See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/243448582

Analytic critical scattering intensity with a nonscaling correlation function

Article in Physical review A, Atomic, molecular, and optical physics • April 1975
DOI: 10.1103/PhysRevA.11.1414

ctations

7

2 authors:

Moorad Alexanian

University of North Carolina at Wilmington
140 PUBLICATIONS 573 CITATIONS
SEE PROFILE

READS
39

Some of the authors of this publication are also working on these related projects:

Study equivalence and non equilibrium process View project

Project
Glass transition View project

Analytic critical scattering intensity with a nonscaling correlation function

Moorad Alexanian and Magdaleno Medina-Noyola
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Física, Apartado Postal 14-740, México 14, D. F., Mexico

(Received 30 October 1974)

Abstract

A simple extension of the Ornstein-Zernike theory of critical scattering gives rise to correlation functions which do not scale. The critical-point exponents have values $\eta=0$ and $2 \nu \geq \gamma$.

I. INTRODUCTION

The classical Ornstein-Zernike theory ${ }^{1}$ of critical scattering relates critical opalescence to the slow decay of correlations with distance and hence to the divergence at the critical point of the isothermal compressibility. ${ }^{2}$ It also leads to the relation $2 \nu=\gamma$ between the critical exponents ${ }^{3} \nu$ and γ. If, in addition, the thermodynamic functions are assumed analytic in the temperature, then the classical values $\gamma=1$ and $\nu=\frac{1}{2}$ may be obtained. Unfortunately, these results for the critical exponents do not agree with those found for different fluids. ${ }^{4}$

The Ornstein-Zernike theory is usually carried out to its lowest approximation. One wonders what values can be obtained for the critical exponents from a general theory based on the OrnsteinZernike idea. In particular, can an OrnsteinZernike theory give rise to a result other than $2 \nu=\gamma$?

If the scattering intensity is not analytic in the square of the wave vector near the origin-if it is, say, a multivalued function with a branch point at the origin-and the scaling hypothesis ${ }^{5}$ is valid, then ${ }^{6}(2-\eta) \nu=\gamma$. Hence deviations from the clas sical result of Ornstein and Zernike, $2 \nu=\gamma$, are connected with nonanalyticity of the scattering intensity. Experimental evidence on the scattering of neutrons from liquid neon ${ }^{7}$ suggests $\eta>0$, that is, $2 \nu>\gamma$. This would represent a breakdown of the Ornstein-Zernike theory, which entails $\eta=0$.

The analysis of light scattering by a simple fluid near its critical point is made difficult by doublescattering ${ }^{8}$ and gravity-induced ${ }^{9}$ effects. The experimental data are consistent with both of the aforementioned effects and with $\eta=0$. At the same time, experimental values for the critical exponent ${ }^{10} \nu$ and the exponent ${ }^{4} \gamma$ for fluids definitely suggest $2 \nu>\gamma$.

Thus the present experimental situation gives rise to serious theoretical questions by the possibility $\eta=0$ and $2 \nu>\gamma$. Therefore it seems appropriate to consider higher-order corrections to the
classical Ornstein-Zernike theory and study their possible implications for the values of the criticalpoint exponents.

In this work it is shown that a realization of the Ornstein-Zernike program can be carried out to higher orders by assuming $\eta=0$, and that it leads to $2 \nu \geqslant \gamma$.

II. GENERALIZATION OF THE CLASSICAL ORNSTEIN-ZERNIKE THEORY

The Ornstein-Zernike theory of critical scatter ing is concerned with the calculation of the paircorrelation function in order to explain critical opalescence. This is accomplished by defining a direct correlation function $C(\overrightarrow{\mathbf{r}})$ by the integral equation ${ }^{11}$
$G\left(\overrightarrow{\mathrm{r}}_{1}-\overrightarrow{\mathrm{r}}_{2}\right)=C\left(\overrightarrow{\mathrm{r}}_{1}-\overrightarrow{\mathrm{r}}_{2}\right)+\rho \int C\left(\overrightarrow{\mathrm{r}}_{1}-\overrightarrow{\mathrm{r}}_{3}\right) G\left(\overrightarrow{\mathrm{r}}_{3}-\overrightarrow{\mathrm{r}}_{2}\right) d \overrightarrow{\mathrm{r}}_{3}$
for the net correlation function $G(\vec{r})$.
We shall consider only the case of a liquid or gas in three spatial dimensions. The (net) correlation function $G(r)$ is related to the two-particle distribution function $n_{2}\left(\overrightarrow{\mathbf{r}}_{1}, \overrightarrow{\mathrm{r}}_{2}\right)$ by

$$
\begin{equation*}
G(r)=n_{2}\left(\overrightarrow{\mathrm{r}}_{1}, \overrightarrow{\mathrm{r}}_{2}\right) / \rho^{2}-1 \tag{2}
\end{equation*}
$$

with $r=\left|\overrightarrow{\mathrm{r}}_{1}-\overrightarrow{\mathrm{r}}_{2}\right|$. The isothermal compressibility is given by

$$
\begin{equation*}
k_{B} T \rho K_{T}=1+4 \pi \rho \int_{0}^{\infty} G(r) r^{2} d r \tag{3}
\end{equation*}
$$

the Fourier transform by

$$
\begin{equation*}
\hat{G}(k)=4 \pi \int_{0}^{\infty} \frac{\sin k r}{k r} G(r) r^{2} d r \tag{4}
\end{equation*}
$$

and hence $[\hat{G}(k)]^{*}=\hat{G}\left(k^{*}\right)$. (The complex conjugate of z is denoted by z^{*}.)

The fundamental assumption of the OrnsteinZernike theory is that $C(r)$ should be short ranged even at the critical point-reflecting the shortranged nature of the pair potential. Hence its Fourier transform $\hat{C}(k)$, even at the critical point, is analytic in k^{2} in a domain containing the origin.

It is clear that $\hat{C}(k)$ cannot be an entire function
of k^{2}. As $|k| \rightarrow \infty \hat{C}(k)$ must vanish-so its Fourier transform exists-hence, by Liouville's theorem, $\hat{C}(k)$ must vanish identically. ${ }^{12}$ Therefore $\hat{C}(k)$ must have at least one singular point. We shall assume $\hat{C}(k)$ has isolated singular points only. Consequently, $\hat{C}(k)$ is meromorphic in k^{2} with no pole at $k^{2}=0$-short-ranged assumption of $C(r)$ and vanishes as $|k| \rightarrow \infty$.

From (1) we have for the Fourier transforms

$$
\begin{equation*}
1+\rho \hat{G}(k)=1 /[1-\rho \hat{C}(k)] . \tag{5}
\end{equation*}
$$

Therefore $\hat{G}(k)$ is also meromorphic. The assumed absence of a pole in $\hat{C}(k)$ at $k^{2}=0$ implies, from (3) and (5), $K_{T}>0$. Of course, the converse is not necessarily true. Therefore a necessary condition for the validity of any Ornstein-Zernike-type description is the nonvanishing of the isothermal compressibility.

III. CRITICAL-POINT EXPONENTS

The Mittag-Leffler partial-fractions theorem allows us to write the most general form of a meromorphic function. ${ }^{12}$ We consider first the case when $\hat{G}(k)$ has only simple poles. Then

$$
\begin{equation*}
\hat{G}(k)=\frac{1}{2} \sum_{j=1}^{\infty}\left(\frac{L_{j}}{k^{2}+A_{j}}+\frac{L_{j}^{*}}{k^{2}+A_{j}^{*}}\right) . \tag{6}
\end{equation*}
$$

We may assume $\left|A_{j}\right| \leqslant\left|A_{j+1}\right|$ for all j. From (3),

$$
\begin{equation*}
k_{B} T \rho K_{T}=1+\rho \sum_{j=1}^{\infty} \frac{\operatorname{Re}\left(L_{j}^{*} A_{j}\right)}{\left|A_{j}\right|^{2}} . \tag{7}
\end{equation*}
$$

Also, from (6) we have, when $a_{j}>0$,

$$
\begin{align*}
G(r) & =\frac{1}{8 \pi r} \sum_{j=1}^{\infty}\left(L_{j} e^{-r \sqrt{A_{j}}}+L_{j}^{*} e^{-r \sqrt{A_{j}^{*}}}\right) \\
& =\frac{1}{4 \pi r} \sum_{j=1}^{\infty} e^{-r a_{j}\left(C_{j} \cos r b_{j}+D_{j} \sin r b_{j}\right)} \tag{8}
\end{align*}
$$

with $\sqrt{A_{j}}=a_{j}+i b_{j}, C_{j}=\operatorname{Re} L_{j}$, and $D_{j}=\operatorname{Im} L_{j}$.
As the critical point is approached, a finite number of poles of $\hat{G}(k)$, say $j=1, \ldots, l$, approach the origin. (Recall that a meromorphic function may have an infinite number of poles but with no finite limit point.)
Let $\left|A_{j}\right| \rightarrow t^{2 \nu_{j}}$ as $t \rightarrow 0$, where $\nu_{j}>0, j=1, \ldots, l$, with $t \equiv\left(T-T_{c}\right) / T_{c}$ and let $\nu \equiv \max \left(\nu_{1}, \ldots, \nu_{l}\right)$. The correlation length for each term in (8) is defined by $\xi_{j} \equiv 1 / \sqrt{\left|A_{j}\right|}$. If $\xi \equiv \max \left(\xi_{1}, \ldots, \xi_{i}\right)$, then $\xi \sim t^{-\nu}$. $\{$ It should be noted that our definition of the correlation length is a simple generalization from that when the exponential factor $1 / \sqrt{A_{j}}$ is real. Also, in general, ξ will have no direct connection to $\left[\int r^{2} G(r) d \overrightarrow{\mathbf{r}} / \int G(r) d \overrightarrow{\mathrm{r}}\right]^{1 / 2}$.\} Now, from $\left|A_{j}\right| \rightarrow t^{2 \nu_{j}}$ as $t \rightarrow 0$ it follows that $\operatorname{Re}\left(L_{j}^{*} A_{j}\right) \sim t^{2 \omega_{j}}$ as $t \rightarrow 0$ with $\omega_{j} \geqslant \nu_{j}$. Therefore, from (7),

$$
\begin{equation*}
K_{T} \approx \sum_{j=1}^{l} \frac{B_{j}}{t^{2\left(2 \nu_{j}-\omega_{j}\right)}} \tag{9}
\end{equation*}
$$

where B_{j} is constant and $2 \nu_{j}-\omega_{j} \leqslant \nu_{j} \leqslant \nu$. Since $K_{T} \sim 1 / t^{\gamma}$, we have

$$
\begin{equation*}
\gamma \leqslant 2 \nu \tag{10}
\end{equation*}
$$

The strict inequality in (10) is satisfied, in the simplest case, for $G(r) \sim(1 / r) e^{-a r} \cos b r$ with $a \rightarrow 0$, $b \rightarrow 0$, and $a / b \rightarrow 1$. In this case

$$
2 \nu-\gamma=\lim _{t \rightarrow 0} \frac{\ln [(a-b) / a]}{\ln t}>0
$$

Note that b, as well as the correlation length $\xi \sim a^{-1}$, represents another length in the fluid that is characteristic of the approach to the critical point. Thus scaling is violated.
What happens when higher order poles-even essential singularities-are included? The MittagLeffler theorem gives us the appropriate construction as sums of the principal parts of the meromorphic function at its poles. ${ }^{12}$ The principal part at a given pole of order $n+1, n \geqslant 1$, would contribute to $\hat{G}(k)$,

$$
\begin{equation*}
\hat{G}^{(n)}(k)=\frac{1}{2} \sum_{l=0}^{n}\left(\frac{L^{(l)}}{\left(k^{2}+A\right)^{l+1}}+\frac{L^{(l) *}}{\left(k^{2}+A^{*}\right)^{l+1}}\right) \tag{11}
\end{equation*}
$$

Let $\sqrt{A}=a+i b$ and for ${ }^{13} a>0$

$$
\begin{align*}
G^{(n)}(r)=\sum_{l=0}^{n} \frac{1}{4 \pi 2^{2 l} l!} & \left(\frac{e^{-r(a+i b)} L^{(l)}}{(a+i b)^{2 l-1}} \sum_{k=0}^{l-1} \frac{(2 l-k-2)!}{k!(l-k-1)!}\right. \\
& \left.\times[2 r(a+i b)]^{k}+\text { c.c. }\right) \tag{12}
\end{align*}
$$

Hence this term would give rise for $t=0,|A|=0$, to a correlation function $G(r)$ which would not vanish as $r \rightarrow \infty$. [Note that for simple poles such terms-given by the sine term in (8)-vanish for $t=0$.] Although for $t=0 G(r) \rightarrow$ const. as $r \rightarrow \infty$ cannot be ruled out in general, ${ }^{14}$ this behavior would seem to be rather unphysical. Therefore arbitrary sums of terms like (12) do appear in the general expression for $G(r)$. However, the poles associated with them cannot approach the origin as $t \rightarrow 0$.

It is interesting to investigate what effect terms like (11) would have on the critical-point exponents. If $|A| \rightarrow t^{2 \nu}$ as $t \rightarrow 0$, then $\operatorname{Re}\left(L^{*} A^{n+1}\right)$ $\sim t^{2 \bar{\omega}(n+1)}$ as $t \rightarrow 0$ with $\bar{\omega} \geqslant \nu$. Hence

$$
\begin{equation*}
K_{T} \sim \operatorname{Re}\left(L^{*} A^{n+1}\right) /|A|^{2(n+1)} \sim 1 / t^{2(n+1)(2 \nu-\bar{\omega})} \tag{13}
\end{equation*}
$$

and so $\gamma=2(n+1)(2 \nu-\bar{\omega}) \leqslant 2 \nu(n+1)$. Therefore γ could exceed 2ν. Consequently, for $\hat{G}(k)$ meromorphic, the requirement that for $t=0 G(r)$ decrease with distance implies $2 \nu \geqslant \gamma$.

IV. SUMMARY AND DISCUSSION

The assumption that for $t=0 \hat{C}(k)$ is analytic in a neighborhood of $k^{2}=0$ and that $\hat{C}(k)$ may be con-
tinued analytically, lead to the existence of its singularities. We have shown that if $\hat{G}(k)$ is meromorphic in k^{2} and if for $t=0 G(\gamma)$ vanishes as $r \rightarrow \infty$, then $2 \nu \geqslant \gamma$.
The scattering intensity $I(k)$ for single light scattering by a simple uniform fluid is related to $\hat{G}(k)$ by

$$
\begin{equation*}
I(k) / I_{0}(k)=1+\rho \hat{G}(k) \geqslant 0, \tag{14}
\end{equation*}
$$

where $I_{0}(k)$ is the scattering intensity in the absence of correlation. Hence our assumed form for $\hat{G}(k)$ gives plots of the inverse scattered irradiance $\left[I(k) / I_{0}(k)\right]^{-1}$ versus k^{2} which are linear-for k^{2} sufficiently close to the origin.
On the other hand, scaling-exact in the twodimensional Ising (lattice-gas) model-implies Fisher's relation $\nu(2-\eta)=\gamma$. It requires $2 \nu=\gamma$ if plots of the inverse scattering intensity are lin-ear-a distinct experimental possibility. Hence, nonanalyticity of $\hat{G}(k)$ is directly linked to $2 \nu \neq \gamma$. Our extension of the classical Ornstein-Zernike theory clearly allows for nonscaling of the correlation function and hence to linear plots and $2 \nu>\gamma$.
The assumption that $\hat{G}(k)$ is meromorphic in the entire plane may be relaxed without altering our main result $-\eta=0$ and $2 \nu \geqslant \gamma$. The weaker assumption would require that only $\hat{G}(k)$ be meromorphic in a neighborhood of the origin. In this case, results (8) and (12) hold asymptotically ($r \rightarrow \infty$) and our main result follows just as before.
The general form for $\hat{G}(k)$ due to (6) and terms like (11) is rather complicated. However, near the critical point and for k^{2} small we have

$$
\begin{equation*}
\hat{G}(k) \approx \frac{1}{2} \sum_{j=1}^{l}\left(\frac{L_{j}}{k^{2}+A_{j}}+\frac{L_{j}^{*}}{k^{2}+A_{j}^{*}}\right) . \tag{15}
\end{equation*}
$$

Expression (15) can give rise to interesting features in the inverse scattered irradiance. Since $\hat{G}(k)$ is large near the critical point and for k^{2} small, one has from (14) that $\left[I(k) / I_{0}(k)\right]^{-1}$ $\approx 1 / \rho \hat{G}(k)$. Therefore the actual intercept of $\left[I(k) / I_{0}(k)\right]^{-1}$ with the line $k^{2}=0$ is

$$
\left.\left[I(k) / I_{0}(k)\right]^{-1}\right|_{k^{2}=0}=1 / \rho \sum_{j=1}^{l} \operatorname{Re} \frac{L_{j}}{A_{j}}
$$

with

$$
\sum_{j=1}^{l} \operatorname{Re} \frac{L_{j}}{A_{j}}>0
$$

For k^{2} "large" one has from (15) that

$$
\begin{align*}
{\left[\frac{I(k)}{I_{0}(k)}\right]^{-1} } & \approx k^{2} / \rho \sum_{j=1}^{l} \operatorname{Re} L_{j} \\
& +\sum_{j=1}^{l} \operatorname{Re}\left(L_{j} A_{j}\right) / \rho\left(\sum_{j=1}^{l} \operatorname{Re} L_{j}\right)^{2} . \tag{16}
\end{align*}
$$

Therefore the large $-k^{2}$ curve gives the apparent intercept

$$
\sum_{j=1}^{l} \operatorname{Re}\left(L_{j} A_{j}\right) / \rho\left(\sum_{j=1}^{l} \operatorname{Re} L_{j}\right)^{2} .
$$

It is interesting that the actual intercept may be greater or less than the apparent intercept. Hence for single light scattering by a simple uniform fluid a downward or upward turn of the experimental data may be fitted with (15).
A simple example with an upward turn-actual intercept greater than apparent intercept-is given by (15) with a single term with $L>0, \operatorname{Re} A>0$, and $\operatorname{Im} A \neq 0$. The apparent intercept is $(\operatorname{Re} A) / \rho L$, and the actual intercept is $[\rho L \operatorname{Re}(1 / A)]^{-1}$. Hence $[\rho L \operatorname{Re}(1 / A)]^{-1}>(\operatorname{Re} A) / \rho L$. An example of (15) with a downward turn-apparent intercept greater than actual intercept-is given by (15) with A_{1}, A_{2}, L_{1}, and L_{2} real and positive with $A_{1} \neq A_{2}$. The apparent intercept is $\left(L_{1} A_{1}+L_{2} A_{2}\right) / \rho\left(L_{1}+L_{2}\right)^{2}$, and the actual intercept is $\left[\rho\left(L_{1} / A_{1}+L_{2} / A_{2}\right)\right]^{-1}$. Hence

$$
\frac{L_{1} A_{1}+L_{2} A_{2}}{\rho\left(L_{1}+L_{2}\right)^{2}}>\frac{1}{\rho\left(L_{1} / A_{1}+L_{2} / A_{2}\right)},
$$

which gives $A_{2} / A_{1}+A_{1} / A_{2}>2$.

ACKNOWLEDGMENT

One of us (M. M.-N.) acknowledges receipt of fellowships from CONACYT and ANUIES (México).
${ }^{1}$ L. S. Ornstein and F. Zernike, Proc. K. Ned. Akad. Wet. 17, 793 (1914); F. Zernike, ibid. 18, 1520 (1916). Both articles are reprinted in The Equilibrium Theory of Classical Fluids, edited by H. L. Frisch and J. L. Lebowitz (Benjamin, New York, 1964).
${ }^{2}$ For a general discussion see A. Münster, Statistical Thermodynamics, Vol. I (Springer, Berlin, 1969).
${ }^{3}$ H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford U. P., New York, 1971).
${ }^{4}$ J. M. H. Levelt Sengers, Physica (Utr.) 73, 73 (1974).
${ }^{5}$ B. Widom, Physica (Utr.) 73, 107 (1974).
${ }^{6}$ M. E. Fisher, J. Math. Phys. 5, 944 (1964).
${ }^{7}$ V. P. Warkulwiz, B. Mozer, and M. S. Green, Phys. Rev. Lett. 32, 1410 (1974).
${ }^{8}$ D. W. Oxtoby and W. M. Gelbart, Phys. Rev. A 10, 738 (1974).
${ }^{9}$ O. Splittorff and B. N. Miller, Phys. Rev. A 9, 550 (1974).
${ }^{10}$ J. S. Huang and W. W. Webb, J. Chem. Phys. 50, 3677 (1969); E. S. Wu and W. W. Webb, Phys. Rev. A 8 , 2065 (1973); $\underline{8}, 2077$ (1973).
${ }^{11}$ The notation is that of Ref. 6.
${ }^{12}$ See, for instance, K. Knopp, Theory of Functions, Parts I and II (Dover, New York, 1945).
${ }^{13}$ I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1965), p. 413.
${ }^{14}$ See Ref. 2, p. 406.

