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ABSTRACT.  The classical Eisenstein series are essentially of the form
2,        ((m + r.)z + n + rA     ,   m, n  ranging over integer values, Iraz > 0, r., r

rational and   s   an integer > 2-   In this paper we show that if s   is taken to be
complex the series, with  r., r2  any real numbers, defines an analytic function
of (z, s)   for Imz > 0, Re s > 2.   Furthermore this function has an analytic con-
tinuation over the entire  s  plane, exhibted  explicitly   by a convergent Fourier
expansion.  A formula for the transformation of the function  when  z   is subject-
ed to a modular transformation is obtained and the special case of s   an integer
is studied in detail.

Introduction.  In this paper we are concerned with the function  G (z, s, r., rA

defined as the sum of the series     2 l/((m + r )z + n + r As, fot z  having posi-

tive imaginary part, s  an arbitrary complex number and  r     r    arbitrary real num-

bers,   ttz, tz range over all integer values.   In §1 we define which branch of the

'multi-valued' complex power should be taken, and show that although the series

converges only for  Res > 2,   G has an analytic continuation  to all values of  s.

This is done by exhibiting a Fourier expansion for  G convergent for all  s.   For

r y r    rational numbers and s  an integer > 3  one sees that  G coincides essential-

ly with the classical Eisenstein series; this then is the reason for the title.  A

few more details on this will be found in §111.   In §11 we determine how  G  trans-

forms when z  is subjected to a transformation z—► (az + b)/(cz + d)  belonging to

the modular group.

To put this paper in proper perspective we remark that its significance is not

just in the formulas in §11 but also in that considering  G as a function of the

variable  s, several classical functions are obtained for special values of s  and

r y r    each of whose functional equations has always been derived separately

while here they all appear as specializations of one general formula.   Thus, be-

sides the above mentioned Eisenstein series for s = k > 3,  r., r     rational, we

also obtain in §111 Hecke's generalized Eisenstein series for 5 = 2, while the

case  s = 7j = 7=0 gives us the transformation formula for  log 77,  77   being

Dedekind's   77 function.
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In a previous paper [2] we considered the special case r. = r2 = 0 and only

the modular transformation z —>- l/z.   However, the present paper is independent

of [2], the latter's results being included here as particular instances of the gen-

eral case.

I.   We use the standard notations  Z, R, C, for the integers, real numbers,

complex numbers, respectively,   z = x + iy,   w = zz + iv,   s = a + it ate complex

variables, H  the upper half plane  iy > Oi, H     the lower half plane  \y < 0\ and

Ko-    the right half plane  \rr > o ¡A.  The letters  k, m, n, M, N always take on inte-

ger values  and  a  sign  such as   2      indicates summation as  222 ranges over all

integer values,   x IS tne characteristic function of the integers,  )¿(z) =1  if z £

Z  and  y(z) = 0 if z ft Z.   For real x,   [x]   is the greatest integer. < x and  (x) =

x - [x], the fractional part of x.  If z £ C,  z ¿ 0,  Argz  is the set of real numbers

6 for which z = |z|e*  ; we say then  6 is a value of Argz.  We recall that  Argz

is not empty and if 0 is a value of Argz, then  cp is also if, and only if, <p = 6 +

2nk,   k an integer.   There is a unique  6 £ Argz   satisfying — 77 < 6 < 27, which we

call  argz, the argument of z.   Logarithm and power are defined, for z ^ 0 and all

s, by  logz = log |z| + z'argz  and zs = eslo«z.  Note that z~s = l/z5, and  \zs\ =

c •f'B'\z\'r<eiT\t z\a.  The following lemma collects some facts about the argu-

ment function that will be useful later.

Lemma 1.  (a)  Let 6. = argz . for j = 1, 2.   Tz5e?2

Id1 + e2,        if
dx + 62 + 227,     if ö[ + d2 < - n,

6X   +  62   -  227,       if   6X   +  d2  >   77.

(b)  Let A, B, C, D  be real, A, B  not both zero and C positive.
Then for z £ K,

(2)
(Az + B\

arg I Cz I = arg(Az + B) - arg (Cz + D) + 2nk,

where k is an integer independent of z eK depending on A, B, C, D as follows:

k = 1,     if A < 0,  AD- BO 0,
(3) k = 0,     otherwise.

Proof,   (a) 8 j + Q 2 £ Argz .z     so that  argz xz=Qx + Q+ 2rrk,   k the unique

integer satisfying - 27 < 6, + 92+ 2rrk < 77.  Since - 27 < 0     92< 77,  - 2>7 < 0 , +

6? < 227, and  k can be only  0, 1   or  —1.  (1) now follows directly by considering

the possible cases.
(b) Clearly (2) holds with  k an integer depending upon z.   But for z £ H each

of (Az + B)/(Cz + D),  Az + B,  Cz + D, takes values in only one of K, H_, the
positive real numbers, or the negative real numbers, and the argument function re-
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19721 ANALYTIC CONTINUATION OF EISENSTEIN SERIES 471

stricted to any one of these sets is continuous.   Thus the integer valued function

k = k (z) defined by (2) is a continuous function of z £ K, hence constant and in-

dependent of z  as asserted.  In (2) now, set z = (i - D)/C £ K, since  C > 0, E =

— AD + BC,  w = E/C + iA/C, and upon solving for  277&, (2) becomes. 277& =

arg( - i)w - atgw + tt/2.  Computing  arg ( - i)w  by (1) gives (3).

Special cases of (1) used frequently and without comment are: If z /= 0, u

teal > 0, then arg uz = argz, (uz)s = uszs; if z e M or z real > 0 and u real

> 0, then  arg( - uz) = argz - 77 and (- uz)s = e~1Tlsuszs.

We now introduce the series which is the basic concern of this paper.   Let

(7 y r 2) £R     and consider

^,' 1
(4)

£fn ((m + 7j)z + 72 + r2)s

the accent on 1. indicating that we omit any value of  (772, n) £ Z    which gives an

undefined term.   This convention will be used often, it generally being clear from

the context which values are to be omitted.  In (4), for example, (?72, n) =

( — r., — r A  is omitted.   Of course, this is a restriction only in case  (r., r A £ Z  .

It is known, and not difficult to prove, that the series (4) converges uniformly

absolutely on compact subsets of (z, s) £ K x K,.   Because of the absolute con-

vergence there is no need to specify the order of the terms in the series, all
arrangements add up to the same sum.   Futhermore each individual term of the

series is an analytic function of (z, s) e K x C  so that the sum defines an analy-

tic function  G on KxK2 which we denote as   G(z, s, r     rA.  It is clear that  G

depends only on the coset of (r., rA mod Z   ; changing r     r2 by integers does

not change G.

Theorem 1.   G has an everywhere finite analytic continuation to the entire

s  plane given by the formula, valid for (z, s) £ K x A,:

m, n   ((ttz + r^z + n + r2)s

(5)        =X<rl>5-;-^ + ~ Y(l)       T.    TlkS~1^p(2mkr2)exp(2nik(m + r )z)
{n + r2)S m>-ryk = l

+ e ,  .—   2_j     ¿_j ks      exp(- 2rrikr2) exv(2nik(m — r^)z).
772 >7.      k=l

The two double series on the right side of (5) converge uniformly absolutely on

compact subsets of K x C defining analytic functions of (z, s) £ji x C and the

first series on the right side of (5) also has an everywhere finite analytic con-

tinuation over the entire s  plane.
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Proof.  Let
(6) Piz. s) , £ —-—

„   (z + «r
in which z e C  is arbitrary and the accent indicates that the value n = — z  is
omitted—again, this is an actual restriction only in case z is an integer.  It is easy

to see that the series converges absolutely as long as a > 1  and for fixed z  the

convergence is uniform on compact subsets of A,.  Thus for each fixed z,  Piz, s)

is an analytic function on a,.  However, for fixed s, not an integer, Piz, s) is not

a continuous function of z; for example,

J&Z& + * + ")-* ¿¿2[2- + ny-»0+

and this of course is due to the discontinuity of the argument function on the neg-

ative real axis. Thus we introduce the following three functions: F = P restricted

to H x Kj, F_ = P restricted to K_ xKj, and F Q= P restricted to R xKy  In

(6) each individual term is analytic on H x C and K_ x C  and the absolute con-

vergence is uniform on compact subsets of K x a ,   so that  F  and  F    are analytic

functions of (z, s) on their respective domains.

The function  F Ax, s)  is closely related to the Hurwitz or generalized  ¿,

function defined usually only for 0<x<l,  o>l  by  ¿,(s, x) =   2°° = 0ix + n)~s.

We find it convenient to consider it defined for all x by  Cis, x) = 2 ..     (x + n)~s.
' n>—x

Then  ¿¡(s, x) = £(s, (x))   = z^(s, x + k)  tot all integers  k and £(s, k) = £(s), the
Riemann  £ function, for all integers  k.  To be consistent with our previous nota-

tion we should write  ¿,ix, s), but we shall adhere to tradition and write  £(s, x).

The reason is that one wishes to give prominence to s  in which  Ç, is analytic

rather than x  which enters as a parameter.   From its definition  L,(s, x) is analytic
in s £ a.   and it is known that it has a continuation over the entire  s plane hav-
ing only a simple pole at   s = 1  with residue   1   and everywhere else finite.   This

and other facts about  the   £ function used in this paper can be found in [3, Chap-

ter XIII].
Now we have

(7) F0(x, s) =   £  (x + n)~s +   ¿2 i* + n'~S = Cis, x) + eniA&?, - x).
7Z>— X 7Z<— X

This shows that  F„  can be continued over the s  plane, and is everywhere finite,

for at s = 1,   Ç(s, x)= l/(s- 1) + • • • ,  e"is = - e"^-^ = -I + . .. , so   £(s, x) +

em*&ß> -x) =(l/(s -1) + ...) + (_!+ ...)(i/(s - 1) + ...), where •••  repre-

sent higher order terms in (s - 1)  and so the   l/(s - l)  terms cancel each other

out.

Concerning   F   and   F    ,   if   z   £ K    ,   then - z   £ K   and   (z  +  n)~s  =
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e^Oz-Tz)-5 so that F_(z, s) = 2n(z + n)~s = enis2n ( - z + n)~s =

e   ' F ( - z, s) for as n ranges over Z so does - 72.  Thus

(8) F_(z, s)=enisF(-z, s)

and the properties of F_ can be deduced from those of F.

Since  F (z + 1, s) = F(z, s), F has a Fourier expansion in z:

(9) F(z, s) = Y,ak(s)e27Tlkz.
k

We recall that this is obtained by setting w = e   Tr'z and noting that because of

the periodicity of F  in 2, the function / defined by ¡(w, s) = F(z, s) is a single

valued analytic function of w  in the punctured disk   0 < \w\ < 1, thus having a

Laurent expansion ^..a.w    uniformly convergent on compact subsets of the punc-

tured disk.  This gives (9).   Furthermore, &k(s) = (1/2t7z)/ (f(w, s)/wk*l)dw,

0 < 7 < 1, which after carrying out the substitution w = e  7T'Z and replacing  F  by

its defining series gives

(10) ak(s)=  J[e-2^kz^(z + n)-sdz
72

where  / is any interval in  K of length 1  parallel to the real axis, say, for def-

initeness,   / = Í0 < x < 1, y = 1 !.  Now, as the series is uniformly convergent on

/, interchange  / and  X, then in the zzth  integral make the change of variable  z =

z   - 72, which shifts the interval of integration to  !tz < x < 72 + 1, y = 1¡, collect

the integrals and finally one has

(11) ak^=$L>
2rrikz dz

where  L   is the line   { - °° < x < 00, y = l\.  This integral is perhaps not completely

elementary and is of basic importance to our development so we carry out the

evaluation.   The fact that  k is an integer plays no role.

Lemma 2.   Lez"  L  be the line  { — <x> < x < 00, y=li, h a real number, a > 1,

ah(s) = fLz-se-27Tihzdz.   Then

a As) = 0 if h < 0,(12) h -   '
= (-2ni)shs-l/Y(s)    if h>0.

Proof.   For  R > 0  let  C     be the circle   |z| = R  and for  R > 1,   LR, the seg-
ment of  L   cut off by  CR, which is just the interval from - R   + i to  R   + i

where  /?' = (R 2 - 1)H.  JL = lim^^ fL      and since z-se~27Tihz is analytic in

">  Jlr  = JsR '     r  being the arc of CR  lying above  L.  If h < 0, then on SR,
\z-se-2"ihz\<e^\R-°,   \fLR\ = \fSR\ < e^'\R-°fSR\dz\ K^rre^^R1--* 0
as  R —> t», yielding the first part of (12).
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For h > 0, e ~ is unbounded on SR as  R —> oo  so we turn to the arc of C R

lying below L.   But now we must take into account the discontinuity of z~s on

the negative real axis before we can use the residue theorem.  It is convenient to

shift this discontinuity to the negative imaginary axis—or — y axis, for short—so for

the purpose at hand only, define

(13)
./ TV,if - 27/2 < argz < 27,

e ■ 2nis ~—sz   s     if,— w < arg z < - 2r/2;

\z   s] is the power of z  obtained by using that  9 £ Arg z  satisfying  - 27/2 < 9 <
327/2.  Now {z_,s¡ is analytic in the z plane slit along the -y  axis and  ahis) =

JL \z~s\e~   m     dz.  Let  E   , E+ denote the 'left' and 'right' 'edges', respectively,

of the -y axis and define  [z-s¡ as  e        2Sz~s on  E_ andas  z~s on E +, these

values being determined by considerations of continuity upon approach from the

left or right.   The method we are using is standard in the calculus of residues, easily

justified, so we do not go into all the subsidiary details.   Let yR  be the curve

starting at - R   + z, going along  CR   to - iR, up  E_ to  - ir,  0 <r < 1, clockwise

around  C , back down  E+ to —. iR  and then along   CR  to  R   + i.  Then

(Erz~se~ dz - \y   \z~s\e~ dz and we can estimate this latter integral.

Let  a be the angle subtended by the arc of  CR   from R  to R' + i; 0 < a < 27/2,
sin a = l/R.    The contribution of the arcs of CR  to j'y     is

7-327/2 +   ra       R-se-is6        {_2mhReie)Rei8ldd.
K J 27-zx J -27/2

hence

11,1 s •"!■■.'-(££'♦•£„) e2nhR sin9d9.

But   0 <   fln/2  + l°_7T/2e2nhR sin 9d9 < 27, since  h > 0  so we will have  JR -» 0
as  R— o/if we show   r*_a+ f*e2TThR sir- Bd9 = 2j£e 27ThR sin9d9 is a bounded

function of R.  Indeed, though, for 0<o<a, 0<P sin 9 < R sin a= 1  and
faoe2TThR sin6d9 <fa0e27Thdd=e277ha—0 as  R — 00.  Having disposed of the

contribution of  C„  as  R—► 00  we have now attained f.  = j"    where   y is  E_

starting at — 200  up to — ¿r, clockwise around  C , then back down  E .  from — ir
to - z'°o.   On  E_,  z = - iy, y > 0, |z_s! = e ~ 37T!'s/2y ~s  while on  E +, z = - iy,

y > 0,  |z-si = c",s'2 y_s and a small calculation gives

(   =-i(en2^2 -e-^2s/2)ry~Se-2r7hydy-      f |
Jy Jz J\z\=r

■ 2nihz dz

Each of these integrals is easily seen to be convergent for all  s, giving an analy-

tic continuation of   f    to all  s  values.   For o < 1, the obvious estimates show

that   fi   i      —> 0 as  r —► 0, so thatlzl=r
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/,       lo^lS —1TlS\    „

= (-z)s2sinns(2nb)s-lY(l - 5) , {'2*9* b'~\
1   U)

where in the last two steps we used Euler's integral for T(l - s)  and the func-

tional equation  sin(?75)r(l - s) = 77/T(s).  Since j"    and ( - 2ni)shs~ 1/Y(s) ate

both entire functions and agree for a < 1, they are equal for all  s.   This completes

the proof of the lemma.
For brevity, let

A(s) = (- 2m)s/Y(s).

A is an entire function with simple zeros at s = 0 or a negative integer.   Taking

account of (8), (9), and (12) we have

(14) F(z, s) = A(s)Y,ks-le2ni kz

k=1

00

(15) F_(z, s)^enisA(s)^k
k = l

s— 1   — 2rrikz

These series converge uniformly absolutely on compact subsets of K x C,  K_ x

C respectively—in fact, the smaller a the more rapid the convergence—thus giv-

ing analytic continuations for  F, F_, over the whole s  plane.   Returning now to

G, defined as the sum of (4) for (z, s) £ H x K,, we break up the sum as follows:

w t''-"x¿i)L £' + £  £ + E t
772,   72 772=—7.       72 77!>—7. 72 772< — r,       72

Now

E Z -,X (n_+ r2)_s = ¿(s' r2^ + **"# *. - r2)

as remarked in the start of the proof.   The other double series, using the defini-

tions of  F, F_ and then (14), (15), give

Y.     £^TO + r\>z + n + r2^~S =      £     F^m + rl^z + 7'  S^
77!>— 7j       72 772> —T.

CO

= A(s)   2_j     ¿_, kS~  exp (2nikr 2)exp (2nik(m + r.)z)
m> — r.    & = 1
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and

^    ^2üm + rx)z + n + r2)~s =     ¿2   P_üm + ri^z + T2' s^
m<— r,     zz m<—rx

enisMs)   ^2      ^2ks~xexpi-2mkr2)expi-2nikim + rx)z).
m<C—r.    zfe = l

In the last sum over m < - r    if we set m = - m , m   > t .   and then call  m    again

772, we have

oo

enisMs) £    ]£ ¿s-1exp(- 2rrikr2)expi2nikim - rx)z).

m>r,    fc = l1

Putting all this into (16) completes the proof of (5).  Now for the statements about

analytic continuation, those involving the  C, function have been dealt with al-

ready.  We only have to show that the double series converge for all  s.   If we de-

fine the function A   by these double series:
oo

(17)       Aiz, s, rx, r2) =     £     £ ks~ 'exp i2mkr2) exp i2rnkim + rx)z)
ZZZ> — T.      25 = 1

we see that (5) can be written

Giz, s, r     r) = xO-!)(£(*. r) + enis((s, - rA)
(18) 12 12 2

+ A(s)(A(z, s, rx, r2) + enisA(z, s, - fj, - r2)).

Now if we take the absolute value of each term in (17) we obtain

2~i      2-,  ka~  exp (- 2nk(m + rAy).
m>—r.    ze = l

If 7    e Z  then  222 = -      + a, a = 1, 2, • • • , and we have

oo        oo oo \

£ ¿2 ka-le-2l7kiy = W yr'L-2^
9=1  k=l n=l \k\n I

OO

<  ¿2 nae-2n"y
77 = 1

n     exp(- 2z722y  ) < oo,
7Z=1

for  o<o0, y > y0> 0.   If 7j ft Z, then  222 = - {r x] + q, q = 0, 1, 2, • •
a + ( rl)>   (''i) > °> and the series of absolute values is

i 272  +  7 .   =
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OO OO

£   1£kcr-lexp(-2nk(q + (rl))y)

oo oo        oo

= £ ^-»expi- 2nk(fl)y) + £   £ A^expi- 2nk(rl)y)e- 2nk«y
k=l q=\   jfe=l

oo oo      oo

<Y,k^exp(-2trk(rx)y)+Y,  Z^"2^
fe = 1 cj = l   * = 1

and again we see the convergence is uniform for a < a„, y > y n > 0.  Thus
A (z, s, r y r )  is analytic for (z, s) eHxC, and like  G depends only on the co-

set of (r -, r A  mod Z   .   The proof of the theorem is now finished.

Later on we shall be particularly interested in the case where s  is an inte-

ger.   One immediate consequence of (18)   is that if 5 = v, v an integer < 0,

G(z, 17, t., r  ) = X^i^C^' O + (~ l)v Civ' ~T2^  IS a constant function

of z  (see (45) below for evaluation of this constant).  For, A(v) = 0 and the A's

are always finite.   If (r     r2) £ Z  , then  G(z, s, r., r2) = G(z, s, 0, 0) = G(z, s),

for short.  Similarly we set A (z, s) = A (z, s, 0, 0).  Then (17) gives
oo

(19) A(z, s)= Y,as-¿n)e2TIÍnZ
72 = 1

where a   _,(")= S,i   ks     .  In this instance, also standard notation, the symbol

a is not the real part of 5  as elsewhere.   Then (18) simplifies to

(20) G(z, s) = (1 + enis) (C(s) + (- 2t7z)5AU, s)/Y(s)).

From this we see that  G(z,  I)  is also a constant function of z, its value being

(1 + e7Tis)£(s)\s = 1 = - ttz.   Also for v < 0,  G(z, v)  is by above  (1 + ( - lD^d,)
which is   0 if v < 0 and - 1  if v = 0.   Indeed, £(0) = - 7 while if v < 0, 1 +
( - 1)    = 0  if 17 is odd, and  £,(v) = 0 if v is even.

In any event then, G  always gives a constant function of z  for s   a nonposi-

tive integer, so that from a certain point of view A   is the more interesting func-

tion.   In particular we note the intriguing fact that A (z, 0)  is closely related to a

classical function, the Dedekind  77 function.  We recall that this is defined by

(21) q(z) = eniz/l2Y[A - e2nimz),

. u m = l
for z £ .H.  Then

00

log77(z) - rriz/12 =   Y, logd - e2nimz) = -  £   £
1    e2rrimkz

772 = 1    k=l

7Z = 1    \k\n I 72 = 1
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so that by (19)
(22) logrríz)- — = - A(z, 0).

II.   Let r denote the (inhomogeneous) modular group—no confusion with the

r function should arise—that is, the group of fractional linear transformations

z—► (az + b)/(cz + d), with a, b, c, d integers and ad — be = 1.  We'recall that  Y

maps  K onto itself.   Closely related to  V is the group M of  2x2  integer

matrices with determinant 1.  There is a homomorphism from '11  onto Y which

assigns to (a A ^\ the transformation z—> (az + b)/(cz + d).  The kernel of the

homomorphism is   \E, - E\, where  E = (       )  is the identity matrix and —(",) =

(_a _ ,).   In this section we are interested in determining the behavior of the func-

tion  G  when z £ K  is subjected to a transformation   V £ l\   The analysis simpli-

fies considerably if we choose a particular one of the two possible matrices in  M

representing  V.  Thus, for given   V £ V we choose the unique  ("A e M  having

c>0 or c = 0, d = I   such that  Viz) = (az + b)/(cz + d)  and call it the standard

representative of  V, denoted  V.   Observe that the set  {V I, V ranging over T,

is not a subgroup of M and   V—► V_ is not a homomorphism.

Theorem 2.   Let
¡a b\

(23) V £T,        V = [ \,       c> 0  or c = 0,   d= 1,
\c d I

its standard representative.   For (7., rA £ R  , set

(24) (Ry  R2) = (rx, r2)V

the ordinary matrix product.

(25) // c = 0, G(V(z), s, rv r 2) = G(z, s, R,, R A for all (z, s) £ K x C.

(26) If c> 0,
GiViz), s, rx, r2)

icz + d)s

where

= Giz, s, Rx, R2)

- 2isinns\xiR1K(s, - R2) + K(z, s, Ry R2, c, d)\

(27)     K(z, s, Ry R2, c, d)=   2^ 2L, ((m - Rx)z + n- R2)~s
m>Rx  n>R 2+d(m-Rl)/c

for all (z, s) £J(xK2.

Proof.   If c = 0, V(z) = z + b and for a > 2,

G(V(z), s, rx,  r2) =  22     U™ + rx)(z + b) + n + 72)~s
ZZZ,   7Z

= 22      ^m + r\>z + N + rxb + r2)~s
zzz, N
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since as (m, n) ranges over Z     omitting  (-'",. - r2), (m, N), N = mb + t2, ranges

over Z     omitting (.— r,, — r Jo — r A).  Now in this instance  (R ,, R 2 ) =

(r y 72)(0  ,) = (7, Tyb + r2) and we see that (25) holds, at least for (z, s) £ K x
K2.   As both sides of (25) have continuations to  (z, s) £ K x C  the equality per-

sists.

If c > 0, we write, again for a > 2,

G(V(z), s, ry r2) =  £    ((777 + r^lgr-g J + « + 72 j
772,  72       \ \ ' '

y, , ((M + Ry)z + N - R2X

M, /V
where  M = ttzö + ne,  N  =   mb + nd, i.e.   (M, N) = (772,72 )V, which ranges over Z

omitting  (-R., -PA     as  (tzz, n) ranges over Z     omitting  (-ry-r2).  Applying

Lemma 1 (b), with A = M + R j , S = N + R 2,   C = c > 0, D = ¿, we have that

(M + Rj)z + N + R2 \_s ... ((M + Ry)z + N + R2)~s

" + ¿ / (cz + d)~s

if M + Rj < 0,  ¿(M+R^XrizV + R^  and = ((M + R,)z+iV+ R2)~V(c2 + d)~s,
otherwise.   Thus,

G(V(z), s, rv r2)

(cz + d)s

(28)
=  ]£,((« + RfVr'fatf,* R2)"s + e"277!SX,2((M + Rj)z + N + R2)"s

where  S2  is the sum over those  (Al,  N)  such that  M + R j < 0, d (M + Rj)>
c(N + R2)  and ¿7  the sum over the remaining  (M, N).   Using an-abbreviated nota-

tion the right side of (28) may be written as  Ij + e"     ÏS£2 = Z[ + Z2 +
(e-2TTz>_   1)2        and    £ £ C(Zj    Sj    Ri>    R     )       S¡nce    c   >   0)

Z2     =     X £ ((M + R,)z + /V + R2)~*
zVK-Rj   /V<-R2+z2(zVl+R1),/c

M<-i?j    N<-R2+c7(M+R,)/c
((- M- Rj)z- N- R27

= **"£ Y ((m- Ry)z + n-R2)s
m^Rx    n>R2+d(m-Rl)/c
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where in the last step we took m = - M,   n = - N as our summation variables. If

R ,  is an integer we split off the terms corresponding to 222 = R . which contribute

27z>R   (n-R2)-s= ¿(s, -R2).  (28) now is
2

GiViz), s, r., rA
-'—A  = Giz, s, Ry R2) + ie-2n2S - l)en's

icz + d)s

• jx^KU,-k2)

+     22 Z ((222-/?1)z  +  72-R2)-SJ,
zzz>Rj    í2>R2+<i(zzz-R1)/c )

which taking account of the definition of  K by (27) and (e~27t2S - l)enis =

- 2i sin 27S, proves (26).
The function  K is analytic on H x a, it being just the sum of a subseries of

the series defining  G  and (26) shows that  K must have a continuation to K x C.

Our goal is now to find, independently of (26), the continuation of  K and our

method will be to imitate as well as  possible one of the methods used for the  C

function.   The basic tool is the identity T(s)/As = f°? us~  e~ udu, valid for com-

plex  À having  Re À > 0 and  a > 0.  In fact, for  À positive this is immediate from

Euler's integral for r(s)  and both sides are analytic functions of  À in the half

plane  Re À > 0 so the equality persists.  The restriction  Re À > 0  is needed to

assure   convergence of the integral.  We can thus set X = (m - R Az + (n - R A,

for z £ K, provided  Re ((722 - R Az + n - R A) = (m - R x)x + (n - R A)  is positive.

In the sum for  K, we have n — R x> 0, n - R-> d(m - R  )/c  so (222 - P . ) x +

(tz - R 2) > (722 - R j ) (x + d/c)  which is positive provided x + d/c > 0.   Thus if 0
is the 'quadrant'  \x > - d/c, y > 0\ we have, for (z, s) £ Q xKy,

F(s)K(z, s, R., R., c, d)

(29> =   E 22 n»S-lexp(-(m-Rx)zu-(n-R2)u)du.
m>Rx   n >R2+d(m-Rx)/c

We must now come to grips with the double sum and write it in a more mange-

able form.  Set, for  z = 1, 2,

(30) g{ = [R,].     f\ ¿ <R,)>

so that R . = g .+ p., g . £ Z and  0 < p. < 1.   Then m> Rx if and only if m = gx +
k,   k>\.  If k = qc + j,   0 < / < c - 1, then a > 0 for ; > 0 and a > 1 for 7 = 0
and  222 = g x + qc + j,  m-Rx = qc + j-pv  Also n> R2+d(m- Rx )/c = g2 +
dq + p   + d(j - p,)/c if and only if n = g+dq + ß. + h, where h is an integer

> 1, and
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(3D ß. = [p2+d(j-Pl)/c],        0<;<c-l.

Altogether then, m > R v n>R2 + d(m-Rl )/c exactly for  ttz = g    + qc + j, q >

0 for  1<j <c - 1, q > 1  for / = 0, n = g2 + dq + ß. + h, h > I.  For x > - ¿/c
we have seen that (772 - R } )x + 72 - R 2 is positive; hence for x > - d/c and all
admissible j, q, h,

(32) iqc + / - pj)x + dq + ß . + h - p2 > 0.

We can now rewrite (29), calling the left side just Y K, splitting off by themselves

the terms corresponding to  q = 0 for j > 0, and also interchanging the order of

summation and integration which will be justified momentarily, as
c—\ 00        00

TK =  X, J7*S_1X  H exp(-(qc + j - py)zu -(dq + ß. + h - p2)u)du
7=0 27 = 1   h = l

(33)
c— 1 OO

+ Z   f>S_1Z eXP(-(> - P1)Z" - {ßi + è - ^"^
7=0  J i=l

Of course, if c = 1  there are no ; > 0 and the sum Xf ~ j is understood to be zero.

In (33) if we replace each term by its absolute value this has the effect of re-

placing s  by a and z by x. After a little simplification and summation of the

geometric series one obtains

c~ a_ x exp(((pj - f)x + p2 - ß})u)Y f°V- ' '   -z     '    du
*—•} 0; = 0- (e(cz+d)u_  l)(eu_1)

E. CT_,exP(((Pl - j)x + p2-ßi)u)
I    u        -   du.

,-.lj0 <•"-.-1)

c-

+

Since x > - d/c, a > 2  is our standing assumption, the integrands are all positive

and the integrals converge at  u = 0.  At  u = 00  the integrands are comparable to

ua~ le~Bu with  B = (;' - pj)x + /3. - Pt + ex + d + 1, for /' > 0 and  S = (7 - p ; )x +

ß.- p2+ 1   for ; > 0.   If B > 0 the integrals converge, and this is indeed true as
is seen by taking q = 1,  h = 1   for 7 > 0 and q = 0,  h = 1   for 7 > 0, in (32).  Thus
in (33) the series and integrals are absolutely convergent and the change of order

of sum and integral is justified.  To simplify the notation, define

(34) Z = cz + d,      Y) = (p1- j)z + p2 - ß.,       0 < 7 < c - 1,

and (33) becomes
e-1 exp(Y.zz) c~r<x> exp(Yu)

(35) YK-Y PV-1-—- du + Y  f>       -~ du-
(35)     rK-LJo«       {eZu_1){eu_1) ^Jo (ezz_l}
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These integrals are of the type known as Mellin transforms and the analytic

continuation of  K  is obtained as a special case of the following lemma.   First,

though, a few definitions.   If (p(w)  is a meromorphic function, not identically zero,

in a domain containing the origin then ord   =„cp(w) = v, v an integer, means that

cp has at w = 0 a zero of multiplicity v if v > 0, a pole of multiplicity - v if

v < 0, and neither zero nor pole if  v = 0.   In any case, w~   cp(w)  is finite and

nonzero at w = 0.   For our present purpose it is convenient to use the  sth  power

of 222  arising from the value of Arg w between  0 and  277.   Thus we set (ws ) = ws

if 0 < arg w < rr and (ws) = e2rrtsws it - n < arg w < 0.  Let E+, E_ denote the

'upper' and 'lower' 'edges', respectively, of the positive  u  axis on which we de-

fine  (ws)  by continuity: if w = u > 0 then on  E + ,   (ws) = us and on  E_,  (ws) =

e     isus.  For  8 > 0, let  y= y g  be the curve consisting of E + from + oo  to  8,

counterclockwise around  Cg = \\w\ = 8\  and back along  E_  from  8 to + oo.

Lemma 3-   Let  cp(w)  be a meromorphic function not identically zero, in a

domain containing the ray  \u > 0, v = 0¡ and finite at all points of the positive

axis  \u > 0, v = 0\.  Suppose  ord   =0<p(w) = v,
oo

(36) u2-v<p(u/> = 22 *•«*"•     co ^ °.
7=0

í¿e series converging for  \w\ < 8Q (0 < 8„ < oo).

// for some u,  — v < p < oo, <p satisfies cp(u) = 0(a ~^ as   a —► oo, for every

a in the interval — v < o < p, then the transform

(37) W = |V-1i4(K)Ä

is an analytic function of s  in the strip   \ - v < a < p\— half plane if   p = <*>.

í»(s) has a continuation to the half plane   \o < p\— entire plane if   p = oo—given

by the identity, valid for — v < a < p,

<D*(s)(38) dXs)
(e27Tls - 1)

7where

(39) 0>*(s)=   f    (u^-'z-cSMaW

is analytic in \a < p|, 5  being any number in the interval 0 < 8 < §_.   Furthermore,

if s = — v — g  is an integer < p then

(40) $*(- V - g) = 0,       Z'/  g <  0, $*(- 1/ - g) = 277ZC    ,      2/  g > 0,
K

c     being that obtained from (36).

Proof.  Standard estimates show the existence and analyticity of <Ms);  the
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growth condition on <p(zz)  as  u—»oo  gives the convergence at °°   of (37) and o >

— v assures convergence at 0.   In the same way it is easily seen that í>*(s),  as

defined by (39), is analytic in \a < p|  and by the residue theorem is independent

of 5   in  0 < 8 < z5„.   Breaking up y,  into two parts, the one along the axis and the

other along  C? gives

(41) <5*(s) = (e2TT2S - l)f™us-lcP(u)du + fc (ws~l)cP(w)dw.

If 8   is sufficiently small,   \w~vcp(w)\ < 2 |cJ   for   |tzz| <z5  and   \JrAwS~   )<piw) dw\

< 477|c0|e27rMs!T+l',  hence if a > - v, as 8 -» 0 in (41), /Q -»0, and

<&*(s) = (e27Tls - l)$~us-XcP(u)du = (e2nis - l)<D(s),

which gives the continuation of $(s)  as stated by (38).   Note that since $*(s)  is

analytic in la < pj,  the extended <I>(s)  picks up at most simple poles at s = inte-

ger < — v.   Finally, for s = - v - g an integer < p,  by (41), $*(— v — g) =

JCt.u'~V~8~   cp(w)dw,  tot when s   is an integer (ws) = ws, and the latter integral
0

is just 2272 Re s   -r.w~V~e~   cp(w), which, by (36), gives (40).   This proves th ew = 0
lemma.

Keeping the notation established before Lemma 3 we summarize our results

concerning  G  and  K,  all pertaining to the case  c > 0.

Theorem 3.   Let   Y., Z  be defined by (34),

<p(Y.. Z, w) = ex.p(Y.w)/(eZw - l)(ew - 1),       0 < / < c - 1,

a72a'

iff(Y., w) = exp(Yjw)/(ew - 1),        1 < / < c - 1.
Let

$(y., Z, •*) =/¡°"S_1 <piYr Z, u)du,

y(Y., s)-f'*u*-lipiYj, u)du,

**(Y, Z, s) =   f     (ws~1)cP(Y., Z, w)dw,i j y% i

w*(v., s)= f   (ws~l)tp(Y., w)dw,
3 J  '8 '

where  0 < 8 < 8Q = min(2rr, 2rr/\Z\).
Then $*, W* are entire functions of s, í>, W are analytic in the half plane

A2, A.   respectively, and have continuations over the whole s  plane given by

$*(Y , Z, s) m*(V., s)
<D(V ., Z, s) =-—I- ,        tt/(y , s)

(e2nis-l) ' (e2n2S-\)

valid in a   , K     respectively.
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// Q  is the quadrant {x > - d/c, y > 0\  then for (z, s) £ Q x A2,

e-i e-i
(42) r(s)K(z, s, Rv R2, c, d)=Y &Yf Z, s)+Y VÍY., s)

7=0 ,=]

072*3?, for (z, s) £ Q X C,

c-1 c-1
(43) (e27Tls - l)Y(s)K(z, s, Rv R2, c, d)= Y $*(y,' Z> s) + Z! W*(V'/' s)"

7=0 7=1

Finally, for    (z, s) £ Q x C,

GiV(z), s, rv r2)

(cz + d)s
(44)

G(z, s, Ry R2)- x(R,)2z'(sin77s)¿;(s, - R2)

- w fï>*^'z-s) + 5>*^'4
(7=0 7=1 )

Proof.   The cf>, if/  ate meromorphic in the whole zzz-plane; each if/  has a simple

pole at the origin,  ord   _   if/ = - 1,  and is finite in 0 < |izz| < 2t7,  while each r/S

has a double pole at the origin,  ord   __</> = - 2,  and is finite in  0 < |i¿z| <

min(277, 2n/\Z\) and now the statements concerning $>, 3>* follow immediately from

Lemma 3.   (42), (43) are just reformulations of (35) while (44) arises upon substi-

tution of  K,  as given by (43), into (26).
The formula (44) is somewhat complicated and furthermore has the drawback

that it holds only for z  restricted to the quadrant Q  since otherwise the integrals

defining í>* do not converge.

When s   is an integer, though, we can  simplify (44) and also obtain a formula

valid for all z el.   First, recall that at the end of §1 we showed that for s -

integer v < 0, G(z, </, r,, rA is the constant function in z, X^X^^. 7) + (-l)vCiv> ~r2^'

Now by (44), since  l/rd-O = 0, sin nv = 0 and the remaining functions of s are

analytic at s = v, we obtain

G(V(z), v, rv r2)/(cz + d)v = G(z. v, Ry R2).

Consider the case V(z) = - l/z, V = (. "_ ),  (r., r ) = (O, r), r any real number, so

that (R., R  ) = (O, r)V = (r, O) and the above formula becomes

G(- l/z, v, 0, r)/zv . G(z. v, r, O).

Now replace each G by its constant value as given above and we have

£(„, r) + (_ !)"£(„, _ r)/zvv y(r)(C(u) + (- !)"£(,/)).

We have already previously remarked that £(iv) + (-l) £(17) = 0 if v < 0 and = -1

if v = 0.   Thus
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for any real r and integer v < 0,

(45) z>, r) + (- lVÇ(v, - r) = 0 while
((0,r) + £(0,-r) = -X(r).

By Lemma 3 we can evaluate the $>* and W* at any integer value of s.    In

fact, by that lemma, since

exp(Y.w) exp(Y .w)
ord      .   - = - 2    and    ord     n   -    = - 1,

"-0   (eZw _l){ew _  j) »-«     (e-_l)

<E>*(y., Z, i/) = 0 for i/ an integer > 3, Wr, i/) = 0 for v an integer > 2,  while

for g an integer > 0, 3>*(Y., Z, 2 - g) = 2t7z times the coefficient of tz/8  in the

expansion of w2exp(Y .w)/(eZw - lXe*" - l)  about tzz = 0 and V*(Y.. 1 - g) = 2?7z

times the coefficient of w8  in the expansion of wexp(Y .w)/(ew - l) about w = 0.

Now w/(ew - l) = S°°_ b w"/n\, fot \w\ < 2n, the b    being the Bernoulli numbers,77 — U    72 '      l n °

b = l,bl=-  1/2,   b2  =  1/6 and  b2k + 1 = 0 for k> 1.   Hence

iZ72exp(Y.zz7) , „
' 1 i,,     \ tu Zw■=   -   exp(Y ztz) •

(e2™- l)(ew - 1)       Z ; e^-l     f2*8-!
oo      y/i oo      2, oo       ¿,

4Zrr^-»"ï4 zP^.Z  ¿~i k\       ¿-J n\ ^  p!
k=.0 71=0 i> = 0

yfe oo    z,

exp(Y t.) - —ÎL- = Y TT «"* Z -f «"".
and so

~ 1        fc=0 n=0

277Z
(46)        0*(y   z,2-j) = -^L(y,,z),     v*(y.,i-g)=2fri/ (y.),' Z      8    j ft'* ' e    j
where

Y*   b     b.

(47)

Ljy.z)-   V    -L'"-Lzf,
si *-*■       k\   n\   p\

k+n+p=g ^

Yk    b
j (y) = y -i jl
V   J Z-,    k\    n\

fe+72=g

Each Y., Z was a linear polynomial in z so that L , /    are also polynomials in z.   It

follows now from (44) and the above that

(48) G(V(z), v, rv r2)/(cz + d)v = G(z, v) Ry R2),    for 5 = v > 3,

which of course is classical and can be obtained directly from the definition of G.

Also, since Z = cz + d, LQ(Y., Z) = 1, JQ(Y ) = 1,  L ̂ Y., Z) = Yy - 1/2 - (l/2)Z,
sin 2tt£(2, - R2) = 0, sinUs) • £(s, - R2)|s = 1 *.->* (recall that £(*, - /?2) =
l/(s - l) +• • •   near s = l)  we have
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G(V(z), 2, r     r) 2   .
(49) -l—l*  =G(z,2,Rx,R2)-

icz + d)2 V      2       (cz + d) '

GiViz), 1, ¿A, rA c-l

(50)
^-GU.i.«r«,> ♦**«,>. ¿ö^jgij

trie , .
-+ rnic - 2).cz + d

1/The above holds for all z £ n;  fot by (44) they are valid for z £ Q  but all the
functions involved are analytic for z x£n,  so the equality persists.   Concerning

(49) we note that it is remarkable in that the extra term added on at the right is

independent of r , r  .   Also, (49) holds even if c = 0,  as may be seen by compari

son with (25).   Furthermore, we need not use the standard matrix representative

'a     b

■ c    d.

of  V,  for using instead - V, both icz + d)   , c/icz + d)  ate unchanged, while

Giz, 2, R ,, R A is replaced by Giz, 2, - R., - R A.   But these are equal, as may

be seen from (18) with s = 2.
Along with G  it is interesting to consider the function  Hiz, s, r., r A =

Aiz, s, 7j, 72) + enisAiz, s, - ry- r2); A   being defined by (17).   By (18) we have

Giz, s, rx, r2) = x^jX^U, 72) + enis<r(s, - r.,)) + A(s)/V(z, s, ry r2).   Now replace

both occurrences of  G  in (44) by the above expression involving H  and then

solve for H(v(z), s, r., rA.   After a little calculation, taking into account

Ms) = buff = e-nts^s ,
v(s) r(s)

the result is

H(V(z), s, r., rA X(r,)e77^r(s)(¿:(s, , ) + e^tis, - rA)
- = H(z, s, R,, RA-:-—

icz + d)s i2ni)sicz + d)s

x(RAris)(£(s, - Rj + e772*^. R2))

(2mY

'22 9*(Y., Z, s)+22 V*iYr s'\-
'7=0 7=1 '       {

(5i:

(2272?

This holds for all (z, s) £ Q x C.   In case (r r rA £ Z2, Hiz, s, ry rA) =
(l +. e7Tls)A(z, s), where A(z, s) = A(z, s, 0, O),  see (19) above, and we obtain the

transformation formula for A(z, s):
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AiViz), s)       ..       i     TisXis)
- = A(z, s) +-
(cz + d)s (2ni)s      \       (cz + d)s

(52) '
1 i^1 c~x \

-) 22<b*iY.. Z,s)+  J2 W*(Y.. s)y.
i2niYil + ."•)  | ~ Ui '       (

In this and other formulas involving Aiz, s)  it is understood that the   Y. ate6 i

computed using iry r?) = (flj, /?2) = (0, 0).

Again these formulas can be simplified in case  s  is an integer.   If s = v,  an

integer, and  r any real number, let 8iv, r) = r(s)(£(s, 7) + en's¿¡is, - r)) evaluated

at s = v.   For v > 0  both Y is) and C,is, r) + enis£is, - r) ate finite at s = v  so

8iv, 7)  is well defined.   For v < 0,  Y is) has a simple pole at s = v  and ¿f,is, r) +

e  ls£is, - T) by (45) has a zero at s = v  so again 8iv, r)  is a finite number.

Similarly when v = 0 as long as  7  is not an integer, while §(0, r) = 00   if 7 e Z.

We remark that we cannot actually calculate zS  for that involves knowing the values

of dçiv, r)/ds,   which in general we (meaning the author) do not know.   In any

case, for s = v /= 0 we have from (51) that

MV(z), v, r     rA x(7.)(- l)v8iv, rA      x(R.)8(i/, - R2)
-   =  Hiz, v, R,, RA-— + -i-

icz + dY i2ni)vicz + d Y Í2rriY

(53) 7cX c_x .
- -4- ] 22 ®*{Yï Z- v) * Z **(y7< "7'

(2272')V    (;=o j = 1 j

where $*, *P* are given by (46), (47) and are zero otherwise.   By the remarks fol-

lowing (50), the above holds for all z eK.   If v = 0, (53) clearly still follows from
(51) if x(ri) - XÍRA = 0 and we interpret x^i'^ÍO, r2) = x(ß,)o(0, - R2) = 0 even
in case r    eZ  or R. £ Z.   The only case remaining then is if v ■ 0, r.  e Z,  r

e Z—in which case necessarily then R., R. e Z—which means we are actually

dealing with Aiz, O).   Thus let us now consider (52) for s = v; here the situation

is somewhat more complicated.   In fact we see that the individual terms in (52) to

the right of Aiz, s) can have poles at s = v.   Of course the total residue must be

zero since Aiz, v), AiViz), v)/icz + d)v ate finite, but we have no way of comput-

ing independently the constant contributed by the remaining terms.   If v  is even

the only possible singularity can come from r(s)z^(s) which is manageable.   If

v = 2k > 4, since $>*, W* vanish we have

(54) A(V(z), 2k) m A{z> 2k) I (- DH2k - m2k)   /  _ 1 \
icz + d)2k (2,7)2* \        (cz + d)2k)'

Again, this and the following formulas  hold for all z eH,  as remarked above.   For

s = 2,  since 2^ Í>*(Y., Z, 2) =2mc/Z,  £(2) = 272/6,
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A(V(z), 2)        .     ,.       1   /       1 \(55)-— = Mz, 2) + —- - 1     +
icz + d)2 24  \icz + d)2        j      4nicz + d)'

Expanding about s = 0 one has

r(sKis) \ ~ ¿TV) = (« +'") [-7+ •; •)«>«•(-+«-•'>• + ;•■)

which at s = 0 has the value (ni - log (cz + d))/2.   Thus

A(V(z),0) = A(z,0) + ^'-^l±Í-)

(56)
I ) T#*{r;, z, o) + £ f*(y.. on.

(;=0 7=1 '      )

By (46), (47), 3>*(Yy, Z, 0) = 277zL2(Yy, Z)/Z  and L (Y , Z) = Y2/2 - V\/2 -
YZ/2 + 1/12 + Z/4 + Z2/12, W*(Yy, 0) = 277z/1(Yy) and ] ¿Y ) = Y. - l/2.   Re-
calling the definitions of   Y., (34) and ß ., (31),  we see, since we have  (r , r A =

(0, 0), that ß. = [dj/c],  Y. = - jz- [dj/c],  0< /'< e- 1, hence  YQ = 0.   Putting
the above into (56) and taking account of log r](z) = niz/12 - A(z, 0), as shown in

(22), we have, for V(z) = (az + b)/(cz + d), c > 0,

, (az + b\      , ,  -      77Z   /zzz + b       \       log (cz + d)
lo^{cT7d)=log*z) + ñ{cz-7d-z) +^—2-

c—1 _.„
•nt

(57) + , "     £ (y2-y)+-
2(cz + d)f^   ■    *   l tZ Jl2(cz + d )

c-l
ni ^-> 77ZC      nic(cz + d )V-Y Y -
2   ¿~>    i       4 12

; = l

This does not appear in as elegent a form as obtained by Dedekind, but by actually

carrying out the indicated summations one can recast (57) into the standard form

involving the Dedekind sum.   For the case V(z) = - l/z,  c = 1, all the sums are

absent and we have  log r¡(- l/z)  = log 77(2)+ (log z)/2 - Î7//4.
Finally, in case s is a negative even integer, 5 = - 2k, k>l, then using the

functional equation of the £ function one has r(5)£(s) ■ m . = (-l)k£(2k + l)/2(2ir)2k
so that (52) yields

A(V(z), - 2k)                       v     Ç(2k+1) (,      . 2k.-   = A(z, - 2k) +- (1 - (cz + d)iK)
(ez + d)-2k 2

(58) I     c_i c_i \
♦ (-l^W**1 - il Y L2kjYr Z)+ Yl^iYÀ.
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In the conclusion of this section we point out that some amusing and interest-

ing calculations can be done with these formulas by putting in particular values of

z.   We shall leave this to the pleasure of the reader, pointing out one sample.   In

(55) take z = i,   Viz) = - l/z,   so that  V(z') = i, and solve for Aii, 2)  to obtain
oo

7Z = 1

Again taking z = i, Vii) = (az + b)/ici + d), c > 0,  gives

Y o-<n)e27ri"«a2Ab)/(ci+d)) = J_ _ il+i! .
*-^    » 24 8z7
7Z = 1

Since both sides are invariant under change of the signs of all of a, b, c, d,   the

above formula is seen to hold for any (a   ,) £M.   Splitting the exponential into real

and imaginary parts, one has
oo

2rm(ac + bd) 1       c2 + d222 a\i'1A exp (- 22772/(c2 + d2)) cos
7Z = 1 C2+d2 24 877

¿ ox(n) exp   (- 27772/(c2  + d2)) sin  ^{ac + bd)    = Q
72 = 1 C2+d2

III.  In this brief concluding section we exhibit the connection between the

function G(z, s, r , r A and the classical Eisenstein series, thus justifying the

title of the paper.   The latter are series of the form 2 1/(722 z + nA  ,  k an integer,

(222  , 72  ) ranging over Z2   subject to a restriction of the type  m    = a.,  72. m

a    mod N,   N a positive integer, a., a    arbitrary integers.   These series converge

only for zt >   3,  and if one sets  m. = a    + mN,   n   = a    + nN  one sees that the

series can be written as

1    ~ 1 ^c(z,k.a-l,-2
Nk m,„    ((m +ax/N)z+ n +a2/N)k      Nk      \ N     N

Thus for s - k, r , r rational numbers, our G function coincides essentially with

the Eisenstein series. For k = 2, the Eisenstein series do not converge and Hecke

in [l] introduced the idea of considering instead
z

lim 22
( 722jZ + 72j)    |z22jZ  + 72 j \S

(772 , nA  subject to the same restriction as above.   From our point of view one

should consider instead the function Giz, 2, a /N,  a /zV).   The relation between

the two is as follows.   Hecke denotes the function defined by the above limit as

G Az; ay a  , N)  and gives for it a Fourier expansion which, as easily seen, can

be rewritten in our notation as
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fl2\ / «-AN^'■••'■w-^^*WA<l^.-<u-
4rrl

Y. Y. k exp (2rrika2/N) exp (2rrik(m + Uy/N)z)
N      m>-ax/N   k=l

4n¿

N      m>a,/N   k=l
Y       X k exP (- 2nika^/N) exp (2!7z^(t72 - zîj/AOz)
A'

which upon comparison with (17), (18) for s = 2  shows that

G2(z; av a2, /V) = - 2rri/N2(z - z) + N~2G(z, 2, a^N, a2/N).

From this one deduces easily how G Az; a , a , N) transforms under the modular

group, for (49) shows how G transforms, and remarkably the nonanalytic function

2rri/(z - z) transforms the same way. In fact if (a ,) is any real matrix with de-

terminant one an easy calculation shows that, it ¡(z) = 2rri/z — z,

f((az + b)/(cz + d)) 2nic
= f(z)i j-\2 cz + d '(cz + d )

Thus the extra added terms from  G  and - / cancel and we have Hecke's result that

G2((<2z + b)/(cz + d)¡_a., a2, N)

(cz + d)2
G2(z; aa¡ + ca2, ba^ + da2, N),

for any (^ *) eSl.
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