The two endpoints of �

correspond to monomials of ue K (t, u) (some other points of � also possibly do). Any
two such monomials differ by some power of tαu−β . If u ∼ C · tα/β as t → 0, then
tαu−β ∼ C−β , which is some nonzero constant. Thus, all monomials that correspond
to a point of the segment � are of the same order of magnitude as Puiseux series
in t . What about the other monomials? By construction of the Newton polygon, their
corresponding points must lie above the line containing the segment �. Hence, such a
point can be represented in the form tr1+ j ur2+k where (r1, r2) ∈ � and k > − jβ/α.
We now use the notation f (t) ≈ g(t) for limt
→0+ f (t)/g(t) = constant. If u ≈ tα/β ,
then one has

tr1+ j ur2+k ≈ tr1+ j+kα/βur2 .

Since k > − jβ/α, we have j + kα/β > 0 and thus the monomial tr1+ j ur2+k has a
smaller order of magnitude than the monomials corresponding to the points of P on
the segment �, like tr1 ur2 . The arguments above show that if u ≈ tα/β , then

ue K (t, u) ≈
∑

(r1,r2)∈P∩�

tr1ur2 . (19)

Now, let (�1, �2) denote the upper left endpoint of � and (�3, �4) be its lower
right endpoint. Clearly, the highest power of u in the right-hand side of (19) is u�2 and
the lowest one is u�4 . Thus the right-hand side of (19) is a polynomial in u that can be
split into u�4 and a polynomial of degree �2 −�4 which has a nonzero constant term.
Hence the number of non-trivial solutions equals �2 − �4. All those solutions are
small roots of the kernel. Moreover, note that �2 −�4 is the height of the segment �.

Among all monomials of the form t j u−e in K (t, u), let tλu−e be the one where
λ is minimal. If we draw the Newton polygon of the polynomial ue K (t, u), then it
contains the points (0, e) and (λ, 0). Assume that the polygonal line we obtain when
traversing the boundary of the Newton polygon from (0, e) to (λ, 0) consists of line
segments �1, . . . , �r of respective slopes −β1/α1, …, −βr/αr . Then, the line seg-
ment � j corresponds to a set of small roots of K (t, u) each satisfying u(t) ≈ tα j /β j as
t → 0. The number of such roots is equal to the height of � j , which is the difference
of the y-coordinates of the two endpoints of � j . In particular, this implies that the
number of small roots of K (t, u) is equal to e.

Using the same reasoning for the line segments (drawn in red in Fig. 3) above (0, e),
we obtain that the number of large roots of the kernel is indeed f .

123

400 Algorithmica (2020) 82:386–428

Table 2 Several examples that demonstrate the diversity of the behaviour of real branches of K (t, u) = 0

In all the examples the set of steps is S = {−2,−1, 0, 1, 2} (except for the last three examples, where S is
indicated explicitly), and the pattern p is as indicated. The kernel K may also have some complex branches
(large or small): they are not shown in the figure, but do play a role in our formulas

Table 2 on the next page gives several examples of plots of these small and large
roots. Then, equipped with all these notions, we can give the proofs of our main
theorems.

123

Algorithmica (2020) 82:386–428 401

5 Proofs of the Generating Functions for Walks, Bridges, Meanders,
and Excursions

In addition to our usual notations for generating functions of different classes of paths,
we denote by Wα = Wα(t, u) (where 1 ≤ α ≤ ℓ) the bivariate generating function of
those walks avoiding the pattern p that terminate in state α; similarly Mα = Mα(t, u)

for meanders avoiding the pattern p that terminate in state α.

Proof of Theorem 3.1 (Generating function of walks) and proof of Proposition 4.1 On
the one hand, we have the following vectorial functional equation:

(W1 · · · Wℓ) = (1 0 · · · 0) + t(W1 · · · Wℓ) A,

(W1 · · · Wℓ) (I − t A) = (1 0 · · · 0),

(W1 · · · Wℓ) = (1 0 · · · 0)
adj(I − t A)

det(I − t A)
.

Therefore, the generating function W (t, u), which is the sum of the generating func-
tions Wα(t, u) over all states, is equal to

W (t, u) = (W1 · · · Wℓ)
1 = (1 0 · · · 0) adj(I − t A)
1
det(I − t A)

.

On the other hand, the generating function for W (t, u) can be obtained using the
following combinatorial argument which en passant also justifies the introduction of
the autocorrelation polynomial, as done in the seminal work of Guibas and Odlyzko
[45]. We first introduce W {p}(t, u), the generating function of the walks over S that end
with p and contain no other occurrence of p. Then we have W+W {p} = 1+t PW (if we
add a letter fromS to a p-avoiding walk, then we either obtain another p-avoiding walk,
or a walk with a single occurrence of p at the end), and W tℓualt(p) = W {p} R (a walk
obtained from a p-avoiding walk by appending p at the end, can also be obtained from
a walk ending with a single occurrence of p at the end by appending the complement
of a presuffix of p). Solving this system, we obtain W (t, u) = R(t, u)/K (t, u).

Thus, we got two representations for W (t, u):

W (t, u) = (1 0 · · · 0) adj(I − t A)
1
det(I − t A)

= R(t, u)

(1 − t P(u))R(t, u) + t |p|ualt(p)
. (20)

In order to see that this is the same representation (that is, the numerators and the
denominators are equal in both fractions), we notice that det(I−t A) is a polynomial in t

of degree ℓ and constant term 1. This is also the case for (1− t P(u))R(t, u)+ tℓualt(p),
so this allows us to say that the two numerators in Formula (20) are actually equal.
This gives the proof of Theorem 3.1 for walks, and also proves Proposition 4.1 on the
structure of the kernel.

We now turn to the consequences of this formula for W (t, u) when one considers
bridges.

123

402 Algorithmica (2020) 82:386–428

Proof of Theorem 3.1 (Generating function of bridges) In order to find the univari-
ate generating function B(t) for bridges, we need to extract the coefficient of [u0]
from W (t, u). To this end, we assume that t is a sufficiently small fixed number,
extract the coefficient of a (univariate) function by means of Cauchy’s integral for-
mula, and apply the residue theorem (recall that u1, . . . , ue are the small roots of
K (t, u)):

B(t) = [u0]W (t, u) = 1

2π i

∫

|u|=ε

W (t, u)

u
du =

e
∑

i

Resu=ui (t)

W (t, u)

u
.

By the formula for residues of rational functions, we have

Resu=ui (t)

W (t, u)

u
= Resu=ui (t)

R(t, u)

u ((1 − t P(u))R(t, u) + tℓualt(p))

= R(t, u)

d
du

(u ((1 − t P(u))R(t, u) + tℓualt(p)))

∣

∣

∣

∣

∣

u=ui (t)

.

The denominator of this expression is

−tu P ′(u)R(t, u) + u(1 − t P(u))Ru(t, u) + alt(p)tℓualt(p)
∣

∣

∣

u=ui (t)
. (21)

Next, we differentiate K (t, ui) = 0 with respect to t and obtain an expression for
P ′(ui (t)). When we substitute it into (21), we obtain (7).

We now consider the nonnegativity constraint for the paths.

Proof of Theorem 3.2. (Generating function of meanders) We have the following vec-
torial functional equation:

(M1 · · · Mℓ) = (1 0 · · · 0) + t (M1 · · · Mℓ) A − t {u<0}
(

(M1 · · · Mℓ) A
)

,

or, equivalently,

(M1 · · · Mℓ)(I − t A) = (1 0 · · · 0) − t {u<0}
(

(M1 · · · Mℓ) A
)

, (22)

where {u<0} denotes all the terms in which the power of u is negative.
The right-hand side of (22) is a vector whose components are power series in t and

Laurent polynomials in u (of lowest degree ≥ −c). For α = 1, . . . , ℓ, denote the α-th
component of this vector by Fα = Fα(t, u) (the letter F can be seen as a mnemonic
for “forbidden”, as these components correspond to the forbidden transitions towards
a negative value as exponent of u). In summary, one has

(M1 · · · Mℓ)(I − t A) = (F1 · · · Fℓ). (23)

123

Algorithmica (2020) 82:386–428 403

We multiply this from the right by (I − t A)−1
1 = (adj(I − t A))
1
det(I − t A)

. At this point, we

denote
v =
v(t, u) := (adj(I − t A))
1, where
1 is the column vector (1 1 · · · 1)⊤.
This vector
v is the autocorrelation vector we encountered in Proposition 4.2. As a
direct consequence of its definition, one has

M(t, u) = (F1 · · · Fℓ)
v
K (t, u)

. (24)

The following step is the essential part of the vectorial kernel method. Let ui = ui (t)

be any small root of K (t, u) = det(I − t A). We plug in u = ui (t) into (23). The
matrix (I − t A)|u=ui

is then singular. At this point we observe that
v|u=ui
is an

eigenvector of (I − t A)|u=ui
belonging to the eigenvalue λ = 0. Indeed,
v|u=ui

=
(adj((I − t A)|u=ui

))
1 is equivalent to (I − t A)|u=ui

v|u=ui

= det((I − t A)|u=ui
)
1,

which implies (I − t A)|u=ui

v|u=ui

= 0. Moreover, due to the structure of A, we have
rank((I − t A)|u=ui

) = ℓ − 1, therefore, the dimension of the characteristic space
of λ = 0 is 1, and
v|u=ui

is the unique (up to scaling) eigenvector of (I − t A)|u=ui

that belongs to λ = 0.
Thus, if we multiply (23) by
v|u=ui

, the left-hand side vanishes. In other words, the
equation (F1(t, u), . . . , Fℓ(t, u))
v(t, u) = 0 is satisfied by every small root ui (t) of
K (t, u).

Let

(t, u) := ue (F1(t, u), . . . , Fℓ(t, u))
v(t, u). (25)

Note that
 is a Laurent polynomial, as the Fi ’s and
v are by construction Laurent
polynomials in u. What is more, since
(t, u) = ue M(t, u)K (t, u) by (24) and
since M(t, u) is a power series in u,
(t, u) has no negative powers of u and is thus
a polynomial. Now, we know that every small root ui (t) of K (t, u) is a root of a
polynomial equation

(t, u) = 0. (26)

It follows that

(t, u) = G(t, u)

e
∏

i=1

(u − ui (t)) (27)

for some G(t, u) which is a formal power series in t and a polynomial in u. We
substitute this into (24), and obtain the claimed formula

M(t, u) = G(t, u)

ue K (t, u)

e
∏

i=1

(u − ui (t)).

123

404 Algorithmica (2020) 82:386–428

If the degree of
(t, u) is precisely e, the formula simplifies as G is then just
the leading term (in u) of
(t, u). As we shall show now, this happens if p is a
quasimeander (as introduced in Definition 3.3).

Proof of Theorem 3.4 (Generating function of meanders, when p is a quasimeander)

First, we notice that all the powers of u in R(t, u) are non-negative, and alt(p) ≥
−c. Moreover, if alt(p) = −c, the cancellation of terms with u−c in K (t, u) is not
possible.7 Therefore, the lowest power of u in K (t, u) is c, and thus we have e = c

by Proposition 4.4.
Let us return to (22):

(M1 · · · Mℓ)(I − t A) = (1 0 · · · 0) − t {u<0}
(

(M1 · · · Mℓ) A
)

. (28)

We claim that all the components of the right-hand side, except for the first com-
ponent, are 0. Indeed, if the path arrives at state X i with i > 1, this means that it
accumulated a non-empty prefix of p. And since p is a quasimeander, w will always
remain (weakly) above the x-axis while it accumulates its non-empty prefix.

Therefore, we have
 = uc (F1 0 · · · 0)
v, and thus by (15),
 = uc F1 R. Since
the constant term of F1 is 1, uc F1 is a monic polynomial in u. Therefore, we have

 = R ·
c

∏

i=1

(u − ui).

This yields

M(t, u) = R(t, u)

uc K (t, u)

c
∏

i=1

(

u − ui (t)
)

(29)

as claimed.

Let us now simplify this formula for excursions, i.e., when u = 0.

Proof of Theorem 3.4 (Generating function of excursions, when p is a quasimeander)

The generating function of excursions is given by E(t) = M(t, 0). If alt(p) > −c,
we have, as u tends to 0, K (t, u) ∼ −tu−c R(t, 0) from (16). If alt(p) = −c, then we
have R(t, u) = 1 and K (t, u) ∼ −tu−c + tℓu−c. In both cases, (11) follows.

We now handle the next interesting class of patterns leading to generating functions
with a nice closed form: the case of reversed meanders. Recall that a reversed meander
is a lattice path whose terminal point has a (strictly) smaller y-coordinate than all other
points. Moreover, we define a positive meander to be a meander that never returns to
the x-axis.

7 The only exception is the case of p = [−c]. The case of patterns of length 1 is not interesting, so we
assume from now on that ℓ ≥ 2. Yet, one can check that our formula is also valid for ℓ = 1, with some
adjustments in the special case p = [−c].

123

Algorithmica (2020) 82:386–428 405

W (t, u)

M(t, u)

M−(t, u)

←−

M
+
(t, 1/u)

E(t) M+(t, u)

Fig. 4 The Wiener–Hopf factorization of a walk: W = M−E M+, a product of a reversed-meander, an
excursion, and a positive meander. See e.g. [44] for the importance of this factorization for lattice path
enumeration. This has further consequences on pattern avoidance when one reverses the time

Proof of Theorem 3.5 (Generating function of meanders, when p is a reversed mean-

der) If p is a reversed meander, then all the terms of R(t, u), except for the monomial 1,
contain negative powers of u, and we also have alt(p) < 0. Therefore, the highest
power of u in K is d, and (by Proposition 4.4) the number of large roots of K (t, u) = 0
is d: we denote them as above by v1, . . . , vd . The number of small roots can be in gen-
eral higher than c: as usual, we denote it by e, and the roots themselves by u1, . . . , ue.

We consider the following generalization of the Wiener–Hopf factorization for
lattice paths. If we split the walk w at its first and at its last left-to-right minimum,
we obtain a decomposition w = m−.e.m+, where m− is a reversed meander, e is a
translate of an excursion, and m+ is a translate of a positive meander. One also has
the decomposition w = m−.m, where m = e.m+ is a meander. Notice that these
decompositions are unique (Fig. 4).

Moreover, since p is a reversed meander, its occurrence cannot overlap the junction
of two factors. That is, m is p-avoiding if and only if its both factors are p-avoiding,
and w is p-avoiding if and only if its three factors are p-avoiding. Therefore, we have

M(t, u) = E(t)M+(t, u), (30)

and

W (t, u) = M−(t, u)M(t, u) = M−(t, u)E(t)M+(t, u),

where W (t, u), M−(t, u), E(t), M+(t, u) are the generating functions of p-avoiding
walks, reversed meanders, excursions, positive meanders (respectively). This in par-
ticular implies

123

406 Algorithmica (2020) 82:386–428

M(t, u) = W (t, u)

M−(t, u)
. (31)

By Theorem 3.1, we have W (t, u) = R(t, u)/K (t, u). In order to find M−(t, u),
we use a time reversal argument. Namely, we notice that a path is a reversed meander
if and only if its horizontal reflection (upon translating the initial point to the origin) is
a positive meander. The precise statement is as follows. Let −S = {−s : s ∈ S}; and
for the pattern p = [a1, a2, . . . , aℓ], let ←−

p = [−aℓ, . . . ,−a2,−a1]. Then there is a
straightforward bijection between p-avoiding reversed meanders with steps from S

and ←−
p -avoiding positive meanders with steps from −S which preserves the length

and reflects the altitude. Therefore, we have

M−(t, u) = ←−
M +(t, 1/u), (32)

where the arrow means that it is the generating function for ←−
p -avoiding paths (positive

meanders in this equation) with the step set −S (rather than p-avoiding with the step
set S).

Refer to the m = e.m+ decomposition above. As we noticed, if the pattern p is a
reversed meander, then m is p-avoiding if and only if both e and m+ are p-avoiding.
The same is true if p is a positive meander. Therefore, similarly to Formula (30),

M(t, u) = E(t)M+(t, u), we also have
←−
M (t, u) = ←−

E (t)
←−
M +(t, u). Combined

with (32), this implies

M−(t, u) = ←−
M +(t, 1/u) =

←−
M (t, 1/u)

←−
E (t)

. (33)

Since ←−
p is a meander, (9) holds for

←−
M (t, u) and we have

←−
M (t, 1/u) = ud ←−

R (t, 1/u)
←−
K (t, 1/u)

d
∏

j=1

(

1

u
− 1

v j (t)

)

= ud R(t, u)

K (t, u)

d
∏

j=1

(

1

u
− 1

v j (t)

)

. (34)

These identities are justified as follows. The equalities
←−
R (t, 1/u) = R(t, u) and←−

K (t, 1/u) = K (t, u) can be easily derived directly, but also notice that we have

W (t, u) = R(t, u)/K (t, u) and
←−
W (t, 1/u) = ←−

R (t, 1/u)/
←−
K (t, 1/u), and W (t, u) =←−

W (t, 1/u) from the bijective horizontal reflection. Finally,
←−
K (t, u) has d many small

roots and e many large roots: if ui (t) is a small root of K (t, u), then 1/ui (t) is a large

root of
←−
K (t, u); and if v j (t) is a large root of K (t, u), then 1/v j (t) is a small root

of
←−
K (t, u).

123

Algorithmica (2020) 82:386–428 407

Similarly, Eq. (11) holds for
←−
E (t), and we have

←−
E (t) = (−1)d+1

t

d
∏

j=1

1

v j (t)
. (35)

Notice that the leading term of the polynomial ue K (t, u) is −tud+e and, therefore,
one has

ue K (t, u) = −t

e
∏

i=1

(u − ui (t))

d
∏

j=1

(u − v j (t)). (36)

We now substitute (34) and (35) into (33) and use (36) to obtain

M−(t, u) = (−1)d+1 t ud R(t, u)

K (t, u)

d
∏

j=1

(

v j

(

1

u
− 1

v j (t)

))

(37)

= −t R(t, u)

K (t, u)

d
∏

j=1

(u − v j (t)) = ue R(t, u)
∏e

i=1(u − ui (t))
. (38)

Finally, we substitute this into (31) and obtain

M(t, u) = W (t, u)

M−(t, u)
= R(t, u)

K (t, u)

1

ue R(t, u)

e
∏

i=1

(u − ui (t))

= 1

ue K (t, u)

e
∏

i=1

(u − ui (t)). (39)

Remark 5.1 It is interesting to notice that though M(t, u), for p being a quasimeander
[as given in (29)], is similar to M(t, u), for p being a reversed meander [as given
in (39)], the latter does not contain the factor R(t, u) even if p has a non-trivial
autocorrelation.

Remark 5.2 It is also worth mentioning that if only the terminal point of the pattern p

has negative y-coordinate, then p is both a quasimeander and a reversed meander,
and R = 1. Therefore, we have M(t, u) = 1

ue K (t,u)

∏e
i=1(u − ui (t)) by both Theo-

rems 3.4 and 3.5.

Proof of Theorem 3.5 (Generating function of excursions when p is a reversed mean-

der) Excursions are given by M(t, 0), so we need to compute D(t) := [u0]ue K (t, u).
To this aim, first note that as p is a reversed meander (see Definition 3.3), one has the
following facts.

• In all the terms of R(t, u), the powers of u are non-positive.
• Moreover, if tm1/uγ1 and tm2/uγ2 are two distinct terms in R(t, u) such that 0 ≤

m1 < m2, then we have 0 ≤ γ1 < γ2.

123

408 Algorithmica (2020) 82:386–428

Therefore, we can order the terms of R(t, u) according to the powers of t , and write
ue K (t, u) as follows:

ue K (t, u) = ue

((

1 − t
(1

uc
+ · · · + ud

)

)(

1 + · · · + tm′

uγ ′ + tm

uγ

)

+ tℓualt(p)

)

,

where tm

uγ (the last term in R(t, u)) corresponds to the longest complement of a pre-
suffix. Now, we have the following cases:

• Case 1: c + γ > − alt(p). Then e = c + γ and we have D(t) = −tm+1.
• Case 2: c + γ < − alt(p). Then e = − alt(p) and we have D(t) = tℓ.
• Case 3: c + γ = − alt(p) and ℓ �= m + 1. Then e = c + γ = − alt(p) and

D(t) = tℓ − tm+1.
• Case 4: c + γ = − alt(p) and ℓ = m + 1. If ℓ ≥ 2, then m ≥ 1, and therefore

R(t, u) �= 1. Then e = c + γ ′ and D(t) = −tm′+1. As usual, we ignore the
degenerate case ℓ = 1.

In summary, we get the claim we wanted to prove, namely

E(t) = M(t, 0) = (−1)e

D(t)

e
∏

i=1

ui (t), (40)

where D(t) is either some power of t , or a difference of two powers of t .

Now that we have proven these closed forms for the generating functions, we can
turn to the asymptotics of their coefficients.

6 Asymptotics of Lattice Paths Avoiding a Given Pattern

The aim of this section is to characterize the asymptotics of the number of paths (walks,
bridges, meanders, excursions) with steps from S avoiding a given pattern p.

In order to avoid pathological cases, we now focus on “generic” walks.

Definition 6.1 (Generic walks) We call a constrained walk model generic if the fol-
lowing five properties hold:

• Property 1. The generating functions B(t), M(t) and E(t) are algebraic, not ratio-
nal.

• Property 2. They have a unique dominant singularity, which is algebraic, not a
pole.

• Property 3. The factor G(t, u) in Eq. (8) is a polynomial in t .
• Property 4. Let ρ be the smallest positive real number such that a large branch meets

a small branch at t = ρ. No large negative branch (i.e., a branch of K (t, u) = 0
such that limt→0+ u(t) = −∞) meets a small negative branch at t = ρ.

• Property 5. The smallest positive root of K (t, 1) is simple.

123

Algorithmica (2020) 82:386–428 409

These properties are natural and it is easy to analyse the subcases for which they are
not holding.

• For Property 1, it can be the case that the forbidden pattern leads to a degenerate
model, in the sense that it is no more involving any stack. Thus, we have words
generated by a regular automaton (hence, the generating functions are rational and
the asymptotics are well understood). Example: S = {−1, 1} with p = [1,−1] or
p = [−1,−1].

• For Property 2, it is proven in [7] that several dominant singularities appear if and
only if the gcd of the pairwise differences of the steps is not 1. In this case, the
asymptotics are obtained via [14, Theorem 8.8]. Moreover, polar singularities are
possible, but these are easy to handle.

• For Property 3, it is satisfied in many natural cases (like e.g. in Theorems 3.4 and
3.5) and we analyse in the follow-up article [3] what happens otherwise.

• For Property 4, we conjecture that it always holds. In fact, we have a proof for
many classes of walks, but some remaining cases are open. Note that it is possible
to exhibit cases where one small negative root meets a large negative root, at some
ρ′ > ρ: this is e.g. the case for S = {−2,−1, 0, 1, 2} with p = [0, 1,−2].
Moreover, it is also possible that two small negative roots meet at ρ: e.g. for
S = {−2, 1} with p = [1,−2, 1,−2].

• For Property 5, an example of a double root for K is given by S = {−1, 1} and
p = [−1, 1] (this example corresponds to the very last drawing in Table 2). Double
or higher multiplicity roots would just create additional subcases (trivial to handle)
in the following theorems.

We observe that the behaviour of real branches of K (t, u) = 0 is much more
complicated and diverse than that in the Banderier–Flajolet study. To recall, in their
case there are always two real positive branches (one small branch u1 and one large
branch v1) that meet at a singularity point (t, u) = (ρ, τ), where u = τ is the only
positive number such that P ′(τ) = 0. In contrast, in our case we may have additional
positive branches—even when the autocorrelation is trivial.

Table 2 from Sect. 4 illustrates that we always have a small branch and one large
branch whose shape in general resembles that of u1∪v1 observed for classical paths by
Banderier and Flajolet. In one sense, the geometry of the branches of K observed for
classical paths is now perturbed by the pattern avoidance constraint: this perturbation
adds new branches. In the next section, we introduce the generating function W (t, u, v)

where v encodes the number of occurrences of the pattern p. One can then play with v

like if it would encode a Boltzmann weight/Gibbs measure (a typical point of view in
statistical mechanics): moving the parameter v in a continuous way from 1 to 0 gives a
rigorous explanation of this perturbation phenomenon, and shows the coherence with
the emergence of new branches. More information about these branches (and their
Puiseux expansions) can be derived from the Newton polygon associated with the
kernel (see Proposition 4.4 and [34]).

Lemma 6.2 (Location and nature of the dominant singularity) For any generic model,

the dominant singularity of B(t) and E(t) is ρ, the smallest real positive number such

that a small branch meets a large branch at t = ρ. (The branches refer to the roots of

123

410 Algorithmica (2020) 82:386–428

K (t, u) = 0, as defined in (4)). We call these branches u1 and v1. Additionally, their

branching point is a square root singularity.

Proof Lattice paths avoiding a given pattern can be generated by a pushdown automa-
ton (see Fig. 1). Accordingly, they can be generated by a context-free grammar, and
their generating functions thus satisfy a “positive” system of algebraic equations (see
[27]). Therefore, the asymptotic number of words of length n in such languages is of
the form Cρ−nnα . When the system is not strongly connected, α is either an integer
(if ρ is a pole), either a dyadic number (if one has an iterated square root Puiseux
singularity at ρ), as proven by Banderier and Drmota in [8]. For excursions, one has a
strongly connected dependency graph (see Fig. 1); the dominant singularity ρ (or, pos-
sibly, the dominant singularities) thus behaves like a square root, as we have generic
walks (and not a degenerate case where we face a polar singularity).

Now, for generic walks, because of the product formula (8) for excursions, one
(or several) of the small roots have to follow this square root Puiseux behaviour. By
Pringsheim’s theorem, this has to be at a place 0 < ρ ≤ 1. Note that the Pólya–Fatou–
Carlson theorem [26] on pure algebraic functions with integer coefficients says that
they cannot have radius of convergence 1. Therefore, the first crossing between a small
and large branch is at 0 < ρ < 1 (i.e., ρ = 1 or any other root of t − tℓ, cannot be the
dominant singularity). Now, by Proposition 4.1, the geometry of the branches implies
that this branching point is at a location where a large branch meets a small branch,
because if the branching point comes from the intersection of small roots only (see
the examples 1, 6, 8 in Table 2 for such a case), then their product will be regular.
So, ρ has to be the smallest real positive number where a small branch meets a large
branch.

When one does not take into account occurrences of a pattern, the generating func-
tion of bridges is essentially the logarithmic derivative of the generating function of
excursions, and they have the same radius of convergence (the cycle lemma, the iden-
tity B = 1 + Et∂t A, Spitzer’s and Sparre Andersen’s formulas are alter egos of this
relation, see the paragraph “On the relation between bridges and excursions” in [9,
Theorem 5]). For walks with a forbidden pattern, this simple relation is not hold-
ing anymore and there is no apparent equation linking the two generating functions.
Nevertheless, the numbers en of excursions and bn of bridges of length n still satisfy
en ≤ bn ≤ nen (this is easily seen by doing the n cyclic shifts of each excursion). This
implies that E(t) and B(t) have the same radius of convergence.

Equipped with this additional information on the roots and the way they cross, we
can derive the following asymptotic results. Note that we use the notations Kt (t, u)

for (∂t K)(t, u), and Kuu(t, u) for (∂2
u K)(t, u). We start with the asymptotics of walks

on Z with a forbidden pattern.

Theorem 6.3 (Asymptotics of walks on Z) Let ρK be the smallest positive root of

K (t, 1). For any generic model, the asymptotic number of walks of length n avoiding

a pattern p is

Wn ∼ −ρK Kt (ρK , 1)R(ρK , 1)ρ−n
K .

123

Algorithmica (2020) 82:386–428 411

Proof This follows from the partial fraction decomposition of W (t) = R(t,1)
K (t,1)

, where
ρK is a simple pole as the model is generic.

Now, for excursions and bridges, the corresponding generating functions have an
algebraic dominant singularity; this leads to the following theorems.

Theorem 6.4 (Asymptotics of excursions) For any generic model, the asymptotic num-

ber of excursions of length n avoiding a pattern p is

En ∼ (−1)e−1 Y (ρ)G(ρ, 0)

D(ρ)

√

Kt (ρ, τ)

2πρKuu(ρ, τ)
· n−3/2ρ−n ,

where τ := u1(ρ), Y (t) := u2(t) · · · ue(t), and D(t) := [u0]ue K (t, u).

Proof of Theorem 3.2. We use the closed form given in Theorem 3.2. Since the model
is generic, the product G(t,0)

D(t)
Y (t) is analytic for |t | ≤ ρ. (Caveat: it can be the case

that some small branches are not analytic for some |t | < ρ, however, their product
is then analytic.) Now, for any generic pattern, D(t) is either a monomial or of the
shape given in Case 3, page 23, but, as ρ < 1 (as shown in the course of the proof of
Lemma 6.2), one thus has D(ρ) �= 0. So, the singularity and the local behaviour of E(t)

is completely determined by the singular behaviour of u1(t). This local expansion of
u1 is given by a local inversion of K (t, u) at (t, u) = (ρ, τ); this leads to

u1(t) ∼ τ −
√

2Kt (ρ, τ)

ρKuu(ρ, τ)

√

1 − t

ρ
, as t → ρ. (41)

The claim is then reached by singularity analysis (see [42]) on the Puiseux expansion

E(t) ∼ E(ρ) − (−1)e−1 Y (ρ)G(ρ, 0)

D(ρ)

√

2Kt (ρ, τ)

ρKuu(ρ, τ)

√

1 − t

ρ
.

Theorem 6.5 (Asymptotics of bridges) For any generic model, the asymptotic number

of bridges of length n avoiding a pattern p is

Bn ∼ − R(ρ, τ)

τ Kt (ρ, τ)

√

Kt (ρ, 1)

2πρKuu(ρ, 1)
· n−1/2ρ−n .

Proof We know from Lemma 6.2 that B(t) and E(t) have the same radius of conver-
gence, where B(t) is given by Eq. (7) from Theorem 3.1. Thus, the singular behaviour
of u1(t) determines the singularity and the local behaviour of B(t). We have therefore

B(t) ∼ − R(t, u1(t))

Kt (t, u1(t))

u′
1(t)

u1(t)
for t ∼ ρ,

with a denominator Kt which is not 0 for t = ρ. So, plugging the singular expansion
of u1 into this formula yields the result.

123

412 Algorithmica (2020) 82:386–428

We now introduce the notion of drift, which plays a role for the asymptotics of
meanders.

Definition 6.6 (Drift of a walk) For any given set of steps S and forbidden pattern p,
the drift is the quantity

δ := lim
n→∞

average final altitude of walks on Z of length n

n
.

Thus δ > 0, δ < 0, or δ = 0 correspond to the fact that almost all the walks of length n

on Z have a final altitude of order which is either +�(n), −�(n), or o(n), respectively.
One says that these walks (and the corresponding meanders/excursions/bridges) have
a positive, negative or zero drift, respectively.

As usual, the drift is not playing a role for the asymptotics of excursions and bridges.
Indeed, the constraint to force the walk to end at altitude zero is there “killing” the drift.
This is best seen by a “time reversal” argument: under this transformation, a bridge
stays a bridge (which then avoids the reverse forbidden pattern), one thus gets the
same generating function (note that K (t, u) then becomes K (t, 1/u)); therefore, the
asymptotics have to be independent of the drift. A similar reasoning holds for excur-
sions. Now, the next theorem shows how the drift does play a role for the asymptotics
of meanders. For meanders with negative or zero drift, the quantity ρ from Lemma 6.2
is also the radius of convergence of M(t). For meanders with positive drift, the radius
of convergence of M(t) is the dominant pole of 1/K (t, 1).

Theorem 6.7 (Asymptotics of meanders) Assume that the model is generic. Let ρ,

ρK , and τ be defined like in the previous theorems. We have one of the following three

cases:

• If τ = 1 and ρK = ρ, then we are in the “zero drift” case.

• If τ > 1 and u1(ρK) = 1 and all large roots v satisfy v(t) �= 1 for ρK < t < ρ,

then we are in the “negative drift” case.

• If either τ < 1, or τ = 1 but ρK < ρ, or τ > 1 but some large root v satisfies

v(ρK) = 1, then we are in the “positive drift” case.

Then the asymptotics of the coefficients of the meander generating function

M(t) = (1 − u1(t))Y (t)G(t, 1)

K (t, 1)
with Y (t) :=

c
∏

i=2

(1 − ui (t))

is given by

Mn ∼ G(ρ, 1)Y (ρ)

√

2

πρKt (ρ, 1)Kuu(ρ, 1)
· n−1/2ρ−n (“zero drift”),

Mn ∼ −G(ρ, 1)Y (ρ)

K (ρ, 1)

√

ρKt (ρ, τ)

2π Kuu(ρ, τ)
· n−3/2ρ−n (“negative drift”),

123

Algorithmica (2020) 82:386–428 413

Fig. 5 For the asymptotics of meanders, the key is to compare the location of the singularity ρ (the branching
point of u1, v1) with the zeroes of K (t, 1), and the values t such that ui (t) = 1

Mn ∼ − (1 − u1(ρK))Y (ρK)G(ρK , 1)

ρK Kt (ρK , 1)
· ρ−n

K (“positive drift”).

Proof Before we begin the case analysis, let us mention some preliminary facts. The
line u = 1 intersects the curve shaped by u1 ∪ v1 at some point (t0, 1) (see Fig. 5).
Notice that the right-most point of this curve is (ρ, τ). Thus t0 ≤ ρ, where equality
holds if and only if τ = 1. Moreover, observe that K (t0, 1) = 0 and thus ρK ≤ ρ,
where equality can only hold if τ = 1. This last fact comes as no surprise, as the
growth rate of all walks on Z is larger or equal to the growth rate of meanders, which
are a subset of walks restricted on N. It also tells us that the three cases listed in the
assertion cover all possibilities that may appear for generic walks.

Zero drift case: To prove the assertion, observe that the dominant singularity of
the generating function M(t) = (1 − u1(t))Y (t)G(t, 1)/K (t, 1) is at ρK = ρ and it
originates from a simple zero in the denominator K (t, u) and from u1. The singular
expansion of u1(t) at ρ [see Formula (41)] gives

M(t) ∼ G(ρ, 1)Y (ρ)

ρKt (ρ, 1)

√

2ρKt (ρ, 1)

Kuu(ρ, 1)

(

1 − t

ρ

)−1/2

= G(ρ, 1)Y (ρ)
√

2√
ρKt (ρ, 1)Kuu(ρ, 1)

(

1 − t

ρ

)−1/2

.

Negative drift case: We have τ > 1 and thus, by the preliminary facts listed in the first
paragraph, ρK < ρ. So, there is a simple zero of K (t, 1) at ρK , but this is cancelled,
as u1(ρK) = 1. Now, u1 has a square-root type singularity at ρ, thus singularity
analysis gives the last claim of the theorem, via the following Puiseux expansion at
the dominant singularity ρ

M(t) ∼ M(ρ) + G(ρ, 1)Y (ρ)

K (ρ, 1)

√

2ρKt (ρ, τ)

Kuu(ρ, τ)

√

1 − t

ρ
.

123

414 Algorithmica (2020) 82:386–428

Note that there may be a second zero of K (t, 1), say ρ2, which is smaller than ρ (and
larger than ρK). This means there is a small root u2(t) (large roots are excluded in the
negative drift case) of the kernel satisfying u2(ρ2) = 1. As Y (t) contains the factor
1 − u2(t), this zero is cancelled. In case the root ρ2 is a multiple zero of K (t, 1),
say of order ω, then there must be ω roots u2(t), . . . , uω+1(t) which meet at t = ρ2,
causing a singularity of order ω. But then again the factors 1 − ui (t), i = 2, . . . , ω,
in Y (t) cancel the pole. The same happens if further zeros of K (t, 1) appear before ρ.
Hence we conclude that the dominant singularity of M(t) is at ρ and originates from
the dominant singularity of u1(t).

Positive drift case: Here we have several subcases. Assume first that τ < 1 or τ = 1
and ρK < ρ. In fact, by the preliminary facts from the first paragraph, we know that
we have in both cases ρK < ρ, and hence the generating function has the dominant
singularity ρK which comes from the kernel only and is a simple pole. This implies

M(t) ∼ (1 − u1(ρK))Y (ρK)G(ρK , 1)

ρK Kt (ρK , 1)

1

1 − t/ρK

.

If τ > 1, like in the negative drift case, and some large root v satisfies v(ρK) = 1,
then there is no more a cancellation of the zero of K (t, 1) by one of the factors in
Y (t). Thus M(t) has a simple pole at ρK and we get the same expression as in the
other subcases.

These asymptotics also allow us to get results on limit laws, as presented in the next
section.

7 Limit Law for the Number of Occurrences of a Pattern

Our approach also allows us to count the number of occurrences of a pattern in paths.
As usual, an occurrence of p in w is any substring of w that coincides with p, and when
we count them we do not require that the occurrences will be disjoint. For example,
the number of occurrences of 11 in 1111 is 3. One has

Theorem 7.1 (Trivariate generating function for walks) The generating function of the

number of occurrences of the pattern p in walks on Z is

W (t, u, v) = 1

1 − t P(u) − tℓualt(p)(v − 1)/(1 − (v − 1)(R(t, u) − 1))
. (42)

Proof We give two proofs, each of them having its own interest. Both of them are of
wider applicability, see [42, pp. 60 and 212].

First proof, via symbolic inclusion-exclusion. Define a cluster as a sequence of
repetitions of the pattern p (possibly overlapping), where each occurrence of p is
marked by the variable v, so the set C of clusters is given by C = vp Seq(v(Q̄ − ǫ)),
where Q̄ − ǫ is the set of nonempty complements of presuffixes of p [the generating
function of which is R(t, u) − 1, see Formula (3)]. Obviously, W (t, u, v + 1) =
Seq(S + C). This directly gives (42).

123

Algorithmica (2020) 82:386–428 415

Fig. 6 Pushdown automaton and its associated adjacency matrix A. The automaton generates walks with
the set of steps S = {−1, 1, 2}, and marks each occurrence of the pattern p = [1, 2, −1, 1, 2]. In dashed
red we marked the arrow from the last state Xℓ labelled by aℓ, the last letter of the pattern. Giving a weight v
to this transition leads to enumerative formulas involving det(I − t A) as given in Eq. (46) (Color figure
online)

Second proof, via a system/adding a jump approach. Let W ≡ W (t, u, v) and
Wp ≡ Wp(t, u, v) be the generating functions of all words and, respectively, of words
ending with p, where v counts the number of occurrences of p. We show the following
two identities:

1 + W t P = W − Wp + v−1Wp , (43)

W tℓualt(p) = v−1Wp R − (R − 1)Wp . (44)

To show (43), take a word and add a letter to it. If the resulting word does not end
with p, it is counted by W −Wp; if it does, it is counted by v−1Wp. To show (44), take
a word w with i occurrences of p and consider the contribution of w.p to both sides
of the equation. Adding the pattern p to w creates a number j of extra occurrences
of p. The path w.p can be written in j ways as w′r , where w′ ends with p and r is an
autocorrelation factor, or j −1 ways if we impose that r �= ε. The word w.p therefore
contributes with a factor vi to W tℓualt(p), with a factor vi+1 +· · ·+ vi+ j to Wp R and
with a factor vi+1 + · · · + vi+ j−1 to Wp(R − 1). The formula (42) follows.

In order to get the formula for meanders, we reconsider the associated automaton
and its adjacency matrix A: we add a mark v to the transition which would lead to an
occurrence of p (see Fig. 6). As

123

416 Algorithmica (2020) 82:386–428

W (t, u, v) = (1 0 · · · 0) adj(I − t A)
1
det(I − t A)

, (45)

the above theorem has the consequence that

det(I − t A) = (1 − v)((1 − t P(u))R(t, u) + tℓualt(p)) + v(1 − t P(u)). (46)

This last equality follows from the fact that the denominators of the rational functions
(in Q(t)) in (45) and (42) are in fact the same irreducible polynomial of degree ℓ in t .

Accordingly, the trivariate kernel is thus defined as K (t, u, v) := det(I − t A).
Note that for v = 0 we get the kernel from the avoidance case [see eq. (4)], and for
v = 1 we get 1− t P (which is, as expected, the kernel from [9]). The formulas for the
trivariate generating functions of bridges, meanders, and excursions are thus like in
Theorems 3.1 and 3.2, where the ui ’s are now the small roots of the trivariate kernel.
This allows us to prove a universal asymptotic behaviour, an instance of what Flajolet
and Sedgewick pleasantly called Borges’s theorem (we comment more on it in the
conclusion).

Theorem 7.2 (“Borges’s theorem”: Gaussian limit laws for occurrences) Let Xn be

the random variable which counts the number of occurrences of a pattern in a generic

walk, bridge, meander, excursion model. Then Xn has a Gaussian limiting distribution

with E[Xn] = μn + O(1) and Var[Xn] = σ 2n + O(1) for some constants μ > 0 and

σ 2 ≥ 0:

1√
n

(Xn − E[Xn]) → N (0, σ 2).

Proof All these combinatorial structures are generated by context-free grammars
[7,36,56,61]. Accordingly, their generating functions satisfy a positive algebraic sys-
tem. Thus, it leads to Gaussian limit laws, as proven in [8, Theorem 9]: it comes from
following the dependencies in the graph associated with the system, and applying
Hwang’s quasi-power theorem to each component. To apply it, a positive variance
condition has to be checked: this is done via the trivariate version of the formulas of
Theorems 3.1 and 3.2, with the additional variable v counting the number of occur-
rences of the pattern.

8 Examples, Pushdown Automata

Directed lattice paths can be generated by context-free grammars [56], and it is
well-known that context-free grammars and pushdown automata/counter automata
are related (see the “Cinderella Book” [48, Sections 6.3, 6.4, and 8.5.4]). We want
here to promote the idea that pushdown automata are a powerful approach for lattice
path enumeration. Conversely, any pushdown automaton enumeration can be seen as
a lattice path problem (the stack encodes the altitude of the path), this allows us to
solve it via our vectorial kernel method. This is due to the fact that pushdown automata
have mainly two notions of acceptance:

123

Algorithmica (2020) 82:386–428 417

• acceptance by empty stack, this corresponds to the generation of excursions;
• acceptance by final state (whatever the value of the stack is), this corresponds to

the generation of meanders.

Let us now illustrate our method by diverse examples.

Example 8.1 (Forbidden patterns) We start with our initial problem of lattice paths
with forbidden patterns. Our theorems rediscover, in a uniform way, numerous results
by different authors obtained in the last years by different methods. We present some
of them in Table 3.

Next we now give several examples of a wide variety of questions on lattice paths,
that can also be tackled with our approach. In some cases, we omit the closed forms:
they are just a direct application of our approach, once the adjacency matrix A is
known. Some pushdown automata lead to a system for which an additional argument
is needed to identify the factor G in Theorem 3.2; we study this situation in more
detail in [3].

Example 8.2 (Motzkin paths without peaks and valleys)

The automaton on the left allows us to count Motzkin paths by marking each
peak (i.e., the pattern [1,−1]) and each valley (i.e., the pattern [−1, 1]). Forbidding
the transitions shown by red dashed lines, we get the automaton for Motzkin paths

without peaks and valleys. Then the kernel is K (t, u) = t3u+t2u−tu2−tu−t+u
u

, and it

has one small root u0(t) = 1−t+t2+t3−
√

(1−t4)(1−2t−t2)

2t
. The degree of
 (as in Eq. 25)

is equal to the number of small roots of K , and taking care of the leading term (in u)
of
 we obtain

M(t, u) = 1 − t2

1 − tu0(t)

u − u0(t)

uK (t, u)
.

Setting u = 1, we get the generating function for meanders

M(t) = M(t, 1) = − (1 + t)(1 − 2t − t2) −
√

(1 − t4)(1 − 2t − t2)

2t2(1 − 2t − t2)

=

√

1−t4

1−2t−t2 − t − 1

2t2
,

which corresponds to the sequence A308435.

123

https://oeis.org/A308435

418 Algorithmica (2020) 82:386–428

T
a
b
le
3

A
fe

w
ex

am
pl

es
in

w
hi

ch
ou

r
th

eo
re

m
s

pr
od

uc
e

se
qu

en
ce

s
fr

om
th

e
O

n-
L

in
e

E
nc

yc
lo

pe
di

a
of

In
te

ge
r

S
eq

ue
nc

es

S
te

ps
,p

at
te

rn
of

le
ng

th
ℓ
,m

od
el

G
en

er
at

in
g

fu
nc

ti
on

O
E

IS
re

fe
re

nc
ea

S
=

{−
1,

0,
1}

p
=

[1
,
0,

.
.
.
,
0,

−1
]

B
ri

dg
es

1
√

1
−

2t
−

3t
2

+
2t

ℓ
−

2t
ℓ
+1

+
t2

ℓ

ℓ
=

2:
A
0
5
1
2
8
6

(c
on

fi
rm

in
g

a
co

nj
ec

tu
re

th
er

ei
n

on
W

hi
tn

ey
nu

m
be

rs
;

se
e

al
so

[2
1]

)

S
=

{−
1,

0,
1}

p
=

[1
,
0,

.
.
.
,
0,

−1
]

M
ea

nd
er

s

1−
3t

+t
ℓ
−√

1−
2t

−3
t2

+2
tℓ

−2
tℓ

+1
+t

2ℓ

2t
(1

−3
t+

tℓ
)

ℓ
=

2:
A
0
9
1
9
6
4

(R
N

A
fo

ld
in

g,
se

e
[4

7]
)

S
=

{−
1,

0,
1}

p
=

[1
,
0,

.
.
.
,
0,

−1
]

E
xc

ur
si

on
s

1−
t+

tℓ
−√

1−
2t

−3
t2

+2
tℓ

−2
tℓ

+1
+t

2ℓ

2t
2

ℓ
=

2:
A
0
0
4
1
4
8

[5
0]

ℓ
=

3:
A
1
1
4
5
8
4

[5
8,

82
]

S
=

{1
,
−1

}
p

=
[1

,
−1

,
1,

−1
,
.
.
.
,
1]

E
xc

ur
si

on
s

1−
tℓ

+1
−√

1−
4t

2
+2

tℓ
+1

+4
tℓ

+3
−3

t2
ℓ
+2

2t
2
(1

−t
ℓ
−1

)

ℓ
=

3:
≈
A
0
0
1
0
0
6

(M
ot

zk
in

nu
m

be
rs

[7
3,

81
])

S
=

{1
,
−1

}
p

=
[1

,
−1

,
1,

−1
,
.
.
.
,
−1

]
E

xc
ur

si
on

s

1−
tℓ

+2
−√

1−
4t

2
+6

tℓ
+2

−4
t2

ℓ
+2

+t
2ℓ

+4
2t

2
(1

−t
ℓ
)

ℓ
=

4:
A
0
7
8
4
8
1

(i
rr

ed
uc

ib
le

st
ac

k
so

rt
ab

le
pe

rm
ut

at
io

ns
[1

5,
59

])

T
he

se
ex

am
pl

es
un

if
or

m
ly

re
di

sc
ov

er
re

su
lt

s
fr

om
se

ve
ra

l
ea

rl
ie

r
w

or
ks

,o
ft

en
re

la
te

d
to

D
yc

k/
M

ot
zk

in
pa

th
s,

an
d

in
ce

rt
ai

n
ca

se
s

al
so

co
nfi

rm
co

nj
ec

tu
re

s
a
S

uc
h

re
fe

re
nc

es
ar

e
li

nk
s

to
th

e
w

eb
pa

ge
de

di
ca

te
d

to
th

e
co

rr
es

po
nd

in
g

se
qu

en
ce

in
th

e
O

n-
L

in
e

E
nc

yc
lo

pe
di

a
of

In
te

ge
r

S
eq

ue
nc

es
(O

E
IS

),
ht

tp
s:

//
oe

is
.o

rg

123

https://oeis.org/A051286
https://oeis.org/A091964
https://oeis.org/A004148
https://oeis.org/A114584
https://oeis.org/A001006
https://oeis.org/A078481
https://oeis.org

Algorithmica (2020) 82:386–428 419

Setting u = 0, we get the generating function for excursions

E(t) = M(t, 0) = (1 + t)(1 − t)2 −
√

(1 − t4)(1 − 2t − t2)

2t2
,

which corresponds to the sequence A004149.

Example 8.3 (Basketball with alternation of team scoring)

In the pre-1980s basketball rules, each team could score 1 or 2 points at once.
Zeilberger and other authors [4,11,23] therefore considered the model of (old-time)
basketball excursions, where the step set is S = {2, 1,−1,−2}. If we now add the
constraint that each team cannot score twice in a row, this gives the automaton presented
on the left. It yields the bivariate generating function

M(t, u) = (1 + tu + tu2)
u − (tC(t2))2

u − (t(u + 1))2
, where C(t) = 1 −

√
1 − 4t

2t
.

This yields M(t, 1) = C(t2)

√

1+2t

1−2t
=

√

1+2t
1−2t

−1−2t

2t2
and E(t)= M(t, 0)=C2(t2),

which correspond to the sequences A001405 and A126120.

Example 8.4 (Walks/meanders/excursions of bounded height) If one considers mean-
ders of altitude bounded by h, they are easily generated by an automaton with h

states. In fact, the reader now familiar with our approach will realize that a pushdown
automaton with just one state is already enough: the kernel equation will encode the
boundedness by h and the positivity constraint! See [7,12,23] for further considera-
tions on the closed forms obtained. This bypasses the quickly intractable resolution
of a system h × h.

Example 8.5 (Partially directed self-avoiding walks) We can link some self-avoiding
walks and pattern avoiding lattice paths. In fact, the enumeration and the asymptotics
of self-avoiding walks in Z2 is one of the famous open problems of combinatorics and
probability theory. As it is classical for intractable problems, many natural subclasses
have been introduced, and solved. E.g., partially directed self-avoiding walks with
an added constraint of living in a half-plane or a strip [6]: they have three kinds of
steps, say n, e, and s, and the self-avoiding condition means that factors ns and sn are
disallowed. Consider the following three models:

123

https://oeis.org/A004149
https://oeis.org/A001405
https://oeis.org/A126120

420 Algorithmica (2020) 82:386–428

• in the first model, the half-plane is the one over the line x = 0; the heights of the
steps are alt(n) = 1, alt(e) = 0 and alt(s) = −1;

• in the second model, the half-plane is the one over the line x = y; the heights are
alt(n) = 1, alt(e) = −1 and alt(s) = −1;

• in the third model, the half-plane is the one over the line x = −y; the heights are
alt(n) = 1, alt(e) = 1 and alt(s) = −1.

These models are illustrated in Fig. 7. Each of them leads to an algebraic generat-
ing function, expressible via our method as a closed form involving the roots of the
kernel.

Example 8.6 (Motzkin paths with horizontal steps only at even/odd altitude) If one
wants to allow some specific set of steps depending on the altitude modulo some
period, the vectorial kernel method will do the job! Let us illustrate this with Motzkin
paths (S = {1, 0,−1}) with horizontal steps only at even altitude.

This pushdown automaton has two states, the first one corresponds to even altitudes,
the second one to odd altitudes. By design, it is clear that it generates Motzkin walks
with horizontal steps only at even altitude. Our vectorial kernel method then captures
the additional constraint of the positivity of the stack, and thus gives the generating
function for meanders (A307557) and excursions (A090344). En passant, let us mention
that excursions are given by a pleasant continued fraction (see e.g. [41] for a nice
survey):

Fig. 7 Some models of self-avoiding walks are encoded by partially directed lattice paths avoiding a
pattern (see [6])

123

https://oeis.org/A307557
https://oeis.org/A090344

Algorithmica (2020) 82:386–428 421

E(t) = 1

1 − t − t2

1 − t2

1 − t − t2

1 − t2

1 − . . .

.

If we want to enumerate Motzkin paths with horizontal steps only at odd altitude,
we adjust the automaton as shown on the left, and obtain the sequences A327421 (for
meanders) and A090345 (for excursions), see e.g. [18,32].

Example 8.7 (Duchon’s club without lonely visitors)

The terminology of Duchon’s club was introduced in [9] as a playful reference to
the nice article [36]. As some readers may wonder, we have to add that it is in no
way an allusion to some fancy habit of our highly honourable and very respectable
colleague Philippe Duchon! Here is the story. In the early evening, the club opens
empty, and then, during the full night, people are entering in couples and leaving in
groups of three people. Finally, the club closes empty at the end of the night. For sure,
you do not want to be alone in such a club! What is the number of possible scenarios?
These are excursions with step set S = {2,−3} and never going to altitude 1. This
enumeration is encoded by a single state automaton, and the kernel equation then fully
handles all the constraints. This leads to the sequences A327422 (for meanders) and
A327423 (for excursions).

Example 8.8 (Counting/avoiding humps and peaks in Motzkin paths) Consider
Motzkin walks: S = {−1, 0, 1}. A peak is the pattern [1,−1]. A hump is an occur-
rence of the pattern [1, 0∗,−1], that is, 1 followed by a (possibly empty) sequence of
0s, followed by −1. Humps were considered e.g. in [35,60,72]. We first consider the
generating function of walks counting the number of humps, similarly to our approach
from Sect. 7.

123

https://oeis.org/A327421
https://oeis.org/A090345
https://oeis.org/A327422
https://oeis.org/A327423

422 Algorithmica (2020) 82:386–428

The transition which was forbidden in the pattern avoidance setting is here repre-
sented with a variable v in the adjacency matrix A. This yields the trivariate generating
function with respect to length (t), final altitude (u), and number of occurrences of
humps (v). In particular, this leads to a Gaussian distribution, see Borges’s Theo-
rem 7.2.

Note that, upon a straightforward modification, the above automaton works not
only for the Motzkin walks, but also for any set of steps S ⊇ {−1, 0, 1}. Furthermore,
this offers more multivariate statistics “for free”. E.g., we can assign the weight v to

X3
−1−→ X1 and the weight vw to the transition X2

−1−→ X1: this will count humps
by v, and peaks by w. Our approach then gives the following closed form for the
corresponding quadrivariate generating function

F(t, u, v, w) =
√

� + (1 − w) vt3 + (vw − 2 u − 2) t2 + (2 u + 2) t − 1

2t
(

uv (w − 1) t3 +
(

−uvw + u2 + 2 u + 1
)

t2 − (1 + u)2 t + u
)

� =
(

(w − 1) vt3 − t2vw + 1
) (

(w−1) vt3+(−vw+4) t2 − 4 t+1
)

.

Now, the generating function of excursions with an even number of humps is

F(t, 0, v, w)/2 + F(t, 0,−v,w)/2.

If one additionally wants, say, an odd number of peaks, then the generating function
is

1

2

(

F(t, 0, v, w) + F(t, 0,−v,w)

2
− F(t, 0, v,−w) + F(t, 0,−v,−w)

2

)

.

Similar manipulations for different combinations of avoidance and parity con-
straints for peaks and humps lead to results summarized in Table 4 (we give the
OEIS entries for the corresponding sequences of meanders and excursions). We omit
the case of walks with no hump, as it would lead to trivial rational functions.

Table 4 OEIS entries for the sequences that enumerate Motzkin meanders (M) and excursions (E) with
avoidance and/or parity constraints on the number of peaks and humps.

Even number of humps Odd number of humps Any number of humps

No peaks
M: A325917
E: A325918

M: A325919
E: A325920

M: A091964
E: A004148

Even number of peaks
M: A325921
E: A325922

M: A325923
E: A325924

M: A307575
E: A307576

Odd number of peaks
M: A325925
E: A325926

M: A325927
E: A325928

M: A307577
E: A307578

Any number of peaks
M: A307555
E: A307564

M: A307572
E: A307573

M: A005773
E: A001006

123

https://oeis.org/A325917
https://oeis.org/A325918
https://oeis.org/A325919
https://oeis.org/A325920
https://oeis.org/A091964
https://oeis.org/A004148
https://oeis.org/A325921
https://oeis.org/A325922
https://oeis.org/A325923
https://oeis.org/A325924
https://oeis.org/A307575
https://oeis.org/A307576
https://oeis.org/A325925
https://oeis.org/A325926
https://oeis.org/A325927
https://oeis.org/A325928
https://oeis.org/A307577
https://oeis.org/A307578
https://oeis.org/A307555
https://oeis.org/A307564
https://oeis.org/A307572
https://oeis.org/A307573
https://oeis.org/A005773
https://oeis.org/A001006

Algorithmica (2020) 82:386–428 423

In fact, there are several thousand sequences related to directed lattice paths in
the On-Line Encyclopedia of Integer Sequences, and several hundreds of them can
be generated and analysed via the method presented in this article. Let us give a few
examples illustrating different types of set of steps and constraints:

• Dyck excursions with up steps colored in two colors (blue and red, denoted UB

andUR), and avoiding the patternUBUR (A006013, which also enumerates many
other objects!),

• Motzkin excursions avoiding UD, UU and DD (see A023432 and [31]),
• Schröder bridges (also called Delannoy paths) with k occurrences of DD that cross

y = 0 (see A110121 and [13,80]),
• excursions from (0, 0) to (3n, 0) that use steps u = (2, 1), U = (1, 2), and
D = (1,−1), and have k peaks uD or UD (see A108425 and [30]),

• Łukasiewicz paths with k U-steps that start at an even level (see A091894 and
[16,20]).

Moreover, there is a vast world of combinatorial models that can be encoded by
pushdown automata and, therefore, fall under the scope of the vectorial kernel method,
for example:

• patterns in permutations (see e.g. A105633, and [67,70]),
• patterns in trees and lambda terms (see e.g.A114997,A105633, and [19,29,74]),
• patterns in RNA structures (see e.g. A103140 and [47,50]),
• enumeration in Tamari-like posets (see e.g. A007477 and [5,17]),
• a mathematical model for bobbin lace (see A291083 and [49]).

We also list 200 other examples at the webpage https://lipn.fr/~cb/KernelMethod/,
where we maintain a list of OEIS references and publications focusing on objects
which can be handled by the vectorial kernel method. Moreover, many of these OEIS
entries contain conjectures on the recurrence satisfied by the sequence, or its asymp-
totics, or the algebraic equation satisfied by the corresponding generating function: in
numerous cases such conjectures can directly be solved by the vectorial kernel method
and basic computer algebra manipulations.

For some of these examples, it is possible to tackle the problem by using some
ad hoc decompositions, bijections with trees, or some variation of a classical ker-
nel method [28,37,43,46,54,55,63–65,68,71,75,79]. Some examples require to mark
several patterns at once, or to take a diagonal of our multivariate generating func-
tion (e.g. when the number of occurrences of a given pattern is required to be
proportional to the length n, or to the number of occurrences of another pattern),
etc. The method is really flexible and allows playing with variants of patterns, step
sets, colors, weights, values of the stack, constraints modulo 2, 3, … an endless
game!

We emphasize that the full approach is automatable (sic ?), so all such studies can
now morally be considered as computationally solved by our vectorial kernel method,
with some subtleties which will be presented in the follow-up article [3]. Thus, in a

123

https://oeis.org/A006013
https://oeis.org/A023432
https://oeis.org/A110121
https://oeis.org/A108425
https://oeis.org/A091894
https://oeis.org/A105633
https://oeis.org/A114997
https://oeis.org/A105633
https://oeis.org/A103140
https://oeis.org/A007477
https://oeis.org/A291083
https://lipn.fr/~cb/KernelMethod/

424 Algorithmica (2020) 82:386–428

style dear to the heart of Shalosh B. Ekhad and Philippe Flajolet, the vectorial ker-
nel method can be considered as a method to automatically prove enumerative and
asymptotic results for pattern occurrences in structures given by an algebraic system
of functional equations.

9 Conclusion

In this article, we presented a unifying way which gives the generating functions and
asymptotics of all families of lattice paths with a forbidden pattern, and we proved
that the number of occurrences of a given pattern is normally distributed. The same
techniques would, for instance, allow us to do the asymptotics of walks having exactly
m occurrences of a given pattern, or to consider patterns which are no longer a word
but a regular expression.

It is also nice that our approach gives a method to solve in an efficient way
the question of the enumeration and asymptotics of words generated by a push-

down automaton (or words belonging to the intersection of an algebraic language
and a rational language). What is more, it is possible to use our functional equa-
tion approach to analyse the intersection of two algebraic languages. Note that
testing whether this intersection is empty is known to be an undecidable prob-
lem, even for deterministic context-free grammars (see e.g. [48]), so we cannot
expect too much from a generic method in this case. However, we can specify
the type of system of functional equations that we get: indeed, this problem is
related to automata with two stacks, which, in turn, are known to have the same
power as Turing machines; the evolution of these two stacks corresponds to lattice
paths in the quarter plane (with steps of arbitrary length), the complexity of the
problem is reflected by the fact that one can then get generating functions which
are no more algebraic, D-finite, or differentially-algebraic, and we do not expect
some nice universal enumerative closed-form results here but a wider zoo of for-
mulas. On the other hand, some universal asymptotic behaviour is expected; it is
highly believable that all these cases will be new instances of what Flajolet and
Sedgewick called Borges’s Theorem: Any pattern which is not forbidden by design

will appear a linear number of times in large enough structures, with Gaussian fluc-

tuations.

For sure, it is more a metatheorem, a natural credo, and the claim should be
established rigorously in each case. Naturally, may it be with tools of probabil-
ity theory or of analytic combinatorics, there is always some technical conditions
to check to ensure this claim. In this article, our closed form expressions for the
generating functions were one of the keys, together with the universal behaviour
of the small roots. This allowed us to prove this Gaussian behaviour for the
number of occurrences of any given pattern. Year after year, this claim is estab-
lished for more and more combinatorial structures (it was done for patterns in
Markov chains, trees, maps, permutations, context-free grammars, and now... lattice
paths!).

123

Algorithmica (2020) 82:386–428 425

Let us conclude with the passage of Flajolet and Sedgewick [42, p. 61] which
explains where the concept of Borges’s Theorem comes from:

This property is sometimes called “Borges’s Theorem” as a tribute to the famous
Argentinian writer Jorge Luis Borges (1899-1986) who, in his short story “The
Library of Babel”, describes a library so huge as to contain:

“Everything: the minutely detailed history of the future, the archangels’ auto-
biographies, the faithful catalogues of the Library, thousands and thousands
of false catalogues, the demonstration of the fallacy of those catalogues,
the demonstration of the fallacy of the true catalogue, the Gnostic gospel
of Basilides, the commentary on that gospel, the commentary on the com-
mentary on that gospel, the true story of your death, the translation of every
book in all languages, the interpolations of every book in all books.”

Acknowledgements Open access funding provided by University of Klagenfurt. We thank the organizers
and referees of the conferences AofA 2018 and LATA 2018, where we presented some aspects of this work
(see [1,2]). This work was supported by the Austrian Science Fund (FWF), in the framework of the Special
Research Program Algorithmic and Enumerative Combinatorics (Grant SFB F50-03) and of the project
Analytic Combinatorics: Digits, Automata and Trees (Grant P 28466-N35).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Asinowski, A., Bacher, A., Banderier, C., Gittenberger, B.: Analytic combinatorics of lattice paths
with forbidden patterns: asymptotic aspects. In: 29th International Conference on Probabilistic, Com-
binatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 110, pp. 10.1–10.13 (2018)

2. Asinowski, A., Bacher, A., Banderier, C., Gittenberger, B.: Analytic combinatorics of lattice paths
with forbidden patterns: enumerative aspects. In: Language and Automata Theory and Applications.
LATA 2018, volume 10782 of Lecture Notes in Computer Science, pp. 195–206. Springer (2018)

3. Asinowski, A., Bacher, A., Banderier, C., Gittenberger, B.: Pushdown automata, the vectorial kernel
method, and underdetermined functional equations. In preparation (2019)

4. Ayyer, A., Zeilberger, D.: The number of [old-time] basketball games with final score n : n where the
home team was never losing but also never ahead by more than w points. Electron. J. Comb. 14(1),
R19 (2007)

5. Bacher, A., Bernini, A., Ferrari, L., Gunby, B., Pinzani, R., West, J.: The Dyck pattern poset. Discrete
Math. 321, 12–23 (2014)

6. Bacher, A., Bousquet-Mélou, M.: Weakly directed self-avoiding walks. J. Comb. Theory Ser. A 118(8),
2365–2391 (2011)

7. Banderier, C.: Combinatoire analytique des chemins et des cartes. Ph.D. thesis, Université Paris VI
(2001)

8. Banderier, C., Drmota, M.: Formulae and asymptotics for coefficients of algebraic functions. Comb.
Probab. Comput. 24(1), 1–53 (2015)

9. Banderier, C., Flajolet, P.: Basic analytic combinatorics of directed lattice paths. Theor. Comput. Sci.
281(1–2), 37–80 (2002)

10. Banderier, C., Gittenberger, B.: Analytic combinatorics of lattice paths: enumeration and asymptotics
for the area. Discrete Math. Theor. Comput. Sci. Proc. AG, 345–355 (2006)

123

http://creativecommons.org/licenses/by/4.0/

426 Algorithmica (2020) 82:386–428

11. Banderier, C., Krattenthaler, C., Krinik, A., Kruchinin, D., Kruchinin, V., Nguyen, D., Wallner, M.:
Explicit formulas for enumeration of lattice paths: basketball and the kernel method. In: Lattice Paths
Combinatorics and Applications. Developments in Mathematics Series, vol. 58, pp. 78–118. Springer
(2019)

12. Banderier, C., Nicodème, P.: Bounded discrete walks. Discrete Math. Theor. Comput. Sci. AM, 35–48
(2010)

13. Banderier, C., Schwer, S.: Why Delannoy numbers? J. Stat. Plan. Inference 135(1), 40–54 (2005)
14. Banderier, C., Wallner, M.: The kernel method for lattice paths below a rational slope. In: Lattice Paths

Combinatorics and Applications. Developments in Mathematics Series, vol. 58, pp. 119–154. Springer
(2019)

15. Baril, J.-L.: Avoiding patterns in irreducible permutations. Discrete Math. Theor. Comput. Sci. 17(3),
13–30 (2016)

16. Baril, J.-L., Kirgizov, S., Petrossian, A.: Enumeration of Łukasiewicz paths modulo some patterns.
Discrete Math. 342(4), 997–1005 (2019)

17. Baril, J.-L., Pallo, J.M.: Motzkin subposets and Motzkin geodesics in Tamari lattices. Inf. Process.
Lett. 114(1–2), 31–37 (2014)

18. Barry, P.: Continued fractions and transformations of integer sequences. J. Integer Seq. 12(7), Article
09.7.6 (2009)

19. Bendkowski, M., Grygiel, K., Lescanne, P., Zaionc, M.: Combinatorics of λ-terms: a natural approach.
J. Log. Comput. 27(8), 2611–2630 (2017)

20. Bevan, D.: Permutations avoiding 1324 and patterns in Łukasiewicz paths. J. Lond. Math. Soc. (2)
92(1), 105–122 (2015)

21. Bóna, M., Knopfmacher, A.: On the probability that certain compositions have the same number of
parts. Ann. Comb. 14(3), 291–306 (2010)

22. Bousquet-Mélou, M.: Rational and algebraic series in combinatorial enumeration. In: International
Congress of Mathematicians, vol. III, pp. 789–826. EMS (2006)

23. Bousquet-Mélou, M.: Discrete excursions. Sém. Lothar. Comb. 57, Article B57d (2008)
24. Bousquet-Mélou, M., Jehanne, A.: Polynomial equations with one catalytic variable, algebraic series

and map enumeration. J. Comb. Theory Ser. B 96(5), 623–672 (2006)
25. Brennan, C., Mavhungu, S.: Visits to level r by Dyck paths. Fund. Inform. 117(1–4), 127–145 (2012)
26. Carlson, F.: Über Potenzreihen mit ganzzahligen Koeffizienten. Math. Z. 9(1–2), 1–13 (1921)
27. Chomsky, N., Schützenberger, M.-P.: The algebraic theory of context-free languages. In: Computer

Programming and Formal Systems, pp. 118–161. North-Holland, Amsterdam (1963)
28. Dershowitz, N.: Nonleaf patterns in trees: protected nodes and Fine numbers. Submitted to J. Integer

Seq. arXiv:1908.04329 (2019)
29. Dershowitz, N., Zaks, S.: More patterns in trees: up and down, young and old, odd and even. SIAM J.

Discrete Math. 23(1), 447–465 (2009)
30. Deutsch, E.: Another type of lattice path. Am. Math. Mon. 107(4), 368–370 (2000). Problem 10658,

with solution by D. Callan, M. Beck, W. Bohm, R.F. McCoart, and GCHQ Problems Group
31. Deutsch, E., Elizalde, S.: Statistics on bargraphs viewed as cornerless Motzkin paths. Discrete Appl.

Math. 221, 54–66 (2017)
32. Deutsch, E., Munarini, E., Rinaldi, S.: Skew Dyck paths, area, and superdiagonal bargraphs. J. Stat.

Plan. Inference 140(6), 1550–1562 (2010)
33. Deutsch, E., Shapiro, L.W.: A bijection between ordered trees and 2-Motzkin paths and its many

consequences. Discrete Math. 256(3), 655–670 (2002)
34. Dieudonné, J.: Calcul infinitésimal, 2 edn. Hermann, Paris (1980). 1st edition in 1968: 479 pp, there

is also an English translation of the 1st edition in 1971, 427 pp
35. Ding, Y., Du, R.R.X.: Counting humps in Motzkin paths. Discrete Appl. Math. 160, 187–191 (2012)
36. Duchon, P.: On the enumeration and generation of generalized Dyck words. Discrete Math. 225(1–3),

121–135 (2000)
37. Dziemiańczuk, M.: On directed lattice paths with vertical steps. Discrete Math. 339(3), 1116–1139

(2016)
38. Eu, S.-P., Liu, S.-C., Yeh, Y.-N.: Dyck paths with peaks avoiding or restricted to a given set. Stud.

Appl. Math. 111(4), 453–465 (2003)
39. Eynard, B.: Counting Surfaces. Progress in Mathematical Physics, vol. 70. Springer, Berlin (2016).

CRM Aisenstadt chair lectures

123

http://arxiv.org/abs/1908.04329

Algorithmica (2020) 82:386–428 427

40. Fayolle, G., Iasnogorodski, R., Malyshev, V.: Random Walks in the Quarter-Plane. Applications of
Mathematics, vol. 40. Springer, Berlin (1999)

41. Flajolet, P.: Combinatorial aspects of continued fractions. Discrete Math. 32(2), 125–161 (1980)
42. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)
43. Georgiadis, E., Callan, D., Hou, Q.-H.: Circular digraph walks, k-balanced strings, lattice paths and

Chebychev polynomials. Electron. J. Comb. 15(1), R108 (2008)
44. Gessel, I.M.: A factorization for formal Laurent series and lattice path enumeration. J. Comb. Theory

Ser. A 28(3), 321–337 (1980)
45. Guibas, L.J., Odlyzko, A.M.: String overlaps, pattern matching, and nontransitive games. J. Comb.

Theory Ser. A 30(2), 183–208 (1981)
46. Hackl, B., Heuberger, C., Prodinger, H.: Ascents in non-negative lattice paths. arXiv:1801.02996

(2018). (Long version of Counting ascents in generalized Dyck paths, in Proceedings of Analysis of
Algorithms 2018.)

47. Hofacker, I.L., Reidys, C.M., Stadler, P.F.: Symmetric circular matchings and RNA folding. Discrete
Math. 312(1), 100–112 (2012)

48. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Compu-
tation, 3rd edn. Addison-Wesley, Boston (2006). (First edition in 1979)

49. Irvine, V., Melczer, S., Ruskey, F.: Vertically constrained Motzkin-like paths inspired by bobbin lace.
Electron. J. Comb. 26(2), P2.16 (2019)

50. Jin, E.Y., Qin, J., Reidys, C.M.: Combinatorics of RNA structures with pseudoknots. Bull. Math. Biol.
70(1), 45–67 (2008)

51. Kauers, M., Paule, P.: The Concrete Tetrahedron: Symbolic Sums, Recurrence Equations, Generating
Functions, Asymptotic Estimates. Texts and Monographs in Symbolic Computation. Springer, Berlin
(2011)

52. Knuth, D.E.: The Art of Computer Programming. Vol 1: Fundamental Algorithms. Addison-Wesley,
Boston (1968)

53. Krattenthaler, C.: Lattice path enumeration. In: Handbook of Enumerative Combinatorics, pp. 589–678.
Discrete Math. Appl. (Boca Raton), CRC Press

54. Kreweras, G., Moszkowski, P.: A new enumerative property of the Narayana numbers. J. Stat. Plan.
Inference 14(1), 63–67 (1986)

55. Kreweras, G., Poupard, Y.: Subdivision des nombres de Narayana suivant deux paramètres supplé-
mentaires. Eur. J. Comb. 7(2), 141–149 (1986)

56. Labelle, J., Yeh, Y.-N.: Generalized Dyck paths. Discrete Math. 82(1), 1–6 (1990)
57. Manes, K., Sapounakis, A., Tasoulas, I., Tsikouras, P.: Strings of length 3 in Grand-Dyck paths and

the Chung–Feller property. Electron. J. Comb. 19(2), P2 (2012)
58. Manes, K., Sapounakis, A., Tasoulas, I., Tsikouras, P.: Equivalence classes of ballot paths modulo

strings of length 2 and 3. Discrete Math. 339(10), 2557–2572 (2016)
59. Mansour, T.: Statistics on Dyck paths. J. Integer Seq. 9, Article 06.1.5 (2006)
60. Mansour, T., Shattuck, M.: Counting humps and peaks in generalized Motzkin paths. Discrete Appl.

Math. 161(13–14), 2213–2216 (2013)
61. Merlini, D., Rogers, D.G., Sprugnoli, R., Verri, M.C.: Underdiagonal lattice paths with unrestricted

steps. Discrete Appl. Math. 91(1–3), 197–213 (1999)
62. Mohanty, S.G.: Lattice Path Counting and Applications. Academic Press, Boston (1979)
63. Munarini, E., Salvi, N.Z.: Binary strings without zigzags. Sém. Lothar. Comb. 49, Article B49h (2002)
64. Niederhausen, H., Sullivan, S.: Ballot paths avoiding depth zero patterns. J. Comb. Math. Comb.

Comput. 74, 181–192 (2010)
65. Niederhausen, H., Sullivan, S.: Pattern avoiding ballot paths and finite operator calculus. J. Stat. Plan.

Inference 140(8), 2312–2320 (2010)
66. Niederhausen, H., Sullivan, S.: Counting depth zero patterns in ballot paths. Integers 12(2), 215–236

(2012)
67. Pan, R., Qiu, D., Remmel, J.: Counting consecutive pattern matches in Sn(132) and Sn(123). Adv.

Appl. Math. 105, 130–167 (2019)
68. Pan, R., Remmel, J.B.: Paired patterns in lattices paths. In: Lattice Paths Combinatorics and Applica-

tions. Developments in Mathematics Series, vol. 58, pp. 382–418. Springer (2019)
69. Park, Y., Park, S.K.: Enumeration of generalized lattice paths by string types, peaks, and ascents.

Discrete Math. 339(11), 2652–2659 (2016)

123

http://arxiv.org/abs/1801.02996

428 Algorithmica (2020) 82:386–428

70. Parviainen, R.: Lattice path enumeration of permutations with k occurrences of the pattern 2–13. J.
Integer Seq. 9(3), Article 06.3.2 (2006)

71. Qiu, D., Remmel, J.: Quadrant marked mesh patterns in 123-avoiding permutations. Discrete Math.
Theor. Comput. Sci. 19(2), Paper No. 12 (2018)

72. Regev, A.: Identities for the number of standard Young tableaux in some (k, ℓ)-hooks. Sém. Lothar.
Comb. 63, Article B63c (2010)

73. Righi, C.: Number of “udu”s of a Dyck path and ad-nilpotent ideals of parabolic subalgebras of
slℓ+1(C). Sém. Lothar. Comb. 59, Article B59c (2008)

74. Riordan, J.: Enumeration of plane trees by branches and endpoints. J. Comb. Theory Ser. A 19(2),
214–222 (1975)

75. Sapounakis, A., Tasoulas, I., Tsikouras, P.: Counting strings in Dyck paths. Discrete Math. 307(23),
2909–2924 (2007)

76. Schützenberger, M.-P.: On context-free languages and push-down automata. Inf. Control 6, 246–264
(1963)

77. Schützenberger, M.-P.: On the synchronizing properties of certain prefix codes. Inf. Control 7, 23–36
(1964)

78. Stanley, R.P.: Enumerative Combinatorics. Vol. 1. Cambridge Studies in Advanced Mathematics, vol.
49, 2nd edn. Cambridge University Press, Cambridge (2011)

79. Stein, P.R., Waterman, M.S.: On some new sequences generalizing the Catalan and Motzkin numbers.
Discrete Math. 26(3), 261–272 (1979)

80. Sulanke, R.A.: Objects counted by the central Delannoy numbers. J. Integer Seq. 6(1), Article 03.1.5
(2003)

81. Sun, Y.: The statistic number of udu’s in Dyck paths. Discrete Math. 287(1–3), 177–186 (2004)
82. Zhuang, Y.: A generalized Goulden–Jackson cluster method and lattice path enumeration. Discrete

Math. 341(2), 358–379 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Andrei Asinowski1,2 · Axel Bacher3 · Cyril Banderier3 ·

Bernhard Gittenberger1

Axel Bacher
https://lipn.fr/~bacher/

Cyril Banderier
https://lipn.fr/~banderier/

Bernhard Gittenberger
https://dmg.tuwien.ac.at/gittenberger/

1 Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Vienna, Austria

2 Institut für Mathematik, Alpen-Adria Universität Klagenfurt, Klagenfurt, Austria

3 LIPN, UMR CNRS 7030, Université Paris 13, Villetaneuse, France

123

http://orcid.org/0000-0002-0689-0775
http://orcid.org/0000-0002-9789-7074
http://orcid.org/0000-0003-0755-3022
http://orcid.org/0000-0002-2639-8227

	Analytic Combinatorics of Lattice Paths with Forbidden Patterns, the Vectorial Kernel Method, and Generating Functions for Pushdown Automata
	Abstract
	1 Introduction
	2 Definitions, Notations, Autocorrelation Polynomial
	3 Lattice Paths with Forbidden Patterns
	4 Automaton, Adjacency Matrix A, and Kernel K=det(I-tA)
	4.1 The Automaton and Its Adjacency Matrix
	4.2 Algebraic Properties of the Kernel: Link with the Autocorrelation Polynomial
	4.3 Analytic Properties of the Kernel: Newton Polygons and Geometry of Branches

	5 Proofs of the Generating Functions for Walks, Bridges, Meanders, and Excursions
	6 Asymptotics of Lattice Paths Avoiding a Given Pattern
	7 Limit Law for the Number of Occurrences of a Pattern
	8 Examples, Pushdown Automata
	9 Conclusion
	Acknowledgements
	References

