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Using multiple scattering theory, we derived for the first time analytical formulas for electrostrictive tensors

for two-dimensional metamaterial systems. The electrostrictive tensor terms are found to depend explicitly on

the symmetry of the underlying lattice of the metamaterial, and they also depend explicitly on the direction of

a local effective wave vector. These analytical results enable us to calculate light induced body forces inside

a composite system (metamaterial) using the Helmholtz stress tensor within the effective medium formalism

in the sense that the fields used in the stress tensor are those obtained by solving the macroscopic Maxwell

equation with the microstructure of the metamaterial replaced by an effective medium. Our results point to some

fundamental questions of using an effective medium theory to determine optical force density. In particular, the

fact that Helmholtz tensor carries electrostrictive terms that are explicitly symmetry dependent means that the

standard effective medium parameters cannot give sufficient information to determine body force density, even

though they can give the correct total force. A more challenging issue is that the electrostrictive terms are related

to a local effective wave vector, and it is not always obtainable in systems with boundary reflections within the

context of a standard effective medium approach.
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I. INTRODUCTION

The optical properties of man-made materials consisting

of an array of subwavelength elements can be described by

effective medium parameters (εeff and μeff) if the operating

wavelength is much bigger than the lattice constant of the

microstructure. In the area of metamaterial research [1–6],

it is frequently assumed that effective medium parameters

provide sufficient information to determine the light-matter

interaction. The novel light manipulation functionalities of

these new materials, such as negative refractive indices and

superresolution imaging, are always explored and described

using effective constitutive parameters. It is sometimes debat-

able whether effective medium parameters are really accurate

for some experimentally fabricated samples because the lattice

constant in real samples is not that small compared with

the operation wavelength but in the limit that ω → 0 and

k → 0 (the wavelength is very long compared with the lattice

constant), the effective medium parameters should provide

the information needed to determine the wave-manipulating

properties. But even if the effective medium parameters can

describe faithfully how the material can manipulate wave in

the true long wavelength limit, can the same set of parameters

describe faithfully how the wave can manipulate the material?

For example, can εeff and μeff determine the light-induced

force and light-induced stress acting on a metamaterial

consisting of an array of subwavelength elements? For the sake

of convenience, we will use the generic term “metamaterial”

throughout this paper, although the prototypical system we

consider is actually a two-dimensional (2D) photonic crystal

with a lattice constant that is very small compared with the
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wavelength so that the effective medium parameters can be

made to be as accurate as we want as far as light scattering is

concerned.

It is well known that the total electromagnetic induced

force acting on a piece of metamaterial illuminated by an

external light source can be calculated using the Maxwell stress

tensor [7] if the light scattering property of the metamaterial

can be described by standard effective medium parameters.

Once the incident field is specified, we just need to solve

a scattering problem to determine the scattering field, and

then an integration of the standard Maxwell stress tensor over

a boundary enclosing the object will give the total optical

force acting on the object. The procedure is conceptually

straightforward although the computation can be challenging.

However, it is considerably more difficult if we want to

know the distribution of the light induced force density

inside the metamaterial. We will see that we cannot use

the Maxwell stress tensor to compute the force density, and

the standard effective medium parameters do not provide

sufficient information to determine the force density even

though they can provide enough information to solve the

scattering problem.

In order to calculate the electromagnetic field induced force

density inside an object, we need to consider the momentum

conservation in a closed volume V bounded by a surface S.

The momentum conservation law can be written as [7]

−
∫

V

�f dτ +
∮

S

d �S ·
↔
T = d

dt

∫

V

�gdτ . (1a)

The first term contains the body force density �f we want

to calculate, and the integral over the volume gives the total

force. The second term is an integration of the electromagnetic

stress tensor over the boundary S enclosing the volume V. The

third term represents the increment rate of electromagnetic
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momentum in the volume. The Abraham and Minkowski

controversy about the definition of electromagnetic momen-

tum inside of the dielectric media has lasted more than one

century [8–14]. The correct interpretation of �g in Eq. (1a)

and the associated expression of the stress tensor are related

to the long standing controversy. In this paper, we consider

the time-averaged force density in stationary bodies, with time

harmonic incident fields and steady state configurations. Under

these conditions, the third term in Eq. (1a) can be set to be zero.

We thus have
∫

V

�f dτ =
∮

S

d �S ·
↔
T . (1b)

If we transform the surface integral of the right hand side of

Eq. (1b) into a volume integral, we can get formally fi =
∂Tik/∂xk , which seems to tell us that the force density is given

directly by the stress tensor. However, there are multiple ways

to express stress tensors
↔
T so that ∂Tik/∂xk does not give the

same fi at points inside the object while these different stress

tensors give exactly the same total force when integrated over

an external boundary. In particular, we will show below that

the standard Maxwell tensor does not give correct body forces,

although it gives the correct total force. Other formulations

of stress tensors such as the Minkowski [15,16], Abraham

[17,18], and Einstein-Laub [19] also cannot give correct body

forces in metamaterials due to the omission of electrostriction

terms [20,21], as will be discussed in later sections. We note

that many authors have recently studied electromagnetic force

densities [22–28] and related topics, but the importance or the

relevance of electrostriction have been largely ignored.

II. DERIVATION OF ELECTROSTRICTIVE TENSORS

A. Maxwell and Helmholtz tensors

The computation of optical force and stress requires the

knowledge of electromagnetic stress tensors, which will be

specified in the following. For time harmonic fields, the time-

averaged Maxwell stress tensor is [7,15–16]

TMaxwell,ik = 1
2
Re

[

ε0EiE
∗
k − 1

2
ε0E

2δik

+μ0HiH
∗
k − 1

2
μ0H

2δik

]

, (2)

where δik is the Kronecher delta function; ε0, μ0 are the

permittivity and permeability of vacuum; and Re[· · · ] means

the real part of [· · · ]. Based on the principle of virtual work,

Helmholtz formulated a stress tensor in the static limit [29].

The result can be extended for time-harmonic electromagnetic

field; the stress tensor for the case of isotropic dielectric solid

can be generalized as [20,30–37]

THelmholtz,ik = 1

2
Re

[

ε0εrEiE
∗
k − 1

2
ε0

(

εrδik + ∂εr

∂uik

)

E2

+μ0HiH
∗
k − 1

2
μ0H

2δik

]

, (3)

where εr is the relative permittivity of media and uik is the

strain tensor uik = (∂ui/∂xk + ∂uk/∂xi)/2, with �u(�x) being a

displacement vector [32]. The electrostrictive tensor ∂εr/∂uik

[30–37] describes how stretching (diagonal components in uik)

and shearing (off-diagonal components in uik) will change

the permittivity of a solid [31]. For isotropic amorphous

material, ∂εr/∂uik reduces to −ρ(∂εr/∂ρ) [31], where ρ is

the mass density of the material. Here, we assume for sake of

mathematical simplicity that the relative permeability μr = 1,

but Eq. (3) can be extended straightforwardly to materials with

μr �= 1 by adding magnetostrictive terms.

We note that the Helmholtz tensor is the same as the

Maxwell tensor in vacuum, but they are not the same inside

a material. We will show that the Helmholtz tensor is the

correct stress tensor to use to obtain the body forces induced

by electromagnetic waves. The Helmholtz tensor contains

explicitly the ∂εr/∂uik terms, which are not given in standard

effective medium theories (EMTs) [38,39].

B. Prototypical system configuration

For simplicity, we consider a 2D system that is a circular

domain, as shown in Figs. 1(a) and 1(b). This electrically large

circular domain is made up of a composite material that has

an underlying microstructure in the form of a 2D photonic

crystal in which each unit cell contains a dielectric cylinder

(nondispersive, nondissipative, positive relative permittivity

εc = 8 and μc = 1) that is aligned along the z direction.

We consider two types of lattice structure having different

symmetries, namely the square [Fig. 1(a)] and the hexagonal

c effc

(a) (b) (c)

Square Hexagonal Effective

y

x

FIG. 1. (Color online) Dielectric cylinders with relative permit-

tivity εc are arranged in square (a) and hexagonal lattices (b), and

the array of cylinders collectively form a circular domain that is

big compared with the wavelength. The system can be viewed as

a finite-sized 2D photonic crystal with a circular boundary, and the

corresponding unit cells are highlighted by black dashed lines in the

insets, which show an enlarged view of the interior of the photonic

crystal, exposing the details of the arrangement. The lattice constants

of the photonic crystals are very small compared with wavelength so

that the circular domain can be regarded as a homogenous cylinder

with permittivity εeff , and the identical square dashed line circles the

same area of unit cell at the same coordinate in lattice, as well as

the hexagonal lattice. In the numerical calculations, the big cylinder

shown in Figs. 1(a) and 1(b) contain, respectively, 1976 and 1971

small cylinders. The lattice constant of the photonic crystals in

Figs. 1(a) and 1(b) are adjusted so that they give the same εeff so

that we have two systems that are the same if we use macroscopic

constitutive parameters to describe the optical properties but the

microscopic structures are different.
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lattice [Fig. 1(b)]. The insets of Figs. 1(a) and 1(b) are zoom-ins

to expose the microscopic lattice structure of the underlying

photonic crystal. We consider the cases in which the lattice

constant of the photonic crystal is very small compared with the

wavelength so that the scattering properties can be described

by an effective permittivity εeff . And for this reason, the optical

properties of the circular domain can be well described by a

homogenous dielectric cylinder with a dielectric constant of

εeff , as shown schematically in Fig. 1(c). We shall purposely

choose the lattice constant of the photonic crystals so that

both square and hexagonal arrangements give the same εeff

according to standard EMT.

C. Analytic derivation of electrostrictive terms using

multiple scattering theory

In the following, we will assume that the working

wavelength is much larger than the lattice constant of the

underlying photonic crystal so that the effective medium

parameters, as derived from standard EMT, provide a very

accurate description of wave scattering properties. In the

long-wavelength limit, the polarization-dependent effective

parameters of the system shown in Fig. 1 can be derived

conveniently using various methods such as multiple scattering

theory (MST) [39,40]. It is well known that for a small

filling ratio p, the effective permittivity εeff = 1 + p(εc − 1)

for the Ez polarization (E field along z axis), and εeff =
−1 + 2/(pM − 1) for the Hz polarization (H field along z

axis), where M = (εc − 1)/(εc + 1). These expressions are

accurate for small values of p. Corrections for high filling

ratios can also be derived systematically using MST [40].

The Helmholtz tensor, as shown in Eq. (3), carries elec-

trostrictive terms. We found that the electrostrictive terms

can also be derived using the MST formalism rigorously. The

procedures are tedious and are given in the Appendix A. Here

we focus on the results and their implications. For the Ez

polarization, the result is

∂εeff

∂uxx

= ∂εeff

∂uyy

= −(εeff − 1),
∂εeff

∂uxy

= ∂εeff

∂uyx

= 0. (4)

We note that the electrostrictive terms for the Ez polarization

do not depend on the symmetry of the underlying lattice, and

they are completely specified by the usual effective parameter

εeff .

On the other hand, the electrostrictive terms for the Hz

polarization are more complicated. In particular, the tensor

components depend not only on the symmetry of the under-

lying lattice structure but also depend on the direction of a

local effective wave vector even in the ω → 0 and k → 0

limit. In addition, it is also possible to derive high order

corrections using scattering theory for higher filling ratio (p).

After some calculations (see Appendix A), the electrostrictive

tensor components for a photonic crystal with a square lattice

are found to be

∂εeff

∂uxx

,
∂εeff

∂uyy

= −ε2
eff − 1

2
± 1.297

(εeff − 1)2

2
cos 2φKeff

, (5a)

∂εeff

∂uxy

= ∂εeff

∂uyx

= −0.596
(εeff − 1)2

2
sin 2φKeff

. (5b)

FIG. 2. (Color online) This figure shows the unit cell defor-

mations used to calculate the electrostrictive tensor components

using finite difference. The upper (lower) panels are for the square

(hexagonal) lattice. (a), (b) Original square lattice unit cell is shown

as semitransparent green squares. The unit cell is stretched or

sheared 	a in x direction, with the deformed cell shown by blue

parallelograms. Here a, φKeff
, and rc denote the side length of cell,

the direction of eigen-propagating mode �Keff , and the radius of the

cylinder, respectively. The black arrows show the directions to the

neighbor cylinders. (c), (d) Counterparts for the hexagonal lattice.

While for a hexagonal lattice, they have the form

∂εeff

∂uxx

,
∂εeff

∂uyy

= −ε2
eff − 1

2
± 0.5

(εeff − 1)2

2
cos 2φKeff

, (6a)

∂εeff

∂uxy

= ∂εeff

∂uyx

= (εeff − 1)2

2
sin 2φKeff

. (6b)

In Eqs. (5a) and (6a), the “+” and “−” sign are for the

∂εeff/∂uxx and ∂εeff/∂uyy components, respectively. Correc-

tions for the high filling ratio can be derived systematically,

and they are only required for diagonal terms. For the square

lattice,

∂εeff

∂uxx

,
∂εeff

∂uyy

=− (εeff − 1)2

2

1 ∓ 1.297pM cos 2φKeff
+ 0.916p4M2

pM
.

(7a)

For small p, the high order term 0.916p4M2 is negligible, and

Eq. (7a) goes back to Eq. (5a). But for large values of the

filling ratio p, this correction term is useful for obtaining a

precise value of the electrostrictive tensor. Similarly, for the

hexagonal lattice, we have

∂εeff

∂uxx

,
∂εeff

∂uyy

=− (εeff − 1)2

2

1 ∓ 0.5pM cos 2φKeff
+ 0.375p6M2

pM
. (7b)
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In these expressions, p = πr2
c /a2 for square and 2πr2

c /(
√

3a2)

for hexagonal lattices, rc and a denote the radius of discrete

cylinders and lattice constant, and φKeff
indicates the direction

of the effective wave vector, defined by macroscopic fields

tan φKeff
= Re[−ExH

∗
z ]/Re[EyH

∗
z ] in the effective media.

The numerical coefficients such as 1.297, −0.596, 0.916

for the square lattice in the equations are the results of

the summations of infinite series (which have analytic

expressions) with three significant digits. The same is true

for the corresponding values in the hexagonal lattice. All

the details of the analytical derivation are given in the

Appendix A. It is important to note that the electrostrictive

terms depend on the microscopic details of the underlying

structure, even in the ω → 0 and k → 0 and p → 0 limit. In a

real lattice, as shown in Fig. 2, the strain can change the shape

of unit cell, and hence the local field, leading to a change of

εeff . We see that ∂εeff/∂uik , derived from a specific lattice,

contains the corresponding symmetry information of specific

lattice fields. And, in principle, different lattices have different

lattice fields, which leads to the different values of ∂εeff/∂uik ,

so square and hexagonal lattices have different force densities

even though they can share the same values of εeff .

D. Calculation of electrostrictive terms using numerical finite

difference and comparison with analytic results

We checked the above analytically derived formulae

[Eqs. (5)–(7)] against numerical brute-force full-wave calcu-

lations. If we have a numerical algorithm that can calculate

the photonic band structure, we can determine the effective

permittivity by calculating the slope of the photonic band

dispersion in the ω → 0 and k → 0 limit. We can repeat the

calculation after deforming the unit cell, and the electrostric-

tive coefficients can be calculated using finite differences. We

choose to use a commercial package COMSOL [41] to compute

the photonic band structure. The lowest eigen-frequency f0

of a specific unit cell with periodic boundary condition can be

determined numerically when the wave vector �Keff is specified.

In the long-wavelength limit, the effective permittivity can then

be calculated with the relationship Keff = √
εeff(2πf0)/c (note

that μr = 1). We then consider an infinitesimally strained unit

cell with the cylinders inside the unit remaining unchanged, as

shown in Fig. 2 (	a ≪ a). The magnitude of the strain tensor

uik can be determined according to the standard definition. For

the square lattice, uxx = 2	a/a, as shown in Fig. 2(a), and

the shearing strain uxy = 	a/a, as shown in Fig. 2(b). For

the hexagonal lattice, the stretching and shearing are given by

uxx = 2	a/a and uxy = 	a/(
√

3a), as shown respectively

in Figs. 2(c) and 2(d). We repeat the numerical procedures

to obtain the permittivity ε̃eff for the strained lattice, and

the electrostrictive term can be found using finite-difference

∂εeff/∂uik = (ε̃eff − εeff)/uik . We compare the numerically

calculated and the analytical results for the case εc = 8

in Fig. 3, and we found that agreements are excellent. In

Figs. 3(a), 3(b), 3(e), and 3(f), the radii of cylinders are

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIG. 3. (Color online) Analytical and numerical calculated electrostrictive tensor components are compared and plotted as functions of

the wave vector direction φKeff
(see text for definition). The relative permittivity of the cylinders in the photonic crystal is εc = 8. Results for

square and hexagonal lattices are displayed in left and right columns, respectively. The upper panels [(a), (b), (e), (f)] are for a small filling

ratio, and the lower panels [(c), (d), (g), (h)] are for a high filling ratio. The numerically calculated ∂εeff/∂uxx and ∂εeff/∂uxy are calculated

using the finite difference approach and are marked as black open circles. The analytic results (red lines) are calculated using Eq. (5) for the

square lattice and Eq. (6) for the hexagonal lattice. The blue lines show analytic results according to Eq. (7), which carries correction terms for

higher filling ratios. We note that high filling ratio correction terms are not required for ∂εeff/∂uxy .
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rc = 0.3a in square and rc = 0.279a in hexagonal lattices,

respectively. These cases correspond to the same filling ratio of

psmall = 0.2828, and they give the same effective permittivity

εeff = 1.57. At this filling ratio, the small filling ratio results

[Eqs. (5) and (6)] marked by the red lines and the high filling

ratio results [Eq. (7)] marked by the blue lines are essentially

the same, and they both agree with the numerical results.

Figures 3(c), 3(d), 3(g), and 3(h) show the results for a large

filling ratio of plarge = 0.6362 (εeff = 3.08) with the radius of

cylinders being rc = 0.45a in the square and rc = 0.425a in

the hexagonal lattice. At this high filling ratio, the corrections

for high order terms in Eq. (7) are needed to obtain good

agreement with the numerical results. These comparisons give

us confidence that the analytically derived results are correct.

III. COMPUTATION OF THE LIGHT-INDUCED FORCE

DENSITY: LATTICE SYSTEM VS EFFECTIVE-MEDIUM

SYSTEM

In principle, we can obtain the force density distribution

of the metamaterial by calculating the optical force acting on

each individual dielectric cylinder inside the cylinder array.

We need to compute the electromagnetic fields at each point

of the whole system. To compute the optical force acting on

the cylinder at the ith row and j th column in the square lattice,

we draw a closed boundary that encircles that cylinder, as

indicated in the inset of Fig. 1(a) where black dashed lines

are shown surrounding one of the cylinder. The integral of

stress tensor along the boundary, as marked by dashed lines

(Maxwell and Helmholtz stress tensor are the same as the

boundary lines cutting through the vacuum), gives the optical

force on the discrete cylinder on the site (i,j ),

�fL(i,j ) =
∮

C

↔
T Lattice fields

Maxwell · d�l , (8)

where the subindex “L” indicates that force is evaluated

with fields of the microscopic lattice. Such lattice field

computations give, by definition, the correct optical force

acting on each cylinder in the lattice. It requires significant

effort because we need to solve the multiple scattering problem

of nearly 2000 cylinders in order to obtain �fL(i,j ) through

Eq. (8). On the contrary, we can easily obtain the field in

effective model, as we just need to solve the scattering problem

for one single object with an effective permittivity. After

deriving the electrostrictive terms, we can use the fields in

the effective medium to compute the force density using the

Helmholtz tensors on the same site (i,j ) to see if it agrees

with �fL(i,j ) calculated using the microscopic model. For

comparison purposes, we also compute the force using the

Maxwell tensor,

�fM(i,j ) =
∮

C

↔
T Effective fields

Maxwell · d�l

�fH(i,j ) =
∮

C

↔
T Effective fields

Helmholtz · d�l . (9)

We note that the entire object comprises 1976 discrete

cylinders in Fig. 1(a); the high density of cylinders means that

the force acting on individual cylinders can be used to define

the force density, which can be compared with the effective

)

E
z
 polarization

Lattice Maxwell Helmholtz

-88 10×

 -88 10− ×

(N/m)

FIG. 4. (Color online) Compares the force density at site (i, j )

[
−→
f (i,j )] of the square lattice with rc = 0.3a for the Ez polarization

calculated using different approaches. The upper row is for the x

component, and the lower row is for the y component. The left panels

are the results of the microscopic model, meaning that the fields

calculated numerically for the system shown in Fig. 1(a) and the lattice

structure are explicitly considered; these results are, by definition, the

correct results. Using the fields in the effective medium, the middle

panels show force density results given by the Maxwell tensor, and

the right panels show the counterparts according to the Helmholtz

tensor. In this polarization, the Maxwell and Helmholtz tensors are

coincidentally equal, and they give the same results as those calculated

with the microscopic structure taken explicitly into account.

medium results. And then we compare the profiles of �fM(i,j )

and �fH(i,j ) with �fL(i,j ) to identify whether �fM(i,j ) or �fH(i,j )

gives results closer to the correct result �fL(i,j ). The external

light is a plane wave incident from the left side. The results

of Ez polarization are shown in Fig. 4. The left, middle, and

right columns are force density results for �fL(i,j ), �fM(i,j ),

and �fH(i,j ), respectively; the upper row is for x components

of the three kinds of force density, and the lower row is for

y components. For the Ez polarization, only Ez, Hx , and Hy

H
z
 polarization

Lattice Maxwell Helmholtz

(N/m)

4.5 10×

 4.5 10− ×

FIG. 5. (Color online) The corresponding results (as those in

Fig. 4) for the Hz polarization. For this polarization, the Helmholtz

tensor results are different from the Maxwell tensor results if we use

the effective-medium calculated fields. Only the Helmholtz tensor that

contains the electrostrictive term gives the correct
−→
f (i,j ) profile, as

shown in the left panel. The results show that based on the fields of

the effective medium, we must use the Helmholtz tensor in order to

compute the force density correctly inside a medium.
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components are nontrivial. According to the electrostrictive

terms shown in Eq. (4), the Maxwell and Helmholtz tensors in

Eqs. (2) and (3) are coincidently the same for this polarization.

So, the Maxwell and Helmholtz tensor give the same results

using effective fields, and both agree with the correct force

density profile �fL(i,j ). On the contrary, the Maxwell tensor

and Helmholtz tensor do not share the same expression for

the Hz polarization. The lattice fields and effective fields are

not the same in this case. The force densities computed using

these two tensors are different, as shown in Fig. 5, and the

results indicate that Maxwell tensor is obviously wrong, while

the Helmholtz tensor gives force density profile that is very

similar to the correct one.

IV. SYMMETRY DEPENDENCE OF THE FORCE DENSITY

The results in Fig. 5 shows that the Helmholtz tensor gives

results that are obviously superior to the Maxwell tensor, but

we still need to quantitatively investigate how accurate the

Helmholtz tensor can be. We switch to a slab geometry, which

is easier for quantitative comparisons. We first consider a

smaller filling ratio of psmall = 0.2828 (εeff = 1.57) for the

square lattice. We arrange 50 layers of εc = 8 cylinders in the

x direction, and the number of cylinders in each layer is infinite

along the y direction. Such configuration can be regarded as

a slab according to EMTs. We consider a Hz polarized plane

wave with an incident angle of 30°, as shown schematically in

the inset of Fig. 6(a). The x component of calculated �fL(i,j ),
�fM(i,j ), and �fH(i,j ) are shown respectively by black open

squares, red circles, and blue triangles in the left columns of

Fig. 6. Figure 6(a) displays the data on a larger scale to show

the jump of the force density on the boundary of the media,

while Fig. 6(b) shows the same data of Fig. 6(a) on a smaller

scale in order to highlight the differences (if any) of these

three kinds of force density. In accordance with the results for

circular domains (Fig. 5), only the Helmholtz tensor gives the

correct force density profile. We repeat the same calculations

for the hexagonal lattice, which has the same εeff as the square

lattice, and the results for the hexagonal lattice are shown

in Figs. 6(c) and 6(d). Noting that the distance between the

adjacent layers in the hexagonal lattice is
√

3a/2, we need 58

layers in x direction in order to keep same thickness of the

effective slab. We note again that the Helmholtz tensor gives

the correct force densities, while the Maxwell tensor fails.

We note that the total force acting on the slab is decided

solely by εeff , and it must be exactly the same for the square

or hexagonal lattices as long as they share the same εeff . The

microscopic details are irrelevant for the total force. However,

the force density inside the system is determined by the

Helmholtz tensor, which requires electrostrictive terms that are

explicitly symmetry dependent. For the results shown in Fig. 6,

if the incident power along the x direction is 6.25 W/m, then

the total forces of the two lattices are both 6.71 × 10−11 N/m

and they are the same up to numerical errors; however, the force

density are different, as can be observed if we compare the

results of Figs. 6(b) and 6(d). We also note from Figs. 6(a) and

6(c) that the difference is more noticeable on the boundaries.

We now consider a large filling ratio of plarge = 0.6362

(εeff = 3.08), and the results are shown in Fig. 7. With the

same incident power, the total forces are 4.34 × 10−10 N/m

FIG. 6. (Color online) This figure compares the x component of

the force density
−→
f (i,j ) · x̂ for the square lattice with rc = 0.3a (left

column) and the hexagonal lattice with rc = 0.279a (right column)

calculated using different approaches for the Hz polarization. We note

that these different rc for the square and hexagonal lattice give the

same εeff = 1.57. The systems have slab geometry, and the insets in

(a) and (c) show pictorially that the microscopic structure and the

incidence angle of the plane wave is set to be 30°. The correct results

(calculated using the microscopic lattice model) are shown as open

squares. The force density has a jump at the boundary, as shown in

(a) and (c), and the jump is described well by the Helmholtz tensor

results (shown as blue triangles) and the Maxwell tensor fails. The

lower panels show that in the interior, the Helmholtz tensor also gives

the correct results but not the Maxwell tensor. By comparing (b) and

(d), we also note that the force density inside the slab is different for

the square and the hexagonal lattice, even though εeff is the same.

for both lattices, while the force density in the square lattice is

different from that in the hexagonal lattice, and the symmetry-

induced difference is relatively larger than the difference

FIG. 7. (Color online) The same results as shown in Fig. 6 but for

a high filling ratio with εeff = 3.08. Again, the Helmholtz tensor gives

better results. In this case, however, we note that even the Helmholtz

tensor does not give exactly the same result as that of the microscopic

model, for reasons explained in the text.
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in small filling ratio case. That is because the larger εeff

gives the larger difference of electrostrictive terms between

square and hexagonal lattices, as shown in Eqs. (5) and (6).

However, if we observe the results of Helmholtz tensor in

Figs. 7(a) and 7(b) carefully, we find there is still a small

difference between the Helmholtz tensor results and the force

densities calculated using the microscopic lattice system.

This discrepancy highlights some intrinsic limitation of using

effective medium to describe optically force density, which

will be discussed in the next section.

V. DISCUSSION

After showing numerical results and the comparison with

analytic results, some discussion is in order. First, we find that

the failure of Maxwell tensor in describing the body forces

in the Hz polarization can be attributed to the depolarized

fields. In the Ez polarization, neither the external E field nor

H field induces a depolarization field in the 2D dielectric

cylinder array. So, the fields of the microscopic system and the

effective fields in the homogenized medium are essentially

the same along the integral path (boundary of unit cell),

and the force density calculated in the microscopic lattice

and the effective medium using Maxwell tensor are, hence,

the same. For the Hz polarization, the incident E field induces

depolarization field in the xy plane in the lattice system, and

the resulting lattice fields have complex patterns due to the

polarization charges on the surface of the cylinders. On the

other hand, in the effective-medium system, the effective fields

can be regarded as the averaged values of the lattice fields.

Then, according to Eqs. (2) and (3), we see that the force

acting on each discrete cylinder is �f ∼ 〈E2
lattice〉 (here 〈· · · 〉

means taking a spatial average over the boundary of the unit

cell), while force acting on the same region in an effective

model is �f ∼ 〈Elattice〉2 . As Elattice is a rapidly changing spatial

function, 〈E2
lattice〉 �= 〈Elattice〉2 , Maxwell tensor cannot be used

to calculate force density. We note in particular that Elattice

depends on the symmetry of the lattice. Once we adopt an

effective medium approach, we are taking the average of the

fields, and the symmetry property of the fields are lost in

the spatially averaged field 〈Elattice〉 . In order to calculate the

force density based on the effective medium field, additional

electrostrictive terms ∂εr/∂uik are needed to compensate for

the missing information.

The importance of the electrostrictive term can be seen

from another angle. If we take out the electrostrictive terms

∂εr/∂uik from the Helmholtz tensor, the remaining terms of

the Helmholtz tensor will then be [7,20]

Tik = 1
2
Re

[

ε0εrEiE
∗
k − 1

2
ε0εrδikE

2

+μ0HiH
∗
k − 1

2
μ0H

2δik

]

. (10)

Here we have taken μr = 1. In isotropic dielectric media and

in the absence of extraneous charge or current, it can be shown

that (see Appendix B or Ref. [7])

∮

S

↔
T · d�s =−

∫

V

1

2
ε0E

2∇εr dτ. (11)

We note that Eq. (10) is the Minkowski stress tensor for

isotropic nonmagnetic materials. In our dielectric system,

which has isotropic εeff , the Minkowski and Abraham tensors

are the same if we are considering time-averaged forces.

Equation (11) indicates that the force density in the bulk

derived from the Minkowski/Abraham tensor is zero unless

the integral region V is inhomogeneous. Therefore, the force

density inside a homogenous object (where ∇εr = 0) calcu-

lated by Helmholtz tensor is solely determined by the product

of electrostrictive term and the square of effective E field, and

the difference of the internal force density between different

lattices comes from this term. We also note many authors

recently favored the use of the Einstein-Laub tensor [24,26].

In the dielectric systems we are concerned with, the Helmholtz

tensor is equal to the Minkowski/Abraham tensor plus addi-

tional electrostriction terms, while the Einstein-Laub tensor

(in the electrostatic limit) would be the Minkowski/Abraham

tensor plus additional terms proportional to ∇( �P · �E). The

Einstein-Laub tensor will not give the same result as the

Helmholtz tensor. The results of Liberal et al. [24] show clearly

that the force density calculated using the Einstein-Laub

tensor is completely characterized by the effective electric

and magnetic susceptibilities. As such, it does not carry any

information related to electrostriction or magnetostriction, and

the force densities calculated using the Einstein-Laub tensor,

as determined by effective susceptibilities and macroscopic

fields, will be insensitive to the symmetry of the underlying

lattice. There is evidence that the recently proposed modified

Einstein-Laub tensor [28] gives accurate results for the total

force/torque for an object immersed in liquid, but it still does

not give electrostriction related information, which originates

from multiple scattering effects.

The results in Figs. 7(a) and 7(b) show that the results

calculated using the Helmholtz tensor do not match exactly

those of the microscopic lattice, even though the results

are obviously much better than those calculated using the

Maxwell tensor without electrostriction. We will see that

the small discrepancy stems from the explicit dependence of

the electrostrictive terms on the direction of �Keff . If there is

only one specific �Keff , as we assumed in the derivation of

electrostrictive terms in Appendix A, the explicit value of such

an electrostrictive term can be rigorously defined. However, if

the field inside a metamaterial is the result of the interference

of multiple wave vectors due to the reflection at the boundaries,

the value of φKeff
cannot be defined unambiguously. For

instance, let us consider the slab configuration shown in Figs. 6

and 7. When light is incident from the left boundary at a

particular incident angle, there will be a transmitted wave �K1 =
Kx x̂ + Ky ŷ going from left to right inside the slab, and there is

a reflected wave �K2 = −Kx x̂ + Ky ŷ going from right to left.

We note again that the electrostrictive terms [Eq. (5) to Eq. (7)]

depend explicitly on φKeff
, which can be meaningfully defined

only if there is a one-to-one correspondence between the field

and one �Keff . If the field at one point inside metamaterial comes

from the interference of multiple k-vectors, the one-to-one

correspondence no longer exists, and the best we can do is

to replace the �Keff by the local Poynting vector. We will

show in Appendix C that it is a good approximation if the

magnitude of the reflected field is much smaller than the
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magnitude of the transmitted field. If the total fields inside

the metamaterial are regarded as the transmitted wave slightly

perturbed by reflected waves, it can be shown that the small

reflected wave just rotates the direction of the transmitted wave

(Appendix C). In that case, the direction of �Keff can still be

defined by the equation tan φKeff
= Re[−ExH

∗
z ]/Re[EyH

∗
z ]

inside the effective media. For example, for a small effective

permittivity εeff = 1.57, the reflected field is indeed much

smaller than the transmitted field as the impedance difference

between air and the media is not large, and the results of

Fig. 6 show that Helmholtz tensor can give force densities

that are almost the same as the results calculated using

the microscopic model. This shows that such perturbation

approach is good enough in this situation. In addition to

the slab geometry, the results shown in Fig. 4 for a circular

boundary also show that the approach of using the local

Poynting vector can give accurate force densities compared

with those calculated using the microscopic model. However,

if the impedance mismatch at boundaries is not small, as in

the case of εeff = 3.08, the error of the perturbation calculation

begins to emerge. We can see from Fig. 7(b) that the Helmholtz

tensor with the electrostrictive terms calculated using the local

Poynting vector do not give exactly the same results as those

of the microscopic structure. This is because the reflected

field is not small enough compared with the transmitted

field.

VI. CONCLUSION

We considered prototypical 2D systems composing arrays

of deep subwavelength dielectric cylinders with lattice con-

stants that are very small compared with the wavelength so

that standard EMT should provide an excellent description of

the optical properties. We computed the optical force density

inside this composite system and compared the corresponding

results with those obtained using Helmholtz and Maxwell

stress tensors within the framework of an effective medium

approach in the sense that the fields are obtained using an

effective εeff rather than the microscopic lattice system. Our

results showed that we should use the Helmholtz stress tensor

to calculate optical force density inside a metamaterial. The

Helmholtz stress tensor carries electrostrictive terms ∂εr/∂uik

(and magnetostrictive terms if μr �= 1), which are not given

in standard effective theories. Using MST, we succeeded in

deriving analytical expressions for ∂εr/∂uik for both square

and hexagonal lattices, and we find that ∂εr/∂uik depends not

only explicitly on the symmetry of underlying lattice, but it

also depends on the direction of a local effective wave vector.

These analytic results actually have interesting implications.

In the spirit of using stress tensors to compute forces within

the framework of an effective medium approach, we frequently

assume that if the effective medium description of the fields

is highly precise, then every physical quantity can be obtained

accurately. Our results show that it is not the case for optically

induced body forces. Even if the fields in an effective medium

description are highly precise, we still need to know the

symmetry of the underlying lattice before we can apply the

stress tensor, as the expressions of electrostrictive corrections

depend explicitly on symmetry. Worse still, we need to map the

local field to one specific wave vector, which is difficult when

impedance mismatch at boundaries is big, as the reflections at

the boundaries would introduce multiple wave vectors at any

point inside the photonic crystal or metamaterial. However,

numerical calculations show that the Helmholtz stress tensor

can indeed give rather satisfactory force density profiles as

long as the impedance mismatch at the boundaries is not big so

that a local effective wave vector can be defined. We also note

that our results can be extended straightforwardly to systems

requiring magnetostrictive terms ∂μr/∂uik .
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APPENDIX A: CALCULATION OF ELECTROSTRICTIVE

COEFFICIENTS

1. Basic notation in MST

We use the standard MST that has been developed for 2D

infinite periodic systems comprising a lattice of cylinders.

Details of this approach can be found in the literature. We

adopt the formalism and the notations of Ref. [39].

We start from the scattering of a single cylinder identified

by subscript P positioned at �rP . The cylinder is infinite along

z direction. For the Ez polarization, the incident and scattered

field distribution can be written as,

Ez,(�rP) = Ez,inc(�rP) + Ez,sca(�rP) =
∑

m

AP
mJm(k0rP)eimφP+

∑

m

BP
mH (1)

m (k0rP)eimφP (m ∈ Z). (A1)

Here,Jm and H (1)
m are Bessel and first kind Hankel functions, k0 stands for wave vector in vacuum, and �rP = (rP,φP) is the position

vector in cylindrical coordinates of the center of the cylinder P . The incident and scattered field coefficients are AP
m and BP

m.

Taking into account the electromagnetic boundary condition on the surface of cylinder, we have

BP
m = FmAm, (A2)

where the Mie coefficients (Fm) for Ez polarization are [39,40]

Fm =− Jm(
√

εcμck0rc)J ′
m(k0rc) − √

εc/μcJ
′
m(

√
εcμck0rc)Jm(k0rc)

Jm(
√

εcμck0rc)H
′(1)
m (k0rc) − √

εc/μcJ ′
m(

√
εcμck0rc)H

(1)
m (k0rc)

, (A3)
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and for Hz polarization, the Mie coefficients become

Fm =− Jm(
√

εcμck0rc)J ′
m(k0rc) − √

μc/εcJ
′
m(

√
εcμck0rc)Jm(k0rc)

Jm(
√

εcμck0rc)H
′(1)
m (k0rc) − √

μc/εcJ ′
m(

√
εcμck0rc)H

(1)
m (k0rc)

. (A4)

Now, for a 2D periodic system, in addition to the external field, the incident field acting on cylinder P should include the field

scattered by other cylinders at �rQ, �rQ �= �rP, �rQ = (rQ,φQ):

Ez,inc(�rP) =
∑

m

AP
mJm(k0rP)eimφP+

∑

Q �=P

∑

m′′
B

Q
m′′H

(1)
m′′ (k0rQ)eim′′φQ (m ∈ Z). (A5)

Using Graf’s additional theorem (see, e.g., Ref. [42]), we expand the Hankel function centered at cylinder Q in the basis of

Bessel function centered at cylinder P

H
(1)
m′′ (k0rQ)eim′′φQ =

∑

m′

(

H
(1)
m′−m′′ (k0RPQ)ei(m′′−m′)�PQ

)

Jm′(k0rP)eim′φP , (A6)

where �RPQ = (RPQ,�PQ) = �rP − �rQ is the vector that directs from cylinder P to cylinder Q. In addition, we impose the Bloch

condition

B
Q
m′′ = BP

m′′ ei �Keff · �RPQ . (A7)

Here, �Keff is the effective propagating wave vector, and we can obtain the effective permittivity from this parameter in dielectric

system (with permeability equal to 1):

εeff = (Keff/k0)2. (A8)

We substitute Eqs. (A6) and (A7) into Eq. (A1), and the second part on the right side is
∑

Q�=P

∑

m′′
B

Q
m′′Hm′′(1)(k0rQ)e

im′′φQ =
∑

Q�=P

∑

m′′
BP

m′′ ei �Keff · �RPQ

∑

m′

(

H
(1)
m′−m′′(k0RPQ)ei(m′′−m′)�PQ

)

Jm′ (k0rP)eim′φP .

If we define the lattice sum Sm′−m in real space,

Sm′−m =
∑

Q �=P

H
(1)
m′−m(k0RPQ)e−i(m′−m) �PQei �Keff · �RPQ , Sm′−m = −(Sm−m′ )∗. (A9)

Equation (A5) can be simplified as

Ez,inc(�rP) =
∑

m

AP
mJm(k0rP)eimφP+

∑

m

∑

m′
BP

mSm′−mJm′ (k0rP)eim′φP . (A10)

The lattice sum can be transformed to the summation in reciprocal space not only for easier analytical operation but also for

faster numerical convergence (all details can be found elsewhere [39,40]):

Sn = 1

Jn+1(k0a)

[

4in+1k0

�

∑

Kh

Jn+1(Qha)

Qh

(

k2
0 − Q2

h

)einφQh −
(

H1(k0a) + 2i

πk0a

)

δn0

]

(n�0)

, S−n =−(Sn)∗. (A11)

Here, rc and a denote the radius of cylinders and the lattice constant. �Qh = �Keff + �Kh, where Kh, � denotes the reciprocal vector

and the area of unit cell. We find that the lattice sum is highly dependent on the geometry of structure.

Applying the electromagnetic boundary condition, we obtain the secular equation based on Eq. (A2):
∑

m′
(Fm′Sm′−m − δm′m)Bm′ =−FmAm. (A12)

To obtain �Keff , we solve the secular equation,

det |FmSm−m′ − δmm′ | = 0 . (A13)

We consider systems in which the cylinders are made with a simple dielectric material, characterized by a εc, which is a finite

constant number, and μc = 1. We consider the long wavelength limit k0a < Keffa ≪ 1 < Kha. In that limit, �Keff and �Kh in Sn

can be decoupled as

Sn = 4in+1

k2
0�

ε
n/2

eff e−inφKeff

1 − εeff

− 2n+3in+1(n + 1)!

kn
0a

n−2�
Ŵn, (A14)

where

Ŵn =
∑

Kh �=0

Jn+1(Kha)

(Kha)3
e−inφKh . (A15)
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2. Using perturbation calculation to obtain electrostrictive coefficients

a. Ez polarization

F0 = iπ

4
(εc − 1)

(

k2
0r

2
c

)

, Fm = F−m = 0|m>0, (in the long wavelength limit).

The secular equation is simply

F0S0 − 1 = 0.

Obviously, the lattice sum S0 is dominated by the first term in the right hand side of Eq. (A11). (In the limit, k0a < Keffa ≪
1 < Kha). Take the square lattice, for instance. When the deformation of unit cell is characterized by the strain tensor, only the

stretching (diagonal terms) affects the value of S0 by the perturbation in the value of unit cell size � = a2(1 + uxx). Consequently,

it is easy to obtain the results shown in Eq. (4).

b. Hz polarization

F0 = 0, Fm = F−m = πi

22mm!(m − 1)!

εc − 1

εc + 1
(k0rc)2m

∣

∣

∣

∣

m>0

.

As the reciprocal vector �Kh depends on the specific geometry of lattice structure, the perturbation of parameter Ŵn should also

be taken into consideration, as shown in the following.

3. Stretching in the square lattice [Fig. 2(a)]

The secular equation up to quadrupole precision is (the elements that are not contributing to the determinant are not shown

here)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1 F−3S−4

−1 F−2S−4

F−1S0 − 1 F−1S−2 F−1S−4

−1

F1S4 F1S2 F1S0 − 1

F2S4 −1

F3S4 −1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
(

1 − F 2
2 S2

4

)

(F1S0 − iF1|S2| − F1F3|S4|2 − 1)(F1S0 + iF1|S2| − F1F3|S4|2 − 1) = 0.

Only the middle term can be zero, so if we want to include the quadrupole contributions for higher precision, the secular equation

to that order is

F1S0 − iF1|S2| − F1F3|S4|2 − 1 = 0. (A16)

Therefore, we have to determine the perturbation terms in S2 and S4:

Define

(hi,hj) ∈ Z, �Kh = hi

2π

a
x̂ + hj

2π

a
(1 − uxx)ŷ, � = a2(1 + uxx), RK =

√

h2
i + h2

j , cos ψ = hi/RK , M = εc − 1

εc + 1
.

First,

Ŵ2 =
∑

Kh �=0

J3(Kha)

(Kha)3
e−2iφKh ,

where

e−2iφKh = cos 2φKh
− i sin 2φKh

= 2cos2φKh
− 1 − 2i cos φKh

sin φKh
= 2

h2
i (1 − uxx)2

h2
i (1 − uxx)2 + h2

j

− 1 − 2i
hi(1 − uxx)hj

h2
i (1 − uxx)2 + h2

j

= 2

h2
i (1 − 2uxx)

(

1 + 2
h2

i

h2
i +h2

j

uxx

)

h2
i + h2

j

− 1 − 2i

hihj(1 − uxx)
(

1 + 2
h2

i

h2
i +h2

j

uxx

)

h2
i + h2

j

= 2cos2ψ[1 − 2sin2ψuxx] − 1 − 2i cos ψ sin ψ[1 + (cos2ψ − sin2ψ)uxx] = e−2iψ (1 − i sin 2ψuxx).
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Then,

Ŵ2 =
∑

RK �=0

J3(2πRK (1 − cos2ψuxx))

(2πRK (1 − cos2ψuxx))
3

e−2iψ (1 − i sin 2ψuxx)

= 1

(2π )3

∑

RK �=0

R−3
K e−2iψ [J3(2πRK ) − 2πRKcos2ψJ ′

3(2πRK )uxx](1 + 3cos2ψuxx)(1 − i sin 2ψuxx).

Considering the symmetry of square lattice, we have

1

(2π )3

∑

RK �=0

R−3
K J3(2πRK )e−2iψ = 0.

Thus,

Ŵ2 = ξ2xxuxx,

and the parameter ξ2xx is converged to an exclusive number for square lattice

ξ2xx =
∑

RK �=0

(3cos2ψ − i sin 2ψ)J3(2πRK ) − 2πRKcos2ψJ ′
3(2πRK )

(2πRk)3
e−2iψ = 0.026 84.

Second, a similar procedure to Ŵ4

Ŵ4 =
∑

Kh �=0

J5(Kha)

(Kha)3
e−4iφKh ,

where

e−4iφKh =
(

e−2iφKh

)2 = e−4iψ (1 − 2i sin 2ψuxx).

Then,

Ŵ4 =
∑

RK �=0

J5(2πRK (1 − cos2ψuxx))

(2πRK (1 − cos2ψuxx))
3

e−4iψ (1 − 2i sin 2ψuxx)

= 1

(2π )3

∑

RK �=0

R−3
K e−4iψ [J5(2πRK ) − 2πRKcos2ψJ ′

5(2πRK )uxx](1 + 3cos2ψuxx)(1 − 2i sin 2ψuxx)

=
∑

RK �=0

J5(2πRK )

(2π )3R3
K

e−4iψ + ξ4xxuxx.

This time, the first term in Ŵ4 is not zero, as shown in Ŵ2

∑

RK �=0

J5(2πRK )

(2π )3R3
K

e−4iψ = 0.006 269,

and the coefficient of the second term in Ŵ4 is

ξ4xx =
∑

RK �=0

(3cos2ψ − 2i sin 2ψ)J5(2πRK ) − 2πRKcos2ψJ5
′(2πRK )

(2πRk)3
e−4iψ = −0.006 066.

Therefore,

Ŵ4 = 0.006 269 + ξ4xxuxx.

Substitute Ŵ2 into S2, and Ŵ4 into S4,

S2 = (1 − uxx)

[ −4i

k2
0a

2

εeff

1 − εeff

e−2iφKeff + 25i3!

k2
0a

2
ξ2xxuxx

]

, S4 = −(1 − uxx)
27i15!

k4
0a

4
(0.006 269 + ξ4xxuxx).

Then,

|S2| = (1 − uxx)

[

4

k2
0a

2

εeff

εeff − 1
+ 192

k2
0a

2
ξ2xx cos 2φKeff

uxx

]

,
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and the components in Eq. (A16) are

F1S0 = iπ

4

εc − 1

εc + 1
k2

0r
2
c

4i

k2
0a

2

1

1 − εeff

(1 − uxx) = pM
1

εeff − 1
(1 − uxx),

iF1|S2| = iπ

4

εc − 1

εc + 1
k2

0r
2
c i(1 − uxx)

[

4

k2
0a

2

εeff

εeff − 1
− 192

k2
0a

2
ξ2xx cos 2φKeff

uxx

]

,

=−pM

[

εeff

εeff − 1
+ 1.297 cos 2φKeff

uxx

]

(1 − uxx) =−pM

[

εeff

εeff − 1
−

(

εeff

εeff − 1
− 1.297 cos 2φKeff

)

uxx

]

F1F3|S4|2 = πi

4
(k0rc)2 πi

768
(k0rc)6M2

∣

∣

∣

∣

−(1 − uxx)
27i15!

k4
0a

4
(0.006 269 + ξ4xxuxx)

∣

∣

∣

∣

2

.

=− (128 × 120)2

4 × 768π2
p4M2[(0.006 269 + ξ4xxuxx)(1 − uxx)]2

=−p4M2

[

0.3058 + (128 × 120)2

4 × 768π2
2 × 0.006 269 × (ξ4xx − 0.006 269)uxx

]

=−p4M2(0.3058 − 1.222uxx).

Thus, the relation between εeff and uxx can be expressed as

pM
εeff + 1

εeff − 1
+ 0.3058p4M2 −

[

pM

(

εeff + 1

εeff − 1
− 1.297 cos 2φKeff

)

+ 1.222p4M2

]

uxx = 1. (A17)

We note that without the perturbation term, due to deformation, the equation becomes

pM
εeff + 1

εeff − 1
+ 0.3058p4M2 = 1,

which is exactly the famous Rayleigh mixing formula to determine effective permittivity that takes into consideration higher

filling ratio contributions.

After some algebra, we have Eq. (7a):

∂εeff

∂uxx

= − (εeff − 1)2

2

1 − 1.297pM cos 2φKeff
+ 0.916p4M2

pM
.

While in the limit of the small filling ratio, the high orders p4M2 can be neglected, and the electrostrictive term is simplified as

a function of effective wave vector angle φKeff
and also depends on the macroscopic permittivity εeff and symmetry of square

lattice (as characterized by the number 1.297):

∂εeff

∂uxx

=−ε2
eff − 1

2
+ 1.297

(εeff − 1)2

2
cos 2φKeff

.

Replacing φKeff
by φKeff

+ π/2, we can obtain the term ∂εeff

∂uyy
. Similar calculations can be performed for the other three cases, as

displayed in Figs. 2(b)–2(d).

4. Shearing in the square lattice [Fig. 2(b)]

We introduce a shear uxy, then

�Kh = 2π

a
hi î + 2π

a
(hj − 2uxyhi)ĵ , � = a2,

and

Ŵ2 = ξ2xyuxy

ξ2xy =
∑

RK �=0

J3(2πRK )(3 sin 2ψ + 4icos2ψ) − 2πRK sin 2ψJ ′
3(2πRK )

(2πRK )3
e−2iψ = 0.001 243i.
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The relation between εeff and uxy (no high order contribution in the coefficient of uxy) is

pM
εeff + 1

εeff − 1
+ 0.3058p4M2 − pM

(

0.596 sin 2φKeff
uxy

)

= 1.

5. Stretching in the hexagonal lattice [Fig. 2(c)]

The secular function with up to sixth order truncation in m can be written as

F1S0 − iF1|S2| − F1F5|S6|2 − 1 = 0

and

�Kh = 4π√
3a

[

hi

(

√
3

2
(1 − uxx)î − 1

2
ĵ

)

+ hjĵ

]

, � =
√

3

2
a2(1 + uxx), RK =

√

h2
i − hihj + h2

j , cos ψ =
√

3hi

2RK

.

Then,

Ŵ2 = ξ2xxuxx

ξ2xx =
(

√
3

4π

)3
∑

RK �=0

R−3
K e−2iψ

[

(3cos2ψ − i sin 2ψ)J3

(

4πRK√
3

)

− 4πRK√
3

cos2ψJ ′
3

(

4πRK√
3

)]

= 0.010 405 7.

Ŵ6 =
(

√
3

4π

)3
∑

RK �=0

J7(2πRK )R−3
K e−6iψ + ξ6xxuxx = −0.004 810 + ξ6xxuxx.

ξ6xx =
(

√
3

4π

)3
∑

RK �=0

R−3
K e−6iψ

[

(3cos2ψ − 3i sin 2ψ)J7

(

4πRK√
3

)

− 4πRK√
3

cos2ψJ ′
7

(

4πRK√
3

)]

= 0.009 553 7.

The relation between εeff and uxx is

pM
εeff + 1

εeff − 1
+ 0.0754p6M2 −

[

pM

(

εeff + 1

εeff − 1
− 0.4997 cos 2φKeff

)

+ 0.4504p6M2

]

uxx = 1.

6. Shearing in the hexagonal lattice [Fig. 2(d)]

We introduce a shear uxy, then

�Kh = 4π√
3a

[

hi

(

√
3

2
î − 1

2
(1 + 2

√
3uxy)ĵ

)

+ hjĵ

]

, � =
√

3

2
a2

and

Ŵ2 = ξ2xyuxy

ξ2xy =
(

√
3

4π

)3
∑

RK �=0

R−3
K e−2iψ

[

J3

(

4π√
3
RK

)

(3 sin 2ψ + 4icos2ψ) − 4π√
3
RK sin 2ψJ ′

3

(

4π√
3
RK

)]

=−0.020 815 2i.

The relation between εeff and uxy (no high order contribution in the coefficient of uxy) can be written as

pM
εeff + 1

εeff − 1
+ 0.0754p6M2 − pM

(

0.999 sin 2φKeff
uxy

)

= 1.

APPENDIX B: STRESS TENSOR WITHOUT ELECTROSTRICTIVE CORRECTIONS

The local force density acting on extraneous charge and extraneous current can be written as

�fex = ρex
�E + jex × �B = (∇ · �D) �E +

(

∇ × �H − ∂ �D
∂t

)

× �B,

where

∂ �D
∂t

× �B = ∂( �D × �B)

∂t
− �D × ∂ �B

∂t
= ∂( �D × �B)

∂t
+ �D × (∇ × �E).
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Then,

fex = (∇ · �D) �E − �D × (∇ × �E) + (∇ · �B) �H − �B × (∇ × �H ) − ∂

∂t
( �D × �B).

We know that

∇( �D · �E) = �D × (∇ × �E) + �E × (∇ × �D) + ( �D · ∇) �E + ( �E · ∇) �D,

where

�E × (∇ × �D) = �E × (∇ × (ε0εr
�E)) = �E × (ε0∇εr × �E) + ε0εr

�E × (∇ × �E) = �D × (∇ × �E) + ε0E
2∇εr − �E( �E · ε0∇εr)

and

( �E · ∇) �D = ( �E · ∇)(ε0εr
�E) = ( �E · ε0∇εr) �E + ε0εr( �E · ∇) �E.

Therefore,

∇( �D · �E) = 2 �D × (∇ × �E) + ε0E
2∇εr + 2( �D · ∇) �E.

Then,

(∇ · �D) �E − �D × (∇ × �E) = (∇ · �D) �E + ( �D · ∇) �E − 1
2

[

∇( �D · �E) − ε0E
2∇εr

]

.

Similarly,

(∇ · �B) �H − �B × (∇ × �H ) = (∇ · �B) �H + ( �B · ∇) �H − 1
2

[

∇( �B · �H ) − μ0H
2∇μr

]

.

So in time, harmonic fields, the term ∂
∂t

( �D × �B), can be eliminated after time averaging, and we can define a stress tensor

TM,ik = 1
2
Re

[

ε0εrEiE
∗
k − 1

2
ε0εrE

2δik + μ0μrHiH
∗
k − 1

2
μ0μrH

2δik

]

.

We note that the tensor is the Minkowski tensor for dielectric materials, and we label it with “M.” Then, the force originating

from extraneous charge and current can be written as

�Fex =
∫

V

�fexdτ =
∮

S

↔
T M · d�s +

∫

V

1

2

(

ε0E
2∇εr + μ0H

2∇μr

)

dτ.

For a dielectric system without extraneous charge or current, we have
∮

S

↔
T M · d�s =−

∫

V

1

2
ε0E

2∇εrdτ.

This equation is valid for any integral path.

APPENDIX C: �Keff IN THE PRESENCE OF REFLECTION

Suppose there are two specific wave vectors �K1 = Kx x̂ + Ky ŷ and �K2 = −Kx x̂ + Ky ŷ propagating inside a slab, where �K1

is the transmitted wave through the left boundary and �K2 is the first reflected wave from the right boundary. If εeff is small, the

magnitude of the reflected wave is much smaller than the magnitude of transmitted wave, and other high order reflected waves

can be neglected. In that case, we have |E2| = η|E1| and η ≪ 1, where E1 is the electric field of transmitted wave and E2 is the

reflected wave; therefore, we can write

E1 = E0e
iKxx

(

− sin φK1
x̂ + cos φK1

ŷ
)

E2 = ηE0e
−iKxx

(

sin φK1
x̂ + cos φK1

ŷ
)

,

where E0 is the magnitude of E1, and the common term eiKyy is not shown explicitly here.

The magnetic fields are

H1 =
√

ε0/μ0E0e
iKxx ẑ

H2 = η
√

ε0/μ0E0e
−iKxx ẑ.

Then, the time-averaged local Poynting vector according to the local total fields is

〈�Sp〉 = 1
2
Re[ �E × �H ∗] = 1

2
Re[ �E1 × �H ∗

1 + �E2 × �H ∗
1 + �E1 × �H ∗

2 + �E2 × �H ∗
2 ].
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As �E2 × �H ∗
2 is second order in η, if we only consider up to the first order in the small parameter η, we have

〈�Sp〉 = 1

2
Re[ �E1 × �H ∗

1 + �E2 × �H ∗
1 + �E1 × �H ∗

2 ]

= 1

2

√

ε0

μ0

E2
0

(

cos φK1
x̂ + sin φK1

ŷ
)

+ 1

2
η

√

ε0

μ0

E2
0

(

e2iKxx + e−2iKxx
)(

cos φK1
x̂ − sin φK1

ŷ
)

= 1

2

√

ε0

μ0

E2
0

[

cos φK1
(1 + 2η cos(2Kxx))x̂ +

(

sin φK1
(1 − 2η cos(2Kxx))

)

ŷ
]

.

For time-averaged time harmonic fields, if there is a single propagating �K , the directions of �K and the Poynting vector �Sp are

parallel. However, if there are two �K propagating and interfering, �Keff is not well defined. We need a �Keff , however, to define

the electrostrictive terms. For this η ≪ 1 case, we still assume that the local direction of �Keff is parallel to the Poynting vector,

so we have

tan φKeff
= tan φSp

= Re[−ExH
∗
z ]

Re[EyH ∗
z ]

= sin φK1
(1 − 2η cos(2Kxx))

cos φK1
(1 + 2η cos(2Kxx))

≈ tan φK1
(1 − 4η cos(2Kxx)).

Therefore, at least in the situation in which the magnitude of the E field in �K2 is much smaller than the magnitude of E field

in �K1, the direction of the �Keff , as we defined here, can be approximately regarded as a perturbed direction according to the

dominate �K1 mode.

[1] J. B. Pendry and D. R. Smith, Phys. Today 57, 37 (2004).

[2] D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science 305,

788 (2004).

[3] J. B. Pendry, D. Schuring, and D. R. Smith, Science 312, 1780

(2006).

[4] V. M. Shalaev, Nat. Photon. 1, 41 (2007).

[5] H. Y. Chen, C. T. Chan, and P. Sheng, Nat. Mater. 9, 387

(2010).

[6] C. M. Soukoulis and M. Wegener, Science 330, 1633 (2010).

[7] J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New

York, 1941).

[8] F. H. H. Robinson, Phys. Rep. 16, 313 (1975).

[9] Z. Mikura, Phys. Rev. A 13, 2265 (1976).

[10] D. F. Nelson, Phys. Rev. A 44, 3985 (1991).

[11] R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and

H. Rubinsztein-Dunlop, Rev. Mod. Phys. 79, 1197 (2007).

[12] S. M. Barnett, Phys. Rev. Lett. 104, 070401 (2010).

[13] A. Shevchenko and B. J. Hoenders, New J. Phys. 12, 053020

(2010).

[14] A. Shevchenko and M. Kaivola, J. Phys. B: At. Mol. Opt. Phys.

44, 175401 (2011).

[15] H. Minkowski, Nachr. Ges. Wiss. Gottn, Math. Phys. K 1, 53

(1908).

[16] H. Minkowski, Math. Ann. 68, 472 (1910).

[17] M. Abraham, Rend. Circ. Mat. Palermo 28, 1 (1909).

[18] M. Abraham, Rend. Circ. Mat. Palermo 30, 33 (1910).

[19] A. Einstein and J. Laub, Ann. Phys. 331, 541 (1908).

[20] I. Brevik, Phys. Rep. 52, 133 (1979).

[21] J. P. Gordon, Phys. Rev. A 8, 14 (1973).

[22] V. Yannopapas and P. G. Galiatsatos, Phys. Rev. A 77, 043819

(2008).

[23] M. Sonnleitner, M. Ritsch-Marte, and H. Ritsch, New J. Phys.

14, 103011 (2012).

[24] I. Liberal, I. Ederra, R. Gonzalo, and R. W. Ziolkowski, Phys.

Rev. A 88, 053808 (2013).

[25] V. Kajorndejnukul, W. Ding, S. Sukhov, C-W. Qiu, and

A. Dogariu, Nat. Photon. 7, 787 (2013).

[26] M. Mansuripur, A. R. Zakharian, and E. M. Wright, Phys. Rev.

A 88, 023826 (2013).

[27] A. M. Jazayeri and K. Mehrany, Phys. Rev. A 89, 043845

(2014).

[28] C. W. Qiu, W. Ding, M. R. C. Mahdy, D. Gao, T. Zhang, F. C.

Cheong, A. Dogariu, Z. Wang, and C. T. Lim, Light Sci. Appl.

4, e278 (2015).

[29] H. Helmholtz, Ann. Phys. 249, 385 (1881).

[30] P. Penfield and H. A. Haus, Electrodynamics of Moving Media

(MIT Press, Cambridge, 1967).

[31] L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrody-

namics of Continuous Media, 2nd ed. (Butterworth-Heinemann,

New York, 1984).

[32] L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd ed.

(Butterworth-Heinemann, New York, 1986).

[33] R. A. Anderson, Phys. Rev. B 33, 1302 (1985).

[34] Y. M. Shkel and D. J. Klingenberg, J. Appl. Phys. 80, 4566

(1996).

[35] Y. M. Shkel and D. J. Klingenberg, J. Appl. Phys. 83, 7834

(1998).

[36] H. Y. Lee, Y. Y. Peng, and Y. M. Shkel, J. Appl. Phys. 98, 074104

(2005).

[37] Y. M. Shkel, Philos. Mag. 87, 1743 (2007).

[38] See for example, T. C. Choy, Effective Medium Theory (Oxford

University Press, Oxford, 1999).

[39] Y. Wu and Z. Q. Zhang, Phys. Rev. B 79, 195111

(2009).

[40] S. K. Chin, N. A. Nicorovici, and R. C. McPhedran, Phys. Rev.

E 49, 4590 (1994).

[41] www.comsol.com

[42] M. Abramowitz and I. A. Stegun, Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables

(Wiley, New York, 1972).

235439-15

http://dx.doi.org/10.1063/1.1784272
http://dx.doi.org/10.1063/1.1784272
http://dx.doi.org/10.1063/1.1784272
http://dx.doi.org/10.1063/1.1784272
http://dx.doi.org/10.1126/science.1096796
http://dx.doi.org/10.1126/science.1096796
http://dx.doi.org/10.1126/science.1096796
http://dx.doi.org/10.1126/science.1096796
http://dx.doi.org/10.1126/science.1125907
http://dx.doi.org/10.1126/science.1125907
http://dx.doi.org/10.1126/science.1125907
http://dx.doi.org/10.1126/science.1125907
http://dx.doi.org/10.1038/nphoton.2006.49
http://dx.doi.org/10.1038/nphoton.2006.49
http://dx.doi.org/10.1038/nphoton.2006.49
http://dx.doi.org/10.1038/nphoton.2006.49
http://dx.doi.org/10.1038/nmat2743
http://dx.doi.org/10.1038/nmat2743
http://dx.doi.org/10.1038/nmat2743
http://dx.doi.org/10.1038/nmat2743
http://dx.doi.org/10.1126/science.1198858
http://dx.doi.org/10.1126/science.1198858
http://dx.doi.org/10.1126/science.1198858
http://dx.doi.org/10.1126/science.1198858
http://dx.doi.org/10.1016/0370-1573(75)90057-5
http://dx.doi.org/10.1016/0370-1573(75)90057-5
http://dx.doi.org/10.1016/0370-1573(75)90057-5
http://dx.doi.org/10.1016/0370-1573(75)90057-5
http://dx.doi.org/10.1103/PhysRevA.13.2265
http://dx.doi.org/10.1103/PhysRevA.13.2265
http://dx.doi.org/10.1103/PhysRevA.13.2265
http://dx.doi.org/10.1103/PhysRevA.13.2265
http://dx.doi.org/10.1103/PhysRevA.44.3985
http://dx.doi.org/10.1103/PhysRevA.44.3985
http://dx.doi.org/10.1103/PhysRevA.44.3985
http://dx.doi.org/10.1103/PhysRevA.44.3985
http://dx.doi.org/10.1103/RevModPhys.79.1197
http://dx.doi.org/10.1103/RevModPhys.79.1197
http://dx.doi.org/10.1103/RevModPhys.79.1197
http://dx.doi.org/10.1103/RevModPhys.79.1197
http://dx.doi.org/10.1103/PhysRevLett.104.070401
http://dx.doi.org/10.1103/PhysRevLett.104.070401
http://dx.doi.org/10.1103/PhysRevLett.104.070401
http://dx.doi.org/10.1103/PhysRevLett.104.070401
http://dx.doi.org/10.1088/1367-2630/12/5/053020
http://dx.doi.org/10.1088/1367-2630/12/5/053020
http://dx.doi.org/10.1088/1367-2630/12/5/053020
http://dx.doi.org/10.1088/1367-2630/12/5/053020
http://dx.doi.org/10.1088/0953-4075/44/17/175401
http://dx.doi.org/10.1088/0953-4075/44/17/175401
http://dx.doi.org/10.1088/0953-4075/44/17/175401
http://dx.doi.org/10.1088/0953-4075/44/17/175401
http://dx.doi.org/10.1007/BF01455871
http://dx.doi.org/10.1007/BF01455871
http://dx.doi.org/10.1007/BF01455871
http://dx.doi.org/10.1007/BF01455871
http://dx.doi.org/10.1007/BF03018208
http://dx.doi.org/10.1007/BF03018208
http://dx.doi.org/10.1007/BF03018208
http://dx.doi.org/10.1007/BF03018208
http://dx.doi.org/10.1007/BF03014862
http://dx.doi.org/10.1007/BF03014862
http://dx.doi.org/10.1007/BF03014862
http://dx.doi.org/10.1007/BF03014862
http://dx.doi.org/10.1002/andp.19083310807
http://dx.doi.org/10.1002/andp.19083310807
http://dx.doi.org/10.1002/andp.19083310807
http://dx.doi.org/10.1002/andp.19083310807
http://dx.doi.org/10.1016/0370-1573(79)90074-7
http://dx.doi.org/10.1016/0370-1573(79)90074-7
http://dx.doi.org/10.1016/0370-1573(79)90074-7
http://dx.doi.org/10.1016/0370-1573(79)90074-7
http://dx.doi.org/10.1103/PhysRevA.8.14
http://dx.doi.org/10.1103/PhysRevA.8.14
http://dx.doi.org/10.1103/PhysRevA.8.14
http://dx.doi.org/10.1103/PhysRevA.8.14
http://dx.doi.org/10.1103/PhysRevA.77.043819
http://dx.doi.org/10.1103/PhysRevA.77.043819
http://dx.doi.org/10.1103/PhysRevA.77.043819
http://dx.doi.org/10.1103/PhysRevA.77.043819
http://dx.doi.org/10.1088/1367-2630/14/10/103011
http://dx.doi.org/10.1088/1367-2630/14/10/103011
http://dx.doi.org/10.1088/1367-2630/14/10/103011
http://dx.doi.org/10.1088/1367-2630/14/10/103011
http://dx.doi.org/10.1103/PhysRevA.88.053808
http://dx.doi.org/10.1103/PhysRevA.88.053808
http://dx.doi.org/10.1103/PhysRevA.88.053808
http://dx.doi.org/10.1103/PhysRevA.88.053808
http://dx.doi.org/10.1038/nphoton.2013.192
http://dx.doi.org/10.1038/nphoton.2013.192
http://dx.doi.org/10.1038/nphoton.2013.192
http://dx.doi.org/10.1038/nphoton.2013.192
http://dx.doi.org/10.1103/PhysRevA.88.023826
http://dx.doi.org/10.1103/PhysRevA.88.023826
http://dx.doi.org/10.1103/PhysRevA.88.023826
http://dx.doi.org/10.1103/PhysRevA.88.023826
http://dx.doi.org/10.1103/PhysRevA.89.043845
http://dx.doi.org/10.1103/PhysRevA.89.043845
http://dx.doi.org/10.1103/PhysRevA.89.043845
http://dx.doi.org/10.1103/PhysRevA.89.043845
http://dx.doi.org/10.1002/andp.18812490702
http://dx.doi.org/10.1002/andp.18812490702
http://dx.doi.org/10.1002/andp.18812490702
http://dx.doi.org/10.1002/andp.18812490702
http://dx.doi.org/10.1103/PhysRevB.33.1302
http://dx.doi.org/10.1103/PhysRevB.33.1302
http://dx.doi.org/10.1103/PhysRevB.33.1302
http://dx.doi.org/10.1103/PhysRevB.33.1302
http://dx.doi.org/10.1063/1.363439
http://dx.doi.org/10.1063/1.363439
http://dx.doi.org/10.1063/1.363439
http://dx.doi.org/10.1063/1.363439
http://dx.doi.org/10.1063/1.367958
http://dx.doi.org/10.1063/1.367958
http://dx.doi.org/10.1063/1.367958
http://dx.doi.org/10.1063/1.367958
http://dx.doi.org/10.1063/1.2073977
http://dx.doi.org/10.1063/1.2073977
http://dx.doi.org/10.1063/1.2073977
http://dx.doi.org/10.1063/1.2073977
http://dx.doi.org/10.1080/14786430601003890
http://dx.doi.org/10.1080/14786430601003890
http://dx.doi.org/10.1080/14786430601003890
http://dx.doi.org/10.1080/14786430601003890
http://dx.doi.org/10.1103/PhysRevB.79.195111
http://dx.doi.org/10.1103/PhysRevB.79.195111
http://dx.doi.org/10.1103/PhysRevB.79.195111
http://dx.doi.org/10.1103/PhysRevB.79.195111
http://dx.doi.org/10.1103/PhysRevE.49.4590
http://dx.doi.org/10.1103/PhysRevE.49.4590
http://dx.doi.org/10.1103/PhysRevE.49.4590
http://dx.doi.org/10.1103/PhysRevE.49.4590
http://www.comsol.com

