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Abstract 

Classically forbidden processes are those than cannot take place via 

ordinary classical dynamics. Within the framework of classical S-matrix 

theory, however, classical mechanics can be analytically continued and 

classical-ljmi t approximations obtained for these classically forbidden: 

or weak transition amplitudes (i.e., S-matrix elements). The most powerful 

and general way of analytically continuing classical mechanics for a 

complex dynamical system is to integrate the equations of motion them

selves through the classically inaccessible regions of phase space. 

Success in calculating these analytically continued trajectories is re

ported in this work; with certain special features of these complex-valued 

trajectories recognized and taken account of, it is seen that they are 

essentially as easy to deal with numerically as ordinery (i.e., real) 

classical trajectories. Application to the linear A + BC collision 

(vibrational excitation) gives excellent results; transition probabilities 

as small as 10-
11 

(the smallest ones available for comparison) have been 

obtained, agreement with the exact quantum mechanical values being within 

a few percent. 
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I. Introduction 

Recent work has shown how exact classical mechanics (i. e., mimerically 

computed classical trajectories) f'or a complex collision system, such as 

A+ Be, can be used semiclassically to c~mstruct the classical lim;i. t of' 

the quantum mechanical S-matrix for transitions between specific quantum 

states
l

- 3. This use of classical mechanics to construct classica.l-limit 

approximations for transition amplitudes (rather than transition probabil-

ities themselves) properly incorporates quantum superposition, and this 

appears often to be the principal contribution of quantum mechanics '.;0 

the dynamics of molecular collisions. 

One of the most intriguing aspects of this "classical S-matrix", 

theory is the possibility of using classical trajectories to obtain 

transition probabilities (or cross sections) for classically forbidden 
) 

lb lc 2a 
processes' , . By "classically forbidden" one does not mean that 

the transition is forbidden.by any conservation.law, such as being ener-

geticaily forbidden, but rather that classical dynamics simply does not 

. . 
lead to the transition. Although it may at first seem self-contradietory 

that classically f'orbidden processes can be in. any way described by a . 

classical-limit theory, there is actually a familiar example of this, 

namely the WKB approximation for one-dimesional barrier penetration
4 

(i. e., tunne'ling): the barrier penetration integral e is the classical 

action integral along a classical trajectory, the transmission probability 

being exp(-28). (See also Appendix A). 

Not only is the classically forbidden,or weak transition problem 

intrinSically interesting from a theoretical point of view, though, it 

has quite important practical aspects. Thus while the interference 

features that are seen when a number of transitions are classically 
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allowed are extremely interesting - and it is exciting to see that they 

can be accurately described by classical dynamics plus quantum super

ld 
position -it has been observed that they tend to be averaged out quite 

readily under any conditions except complete state selection. Consequently, 

a purely classical approach (with the usual Monte Carlo sampling methods) 
/ 

will likely be adequate for most practical purposes when many transitions 

are classically allowed. When all transitions are classically forbidden, 

however, a purely classical calculation of some collision property, such 

as the average energy transfer, is in general completely meaningless
ld

• 

(Under certain special conditions this may not be true
ld

.) 
, 

Classical 

S-matrix theory, however, shows how classical trajectories can" be used to 

. lb, lc 
describe these weak transltions 

Another useful point regarding the situatiori when all transitions of 

interest are classically forbidden is that one is typically interested in 

only a few transitions, namely the ones that are least forbidden classically 

and therefore have the largest probabilities. In the case of vibrational 

excitation of H2 or N2 at low collision energy, for example, one is 

primarily interested only in the 0 ~ 1 vibrational transition. 

Other examples of classically forbidden processes that are extremely 

important are reactive tunneling near the threshold of rearrangement 

processes, such as A + BC ~ AB + C, and electronic transitions between 

5 
adiabatic electronic states; a recent formulation of this latter problem 

has emphasized the fact that it is a special case of a classically 

forbidden process. 

Section II summarizes classical S-matrix theory in general, with a 

detailed discussion of the description of classically forbidden processes. 

The treatment of classically forbidden processes within the framework of 
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, , 

classical S-matrix theory is seen to be a problem of analytic continuation -

the analytic continuation of classical mechanics 'through classically 

inaccessible regions,oi' coordinate and momentum space. A procedure for 
, 

numerical analytic condition of the trajectory fWlCtions (via a rational 

approximation) is developed in Section III;this is much more powerful than 

the methods used previouslylC, ani excellent results are achieved for_ 

transition probabilities as small as 10- 5., There are, however, fundamental 

limitations to the degree that any such extrapolation method can be usefully 

continued into the classically forbidden domain; in addition, there are 

severe practical limitations because of the extreme accuracy required for 

the !'input" functional values. 

The "ultimate solution", however, is achieved in Section IV, where 

, ' 

it is shown how the equations of motion can therriselvesbe integrated' 

directly through classically inaccessible regions of coordinate and 

momentum space. This is the most general way of analytically continuing 

classical mechanics; e.g., it is the only one capable of describing 

reactive tunneling. The key element for the success of this procedure 

is the realization that analytically continued classical trajectories are 

in general unstable, and this feature has been overcome by integrating 

, 
such trajectories from both ends; i.e., one begins in the initial and 

final asymptotic regions ,and integrates both branches of the trajectory 

toward the interact,ion region, jOining the two at some appropriate point. 

Integrated in this manner, these analytically continued trajectories are 

quite well-behaved from a numerical point of view, and excellent results 

-11 
have been obtained; transitions with probabilities as small as 10 (the 

smallest available for comparison) have been obtained, with agreement 

wi thin a few percent of the exact quantum values., 
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II. Summary of Classical S-Matrix Theory for Classically Forbidden 

Transitions. 

The expressions defining the classical S-matrix are summarized below, 

where the system is taken to be the linear non-reactive A + BC collision 

(i.e., vibrational excitation); in addition to the translational degree 

of freedom, therefore, there is just one internal degree of freedom, 

vibration. This choice is purely for notational convenience, the expres-

sions appropriate to several degrees of freedom being obvious generaliza

tions that have been given previouslyla. 

The translational degree of freedom is described by its center of 

mass coordinate and momentum Rand P, and the vibrational degree of 

freedom by its action-angle variables
6 

nand q; n, the action variable of 

the vibra~ional degree of freedom! is the classical counterpart of the 

vibrational quantum number, and in the asymptotic regions ( R ~ ro ) it 

must be an integer (the semiclassical quantum condition). The n
l 
~ n

2 

vibrational transition probability is given by 

(11.1) 

where th~ classical S-matrix element is 

(:II. 2) 

cp(n
2
,n

l
) being the (total) action integral along the classical trajectory 

determined by the double-ended boundary conditions net) = n
l 

initially 

and n
2 

finally; in this quantum number representation the action integral 

is 
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t2 

f dt [R(t~ Nt) + q(t) n(t)] (11.3) 

tl 

If there is more than one trajectory with initial and final integer values 

n
l 

and n
2

, then Equation (11.2) is a sum of similar terms, one for each 

such trajectory. 

To find the desired trajectories fora specific n
l 
~ n

2 
transition 

(a non-linear bO\illdary-value'problem), it is convenient to introduce the 

classical trajectory function n
2
(ql,n

l
), the final value of the quantum 

number for the classical trajectory with initial conditions7 ql and n
l

• 

(Initial values for the translational coordinate and momentum are always 

determined impiicitly by those of. the internal degrees of freedom, total 

energy conservation, and the scattering boundary condition: Rl = large, 

P
l 

;, - 12!J.[E - E(n
l

)]/1/2 , where E(n) is the semiclassical eigenvalue 

function and E the total energy). One thus looks for values of ql which 

satisf'y the equation 

(II. 4) 

[It is hoped that this notation is not confusing; when n
l 

and n
2 

are-

written without arguments, they denote some integer value of the quantum 

number. Written with arguments, n
2

( ql' n
l

) is the final quantum number, 

not necessarily integral,that results from the classical trajectory ,-lith 

initial integral quantum numbern
l 

and conjugate angle ql~For the ° ~- 1 

vibrational transition, for example, Equation (n .. 4) reads n
2

(ql'O) = 1. ] 

.... 

The phase ~(n2,nl) is the time integral in Equation (11.3) along the 

trajectory with initial values n
l 

and qlequal to the root of Equation (n.4). 

The pre-exponential factor in Equation (n.2) is equivalently (and more 
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conveniently) evaluated by noting that 

(II.5) 

with ql evaluated at the root of Equation (rI. 4) . 

The n
l 
~ n

2 
transition is classically forbidden if there is no value 

of ql in its complete interval (0, 2w) for which Equation (rr.4) is 

satisfied. There will in general, however, be complex values of ql that 

satisfy Equation (rr.4). The task, therefore, is to analytically continue 

n
2
(ql,n

l
) as a function of ql (for fixed n

l
) so that it can be evaluated 

for complex ql and the roots of Equation (rr.4) thus found. To construct 

the S-matrix element in Equation (rI. 2) it is also necessary to analytically 

continue the phase ~(n2(ql,nl),nl) as a function of ql so that it can be 

evaluated at the complex ql determined by Equation (rr.4). Since ql is 

complex, ~ will also be complex, and it is the imaginary part of ~ that 

exp [-2rm<P/¥lJ (II. 6) 

this exponential damping is the characteristic feature of classically 

forbidden (i.e., tunneling) transitions. 

Just as for classically allowed transitions, there may be more than 

one complex root of Equation (rr.4), and the S-matrix element would then 

be a sum of several terms. [Since n
2
(ql,n

l
) is a real analytic function 

of ql' the complex conjugate of a root is also a root. The phase ~ is 

also a real analytic function of ql' however, so that ~(ql*) = <!J(ql)*' 

and. if rm ~(ql) > 0, then rm (P(ql*) < 0;. the root ql* would thus give an 

,I, 



-8-

eXponential enhancement to the transition probability, rather than a 

damping. It is thus obvious on physical grounds that one is only interested 

in roots for which Im ~ > 0 and thus always only one of a given pair 

ql and ql*·] One expects, however, the particular complex root for which 

I Im'P I i~ smallest to ,dominate the sum, so that one will normally need to 

analytically continue n
2
(ql,n

l
) only so far as the root of Equation (I1.4) 

that lies closest to the real ql-axis. 

At this point some discussion is in order-regarding the justification 

of our proceeding somewhat naively to analYtically continue Equation (II.2). 

One way of developing the theory is via an asymptotic evaluation of the 

path integral representatlon of the propagator. [The S-matrix is immediately 

. ..' . la obtalnable from the propagator .] Thus the exa~t quantum expression for 

the propagator in the coordinate representation is
8 

< x21 exp[ -il!( t2-tl)/~ II Xl > = J2 Dx( t) exp 1 H [x( t) J/~ I, (II. 7) 

Xl 

where x denotes all the coordinates of the system, Dx(t) is an integral 
8 ' , 

over all paths which connect the space time points Xl tl and x
2

t
2

, and ill 

is the classical action functional: 

ill[x(t)] 

\ 

t2 . 

f dt [t.mx(t)2 - v(x(t))] 

tl 

(II.8) 

'. 

Asymptotic evaluation of the path integral i'8 analogous to the asymptotic ~ 

evaluation of an ordinary integral of the form. 
' .•... 

A = t dx exp [if (x)/-fl J. 

Xl 

In this latter case one looks for points of stationary phase, 1. e., values 

\ 
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of x which satisfy 

f' (x) O. (ILIO) 

If there are no roots to Equation (ILIO) in the ,interval (x
l
,x

2
), then A 

will be exponentially small. There may be complex roots to Equation (11.10), 

however; let x be one such complex root. According to the method of 
o 

steepest descent9, one deforms the path of integration from the real 

x-axis toa contour which passes through the point x
o

' and the result is 

1 

A [27rin/f"(x )J2 exp[if(x )/11J 
o 0 

(11.11) 

ibis is exactly the same form as if x were real. 
0 

Asymptotic evaluation of the path integral would 
. 8 10 11 

proceed amtlogously' , ; 

would look for " paths of stationary phase" , i. e., paths x(t) which one 

connect xl and x
2 

and satisfy 

M[x(t)J = 0 (11.12) 

The path (or paths) which satisfy Equation (II.12) are, of course, those 

which satisfy the classical equations of motion
12

• If there are no real 

paths, the transition is classically forbidden and its probability thus 

exponentially small. There will in general, however, be complex paths 

that connect xl and x
2 

and which satisfy the classical equations of motion. 

Analogous to the steepest descent integration in the previous paragraph, 

one thus needs to deform the path integral to include the complex path 

x (t). Although the mathematics of path integration over complex paths 
o 

has not to our knowledge been developed, it should be fairly clear that 

the asymptotic value of the path integral in Equation (11.7) is of the 

desired form 
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where <I> (X
2

'X
l
)is the action function of Equation (II.S) evaluated along 

thecomplex·path x (t) which is determined by ,the classical equations of 
•. 0 

motion with boundary conditions xl andx
2

• 

Another way of arriving at this same result,but by more conventional 

methods, is to use the factS that the propagator in Equation (11.7) 

satisfies the time-dependent Schrodinger equation in the variables x
2 

and 

t
2

• Writing (for fixed xl,t l ) 

substituting into the Schrodinger equation,and expanding 

leads in the usual way13 to the Hamilton-Jacobi equation for S and the 
. 0 

continuity equation for Sl' (This is essentially the route used by 

2a . 
Marcus In his development of classical-limit theory.) Since a solution 

to the Hamilton-Jacobi equation is the action computed along a trajectory 

determined by the classical equations of motion
14

, one has that So = ¢(x
2
,x

l
)· 

Complex solutions to the Hamilton-Jacobi equation (which is what S is if o .. 

the transition is classically forbidden) are ignored in ordinary classical 

mechanics, but the classical-limit of quantum mechanics gives meaning to 

them. 
/ 

In concluding this section it is interesting to see how the boundary ~ 

conditions work out for an amilytically continued classical trajectory; 

in addition to allowing coordinates and momenta to be complex,. it will be 

seen that one must also allow the time to be complex. (Appendix A discusses 
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the role of complex time in more detail by way of a simple exactly solvabl ~ 

example.) 

Fqr a system of N degrees of freedom, let Rand P denote the trans la-

tional coordinate and mementum, and ~ and 5J, the set of (N-l) action-angle 

variables for the (N-l) internal degrees of freedom. The problem is to 

find the trajectory that has initial conditions 

~l 
=:: specified integers 

Sl anything 

Rl large (positfve) and 

PI - {2!-t [E - €(B
l

) J } 
1 
"2 

and final conditions 

~2 =:: specified integers 

~. 
=:: anything 

R2 =:: large (positive) and 

1 

P
2 

=:: + {2!-t [E - € (!22) J} "2 

real 

, 

real 

(rr.13a) 

(II.13b) 

(II.13c) 

(rI.13d) 

(rI.14a) 

(rI.14b) 

(Ir.14c) 

(rI.14d) 

and it is assumed that there are no ordinary (i.e., real) trajeotories 

that satisfy these boundary conditions; 

classically forbidden. One begins the 

i.e., the~ ~ ~2 transition is 1 . 

trajectory at time tl (which may 

be taken real) with the initial conditions in Equation (rr.13), where 511 

is in general complex, and may at this stage without restriction increment 

the time along the real time axis. During the trajectory there is coupling 

between all degrees of freedom and all the coordinates and momenta become 

complex; thus the final values ~2' R
2

, etc., are in general complex. The 

classical· trajectory relation ~2(~1'£1) =:: :e2 ,however, is a set of 2N-2 

equations -
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o 

in terms of the 2N-2unknowns Re q , Im q ; the final boundary conditions 
"-'1 ,,-,1' 

in Equation (11.14a) can therefore be ~atisfied bya specific choice of 

the variables 51
1

• The problem remains, however,thatR
2 

is complex, but 

this is taken care of by the choice of t
2

• Thus, if the trajectory is 

"-

initially terminated in the final asymptotic region at the real time t2 

(Le., the integration fromtl'to t2 has been along the real time axis), 

R
2
= R(t

2
) is in general complex; since the trajectory is in the asymptotic 

region, however, 222 and P2 are constant in time, so that 

h' h' 15 and t e c Olce 

, 

makesR
2 

=R(t
2

) real (equal to Re R
2

). 

, , 

, .. 

Since £2 andP
2 

are constant in the final asymptotic region, this 

last time increment from t2 to t2' actually has 'no effect on anything of 

interest [i.e., the quantum number £2 or the phase ~(£2'£1) of Equation 

(11.3) J: it is necessary only to obtain a consistent description of the 

analytically continued trajectories. Furthermore, 'it is important to 

realize that the final values £~, R
2

, etc., depend only £!! the total time 
\ 

'difference (t
2
-t

l
) and n?t ,on the path in the complex t~e plane along 

which the trajectory is integrated (this follows because the classical 

Hamiltonian is not an explicit function of time); as will be seen in 

Section IV:, for example', it is useful to expJ,oitthis faCt and choose 

" 

• 
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the path in the complex t-plane in such a way as to facilitate the 

calculation. 

Finally, for reasons to be discussed in Section IV, it is actually 

not possible in practice to integrate these analytically continued trajec-

tories from the initial asymptotic region straight through to the final 

asymptotic region; one must begin at both ends of the trajectory and 

integrate toward the middle. The above discussion concerning the nature 

of the boundary conditions, however, is unchanged. 

III. Numerical Analytic Continuation. 

The first procedure we discuss for analytically continuing the 

function n
2

(ql) (where, for convenience, the dependence on n
l 

is not 

indicated explicitly) might more descriptively be referred to as "curve

fitting"; i.e., n
2

(ql) is computed for real values of ql in the interval 

(O,~) by integrating ordinary classical trajectories, these values are 

used to fit the function to some analytical form, and this analytical fit 

to n
2

(ql) is used to evaluate the function for comple~ values of ql. 

In earlier work
lC

, for example, the periodic nature of n
2
(ql) 

[n
2

(ql + 2Tr) :: n
2

(ql)] was taken into account, expanding it in a Fourier 

series 

(111.1) 

where the basis functions ~(ql) are 

cOS(kq~2) ,k even 

~(ql) (111.2) 

sin [(k+l)q~2], k odd , 
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. arid N is an even integer. The N+l coefficients {~} are determined by 

.. 16 . 
Hildebrand's method from the values of n

2
( (tl) oomputed at the N equally 

spaced points g'l = k(2ir/N), k = 1, ••. ,N.With the coefficients thus 

determined, Equation (111.1) was then used to find the complex roots of 

Equation (II.4)j the phase <I>(ql) :: .<I>(n
2
(ql,n

l
),n

l
) was similarly17 

analytically continued as a function of ql' and the transition probability 

evaluated from Equation (11.1), (IL2),and (11.5). To guarantee that 

n
2

( ql) was being accurately represe~ted by Equati.an (111.1), the calculation 

was repeated with successively larger values of N until the resulting 

transition'pr~babilities were unchanged. 

This Fourier series representation of n
2

(ql) gave good results
lc 

if 

the transition was not too forbidden classically, i. e., if the imaginary 

part of ql' the root of Equation (11.4), was not too large; in practice 

this meant that one was unable to describe transitions with a probability 
I 

smaller than about 10-3. It was noted that the origin of the difficulty 

is that for large . lIm qll the Fourier series becomes a power series in 

the v?-riable exp( lIm q11) and appears to be otily asymptotically 

convergent. Thus if lIm qll is not too large, successive terms in 

Equation (111.1) decrease rapidly in magnitude, so that the. series can 

be truncated (before it begins to diverge) and accurate results obtained; 

if I.Im qll is too large, however, the series begins to diverge before it 

has "settled down", the typical phenomenon for asymptotic series outside 

their domain of utility. 

... 18 
Due to recent advances there are now much more powerful methods 

available for numerical analytic continuation; these methods all employ 

a ratio of polynomialS in some variable and are referred to as rational 

approximations, Pade approximants, etc}8. The practical element gained 

.j 

. i 
\ 
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by using a ratio of polynomials is 'that polar singularities in the function 

can be explicitly accounted for, so that useful results can be obtained 

beyond such singularities; a power series would of course fail to converge 

passed its ·first singularity. 

In place of Equation (111.1), therefore, n
2
(ql) is represented as a 

ratio of polynomials in the variable exp(iql)' This variable has the 

advantage of incorporating the periodic nature of the function, and it is 

also the most natural extension of a Fourier series [which is a polynomial 

in exp(iql) and exp(-iql)J. A ratio of polynomials in exp(iql), however, 

is equivalent to a ratio of polynomials in exp(iql) and exp(-iql)' which 

in turn is equivalent to a ratio of Fourier series. Thus the desired 

expansion by which Equation (111.1) is replaced is19 

n
2
(ql) PN(ql)/~(ql) 

where 

N 

PN(ql) = L ~ ~(ql) (III.4a) 

k=O 

M 

~(ql) = 1 + L bk ~(ql) 
(III.4b) 

k=l 

with the basis functions ~(ql) defined as in Equation (III. 2). For 

large lIm qll there are now large terms of the form exp(klrm qll) in the 

denominator to balance those in the numerator. 

To determine the coefficients {a
k

} and {b
k

} in Equation (III.4) 

it is convenient to use the "moment method" as described by schlessinger
20

; 

this is also the most natural extension of Hildebrand's method
16 

for 

determining the FoUrier coefficients in Equation (111.1). Thus one 
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writes Equation (III.3) as 

multiplies by a typical basis function u
j 

(ql), j = 0, •.. , M + N, and 

integrates over ql. Since the basis functlons are. trigonometric functions, 

one can replace the integral over ql by a sum over the equally spaced points 

(r) 
. ql = r 27f/ (N + M) (III. 5) 

r = 1, .... , 
1 . 16 

N + M, and use the orthogonality relations 

N-tM 

~ ((r ) ) . (' (r)) ,'.' (N+M) 
L..J u j ql u i ql = °i,j""""2 [1 + °i,O (III. 6) 

r=l 

for i,j = 0, ... ,N+M. The resulting equations that determine {a
k 

fand 

M 

Dj',k bk = -nj,o 

k=l 

j =N+l, ..• ,N+M, 

N-tM . a .. 
J 

j 0, .•• ,N, where 

(III.7) 

(III. 8) 

(III. 9) 

/ 

Thus one first evaluates the "matrix elements" n .. defined by Equation 
1.,J 

(III.9), solves the set of linear equations inEquation (III.7) for the 

coefficients {b
k 

f ' and then determines the coefficients {~}from 
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Equation (III.8). 

Table I shows results of' the above procedure applied to the linear 

non-reactive A + BC COllision
21

,22; the quantum calculations are those 

of Secrest and JOhnson
23

. All of' the transitions listed in Table I are 

too weak to be treated by the Fourier series retholl of' ref'erence lc; 

nevertheless, it is seen that classical dynamics, used in the f'ramework 

of' the classical S-matrix, is as accurate for these very weak transitions 

as it is f'or classically allowed transitions. In addition to the smallness 

of' the transition probability the large imaginery part of' ql (shown in 

Table I), the root of Equation (rr.4), is another measure of' the degree 

to which these transitions are classically f'orbidden. 

In obtaining the results in Table I it was fo',md best in all cases 

to take N = M in Equation (III.4). Convergence was always achieved by 

the value N = 12; i. e., calculations v!ere also perf'ormed with N = 14 

and N = 16, with no change in the transition probabilities. 

As an interesting check on the results, some of' the reverse 

transitions were computed; e.g., the 4 ~ 2 transition was computed and 

compared to the 2 ~ 4 transition in the top line of' Table I. The values 

ofql which satisf'y the trajectory equations n
2
(ql,2) = 4 and n

2
(ql,4) = 2 

are of' course dif'f'erent (ql = 4.66 + 1. 07i and 1. 75 + 2. 38i , respectively), 

but the two transition probabilities were equal; this is as it should be 

f'or the classical S-matrix satisf'ies microscopic reversibility identically. 

Even though numerical analytic continuation via the ratio of Fourier 

series in Equation (III.3) is much more powerf'ul than by the Fourier series 

itself' of' Equation (III.l), it is only capable of going so f'ar into the 

classicallyf'orbidden domain. The limitation is the accuracy required in 

the "input"; i. e., the further f'rom the real ql-axis that it is necessary 



to analytically continue n
2
(ql) the greater is theacc~acy required in 

r 
the values ofn

2
(ql) computed for real ql- In.order to obtain converged 

values for the transitions in Table I, for example, it was necessary to 

-12 
compute the classical trajectories with an error parameter of 10 or 

10-
13, whereas for ordinary purposes it is onlyriecessary to use a value 

10-
6. This, of course, increases the time necessary to integrate the 

equations of motion. 

\ , 

Thfssensitivity of the analytically continued functional values to 

the "input" is certainly not unexpected and is typical of any situation , . 

in which,one attempts to extrapolate far from the region in which the 

functional values are known- So long as one computes only ~rdinary (i.e., 

real) classical trajectories, there appears to be little possibility of 

overcoming this fundamantal difficulty. 

Fortunately, however,the next section shows how it is now possible 

to integrate the equations of motion directly through classically 

forbidden regions and thus evaluate the functions n
2
(ql,n

l
) and ~(n2(ql,nl);nl) 

directly for ~ complex values of ql. 

IV. Direct Integration of the Equations of Motion. 

The most general way of computing n
2

(ql,n
l

) for complex values of 

, 

ql is actually to integrate the equations of motion themselves with 

complex initial .conditions. During the course of such. a trajectory all 

the coordinates and momenta become complex, but the discussion in 

Section II has shown that there are precisely the number o~ variables 

at ones disposal so that all physical observables can be made to have 

real values in the initial and final asymptotic regions. 

-. 



-19-

This direct approach was attempted in our first work
lc 

on the classi-

cally forbidden problem, but it was only successful for "slightly forbidden" 

transitions, the reason being that the trajectories diverged' if Im ql was 

taken larger than ~O.l. The origin of this divergence is now understood: 

The usual way of solving Equation(II.4) is to set n
l 

equal to an integer, 

make a guess at ql' and calculate n
2

(ql,n
l

) by calculating the trajectory 

with these initial conditions; the resulting value for n
2

(ql,n
l

) will in 

general be complex if ql is, but one iterates the procedure until the 

"correct f·f complex value of ql if found, i. e., the value for which n
2 

(ql' n
l

) 

equals the desired integer. Trajectories for which n
2
(ql,n

l
)is not real, 

however, are divergent (as shown below), so that the iteration procedure 

just described is not possible; i.e., the trajectory exists if ql is a 

24 
particular complex value for which n

2
(ql,n

l
) turns out to be real ,but 

diverges for other values of ql in the immediate neighborhood. 

To see that trajectories with complex quantum numbers in the final 

asymptotic region are divergent, note that the solution for the angle 

variable in the final asymptotic region is 

q(t) = constant + €'(n
2
)t . , 

thus, if n
2 

is not real the imaginary part of q(t) increases with t. The 

physical vibrational coordinate, however, is 

ret) ~ cos [q(t)] , 

so that Ir(t)1 becomes infinite ifIm q(t) increases without limit. If 

n
2 

is real, only Re q(t) increases as t -> 00, and this obviously causes no 

problem in ret). 



-20-

Because of this unstable situation it is therefore not possible to 

integrate the equations of motion from the initia} asymptotic region , . 

through a classically forbidden region and to the final asymptotic region. 

The way'out of this predicament is to integrate the trajectory from both 

ends and match the two branches somewhere in the middle. Thus the inward 

branch is begun with the boundary conditions of Equation (I1.13) and inte-

grated forward in time, and the outward branch is begun in the final 

asymptotic region with the boundary condi tionsin Equation (I1.14) and 

integrated backward in time. The initial and final values of the quantum 

number are taken as the desired integers (and this solves the stability 

problem in the asymptotic regions), and the initial and final angle 

variables, ql and q2' are chosen iteratively so that all the coordinates 

and momenta of the two branches are equal at some intermediate point, 

i.e., so that the inward and outward branches meet to form one complete 

traJectory with the boundary conditions in Equations (I1.13) and (II.14)~ 

More of the details of, this matching procedure are given in Appendix B. 

Because of the necessity of using complex time increments in the 

numerical integration of the equations of motion (see Appendix B), it 

was advantageous to 'use an integration algorithm that permits an arbitrary 

step-size for the independent variable at each step of the integration. 

Runge-Kutta algorithms
25 

do thiS, but are notoriously slow because a 

number of derivative evaluations are required for ~ach step. Therefore 

we derived Adams-Moulton-like formulas by using backward difference 

expansions
26 

for arbitrarily spaced values of the independent variable; 

Appendix C gives these predictor-corrector formulas. Since this routine 

can choose a near-to-optimum step-size for each step of the integration 

(for a given error limit), it was observed that this integrater was 
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actually several times faster than a fixed step-size Adams-Moulton routine 

(of the same order) that can only halve or double i",he step-size. The most 

important feature of this routine from our point of view, however, is that 

since the step-size is arbitrary at each step, it can just as well be 

complex. The only modification of the numerical integration routine 

required for these complex trajectories, therefore, is the definition of 

the coordinate and momentum variables, and thetimc increment, as complex 

variables. 

Once the instability problem was eliminated by starting the trajectory 

at both ends with real (and integer) quantum numbers and integrating toward 

the interaction region, these complex classical trajectories were found to 

be no more difficult to integrate than ordinary (i.e., real) trajectories. 

[The term "complex trajectory" is used to mean one for which coordinates, 

momenta, and time may be complex valued; it does not mean that the trajectory 

is complicated. J They require approximately the same amount of computing 

time, and no more than the usual accuracy requirement is necessary to attain 

comparable accuracy in the final results. 

All th:e transitions given in Table I of the previous section were 

also computed by direct integration of the equations of motion, and pre

cisely the same values were obtained for both the transition probabilities 

and the complex values of ql that satisfy Equation (II.4). This must be 

true formally, of course, since the numerical analytic continuation of 

Section III and the direct integration method of this section are simply 

different ways of analytically continuing the same functions. When one 

(:on;;:idor;; what extremely different methods these two are, however, it is 

gratifying to see that they are consistent. 
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Table II gives additional results obtained by direct integration for 

transitions that are too weak to be treated by the method in Section III; 

they are the smallest transition'probabilities givfm by Secrest and 

23 
Johnson • Agreement with the quantum values is remarkably good, ani it 

appears that the dynamics of even these extremely \veak transitions are 

accurately described by classical S.,.matrix theory. The trajectories 

associated with even the weakest of the transitionc in Table II were 

well-behaved and proceeded much as ordinary trajectories. 

v. Concluding Remarks. 

The methods of numerical analytic'continuation in Section III are 

essentially made obsolete by'the success in direct integration of the 

equations of motion as discussed in Section IV. Direct integration is 

easier to apply than the procedures of S~ction III everi for only slightly 

forbidden transitions and is no more difficult for the most strongly 

forbidden transitions (for which the methods of Section III are completely 

inadequate). 

Even more, important, particularly with regard to other applications, 

is the generality afforded by the ability to integrate the equations of 

motion ,through classically forbidden domains. Thus it is not possible 

even in principle to apply the methods of Section III to the problem of 

tunneling in reactJve collisions, for below the classical threshhold for 

( 

reaction there is no reactive trajectory function on which to base a 

numerical analytic continuation (i.e., it is not possible to analytically 

continue nothing). By direct integration of the equations of motion, 

however, it should be possible to treat such processes. In fact, any 

classically forbidden process, including electronic transitions between 

, i 

1 

·1 
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adiabatic electronic potential energy surfaces
5

, should be amenable to 

this description. 

The scope of problems to which semiclassical theories that incorporate 

exact classical dynamics can be applied is thus greatly expanded by this 

demonstrated feasibility of calculating classical trajectories through 

classically forbidden regions of phase space. As systems with more degrees 

of freedom (e.g., A + Be in three dimensions) are examined and as different 

types of classically forbidden processes are explored, it will be interest

ing and important to see if such future work continues to support the 

thesis that the dynamics of molecular collisions is primarily classical 

dynamics plus quantum superposition. 



Table r. Numerical Analytic Continuation 
a 

b 
c d 

Uniform
f 

E, m .. a. 
n

l
,n

2 ql Semiclassical
e 

Q,uantum
g 

--
2 

6, 3' 0·3 2, 4 4.66 + 1. 07i 6.64 x 10-3 6.11 x 10-3 6· -3 .00 x 10 . 

4, ~, 0.3 1, 3 4.66 +1.92i 
-5 1.51 x 10-:- 5 1.46 x 10-5 

1. 57 x 10 

5 
3.35 * 3.87i ··1.31 x 10-4 -4 . -4 

2.47275, 4' 0.2973 0, 1 1. 22 x 10 1.12 x 10 

3·47275, t, 0.2973 1, 2 3.46 + 3.31i 2.68 x 10-
4 

2.57 x 10 
-4 

2.30 x 10 
-4 

4.47275, t, 0.2973 2, 3 3.56 + 3·04i 
.. 4 
4.12 x 10- -4 

3.95 x 10 -
-4 

3.52x 10· 

a.Transition probabilities were computed by the procedure described in Section IIT. 

b. The total energy E (in units of 11(1), and therefore ~ the corresponding numerical value in. 

reference 23), mass parameter m, and potential parameter a. for the linear A + Be collision 

system of Secrest and Johnson. 

c. The initial and final vibrational quantum numbers. 

d.The complex root of Equation (II. 4). 

e. The semiclassical transition probability as given by Equation (II. 6). 

f. The uniform semiclassical tranAition probability, which is given by Equation (II.6) with the 
1 2·· 

replacem~nt exp(-2Im<p/fJ.) ~ 47Tz
2
Ai

2
(z), where z = (~ Im<P/fi)3 ; for details of this procedure 

see reference lb. 

-g. The (exact) quantum mechanical transition probability calculated by Secrest and Johnson. 

,/ 

I 
f\) 

+=
I 

""::;~~ ... #" 

".-"---'-.~ ~ .. ~-- ----.- .:.~- -" -.~.----.--
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Table II. Direct Integration 
a 

E b 
c d d 

Uni:form:f ., m, ex, 
n

l
,n

2 ql q2 Semiclassical
e 

-6 
~ 

3, 0.2, 0.114 1, 2 3·74 + 4·33i 4.28 + 9.28i 8 -0 5.95 x 10 5. O'x 10 

3, 0.2, 0.114 0, 2 3·72 + 3.97i 4.29 + 9.98i 9.28 x 10-
10 

9.14 x 10-
10

, 

5 
3·47275, 4' 0.2973 0, 2 3·31 + 3.47i 5.47 + 6.24i 1. 73 x 10-7 1. 70 x 10-7 

4.47275, i, 0.2973 1, 3 3.40 + 2.91i 5-34 + 6.06i 5.64 x 10-7 5.52 x 10-7 

3. 8, 0.5, 0.114 0, 2 1.43 + 5.38i 1. 71 + 9.08i 1.42 x 10-
11 1.40 x 10-

11 

a. Transition probabilities were computed by the procedure described in Section IV. 

b, c, e, :f, g. Same as :for Table I. 

d. The initial (ql) a~d :final (~) complex values o:f the angle variable. 

Q.uantum
g 

5.11 x 10 
-6 

9 n-=< 10-10 
.'-'J X 

L69 x 10-7 

5.29 x 10-7 

1. 28 x 10-
11 

I 
f\) 

\Jl 
I 
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Appendix A: One Dimensional Tunneling Through a Parabolic Barrier. 

To illustrate some points regarding classically forbidden processes 

that are typical of ,the gen,eral situation, it is illustrative to consider 

a simple example, the tunneling of a particle through a one-dimensional 

parabolic barrier., 

The potential is 

vex) = 
122 
'2 llUlX , (A. I) 

m being the mass of the particle, and the classical trajectory of the 

particle is easily found to be 

(A.2) 

where xl and PI are the position and momentum at t
l

, and T t - t
l

• The 

choice 

describes a particle initially to the left of the barrier, moving toward 

it, but with insufficient energy to surmount it. Equation (A.2) becomes 

x(t) = -a cosh(wT) + a' sinh(wT) 

where a' 
2 ~ 2 2 

~o)2 and a
o 

= 21EI/rrm ; as T~ +00. This gives 

I wT 
x(t) ~ 2(a' - a)e ~ - ro 

i.e., as expected, the particle is reflected by the barrier. 
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The particle is reflected by the barrier, however, only so long ,as 

the time is required to be real. If time is allowed to be complex 

T'~ r + is 

then Equation (A.3) becomes 

) 

x(t) I-a cosh(cnr) + a'sil'lh(cnr)] cos(ms) + ira sinh(mr) 

+ a' cosh(mr)] sinews) , 

and as ReT = r - + 00, this is 

x(t) == 1: e
illr 

[(a'-a)cos(ms)+ i(a'+a) sinews)]. 
2, 

(A,4) 

(A·5) 

If Im T =s == ± ~/(l), for example, then it is clear from Equation (A.5) 

that x(t) - + 00, i.e., that the particle has tunneled through the barrier. 

Since we have been dealing strictly with classical trajectorie;, with 

energy E < 0 (and E is conserved), one may ask how did the particle get 

through the barrier; i.e., what trajectory did it follow. This is some-

what of an ambiguous question for the following reason: x(t), the position 

of the particle at time t, is a function only of the time difference 

t- t
l

, and does not in any way depend on the path in the complex t-plane 

along which the time is incremented from tl to t; this is true for a.ll 

dynamical systems, of any number of degrees of freedom, for which the 

classical Hamiltonian is not an explicit function of time. Thus the 

trajectory swept out in the x-plane from Xl to x(t) depends on how the 

time is incremented from tl to t, but the final position x(t) does not. 

The simplest physical picture results, however, if one chooses a 

particular curve in the complex t-plane along which to increment time 

from tl to t. Namely, time is initially incremented along the real time 
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axis from tl to t, 

- -1 I ) t = tl + cosh (a ao ' 

and the particle moves from xl = -a to the classical turning point x(t) = 

-a. Time is then incremented in the imaginary direction of the t-plane 
o 

from t to t + iTr/m , and from Equation (A. 4) one can see that x( t) 

varies from -a to +a ; i.e., it is during this interval that the particle 
o 0 

tunnels through the barrier. Further increments to the time are all 

real, and the particle moves from a to the right on the real x-axis. o . 

To give a precise meaning to such a trajectory, and to determine 

the probability of the tunneling transition, one needs to look at matrix 

elements of the fixed-energy propagator, i.e., the GreenTsfunction27-30 

00 J dT exp(iET/-fl) < x21exp(-iHT/-tl)lxl > ;(A.6) 

o 

-
the square modulus of this matrix element is the probability that a 

particle with energy E goes from Xl to x
2

• The time propagator is given 

in the classical-limit by 

< x2Iexpr-lH(t2-tl)!fillxl > = [

x exp [i<P(x
l
,x2;T)/hl , 

whereT t2 - t
l

, and ~ is the classical action 

o(x2,x
1

;T) = 12 dt Ii m x(t)2 - V(x(t)) 

tl 

(A.7) 

(A.8) 
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Within ·theclassicalliinit it is consistent to evaluate the time integral 

in Equation (A.6) by the stationary phase approximation, and this gives 

.. -1[ .. -?/¢ / ,/¢ J! 
< x2 !G(E) !xl > = (l~) dX

2
dX

l 
dT2 

x exp {i[ET + ¢(x2,x
l

;T)J /11"1 ' 

where T in Equation (A.9) is. the value determined by the stationary phase 

condition 

= 0· (A. 10) 

28 29 
This overall procedure is well-known ' , and it is not dif'f'icult to 

show that Equations (A.9) and (A.IO) give the f'inal result 

. 1 

< x
2

!G(E)!X
l 

> = {i~[v(xl)v(x2)J2}-1 

x exp~t dx {2m(E-V(X)ll~] , (A. 11) 

. 1 

where vex) = {2tE-V(x)J/m}2 
{ 

is the local velocity. Equation (A. 11) i~ 
I 

simply the WKB approximation f'or the Green's i'Unction. 

I 
For the case of' the parabolic barrier, with xl = -a and x

2 
= a, 'the 

stationary phase conditiori in Equation (A.IO) is easily shown. to be I 
i. 

so that if E < 0, it is clear that T has .to be complex. Evaluation of' the 

time integral in Equation (A~6) would then proceed by the method of' 

steepest descent9; i.e., the pCl:th of' the time integral is distorted f'rom 

the real time axis to a contour in the complex t-plane that passes 

through the complex p~int of' "stationary phase". The f'inal result of' 
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this procedure is identical to Equation (A. II). The exponent in Equation 

(A. II) now has an imaginary part, however, and this of course is what 

gives the usual ,WKB tunneling factor: 

1< x21 G(E) IXI > 12 " I V(Xl )V(X2 ) 1-1 exp )- ~ Tm t dxl2m[E-V(x) J/ Je
f(A 0 12) 

The complex time difference T that was seen earlier to lea~ to a 

classical trajectory that tunnels through the barrier is thus seen to be 

the complex time that is the point of stationary phase in the time integral 

in Equation (A.6). One again sees that the stationary phase approximation 

is the classical limit of quantum mec~anics. 

In conclusion, however, one must refrain fiom leaning too heavily 

on analogies with one-dimensional examples, for they can sometimes be 

misleading with regard to the general situation of several degrees of 

'freedom. In one dimension, for example, it is always possible to keep 

the coordinate x(t) real (as was done above) by tle proper choice of the 

contour in the complex t-plane along which time is incremented. For a 

system with more than one degree of freedom, however, there is more than 

one coordinate but still only one time variable; i.e., one can choose 

the time contour to keep ~ of the coordinate's real, but not all of them. 

Thus there is no way to avoid having to deal with the full complexity of 

the situation. 



Appendix B.'MatchingProcedure f'or Double-Ended Trajectories. 

There are undoubtedly a number of' equivalent ways of' connecting the 

two branches of' the complex trajectory discussed in Section IV. The 

procedure described below seemed to'be quite f'ool-proof' f'or the present 

application, but other procedures will be necessary for other types of' 

classically f'orbidden processes. 

Consider the inward branch of' the trajectory. The time is f'irst 

incremented f'rom tl,to the time tll (with Re tll :::: t
l

) Euch that q(tll) ~s 

purely real. The reason for this is that if' Irn ql is large, as it is f'or 

,very weak transitions, and if' t is incremented along the real times axis, 

it is easy to show that the unperturbed motion of the vibrational coordinate 

ret) = constant x cos[q(t)] is approximately a circle in the complex r-
, 

plane with a radius proportional to exp(IIm qll). Sincer(t) makes a 

pass about th:ls circle with each time increment of' a vibrational period, 

ret) changes quite rapidly with time and is thus dif'ficult to treat 

numerically. Since the trajectory in the initial asymptotic region is 

pet) = Pl 

net) :::: n
l 

(B.l) 
R(t) :::: Rl + (p!~)(t-tl) 

q(t), :::: ql + €I tnl)(t-t
l

) , 

where P
l

, R
l

, ql' n
l 

are the boundary conditions in Equation (11.13), it 

is easy to see that the choice f'orti that makes Im q = 0 is 

the values of ,the coordinates and momenta'at tll are 
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n ' 1 
= n 

1 

PI 
, 

= P 
1 

(B.2) 
q , 

1 
= Re ql 

Rl 
, 

= R - i (p ! Il )( Im ql) / E ' (n
l

) 
1 

fhe numerical integration of the equations of motion is thus actually 

begun with the primed initial conditions in Equation (B.2), and the time 
I 

is incremented in the real time direction. The vibrational coordinate ret) 

now carries out ordinary vibrational motion initially and remains approxi-

matelyreal; the translational coordinate R(t) may have a large imaginary 

part, but this causes no numerical difficulties since R(t) is not 

oscillatory. 

Integration of the inward branch of the trajectory is continued, with 
I 

time incremented along the real time axis, until the real part of pet) 

is observed to go through zero (i.e., changes sign). [Since PI < ° and 

P
2

> 0, it is clear that such a point must be passed.] The inward branch 

of the trajectory is stopped at this point. 

The outward branch of the trajectory is then begun with the boundary 

conditions in Equation (11.14) and, Just as for the inward branch, one 

first increments the time to the value at which q(t) is real. Thus the 

boundary conditions with which the trajectory is actually begun are; 

analogous to Equation (B.2): 

n ' 2 

P , 
2 

q2' = Re ~ 

R2 ' == R2 - i(P!Il)(Im ~)/E'(n2) 



'" 

The time is now incremented along the real time axis (in the negative 

direction) until the real partaf pet) is observed to change sign. From 

this point one chooses successive time increments in order to integrate 

to that . (complex) ti'me at which pet) exactly equals the final value of P 

from the inward branch of the trajectory. [Since the numerical integra-

tion routine allows for a continuously variable time increment, this is 

quite simple to dO.] Integration of the outward branch of the trajectory 

is stopped a~ this point, 

< Let the values of the coordinates and momenta from the inward and 

outward branches of the .trajectory at this intermediate point be denoted 

at P. , R. ,po ,r. and P t' R t' Pout' rout' respectively. As In In In In ou ou 

discussed above,the intermediate point is chosen'so that P. == P t. The 
In ou 

differences between the internal variables, ~ = r It - r. and 
ou In 

~p == Pout - Pin' are functions of the initial and final angle variables 

ql and ~ (for fixed quantum numbers n
l 

and n
2

), and one solves the 

fol10wing equations simultaneously: 

.6r(~, ql) 

~P(q2,ql) 

o 

o 

(B.4a) 

(B.4b) 

[Since .6r, ~p, ~, and ql are all complex-valued, Equations (B.4) are 

actually four equations in four unknowns.] With the particular values 

of ql and ~ that satisfY Equations (B.4) one then has that Pin == Pout' 

rin == rout' Pin == Pout; fUrthermore, since both branches of, the 

trajectory have the same total energy, it must also be true that 

R. == R t. All the coordinates'and momenta are thus equal at this inter-· 
In ou 

mediate point, so that the two branches form one continuous trajectory. 
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The argument in the above paragraph that energy conservation implies 

that R
in 

= Rout assumes that the equation 

H(R
in

, P, r, p) = H(R t' P, r, p) ou 

(where P,p,r are equal to their common intermediate values) implies the 

result 

R. = R t 
l.n ou 

this will strictly be true only if the Hamiltonian is a monotonic function 

of R (when P, p, r equal their intermediate values). Although this is 

the case for the present physical system, there will be cases for which 

this is not true, and one would need to account for this in carrying out 

the matching procedure. 

For the case of N degrees of freedom (translation, with variables 

Rand P, and N-l internal degrees of freedom with variables q and n) 
rv rv 

the arguments are quite similar. One can always choose the stopping place 

fbr the inward and outward branches to make one variable continuous, say 

P. The 2N-2 variables ~l and ~ can then be chosen iteratively (with 

fixed quantum numbers El and E2) to make the 2N-2 coordinates and momenta 

of the internal degrees of freedom continuous at the intermediate point. 

Finally, energy conservation will then insure that R is also continuous 

at this point. 
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Appendix C. Variable Step-Size Adams-Moulton Integrater. 

Consider the set of (non-linear) first order differential equations 

y' (x) f(x,y) 

where x is the independent variable, and y andf are understood to be 

vectors. The formulas below are derived analogously to the standard 

32 26 
procedures ,except that divided difference expansions are used that 

do not require the independent variable to be at equally spaced points. , 

There has been previous work deal~ng with these variable mesh methods33 , 

but they were not of sufficiently high order for Qur purposes. 

Let x, denote the points of the independent variable andh. the i~ 
l ' l 

step-size 

also 

h. = 
l 

y. =y(x.) 
l l 

, 

th 
If p-- order differences~ are retained, then the Adams-like predictor 

formula is found to be 

, p 

(0) - + 2: Y 1 - Y . Cs f [x, n' x 1" •• ,x ] n+ n \ n- n-s ' 
, 

s=O 
. 26 

where the notation for the divided differences is that of Hildebrand ; 

i. e., 

" 



f[x J = f 
n n 

f[x,x I J n n-

f[xnJ - f[x
n

_
1

J 

xn - x
n

_
1 
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f[x , ••. ,x 1 J - f[x l'···'x J n n+ -s n- n-s 
f [X

n
' ••. , x

n
_

s
] = -...;;;;.~-.-;..-x~-~x--...;;;;.~----

The coefficients Care 
s 

n n-s 

C 
=sXn+l 

dx (x-x) (x-x ) •.• (x-x ) 
,s n n-l n+l-s 

x 
n 

and the first few are 

Co = 1 

C =.1. h 2 
1 2 n 

C = h 2(! h + 1 h ) 
2 n '3 n ~ n-l 

, 

c
3
' = h 2[h (·4 h ,+ ~ h 1 + -3

1 h 2) + 21 h l(h 1 + h 2)J 
n n n n- n- n- n- n-

C
4 

= h 2{h 2(~ h + ~ h + ~ h + • h ) 
n n 5 n n-l 2 n-2' 4 n-3 

+ ~ h [(2h 1 + h 2)(h 1" + h 2 + h 3) 
3 n n- n- n- n- n-

+ h
n

_
1

(h
n

_
1 

+ h
n

_
2

)] 

+ ~ h
n

_
1 

(h
n

_
1 

+ h
n

_
2

)(h
n

_
1 

+ h
n

_
2 

+ hn_3)~ 

The p~~ order Moulton-like corrector formula is most conviently 

given in the form 

- eh )(h + h 1) f[x , x l' x 2']' - •.. - (h )(h + h 1) 
n n n- n n- n- n' n n-

.•. (h + h 1 + .•. + hI) f[x , •.. , x Jl 
n n- n+ -p n n-p f 

~ [eh )(h + h ) .•. (h + h + .~~ + hI)] , 
7 n n n-l n n-l n+ -p 

(C.2) 
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where C is the coefficient defined above. 
p 

An optimum step-size selector is easily devised for a predictor-

corrector routine such as this. It is based on the fact-that the truncation 

32 th . p+2· 
error . for the p-- order case is of order h ,and a measure of the 

actual truncation error in the x ~ x 1 step is the difference of the 
n n+ 

predicted and corrected functional values, y 1 - y 1(0). IfE is the speci-
n+ n+ 

fied error limit (e.g., 
6 ' 

E ~ 10- 1 therefore, the step x ~x 1 is accepted if 
n n+ 

Error ::: 

(0) 
Yn+l- Yn+1 

Yn+l 
< E 

and the step-size h 1 for the next step is chosen as 
n+ . 

h (1: €/Error)1/(p+2) 
n 3 

(c.4) 

[If Equation (C.3) is not fUlfilled, then the step is repeate~ with a 

new value of h given by RHS of Equation (c.4)]. If the error behaved 
n 

p+2. ( 4) exactly as h ,then the cholce of h 1 in Equation C. would make the 
, n+ 

error in the xn+l ~ xn+2 step exactlyE/3. The ~ is a safety factor to 

prevent the need for frequent repetitions of a step; for the case p = 4, 
1/6· 

the order of the formulas we used, the factor 3 ~ 1. ~~ means that the 

step size is chosen ~ 20% smaller than would'ideally be the case. 

If one chooses a constant step size, h. = h for all i, then it is 
l 

easy to verify that Equations (C.l) and (C.2) give the usvalAdams-Moulton 

prediction and corrector 

., 
. 32 

expresslons • From our observations, however, . 

it appears that the additional algebraic complexity of the variable step-

size formula is off-set by the more efficient choice of step size that 

is possible; thus a fewer total number of steps is required, and this 

means a fewer number of derivative evaluations, normally the most time 

consuming part of the calculation. 

.:." 
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Appendix D. The Total Initial Value Representation. 

Another way of attempting to describe classically forbidden transi-

tions is via an integral representation. Although we have not pursued 

this direction (for reasons discussed below), it may nevertheless be of 

interest to see this particular version of such procedures. 

As has been noted previduslyla, making the classical-limit approxima-

tion to the S~matrix in one representation is equivalent to making it in 

any other representation provided one transforms between representations 
• 

by the ordinary stationary phase approximation. If one carries out the 

integrations that change representations more accurately thanby stationary 

phase, then all representations are no longer equivalent. If there is 

some representation in which the dynamics is most classical-like, there-

fore, one should make the classical-limit approximation to S in that 
\ 

representation and transform to any others by carrying out the necessary 

integrations as accurately as desired. 

A trivial example in fact shows that there is one representation in 

which the classical-limit approximation is exact. If ~ is the complete 

set of constants of the motion of the Hamiltonian H, then the matrix 

elements of the propagator in this representation are 

both quantum mechanically and in the classical limit; E(P) is simply H(P), 

the energy expressed in terms of the constants of the motion. Matrix 

elements in some other coordinate representation, for example, are obtained 

by 
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< ~lexp[-iH(t2-tl)/JfJ.]lql > == fdP2fdPl~ Q21P2 > 

< P2Iexp[-iH(t2-tl)/-fiJIP? < Pllql>' 

== SdP <~Ip > expr"i~(P)(t2-tl)/.ri] < plgl > (D.2) 

Equation (D.2) is,a well-known formal expression for the exact quantum 

. propagator, being "formal" because the transformation elements < ql P > 

are the exact wavefunctions and thus unknown. This example does show, 

however, that there are some representations in which it is better to 

make the classical-limit approximation than others. 

Following the discussion of the "initial value representation" in 

reference Ib, one can write the S-matrix in the quantum number represe~ta-

tion as 

Using the classical-limit approximation for < ~Islql > and changing 

variables of 

difficult to 

integration: from q2 to n l (for fixed ql),' it is not 

show that Equation (D.3). can also be written as 

~. ~ 

1 'S ( [0~ ( q l' n l ) , ] 2 
== (271fl)- dql Jdnl . dn / 27Jfl 

o 0 1 

exp [~l. [n
2 

(qi,ni ) ,nil + <l:? ('l.i' ni)[n~,( 'l.1,n1 ) - "2' 1 

qi (ni - n
1
')!] , (n. 4) 

where n21 and nIl are fixed integers. Bquation (D.4) is an integral over 

initial values ql and n
l 

(and not just ql as in reference Ib) and might 

thus be called the total initial value representation. The n I ....,. n ' 
1 2 

., 



-45-

transition is classically ~orbidden i~ there are no points of stationary 

phase in the integral over initial values, but the integral could never-

theless be evaluated numerically. 

One attractive ~eature o~ Equation (D.4) is that one never has 

trouble with "coalescing points of stationary phase" that need to be 

" "oP " d"lb, Id tho "t b' th" "t" 1 1 d' unl~ormlze ; lS lS rue ecause e lnl la va ues ql an n
l 

determine a unique classical trajectory. [The integrand in Equation (D.3) 

may actually contain several terms since ~ and ql do not necessarily 

determine a unique trajectory. With ql ~ixed, however, the change o~ 

variables ~rom a~ to n eliminates such a sum; i.e., integrating over n
l ~ 1, _ 

integrates over all the multiple branches o~ ~. ] Lastly, one can see 

that Equation (D.4), unlike the initial value representation o~ re~erence 

Ib, satis~ies microscopic reversibility identically; this follows since 

Equation (D.4) is equivalent to Equation (D.3) (they are related simply 

by a change o~ variables o~ integration), and Equation (D.3) is manifestily 

symmetric in n
l 

and n
2

" 

Our reasons ~or not pursuing this procedure are two-~old. The ~irst 

is practical; there are two integrations ~or each internal degree of 

freedom. For A.+ BC in three dimensions there are three internal degrees 

o~ ~eedom and Equation (D.4) would thus be a six-~old integral. In 

addition, the integrand is h:ighly oscillatory and thus cannot be evaluated 

by Monte Carlo integration methods. 

The more ~undamental shortcoming o~ Equation (D.4) is its lack o~ 

uniqueness. Thus the integral over n
l 

and ql is essentially a phase 

space integral, and one would like ~or the expression to be canonically 

invariant to a change of canonical variables from (n,q) to (p,r), say; 

II, 
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i. e., one would like Equation (D. 4) to be the result if one had begun in 

Equation (D.3) with S in the r-representation, for example. Unfortunately, 

one can verify that this is not the case. Depending 'on what representa

tion is chosen as the one in which to make the classical limit approxima

tion, a different classical S-matrix results in the quantum number 

representation. 

The analytic continuation procedures of Sections III and IV, on the 

other hand, are unique and unambiguous; they are exact classical dynamics, 

analytically continued. 

'J 
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