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Abstract

We establish an injective correspondence M −→ E(M) be-
tween real-analytic nonminimal hypersurfaces M ⊂ C2, spherical
at a generic point, and a class of second order complex ODEs
with a meromorphic singularity. We apply this result to the
proof of the bound dim hol(M,p) ≤ 5 for the infinitesimal au-
tomorphism algebra of an arbitrary germ (M,p) �∼ (S3, p′) of a
real-analytic Levi nonflat hypersurface M ⊂ C2 (the Dimension
Conjecture). This bound gives the proof of the dimension gap
dim hol(M,p) = {8, 5, 4, 3, 2, 1, 0} for the dimension of the au-
tomorphism algebra of a real-analytic Levi nonflat hypersurface.
As another application we obtain a new regularity condition for
CR-mappings of nonminimal hypersurfaces, that we call Fuchsian
type, and prove its optimality for the extension of CR-mappings
to nonminimal points.
We also obtain an existence theorem for solutions of a class of
singular complex ODEs.
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1. Introduction

The goal of this paper is to give solution to a number of previ-
ously open problems in CR-geometry, including an old question of
H. Poincaré, by introducing a new technique when a CR-manifold un-
der consideration is replaced by an appropriate holomorphic dynami-
cal system. By doing so we reduce the original problem to a classical
setting in local holomorphic dynamics. Using this approach the au-
thors [33] proved recently that for any positive CR-dimension and CR-
codimension the holomorphic moduli space in CR-geometry is bigger
than the formal one. We describe below the CR-geometry problems
addressed in the paper, and briefly explain our dynamical approach.
To outline the parallels between CR-geometry and complex dynamical
systems we summarize the connection between the geometric objects
and the corresponding dynamical analogues in a table at the end of this
introduction.

Let M,M ′ ∋ 0 be two real-analytic hypersurfaces in the complex
space C

2. A local biholomorphic mapping F : (C2, 0) −→ (C2, 0)
is called a holomorphic equivalence between (M, 0) and (M ′, 0), if
F (M) ⊂ M ′. In 1907 H. Poincaré formulated his problème local [43]:
given two germs of real-analytic hypersurfaces M,M ′ ⊂ C

2, find all lo-
cal holomorphic equivalences between them. The discovery of Poincaré
was that the problem is highly nontrivial due to the fact that germs
of Levi nondegenerate hypersurfaces in C

2 possess biholomorphic in-
variants. That makes two germs in general position holomorphically
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inequivalent. Another discovery of Poincaré was that the local au-
tomorphism group Aut (M, 0) of a Levi nondegenerate hypersurface
is finite dimensional and is always a subgroup in the stability group
Aut (S3, o) of a point o lying in the 3-dimensional sphere S3 ⊂ C

2.
For the pseudogroup of local self-mappings of a Levi nondegenerate
hypersurface (or, alternatively, for the well-defined associated infin-
itesimal automorphism algebra hol (M, 0)) Poincaré gives the bound
dim hol (M, 0) ≤ dim hol (S3, o) = 8. The considerations of Poincaré
were based on the existence of a ”model” Levi nondegenerate hypersur-
face, namely, the quadric Q = {Imw = |z|2} ∼= S3. Ideas of Poincaré
were developed and generalized in the work of E. Cartan [10], N. Tanaka
[49], S. Chern and J. Moser [12], who obtained a complete solution for
the local holomorphic equivalence problem for real-analytic Levi nonde-
generate hypersurfaces in C

n, n ≥ 2.
Today, after more than a century, problème local is still very far from

being solved completely. We outline below some recent results and
explain the difficulties in completing the problem.

For hypersurfaces in C
2 with Levi degeneracies satisfying the finite

type condition (see, e.g., [4]), the equivalence problem was studied by
V. Beloshapka, V. Ezhov and M. Kolar and completed in the work
of Kolar [29]. The problem in the finite type case was treated in
the spirit of Poincaré by using models, i.e., hypersurfaces defined by
Imw = Pk(z, z̄), where Pk(z, z̄) is a nonzero homogeneous polyno-
mial of degree k ≥ 3 without harmonic terms. These models allow
one to obtain a formal normal form for finite type real-analytic hyper-
surfaces M ⊂ C

2. Even though such a normal form can be divergent
(see [30]), convergence results for formal CR-equivalences (see, e.g., [5])
show that such a normal form is a biholomorphic invariant and thus
a solution for the holomorphic equivalence problem. By relaxing the
finite type condition one comes to the consideration of a significantly
more difficult to analyze class of the so-called nonminimal hypersur-
faces (the term is coined in [51]), that is real hypersurfaces M con-
taining a complex hypersurface X. The main obstruction for solving
problème local in the nonminimal case is perhaps hidden in the fact
that polynomial hypersurfaces arising from the defining equation of a
nonminimal hypersurface can no longer be considered as models in the
sense of Poincaré-Chern-Moser. For example, in the class of nonmin-
imal hypersurfaces

{
Imw = (Rew)ψ(|z|2), ψ(0) = 0, ψ′(0) �= 0

}
, all of

which contain the complex hypersurface X = {w = 0}, any polynomial
model has the isotropy group of dimension 2, while the hypersurface
Imw = (Rew) tan

(
1
2 arcsin |z|2

)
has the isotropy group of dimension 5

(see [8], [31]). A recent result of the authors [33] showing that formal
equivalences between nonminimal hypersurfaces can be actually diver-
gent, proves, in particular, that a formal normal form can no longer
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be a solution for the equivalence problem for nonminimal hypersur-
faces, which further illustrates the difficulties for this class of hypersur-
faces. In fact, even the class of nonminimal hypersurfaces spherical at
a generic point appears to be highly nontrivial (we refer here to the
work [34, 17, 6, 31, 32, 33] of V. Beloshapka, P. Ebenfelt, M. Ko-
lar, Kowalski, B. Lamel, D. Zaitsev and the authors), as it is not even
known whether the moduli space for this class of hypersurfaces is finite
dimensional.

One of the goals of the present paper is to give a complete solution for
the automorphism version of Poincaré’s problème local. We first give a
solution in the nonminimal case, more precisely, we prove the following

Theorem 1. Let M ⊂ C
2 be a real-analytic nonminimal at the ori-

gin Levi nonflat hypersurface. Then the dimension of its infinitesimal
automorphism algebra satisfies the bound

(1.1) dim hol (M, 0) ≤ 5.

The previous example of the hypersurface Imw =
(Rew) tan

(
1
2 arcsin |z|2

)
shows that the bound in Theorem 1 is

in fact sharp. As a corollary, we obtain the following “dimension
gap” phenomenon, solving the problème local (in the automorphism
interpretation) completely.

Corollary 1 (see Theorem 3.11). Let M ⊂ C
2 be a real-analytic hy-

persurface, 0 ∈ M , and let M be Levi nonflat. Then hol (M, 0) is iso-
morphic to a subalgebra in hol (S3, o) ≃ su(2, 1). Moreover, the bound
dim hol (M, 0) ≤ 5 holds unless (M, 0) is biholomorphic to (S3, o) for o ∈
S3. In particular, the dimension gap dim hol(M, 0) ∈ {8, 5, 4, 3, 2, 1, 0}
holds for all possible dimensions of the infinitesimal automorphism al-
gebra of real-analytic Levi nonflat hypersurfaces M ⊂ C

2.

Corollary 1 should be compared with various dimension gap phenom-
ena in differential geometry, in particular, for isometries of Riemannian
manifolds (see, e.g., S. Kobayashi [28]), or for automorphism groups of
Kobayashi hyperbolic manifolds (see, e.g., A. Isaev [23, 24] and refer-
ences therein). An interesting parallel here is given by the fact that the
maximal dimension 8 for the automorphism group of a two-dimensional
hyperbolic manifold is realized only for the special case of the 2-ball
B
2 ⊂ C

2, while for the automorphism algebra of a real-analytic Levi
nonflat hypersurface M ⊂ C

2 the maximal dimension 8 is realized only
for the 3-sphere S3 = ∂B2.
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We can further formulate

Corollary 2. Let M ⊂ C
2 be a real-analytic Levi nonflat hypersurface,

M ∋ 0. Suppose that the stability group Aut (M, 0) is a Lie group in the
natural topology. Then dimAut (M, 0) ≤ 5.

The example of the 3-sphere S3 ⊂ C
2 (or the previous example of the

nonminimal hypersurface Imw = (Rew) tan
(
1
2 arcsin |z|2

)
) show that

the bound in Corollary 2 is sharp. For the most recent results on Lie
group structures for automorphism groups of real-analytic CR-manifolds
we refer to the work [26, 27] of R. Juhlin and B. Lamel.

The assertions of Theorem 1 and Corollaries 1 and 2 are known as
different versions of the Dimension Conjecture, see the survey [7] and
also [17], [8], and [31] for partial results in this direction. For various
corollaries of Theorem 1 concerning infinitesimal automorphism algebras
of real-analytic germs, as well as intermediate results, we refer the reader
to Section 3. In particular, Theorem 3.7 gives a curious description
of the infinitesimal automorphism algebra of a nonminimal spherical
hypersurface as a subalgebra in the centralizer of a special element σ ∈
Aut(CP2).

Another question addressed in the paper is the analytic continuation
problem for a germ of a biholomorphism between real-analytic hyper-
surfaces M,M ′ ⊂ C

n. The question goes back to another remarkable
result of Poincaré in [43], which states that a local holomorphic equiv-
alence F : (S3, o) −→ (S3, o′) extends to a global linear-fractional au-
tomorphism of the 2-ball B2 ⊂ C

2. The result of Poincaré was general-
ized by S.Pinchuk [41], who proved that if a real-analytic hypersurface
M ⊂ C

n is strictly pseudoconvex, then a local holomorphic equivalence
F : (M,p) −→ (S2n−1, o) extends locally biholomorphically along any
path γ ⊂ M, γ ∋ p (for M = S2n−1 ⊂ C

n the result was also obtained
by H.Alexander [1]). Another generalization of Poincaré’s Theorem was
obtained by Pinchuk in [42] by considering instead of S2n−1 a compact,
nonspherical, strictly pseudoconvex real analytic hypersurface in the
target space. Further generalizations in this direction were obtained by
the school of A.Vitushkin, using the convergence of the Chern-Moser
normal form (see [53] and references therein) and also in [45, 44, 21] by
using extension along Segre varieties. Note that in all cited papers the
hypersurface M in the preimage was assumed to be minimal. However,
as shown in the earlier paper [32] of the authors, when M is nonmin-
imal and M ′ is the simplest possible (namely, M ′ is a hyperquadric in
CP

n) the possibility to extend the germ of a biholomorphic mapping
F : (M,p) −→ (M ′, p′) analytically along a path γ ⊂ M, γ ∋ p fails
to hold in general, if the path γ intersects the complex hypersurface X,
contained in M . The difficulty here is that neither the Chern-Moser-
type technique (in view of the absence of a convergent normal form),
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nor the technique of extension along Segre varieties (in view of the fact
that Qp ∩ X �= ∅ implies p ∈ X) can be used to extend a mapping to
nonminimal points in M . However, it was shown in [32] that if M \X
is Levi nondegenerate and X ∋ 0, then one can choose an open set
U ⊂ C

n, U ∋ 0 in such a way that the desired analytic extension holds
(as a mapping into CP

n) for any choice of a point p ∈ (U \X)∩M and
a path γ ⊂ U \X, γ ∋ p (note that γ here need not to lie in M). Since
U \ X is not simply-connected, such an extension can branch about
the complex locus X, which forms the first type of obstructions for ex-
tending a mapping into a quadric to the complex locus X (see various
examples provided in [32]). We say that the resulting (multiple-valued)
analytic mapping F : U \X −→ CP

n is associated with M (this object is
defined uniquely up to a composition with an element σ ∈ Aut(CPn)).
Surprisingly, the authors found an example (see Example 6.7 in Sec-
tion 6) where a local biholomorphic mapping F0 : (M,p) −→ (S3, o) of
a nonminimal hypersurface M ⊂ C

2 at a Levi nondegenerate point p
does not extend holomorphically to the complex locus X, even though
the associated mapping F does not branch about X. The latter exam-
ple made the extension/no extension dichotomy particularly intriguing,
and also showed the existence of another type of obstruction for analytic
extension to nonminimal points.

Our second main result is the discovery of the non-Fuchsian type
condition for a hypersurface M ⊂ C

2 (see Definition 1.1 below) as the
second type of obstruction and the proof of the fact that no further
obstructions exist beside the two mentioned previously. We formulate
the results in detail below.

Let M ⊂ C
2 be a real-analytic nonminimal at the origin Levi nonflat

hypersurface, and U ∋ 0 be a polydisc. We say that M is given in U in
prenormal coordinates if the defining equation of M ∩ U is of the form

(1.2) v = um

⎛
⎝±|z|2 +

∑

k,l≥2

Φkl(u)z
kz̄l

⎞
⎠ ,

where z = x+ iy, w = u+ iv denote the coordinates in C
2 and Φkl(u)

are analytic near the origin functions. The complex locus for M in this
case is given by X = {w = 0}. Depending on the sign in (1.2) we call
M positive or negative respectively. Examples in Section 2 below show
that prenormal coordinates for a nonminimal hypersurface fail to exist
in general. However, Theorem 3.1 (see Section 3) shows that prenormal
coordinates always exist for every real-analytic nonminimal at the origin
and spherical outside the complex locus hypersurface.

For a nonminimal hypersurface, given in prenormal coordinates, we
first prove the following geometric criterion for the analytic continuation
of a mapping into a sphere.
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Theorem 2. Let M ⊂ C
2 be a real-analytic hypersurface, containing a

complex hypersurface X ∋ 0, which is Levi nondegenerate and spherical
in M \ X. Suppose that M is given in some polydisc U = {|z| <
δ} × {|w| < ǫ} in prenormal coordinates. Then a local biholomorphic
mapping F : (M,p) −→ (S3, p′), p ∈ (M \X)∩U , p′ ∈ S3, extends to X
holomorphically if and only if for each Segre variety Qs, s ∈ U , which is
not a ”horizontal” line {w = const}, there exists a holomorphic graph

Q̃s =
{
(z, w) ∈ CP

1 × {|w| < ǫ} : z = hs(w)
}
, hs ∈ O ({|w| < ǫ})

(called the extension of Qs), such that Qs = Q̃s ∩ U .

We next formulate the crucial

Definition 1.1. Suppose that M satisfies the conditions of Theo-
rem 2. We say that M is of Fuchsian type at the origin, if its defining
function (1.2) satisfies

(1.3) ord0Φ22 ≥ m− 1, ord0Φ33 ≥ 2m− 2, ord0Φ23 ≥
3

2
(m− 1),

where ord0 denotes the order of vanishing of a function at the origin. If
the conditions (1.3) fail to hold, we say that M is of non-Fuchsian type.

We emphasize that the Fuchsian type condition holds automatically
if m = 1, and fails to hold in general for m > 1. It is shown in Section 6
that the property of being Fuchsian is independent of the choice of
prenormal coordinate system.

Theorem 3. Let M ⊂ C
2 be a real-analytic hypersurface, containing a

complex hypersurface X ∋ 0, which is Levi nondegenerate and spherical
in M \X, U a sufficiently small neighbourhood of the origin, p ∈ (M \
X)∩U , and let γ be a generator of π1(U \X), p ∈ γ. Suppose that M is
of Fuchsian type. Then a local biholomorphic mapping F0 : (M,p) −→
(S3, p′), p′ ∈ S3, extends to X holomorphically if and only if its analytic
extension F : U \X −→ CP

2 does not branch along γ.

It is shown in Section 6 that the Fuchsian type condition in Theorem 3
is in a sense optimal. We also note that Theorem 3 demonstrates the
difference between the geometry of 1-nonminimal and m-nonminimal
hypersurfaces with m > 1 respectively. This difference became appar-
ent already in the work of P. Ebenfelt [16], where the analyticity of
CR-mappings from 1-nonminimal hypersurfaces was proved. It also ap-
peared in the paper [33] of the authors, where it was shown that formal
CR-mappings between m-nonminimal hypersurfaces with m > 1 can be
divergent (while for m = 1 formal CR-mappings are always convergent,
as shown by R. Juhlin and B. Lamel in [27]). At the end of Section 3 we
formulate a conjecture on universality of the Fuchsian type condition as
a regularity condition for mappings from nonminimal hypersurfaces.
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As an intermediate step in the proof of Theorem 3, we prove the
following existence theorem for singular ODEs: a singular holomorphic
ODE

(1.4) z′′ =
1

w
P (z, w)z′+

1

w2
Q(z, w), P,Q ∈ O({|z| < δ}×{|w| < ǫ}),

such that Q(z0, 0) = 0, for some |z0| < δ, has a holomorphic in a
neighbourhood of the origin solution z = h(w) with h(0) = z0, provided
that no local solution of it admits a multiple-valued extension to an
annulus {ǫ′ < |w| < ǫ′′} with 0 < ǫ′ < ǫ′′ < ǫ (see Theorem 3.5 below).

The nonlinear complex ODE (1.4) after the substitution u := z′w can
be rewritten as the first order system

(1.5)

{
wz′ = u,

wu′ = (1 + P (z, w))u +Q(z, w),

for which the right-hand side vanishes for z = z0, u = 0, w = 0. This
is a particular case of the Briot-Bouquet type ODEs. These are first
order singular holomorphic ODE systems of the form wz′ = A(z, w),
z ∈ C

n, w ∈ C, A(0) = 0 with A : Cn ×C −→ C
n holomorphic near the

origin. Briot-Bouquet type ODEs can be described as nonlinear gener-
alizations of Fuchsian ODEs. They are known to have a holomorphic
solution under the additional assumption that the linearization matrix
∂A
∂z (0) has no eigenvalues k ∈ Z, k > 0 (nonresonant case, see [35]).
In the resonant case a holomorphic solution fails to exist in general (a
simple example is given by the scalar equation wz′ = z + w). It is easy
to check that the ”no-monodromy” assumption in Theorem 3.5 does not
imply the ”no-resonance” condition, and vice versa, so the assertion of
Theorem 3.5 is nontrivial. To the best of our knowledge, the result is
new (see, e.g., the recent surveys [35], [20] and references therein).

The main tool of the paper is a development, in the Levi degener-
ate case, of the fundamental connection between CR-geometry and the
geometry of completely integrable systems of complex PDEs, first ob-
served by E. Cartan [10] and B. Segre [46]. In particular, the geometry
of real-analytic Levi nondegenerate hypersurfaces in C

2 is closely related
to that of (nonsingular!) second order complex ODEs, as discussed in
Section 2. For modern treatment of the connection in the nondegener-
ate case we refer to earlier work [47, 48, 18, 38, 37] of H. Gaussier,
J. Merker, P. Nurowski, G. Sparling and A. Sukhov. The mediator
between a real hypersurface M and the associated ODE E(M) is the
Segre family of M , which in this case is (an open subset of) the family
of integral curves of E(M). In this paper we treat the significantly differ-
ent case of a nonminimal hypersurface M . By establishing an injective
correspondence M −→ E(M) between the class of all real-analytic non-
minimal hypersurfaces M ⊂ C

2, spherical at a generic point, and a class
of second order complex ODEs with an isolated meromorphic singularity
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at the origin, we were able to reformulate the problems addressed in the
paper in the language of analytic theory of differential equations. This
gives us a powerful tool for the study of mappings and automorphisms
of nonminimal hypersurfaces. The central object of the paper appears
to be the nonlinear complex ODE

z′′ =
1

wm
(Az +B)z′ +

1

w2m
(Cz3 +Dz2 + Ez + F ), (∗)

where the holomorphic coefficients A(w), B(w), C(w),D(w), E(w), F (w)
satisfy certain relations which guarantee that (∗) can be locally mapped
into the simplest ODE z′′ = 0 at its regular points. The latter property
can be interpreted as vanishing of the Tresse differential invariants
of E(M), or as vanishing of the Cartan curvature of E(M) (see the
work of A. Tresse [50] and E. Cartan[11], and also V. Arnold [2]
for a modern treatment). With the additional assumption that the
hypersurface M admits the rotational infinitesimal symmetry iz ∂

∂z , the
connection M ←→ E(M) was studied in the earlier paper [33] of the
authors. Remarkably, it turns out that any such M can be associated

a linear ODE z′′ = B(w)
wm z′ + E(w)

w2m z, and furthermore, Fuchsian type
hypersurfaces are associated with Fuchsian ODEs. Note, however,
that as examples in [31] show, one cannot restrict considerations to
hypersurfaces with the rotational symmetry only.

The following table illustrates the relation between various geometric
and ODE properties arising from the correspondence between M and
E(M).

M E(M)

Nonminimal hypersurface, spher-
ical in the complement of the
complex locus X

Second order complex ODE with
a meromorphic singularity and
vanishing Cartan-Tresse invari-
ants at regular points

Nonminimal locus X = {w = 0} Singular point w = 0
Segre varieties Graphs of solutions
Monodromy of the associated
mapping F

Monodromy of solutions

Holomorphic extension of F to X
Meromorphic extension of solu-
tions to w = 0

Fuchsian type hypersurface Fuchsian (Briot - Bouquet) type
ODE

Automorphisms of a nonminimal
hypersurface

Point symmetries of a singular
ODE

The paper is organized as follows. In Section 2 we provide some back-
ground material on CR-geometry and the analytic theory of differential
equation. In Section 3 we give detailed formulations of the main results
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of the paper, and also formulate the necessary intermediate results. Sec-
tions 4–9 contain proofs, their organization is described at the end of
Section 3.

Acknowledgments. We would like to thank Victor Kleptsyn, Timur
Sadykov, and Ilpo Laine for useful discussions, and also Andrey
Minchenko for communicating to us the proof of Proposition 9.2.

2. Preliminaries

2.1. Segre varieties. Let M be a smooth connected real-analytic hy-
persurface in C

n, 0 ∈ M , and U a neighbourhood of the origin where
M ∩ U admits a real-analytic defining function φ(Z,Z), Z = (z, w) ∈
C
n−1 ×C. For every point ζ ∈ U we can associate with M its so-called

Segre variety in U defined as

Qζ = {Z ∈ U : φ(Z, ζ) = 0}.
Segre varieties depend holomorphically on the variable ζ. One can find
a suitable pair of neighbourhoods U2 = U z

2 × Uw
2 ⊂ C

n−1 × C and
U1 ⋐ U2 such that

Qζ =
{
(z, w) ∈ U z

2 × Uw
2 : w = h(z, ζ)

}
, ζ ∈ U1,

is a closed complex analytic graph. Here h is a holomorphic function.
Following [15] we call U1, U2 a standard pair of neighbourhoods of the
origin. The antiholomorphic n-parameter family of complex hypersur-
faces {Qζ}ζ∈U1

is called the Segre family of M at the origin. From the
definition and the reality condition on the defining function the following
basic properties of Segre varieties follow:

(2.1) Z ∈ Qζ ⇔ ζ ∈ QZ ,

Z ∈ QZ ⇔ Z ∈ M,

ζ ∈ M ⇔ {Z ∈ U1 : Qζ = QZ} ⊂ M.

The fundamental role of Segre varieties for holomorphic mappings is
illuminated by their invariance property: if f : U → U ′ is a holomorphic
map sending a smooth real-analytic submanifold M ⊂ U into another
such submanifold M ′ ⊂ U ′, and U is as above, then

f(Z) = Z ′ =⇒ f(QZ) ⊂ Q′
Z′ .

For the proofs of these and other properties of Segre varieties see, e.g.,
[55], [14], [15], [44], or [4].

In the particularly important case when M is a real hyperquadric, i.e.,
when

M =
{
[ζ0, . . . , ζn] ∈ CP

n : H(ζ, ζ̄) = 0
}
,

where H(ζ, ζ̄) is a nondegenerate Hermitian form in C
n+1 with k + 1

positive and l+1 negative eigenvalues, k+ l = n− 1, 0 ≤ l ≤ k ≤ n− 1,
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the Segre variety of a point ζ ∈ CP
n is the projective hyperplane Qζ =

{ξ ∈ CP
n : H(ξ, ζ̄) = 0}. The Segre family {Qζ , ζ ∈ CP

n} coincides in
this case with the space (CPn)∗ of all projective hyperplanes in CP

n.
The space of Segre varieties {QZ : Z ∈ U1} can be identified with a

subset of CK for some K > 0 in such a way that the so-called Segre map
λ : Z → QZ is holomorphic (see [14]). For a Levi nondegenerate at a
point p hypersurface M its Segre map is one-to-one in a neighbourhood
of p. If M contains a complex hypersurface X, then for any point
p ∈ X we have Qp = X and Qp ∩ X �= ∅ ⇔ p ∈ X, so that the Segre
map λ sends the entire X to a unique point in C

K , and λ is not even
finite-to-one near each p ∈ X (i.e., M is not essentially finite at points
p ∈ X). For a hyperquadric Q ⊂ CP

n the Segre map λ′ is a global
natural one-to-one correspondence between CP

n and the space (CPn)∗.

2.2. Defining equations for nonminimal hypersurfaces. LetM ⊂
C
n be again a smooth real-analytic nonminimal hypersurface, containing

a complex hypersurface X ∋ 0 and Levi nondegenerate in M \X. We
choose local coordinates (z, w) ∈ C

n−1×C near the origin in such a way
that the complex hypersurface, contained in M , is given by X = {w =
0}, and M is given locally by the equation

Imw = (Rew)mΦ(z, z̄,Rew),

where Φ(z, z̄,Rew) is a real-analytic function in a neighbourhood of the
origin such that Φ(z, z̄, 0) �≡ 0, Φ(z, 0,Rew) = Φ(0, z̄,Rew) ≡ 0, and m
is a positive integer (see [4], [16] for the existence of such coordinates).
In this caseM is calledm-nonminimal, and the integer m, known to be a
biholomorphic invariant of M , is called the nonminimality order of M at
0. We may further consider the so-called complex defining equation (see,
e.g., [4]) w = Θ(z, z̄, w̄) of M near the origin, which can be obtained by
substituting u = 1

2 (w+w̄), v = 1
2i (w−w̄) into the real defining equation

and applying the holomorphic implicit function theorem. Here Θ =
1 + O(2) is a real-analytic function near the origin in C

2n−1 satisfying
certain reality condition. For our purposes it is convenient to use the so-
called exponential defining equation for a nonminimal real hypersurface
[32], [31]:

w = w̄ eiϕ(z,z̄, w̄),

where the complex-valued real-analytic function ϕ in a polydisc U ∋ 0
satisfies the conditions ϕ(z, 0,Rew) = ϕ(0, z̄,Rew) ≡ 0 (here m is the
nonminimality order of M at 0), ϕ(z, z̄, w̄) = (w̄)m−1ψ(z, z̄, w̄) for an
appropriate real-analytic function ψ(z, z̄, w̄) �≡ 0, and also the reality
condition

(2.2) ϕ(z, z̄, w e−iϕ̄(z̄,z,w)) ≡ ϕ̄(z̄, z, w),

reflecting the fact that M is a real hypersurface.
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Convention. In what follows in this paper, for a series of the form

f(z1, .., zs) =
∑

kj∈Z
ck1,...,ksz

k1
1 · ... · zkss

we denote by f̄(z1, .., zs) the series
∑

kj∈Z
ck1,...,ks z

k1
1 · ... · zkss .

We introduce the following property, strengthening the m-
nonminimality.

Definition 2.1. A real-analytic hypersurface M ⊂ C
n, containing a

complex hypersurface X = {w = 0} and Levi nondegenerate in M \X,
is called Levi regular at the origin, if in appropriate local coordinates
near the origin the function ϕ in the exponential defining equation of
M has the form:

(2.3) ϕ(z, z̄, w̄) = (w̄)m−1(h(z, z̄, w̄) + ϕ̃(z, z̄, w̄)),

where h(z, z̄, w̄) is a nondegenerate hermitian form in z, z̄ for each w̄, m
is the nonminimality order of M at 0, ϕ̃(z, 0, w̄) ≡ ϕ̃(0, z̄, w̄) ≡ 0, and
also ϕ̃(z, z̄, w̄) = O(||z||3) (here ||z|| is the standard Euclidian norm in
C
n−1). Alternatively, the Levi regularity means that the power series
1

(w̄)m−1ϕ(z, z̄, w̄)|w̄=0 has a nondegenerate hermitian part.

The following example shows that a generic nonminimal at the origin
and Levi nondegenerate outside the complex locus real hypersurface
does not have the Levi regularity property.

Example 2.2. Let M ⊂ C
2 be a 2-nonminimal at the origin hyper-

surface of the form Imw = (Rew)4|z|2+(Rew)2|z|4+O(|z|4|w|4). Then
it is not difficult to check that M is Levi nondegenerate in M \X, but
is not Levi regular at the origin.

However, it will be shown in the next section that for n = 2 the Levi
regularity condition holds for spherical nonminimal hypersurfaces.

The Levi regularity condition can be naturally reformulated in terms
of the real defining function (Rew)mΦ(z, z̄,Rew) above: one should
require that the function Φ can be expanded as

(2.4) Φ(z, z̄,Rew) = H(z, z̄,Rew) + Φ̃(z, z̄,Rew)

with H(z, z̄,Rew) being a nondegenerate hermitian form in z, z̄ for

each w, Φ̃(z, 0,Rew) ≡ Φ̃(0, z̄,Rew) ≡ 0, and also Φ̃(z, z̄,Rew) =
O(||z||3). The equivalence of these definitions follows from the fact
that the functions ϕ and Φ from the exponential and the real defining
equations respectively are related as

ϕ|M\X =
1

i
log

w

w̄

∣∣∣∣
M\X

=
1

i
log

1 + ium−1Φ(z, z̄, u)

1− ium−1Φ(z, z̄, u)

= 2um−1Φ(z, z̄, u) +O(u3m−3Φ3(z, z̄, u))).

Here w = u+ iv.
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2.3. Real hypersurfaces and second order differential equa-
tions. Using the Segre family of a Levi nondegenerate real hypersurface
M ⊂ C

n , one can associate to it a system of second order holomorphic
PDEs with 1 dependent and n − 1 independent variables. The corre-
sponding remarkable construction goes back to E. Cartan [11],[10] and
Segre [46], and was recently revisited in [47], [48], [38], [18], [37] (see
also references therein). We describe here the procedure for the case
n = 2, which will be relevant for our purposes. In what follows we
denote the coordinates in C

2 by (z, w), and put z = x+ iy, w = u+ iv.
Let M ⊂ C

2 be a smooth real-analytic hypersurface, passing through
the origin, and let (U1, U2) be its standard pair of neighbourhoods.
In this case one associates with M a second order holomorphic ODE,
uniquely determined by the condition that it is satisfied by the Segre
family {Qζ}ζ∈U1

of M in a neighbourhood of the origin where the Segre
varieties are considered as graphs w = w(z). More precisely, it follows
from the Levi nondegeneracy of M near the origin that the Segre map
ζ −→ Qζ is injective and also that the Segre family has the so-called
transversality property: if two distinct Segre varieties intersect at a
point q ∈ U2, then their intersection at q is transverse. Thus, {Qζ}ζ∈U1

is a 2-parameter holomorphic w.r.t. ζ̄ family of holomorphic curves in
U2 with the transversality property. It follows from the holomorphic
version of the fundamental ODE theorem (see, e.g., [22]) that there ex-
ists a unique second order holomorphic ODE w′′ = Φ(z, w,w′), satisfied
by the graphs {Qζ}ζ∈U1

.
This procedure can be made more explicit if one considers the com-

plex defining equation w = ρ(z, z̄, w̄) of M near the origin. The Segre
variety Qp of a point p = (a, b) close to the origin is given by

(2.5) w = ρ(z, ā, b̄).

Differentiating (2.5) once, we obtain

(2.6) w′ = ρz(z, ā, b̄).

Considering (2.5) and (2.6) as a holomorphic system of equations with
the unknowns ā, b̄, and applying the implicit function theorem near the
origin, we get

ā = A(z, w,w′), b̄ = B(z, w,w′).

The implicit function theorem here is applicable as the Jacobian of
the system coincides with the Levi determinant of M for (z, w) ∈ M .
Differentiating (2.5) twice and plugging there the expressions for ā, b̄
finally yields

(2.7) w′′ = ρzz(z,A(z, w,w
′), B(z, w,w′)) =: H(z, w,w′).

Now (2.7) is the desired holomorphic second order ODE E .
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The concept of a PDE system associated with a CR-manifold can
be generalized for various classes of CR-manifolds. The correspondence
M −→ E(M) has the following fundamental properties:

(1) Every local holomorphic equivalence F : (M, 0) −→ (M ′, 0) be-
tween two CR-submanifolds is an equivalence between the corre-
sponding PDE systems E(M), E(M ′);

(2) The complexification of the infinitesimal automorphism algebra
hol(M, 0) of M at the origin coincides with the Lie symmetry
algebra of the associated PDE system E(M) (see, e.g., [39] for the
details of the concept).

For the proof and applications of the properties (1) and (2) in various
settings we refer to [47], [48], [38], [18], and [37]. Note that for a
nonminimal at the origin hypersurface M ⊂ C

2 there is no a priori
way to associate with M a second order ODE or even a more general
PDE system near the origin. However, in Section 5 we provide a way to
connect nonminimal spherical real hypersurfaces in C

2 with a class of
complex differential equations with an isolated meromorphic singularity.

2.4. Complex linear differential equations with an isolated sin-
gularity. Complex linear ODEs form one of the most important and
geometric class of complex ODEs. We refer to [22], [3], [9], [54] and ref-
erences therein for various facts and problems, concerning complex lin-
ear differential equations. A first order linear system of n complex ODEs
in a domain G ⊂ C (or simply a linear system in a domain G in what
follows) is a holomorphic ODE system L of the form y′(w) = A(w)y,
where A(w) is an n × n matrix-valued holomorphic in G function and
y(w) = (y1(w), ..., yn(w)) is an n-tuple of unknown functions. Solutions
of L near a point p ∈ G form a linear space of dimension n. More-
over, all the solutions y(w) of L are defined globally in G as (possibly
multiple-valued) analytic functions, i.e., any germ of a solution near a
point p ∈ G of L extends analytically along any path γ ⊂ G, start-
ing at p. A fundamental system of solutions for L is a matrix whose
columns form some collection of n linearly independent solutions of L.

If G is a punctured disc centred at 0, we call L a system with an
isolated singularity at w = 0. An important (and sometimes even a
complete) characterization of an isolated singularity is its monodromy
operator defined as follows. If Y (w) is some fundamental system of
solutions of L in G and γ is a simple loop about the origin, then the
monodromy of Y (w) w.r.t. γ is given by the right multiplication by a
constant nondegenerate matrix M , called the monodromy matrix. The
matrixM , unique up to a similarity, defines a linear operator Cn −→ C

n,
which is called the monodromy operator of the singularity.

If the matrix-valued function A(w) is meromorphic at the singularity
w = 0, we call it a meromorphic singularity. As the solutions of L are
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holomorphic in any proper sector S ⊂ G of a sufficiently small radius
with the vertex at w = 0, it is important to study the behaviour of the
solutions as w → 0. If all solutions of L admit a bound ||y(w)|| ≤ C|w|b
in any such sector (with some constants C > 0, b ∈ R, depending possi-
bly on the sector), then w = 0 is called a regular singularity, otherwise
it is called an irregular singularity. In particular, in the case of the triv-
ial monodromy the singularity is regular if and only if all the solutions
of L are meromorphic in G. L. Fuchs introduced the following condi-
tion: a singular point w = 0 is called Fuchsian, if A(w) is meromorphic
at w = 0 and has a pole of order ≤ 1 there. The Fuchsian condition
turns out to be sufficient for the regularity of a singular point. Another
remarkable property of a Fuchsian system is that every formal holomor-
phic (and even formal meromorphic) solution of a Fuchsian system is in
fact convergent.

A scalar linear complex ODE of order n in a domain G ⊂ C is an
ODE E of the form

z(n) = an(w)z + an−1(w)z
′ + ...+ a1(w)z

(n−1),

where {aj(w)}j=1,...,n is a given collection of holomorphic functions in
G and z(w) is the unknown function. By a reduction of E to a first
order linear system (see the above references for various techniques of
doing that) one can naturally transfer most of the definitions and facts,
relevant to linear systems, to scalar equations of order n. The main
difference here is contained in the appropriate definition of Fuchsian:
a singular point w = 0 for an ODE E is called Fuchsian, if the order
of poles pj of the functions aj(w) satisfy the inequalities pj ≤ j, j =
1, 2, . . . , n. The Theorem of Fuchs for n-th order scalar ODEs says that
a singular point of a linear n-th order ODE is regular if and only if it
is Fuchsian. In particular, if the monodromy of the equation is trivial,
then the Fuchsian condition is equivalent to the fact that all solutions
of the equation are meromorphic at the singular point w = 0.

Further information on the classification and behaviour of solutions
for singular linear ODEs can be found in [22] or [54].

2.5. Holomorphic vector fields and automorphisms. We next
give some preliminaries related to local automorphisms of real hyper-
surfaces. By a holomorphic vector field in a neighbourhood of the origin
in C

n we mean a complex vector field

f1(z)
∂

∂z1
+ ...+ fn(z)

∂

∂zn
,

where the functions f1(z), ..., fn(z) are holomorphic in a neighbourhood
of the origin. Real parts of holomorphic vector fields are precisely the
real vector fields in C

n generating flows of local biholomorphic trans-
formations. Let now M ⊂ C

n be a smooth real-analytic hypersurface



82 I. KOSSOVSKIY & R. SHAFIKOV

containing the origin. The infinitesimal automorphism algebra of M at
the origin (we denote it by hol (M, 0) in what follows) is the Lie algebra
of germs at the origin of holomorphic vector fields X such that ReX is
tangent to M at any point p ∈ M where it is defined. If this algebra is
finite-dimensional, we may assume that all of its elements are defined
in the same neighbourhood of the origin. The importance of the infin-
itesimal automorphism algebra stems from the fact that real parts of
elements of hol (M, 0) are precisely the real vector fields in C

n near the
origin that generate real flows of local biholomorphic automorphisms of
M at 0.

One can also consider the stability algebra aut (M, 0) of M at the ori-
gin. This Lie algebra consists of vector fields X ∈ hol (M, 0), vanishing
at 0. Real parts of vector fields lying in aut (M, 0) are precisely the real
vector fields in C

n near the origin that generate flows of local biholo-
morphic automorphisms of M near the origin, preserving the origin. In
many nondegenerate settings [4] this algebra is the tangent algebra to
the stability group of the germ (M, 0).

For the compact complex manifold CP
n, its automorphism group con-

sists of projective transformations (given up to scaling by elements of
GL(n + 1,C), naturally acting in homogeneous coordinates). This Lie
group is usually denoted by PGL(n + 1,C). It is generated by the Lie
algebra hol(CPn), which is a certain algebra of quadratic vector fields in
each fixed affine chart (see, for example, [12]). The Lie algebra hol(CPn)
is isomorphic to sl(n,C) as a Lie algebra (see [52] for more details). For
any nondegenerate hyperquadric Q ⊂ CP

n the algebra hol(CPn) is the
complexification of the infinitesimal automorphism algebra hol(Q). It
will be also important for us that the natural action of PGL(n + 1,C)
on hol(CPn) (i.e., the natural ”coordinate-change” action of biholomor-
phisms from PGL(n+1,C) on vector fields from hol(CPn)) corresponds
to the adjoint action of the Lie group PGL(n + 1,C) on its tangent
algebra sl(n,C). Lie algebra automorphisms corresponding to this ac-
tion are sometimes called conjugacies or inner automorphisms. In the
matrix realization of the above Lie groups and algebras, conjugacies are
simply automorphisms given by a matrix conjugation.

2.6. Nonminimal spherical hypersurfaces. We give in this section
more detailed formulations of the results in [32], which will be used in
various sections of the present paper.

Definition 2.3. A real-analytic hypersurface M ⊂ C
n, containing a

complex hypersurface X ∋ 0, is called Segre regular in a neighbourhood
U of the origin, if the Segre map λ is locally injective in U \X.

It is shown in [32, Prop 2.1] that if M is Levi nondegenerate in M \X,
then one can choose a neighbourhood U ∋ 0 in such a way that M is
Segre regular in U .



ANALYTIC DIFFERENTIAL EQUATIONS 83

Assume now that M is Levi nondegenerate in M \ X and is Segre
regular in a neighbourhood U . Denote by M+,M− the two connected
components of M \ X and assume, in addition, that one of the com-
ponents (say, M+) is (k, l)-spherical (i.e., it can be locally biholomor-
phically mapped into a hyperquadric Q ⊂ CP

n with k positive and l
negative eigenvalues, k + l = n − 1). The hypersurface M in this case
is called pseudospherical. Then it is proved in [32] that

the second component M− is also (k′, l′)-spherical (with, possibly,
(k′, l′) �= (k, l)) and there exists an open neighbourhood U of X in
C
n such that for p ∈ (M \ X) ∩ U any biholomorphic map Fp of

(M,p) into a (k, l) - hyperquadric Q extends analytically along any path
in U \ X as a locally biholomorphic map into CP

n. In particular, Fp

extends to a possibly multiple-valued locally biholomorphic analytic map-
ping F : U \X −→ CP

n in the sense of Weierstrass.

The above theorem implies the existence of a nontrivial biholomorphic
invariant of a nonminimal spherical real hypersurface called the mon-
odromy operator. To define it we consider a generator γ of π1(U \X)
with γ ∋ p and consider the analytic continuation Fγ,p of Fp along γ.
There exists an element σ ∈ Aut(CPn) such that Fγ,p = σ ◦ Fp. It is
convenient to interpret σ as an (n + 1) × (n + 1)-matrix, defined up
to scaling, that we call the monodromy matrix. The monodromy ma-
trix is defined up to similarity: namely, a replacement of the mapping
Fp : (M,p) −→ CP

n by any other mapping τ ◦ Fp : (M,p) −→ CP
n

leads to a similar monodromy matrix

(2.8) σ̃ = τ ◦ σ ◦ τ−1.

Thus we get a well-defined linear operator C
n+1 −→ C

n+1, defined up
to scaling and independent of the choice of the initial mapping Fp,
the target quadric Q and the path γ, which is called the monodromy
operator. If the analytic continuation Fγ,p of the initial mapping Fp

leads to the same element Fp, then the monodromy operator is the
identity. The analytic mapping F in this case is a well-defined single-
valued locally biholomorphic mapping U \X −→ CP

n.

3. Formulations of the principal results

We give in this section more detailed formulation of Theorems 1, 2,
and 3, and also state some intermediate results that are of independent
interest.

The first result provides the existence of prenormal coordinates for a
nonminimal spherical hypersurface in C

2. As explained earlier, prenor-
mal coordinates do not exist for a nonminimal Levi nonflat hypersurface
in general.
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Theorem 3.1. Let M ⊂ C
2 be a real-analytic nonminimal at the

origin hypersurface, and let X be its complex locus. Suppose that M \X
is Levi nondegenerate and spherical. Then in suitable local holomor-
phic coordinates near the origin, called prenormal coordinates, M can
be represented by an exponential defining equation w = w̄eiϕ(z,z̄,w̄) with

ϕ(z, z̄, w̄) = (w̄)m−1

⎛
⎝±|z|2 +

∑

k,l≥2

ϕkl(w̄)z
kz̄l

⎞
⎠ ,(3.1)

or, equivalently, by a real defining equation Imw = (Rew)mΦ(z, z̄,Rew)
with

Φ(z, z̄,Rew) = ±|z|2 +
∑

k,l≥2

Φkl(Rew)z
k z̄l,

where ϕkl and Φkl are analytic functions near the origin, and m ≥ 1 is
the nonminimality order of M at the origin.

To formulate the next result we will need the following definition.

Definition 3.2. We denote by P0 the class of nonminimal smooth
real-analytic hypersurfaces M ⊂ C

2, containing the complex hypersur-
face X = {w = 0}, Levi-nondegenerate and spherical inM \X and given
in a neighbourhood U of 0 in prenormal coordinates. If in addition U is
a polydisc chosen in such a way that M is Segre regular in U , we call U
a neighbourhood associated with M . We also call the multiple-valued
mapping F : U \X −→ CP

2, extending a germ Fp : (M,p) −→ (S3, p′)
(see Section 2.6), the mapping associated with M . We call the hyper-
surface M ∈ P0 positive or negative depending on the sign in (3.1).

The P0-notation used in this paper is inherited from the analytic
theory of differential equations (see Section 6 for details). Our next
result establishes a fundamental connection between hypersurfaces of
class P0 and a special class of singular complex ODEs. In what follows
in the paper we denote by Δǫ a disc, centred at 0 of radius ǫ, and by
Δ∗

ǫ the corresponding punctured disc.

Theorem 3.3. Suppose that M ∈ P0 and U = Δδ ×Δǫ is the asso-
ciated neighbourhood. Then

(i) There exists a second order ODE

(3.2) w′′ = − 1

wm
(Az +B)(w′)2 − 1

w2m
(Cz3 +Dz2 + Ez + F )(w′)3,

where A(w), B(w), C(w),D(w), E(w), F (w) are holomorphic functions
in the disc Δǫ such that (3.2) is satisfied by all Segre varieties Qp =
{w = wp(z)}, p ∈ U \X, considered as graphs w = w(z).
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(ii) The ODE (3.2) and the complex defining function of M , as in (3.1),
are related as

F (w) = 2ϕ23(w), A(w) = ±6iϕ32(w), B(w) = ±2iϕ22(w) − wm−1,

E(w) = 6ϕ33 ± 2i(m − 1)ϕ22w
m−1 − 8(ϕ22)

2 ∓ 2iϕ′
22w

m.(3.3)

A(w) = ±3iF̄ (w), C(w) = −1

9
A2(w),(3.4)

D(w) =
1

3
w2m

(
A(w)

wm

)′

− 1

3
A(w)B(w),

where the signs are determined by the sign of M .

(iii) For a possibly smaller polydisc U , the Segre varieties Qp of M with
p ∈ Δ∗

δ × Δ∗
ǫ , considered as graphs z = z(w), satisfy the second order

meromorphic ODE E(M), given by

(3.5) z′′ =
1

wm
(Az +B)z′ +

1

w2m
(Cz3 +Dz2 + Ez + F ),

where A(w), B(w), C(w),D(w), E(w), F (w) are the same as in (3.2).
The correspondence M −→ E(M) between hypersurfaces of class P0

and ODEs of the form (3.5), satisfying (3.4), is injective.

We say that the ODE E(M) is associated with M .

The main application of Theorem 3.3 is the possibility to reformu-
late questions, concerning the initial hypersurface M , in terms of the
associated ODE E(M). This turns out to be a powerful tool that can
be used to prove delicate facts concerning the geometry of nonminimal
hypersurfaces.

We start with the applications to the problem of analytic contin-
uation. Even though the defining equation of M suggests that one
should consider Segre varieties of M as graphs w = w(z), it appears
more natural to consider them as graphs z = z(w) in appropriate local
coordinates. This gives characterization of nonminimal spherical hyper-
surfaces for which the associated mapping F extends holomorphically
to the complex locus.

Theorem 3.4. Let M ∈ P0, U be the associated neighbourhood, and
let F be the associated mapping. Then:

(i) There exist six (multiple-valued) analytic functions αj(w) and βj(w),
j = 0, 1, 2, in a punctured disc Δ∗

ǫ = {0 < |w| < ǫ} such that the
mapping F : U \X −→ CP

2 has the following linear w.r.t. the variable
z representation in homogeneous coordinates:

(3.6) F(z, w) = (α0(w)z + β0(w), α1(w)z + β1(w), α2(w)z + β2(w)).

In particular, F restricted to U0 = F−1(C2), U0 ⊂ U \X, is a linear-
fractional w.r.t. z mapping U0 −→ C

2. Moreover, F extends as a
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(multiple-valued) holomorphic mapping CP
1×Δ∗

ǫ −→ CP
2 that is locally

biholomorphic in C
1 ×Δ∗

ǫ .

(ii) Each Segre variety Qp, p = (a, b), of M with a, b �= 0, considered as

a subset of the strip CP
1 ×Δ∗

ǫ , extends to a graph Q̃p = {z = hp(w)} ⊂
CP

1 × Δ∗
ǫ of an appropriate (multiple-valued) analytic mapping hp :

Δ∗
ǫ −→ CP

1. All functions hp(w) satisfy the ODE E(M).

(iii) The mapping F is single-valued if and only if for each Segre variety

Qp, p = (a, b), a, b �= 0, with the extension Q̃p = {z = hp(w)}, the
mapping hp(w) is single-valued;

(iv) The mapping F extends to X holomorphically if and only if for

each Segre variety Qp, p = (a, b), a, b �= 0, with the extension Q̃p =
{z = hp(w)}, the mapping hp(w) is single-valued and extends to the
origin holomorphically.

Theorem 3.4 implies Theorem 2 of Introduction.

We will need the following existence theorem for singular complex
ODEs, which is applicable, in particular, to the ODE E(M) of Theo-
rem 3.3, provided the associated mapping is single-valued.

Theorem 3.5. Consider a second order singular at the origin com-
plex ODE E, given by

(3.7) z′′ =
1

w
P (z, w)z′ +

1

w2
Q(z, w),

with holomorphic in some polydisc Δδ × Δǫ functions P (z, w) and
Q(z, w). Suppose the ODE E satisfies the following condition: if a local
solution z = ψ(w) of E near some point w0 ∈ Δ∗

ǫ admits an analytic
continuation to an annulus ǫ′ < |w| < ǫ′′, 0 < ǫ′ < ǫ′′ < ǫ, then the
analytic continuation is single-valued. Suppose also that there exists
z0 ∈ Δδ such that Q(z0, 0) = 0. Then the ODE E has a holomorphic at
the origin solution z = h(w) with h(0) = z0.

Combination of Theorem 3.4 with Theorem 3.5 yields the following
result.

Theorem 3.6. Let M ∈ P0, U be the associated neighbourhood, F
be the associated mapping, and m ≥ 1 be the nonminimality order of M
at 0. If M is of Fuchsian type, then F extends to X holomorphically if
and only if it is single-valued. In particular, if m = 1, then F extends
holomorphically to X if and only if it is single-valued.

Theorem 3.6 implies Theorem 3 stated in Introduction. Next we use
the above results to study the behaviour of local automorphisms for
real hypersurfaces at nonminimal points. We formulate the Dimension
Conjecture, mentioned in Introduction, in two different versions.
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Dimension Conjecture (weak version). Let (M, 0) ⊂ C
2 be a

smooth real-analytic Levi nonflat germ. Then the following upper bound
for the dimension of the stability algebra of M at 0 holds:

dim aut (M, 0) ≤ dim aut(S3, o) = 5, o ∈ S3.

Dimension Conjecture (strong version). Let (M, 0) ⊂ C
2 be a

smooth real-analytic Levi nonflat germ, and suppose that M is not
spherical at 0. Then the following upper bound for the dimension of the
infinitesimal automorphism algebra of M at 0 holds:

dim hol (M, 0) ≤ 5.

As explained in Section 8 only the nonminimal case remained open for
the complete proof of the strong version of the Dimension Conjecture.
To treat this case, we first prove the following embedding theorem for the
infinitesimal automorphism algebra of a nonminimal pseudospherical
hypersurface in C

n.

Theorem 3.7. Let M ⊂ C
n, n ≥ 2, be a real-analytic nonminimal

at the origin pseudospherical hypersurface. Let σ be the monodromy
operator of M . Then the infinitesimal automorphism algebra hol (M, 0)
can be injectively embedded into the subalgebra c = z(σ)∩hol (Q), where
z(σ) ⊂ hol (CPn) is the centralizer of the element σ ∈ Aut (CPn).

Theorem 3.7, while being effective for hypersurfaces with nontriv-
ial monodromy, does not give new information in the case of trivial
monodromy. To treat the latter case, we use the linear-fractional rep-
resentation of F asserted in Theorem 3.4, which gives the following.

Theorem 3.8. For any hypersurface M ∈ P0 the bound
dim hol (M, 0) ≤ 5 holds.

Theorem 3.8 implies Theorem 1 in the introduction. Examples ob-
tained in [8] and [31] show that the bound in this theorem is indeed
sharp. Combined with other known results on automorphisms of real-
analytic hypersurfaces in C

2, Theorem 3.7 yields the strong version of
the Dimension Conjecture.

Theorem 3.9. The Strong Dimension Conjecture holds true for any
smooth real-analytic hypersurface M ∋ 0.

In fact, we can formulate even a stronger statement. A nonminimal
at the origin smooth real-analytic hypersurface M ⊂ C

2 is called a
sphere blow-up, if for some open neighbourhood U of the origin there
exists a holomorphic mapping F : U −→ C

2 such that F(M) ⊂ S3,
F is locally biholomorphic in the complement U \ X of the complex
locus X ⊂ M and F(X) = {p′} for some point p′ ∈ S3. Observe that
not every nonminimal and spherical in M \X hypersurface is a sphere
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blow-up, as the associated mapping F in this case might not extend
holomorphically to the complex locus X. We then obtain the following
characterization of all real-analytic hypersurfaces with high-dimensional
automorphism algebra.

Theorem 3.10. Let M ⊂ C
2 be a smooth real-analytic hypersurface,

passing through the origin. Then one of the following mutually exclusive
conditions hold.

(1) dim hol (M, 0) = ∞ and (M, 0) is equivalent to the germ of the real
hyperplane {Imw = 0} ⊂ C

2.

(2) dim hol (M, 0) = 8, and (M, 0) is equivalent to the germ of the
3-sphere S3 ⊂ C

2.

(3) dim hol (M, 0) = 5, and (M, 0) is a nonminimal at the origin
sphere blow-up. Moreover, the Lie algebra hol (M, 0) is isomor-
phic to the stability algebra aut(S3) of the 3-sphere S3 ⊂ C

2.

(4) dim hol (M, 0) ≤ 4.

Finally, we deduce the following description of the infinitesimal au-
tomorphism algebras of real-analytic hypersurfaces M ⊂ C

2.

Theorem 3.11. Let M ⊂ C
2 be a real-analytic hypersurface, 0 ∈ M ,

and M be Levi nonflat. Then hol (M, 0) is isomorphic to a subalgebra
in hol (S3) ≃ su(2, 1), and dim hol (M, 0) ≤ 5 unless (M, 0) is biholo-
morphic to (S3, o) for o ∈ S3.

In the end we would like to formulate the following conjecture. It is
possible to show that the Levi regularity condition, which guarantees
existence of prenormal coordinates (1.2), holds on an open dense subset
of the complex locus X of a nonminimal Levi nonflat hypersurface.
Thus one can use (1.3) to introduce the notion of Fuchsian type at a
generic point p ∈ X. Following carefully the arguments in [33] and
in the present paper, one can see that the sphericity of M at a generic
point does not seem to be necessary for the effect of splitting nonminimal
hypersurfaces into the Fuchsian and non-Fuchsian classes (we refer again
to the regularity results [16], [27] in the 1-nonminimal case). Thus we
conjecture the following.

Conjecture 3.12. (i) The Fuchsian type is a sufficient condition
for convergence of formal equivalences between nonminimal hypersur-
faces. (ii) The Fuchsian type condition is sufficient for analyticity of
CR-mappings between nonminimal hypersurfaces. (iii) The Fuchsian
type condition is sufficient for the moderate growth, as p −→ X, of
a mapping F : (M,p) −→ (K, p′) from M into a compact algebraic
strictly pseudoconvex hypersurface K.

The remaining of the paper is organized as follows. In Section 4 we
prove the prenormalization Theorem 3.1. Its proof is based on the glob-
alization result [32] and the properties of the so-called complex Levi
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determinant. In Section 5 we use the associated mapping F to obtain a
holomorphic ODE with an isolated singularity at w = 0, associated with
M ∈ P0. We then use the existence of prenormal coordinates to obtain
an associated ODE, arising from the defining function of the hypersur-
face. Comparing the two ODEs, we prove the meromorphic character
of the associated ODE and obtain estimates for the orders of poles. We
then prove in the same section Theorems 3.3 and 3.4. The crucial step is
to show that the associated mapping F is linear-fractional in prenormal
coordinates. The latter fact is proved by means of solving explicitly
certain ”Monge-Ampère-like” equations I0(z, w) = I1(z, w) = 0 (see
Section 5 for the notations). The linear-fractional form of F first al-
lows us to specify the form of the associated ODE (Theorem 3.3) and
second obtain the globalization of Segre varieties and characterize the
analytic continuation in terms of the behaviour of the extended Segre
varieties (Theorem 3.4). As the (globalized) Segre varieties are solutions
of the associated ODE E(M), we reformulate in Section 6 the analytic
continuation problem in terms of the growth of solutions for E(M) as
w −→ 0. We then reformulate the Fuchsian type condition, described in
the introduction, in terms of E(M) and show that, under the Fuchsian
type assumption, the ODE E(M) can be reduced by a polynomial sub-
stitution to a ”Fuchs-like” ODE Er(M). The latter ODE is a particular
case of a Briot-Bouquet type ODE. Section 6.2 is dedicated to vari-
ous examples of hypersurfaces of class P0 and the connections between
the associated mapping, the associated ODE and the analytic continu-
ation problem. At the end of the section we perform a crucial step in
the proof of Theorem 3.6, namely, we prove that solutions of the ODE
E(M) have a moderate growth, provided that the reduced ODE Er(M)
has at least one holomorphic solution, thus reducing Theorem 3.6 (and
Theorem 3 from Introduction) to Theorem 3.5. In Section 7 we prove
Theorem 3.5. For that one needs to prove the existence of a formal
solution, which involves a simple nonresonant case and a more compli-
cated resonant case. There we significantly use the single-valuedness
of the solutions and apply the Poincaré perturbation method to show
that the nonexistence of a formal solution in the resonant case leads
to multiple-valuedness of some other (existing) solution, which gives
a contradiction. In Section 8 we discuss the connection between the
monodromy of the associated mapping F and the infinitesimal auto-
morphism algebra hol(M, 0). This gives the proof of Theorem 3.7 and
the bound dim hol(M, 0) ≤ 4 in the case of nontrivial monodromy. We
also prove the bound dim hol(M, 0) ≤ 5 in the case when the associated
mapping F extends to the complex locus, and thus reduce the proof of
Theorem 3.8 to the case when F has a trivial monodromy, but does not
extend to X. The remaining case is treated in Section 9, essentially, by
proving the fact that the symmetry algebra of the associated ODE E(M)
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(at a singular point) has dimension at most 4. This proves Theorem 3.8
and implies Theorems 3.9, 3.10 and 3.11.

4. A prenormal form for a pseudospherical nonminimal
hypersurface

In this section we prove the prenormalization result stated in The-
orem 3.1. It is analogous to the preliminary normalization of Chern-
Moser in [12]. Throughout this section we denote the coordinates in
C
n by (z, w) ∈ C

n−1 × C, w = u + iv, and for a polydisc U centred
at the origin we denote by U z and Uw its projections onto the z- and
the w-coordinate spaces respectively. Further, we assume that M ⊂ C

n

is a nonminimal real-analytic hypersurface at 0 ∈ M , X ⊂ M is the
complex hypersurface through 0, M \X is Levi-nondegenerate and the
coordinates are chosen as in Section 2.2.

As Example 2.2 shows, Theorem 3.1 fails to hold in general for non-
minimal hypersurfaces, even if M \X is Levi nondegenerate. The proof
in the spherical case is based on the study of the geometry of Segre vari-
eties of M near the complex locus X and uses in essential way the result
of [32]. The proof of the theorem is divided into several propositions.

Definition 4.1. Let M ⊂ C
n be a real-analytic hypersurface as

above, given in a neighbourhood U ∋ 0 by a complex defining equation
w = ρ(z, z̄, w̄). Consider ρ(z, ā, b̄) as a function defined in a neighbour-
hood of the origin in C

2n−1. Then the Levi determinant of M in U is
the real-analytic functional n× n determinant

Δ(z, ā, b̄) =

∣∣∣∣∣∣∣∣

ρā1 ... ρān−1
ρb̄

ρz1ā1 ... ρz1ān−1
ρz1b̄

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ρzn−1ā1 ... ρzn−1ān−1

ρzn−1b̄

∣∣∣∣∣∣∣∣
.

For points (z, w) ∈ M ∩ U , the number Δ(z, z̄, w̄) coincides with the
determinant of the Levi form of M , so Δ(z, z̄, w̄) = 0 for (z, w) ∈ X,
and Δ(z, z̄, w̄) �= 0 for (z, w) ∈ M \X, if M \X is Levi nondegenerate.

The Levi determinant becomes useful in determination of Levi regu-
larity. We first prove

Proposition 4.2 (Transversality Lemma). Suppose that M ⊂ C
n is

Segre-regular in a neighbourhood U ∋ 0 and M is pseudospherical. Then
if two distinct Segre varieties Qp, Qq, p, q ∈ U \ X intersect at a point
s ∈ U \X, then their intersection is transversal.

Proof. Applying [32, Thm 1] we conclude that there is a germ of
a biholomorphic mapping Fs : (Cn, s) −→ (CPn,Fs(s)) such that Fs

sends germs of Qp and Qq at s to two germs of projective hyperplanes
L1 = Fs(Qp), L2 = Fs(Qq). Since Fs is biholomorphic, L1 and L2 are
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distinct, and so their intersection at Fs(s) is transverse. The same holds
for the intersection Qp ∩Qq at s. q.e.d.

Proposition 4.3. Suppose that M ⊂ C
n is Segre-regular in a polydisc

U ∋ 0 and M is pseudospherical. Then the Levi determinant Δ(z, ā, b̄)
of M is nonzero in U z × U z × (Uw \ {0}).

Proof. Let M be given by a complex defining equation w = ρ(z, z̄, w̄)
and suppose that on the contrary, for some (z∗, a∗, b∗) ∈ U z ×U z ×Uw

with b∗ �= 0, the Levi determinant Δ(z∗, ā∗, b̄∗) vanishes. Consider an
anti-holomorphic map Lz∗ : U z × Uw −→ C

n given by

Lz∗(a, b) =
(
ρ(z∗, ā, b̄), ρz1(z

∗, ā, b̄), ..., ρzn−1
(z∗, ā, b̄)

)
.

The map Lz∗ assigns to (a, b) the 1-jet of the Segre variety Q(a,b) = {w =

ρ(z, ā, b̄)} at the point (z∗, ρ(z∗, ā, b̄)). Also note that Δ(z∗, ā∗, b̄∗) is the
Jacobian of Lz∗ at the point (a∗, b∗). This implies that the map Lz∗ is
degenerate at (a∗, b∗), and therefore, in any small neighbourhood of
(a∗, b∗) there exist points p = (a′, b′), q = (a′′, b′′) in U \X, p �= q, such
that Lz∗(p) = Lz∗(q), in particular, the 1-jets of the Segre varieties Qp

and Qq coincide. On the other hand, the Segre map of M is locally
injective, so for a sufficiently small neighbourhood of (a∗, b∗) we have
Qp �= Qq. This contradicts Proposition 4.2, which proves the result.

q.e.d.

Proposition 4.4. Suppose that for an m-nonminimal hypersurface
M ⊂ C

2 in a sufficiently small neighbourhood of the origin its Levi
determinant Δ(z, ā, b̄) �= 0 for b �= 0. Then M is Levi regular at 0.

Proof. Choose a neighbourhood U ∋ 0 such that M is given in U by
an exponential defining equation w = w̄eiϕ(z,z̄,w̄) and denote ρ(z, ā, b̄) :=

b̄eiϕ(z,ā,b̄). Then ρā = ib̄ϕāe
iϕ, ρb̄ = eiϕ + ib̄ϕb̄e

iϕ, ρzā = b̄eiϕ(iϕzā −
ϕāϕz), ρzb̄ = (iϕz + ib̄ϕzb̄ − b̄ϕzϕb̄)e

iϕ, and so

Δ(z, ā, b̄) = b̄e2iϕ
(
−iϕzā + b̄ϕzāϕb̄ − b̄ϕāϕzb̄

)
.

Applying the Weierstrass Preparation Theorem and taking possibly a
smaller polydisc U , we conclude that there exists an integer d ≥ 0 such
that

−iϕzā + b̄ϕzāϕb̄ − b̄ϕāϕzb̄ = (b̄)dδ(z, ā, b̄),

where δ(z, ā, b̄) is holomorphic in U z × U z × Uw and does not vanish
there. Since ϕ(z, ā, b̄) = b̄m−1ψ, ψ = ψ0(z, ā) + O(b̄), and ψ0 �≡ 0
does not contain harmonic terms, we conclude that the expression

1
b̄m−1

(
−iϕzā + b̄ ϕzā ϕb̄ − b̄ ϕā ϕzb̄

)
|b̄=0 is holomorphic in z, ā and does

not vanish identically. Hence d = m− 1, and

1

b̄m−1

(
−iϕzā + b̄ ϕzā ϕb̄ − b̄ ϕā ϕzb̄

)
(0, 0, 0) = δ(0, 0, 0) �= 0.
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Now since ϕā(z, ā, b̄) = O(|z|), ϕb̄(z, ā, b̄) = O(|z||a|), we conclude that
1

(b̄)m−1
ϕzā(0, 0, 0) �= 0, which is equivalent to Levi regularity. q.e.d.

Propositions 4.3 and 4.4 imply the following key

Corollary 4.5. Suppose that M ⊂ C
2 is an m-nonminimal at the

origin real-analytic hypersurface, and M \X is Levi nondegenerate and
spherical. Then M is Levi regular at the origin, i.e., it can be represented
in each of the forms (2.3), (2.4).

Now, in the presence of a leading Hermitian term in the defining
equation of a nonminimal hypersurface, we can prove Theorem 3.1 using
Chern-Moser-type transformations.

Proof of Theorem 3.1 . First, using Corollary 4.5, we may represent M
in some polydisc U by a defining equation v = umΦ(z, z̄, u), where
Φ(z, z̄, u) is given as in (2.4). In the proof we denote by O22 a power
series in z, z̄, and u containing only monomials zkz̄luj , k, l ≥ 2, j ≥ 0.
We consider the expansion

Φ̃(z, z̄, u) = zλ(z̄, u) + z̄λ̄(z, u) +O22,

and H(z, z̄, u) = α(u)|z|2, where α(u) �= 0 in Uw. Define the function

f(z, w) = λ̄(z,w)
α(w) . Note that for (z, w) ∈ M , we have w̄ = u−ium O(|z|2),

so α(u)
α(w̄)

∣∣∣
M

= 1 +O(|z|2). Therefore,

H(z + f(z, w), z̄ + f̄(z̄, w̄), u)|M =

(H(z, z̄, u) + zλ(z̄, w̄) + z̄λ̄(z, w))|M +O22 =

H(z, z̄, u) + zλ(z̄, u) + z̄λ̄(z, u) +O22.

From this it follows that the transformation

z∗ = z + f(z, w), w∗ = w

maps M onto a hypersurface M∗ given by

(4.1) v∗ = (u∗)m

⎛
⎝H(z∗, z̄∗, u∗) +

∑

k,l≥2

ϕ∗
kl(u

∗)(z∗)k(z̄∗)l

⎞
⎠ .

Finally, to make H independent of u for M given by (4.1), we drop the
asterisks for the sake of simplicity and set H(z, z̄, u) = α(u)|z|2 with
α(u) �= 0. Since α(u) is real-valued, we may assume first that α(u) > 0.
The transformation

z∗ = z
√

α(w), w∗ = w,

where the root is chosen to be positive for the positive argument,
maps M onto the hypersurface of the form (1.2). This follows from∣∣∣z
√

α(w)
∣∣∣
2
= H(z, z̄, u) + O22 whenever (z, w) ∈ M . The proof for

α(u) < 0 is analogous. q.e.d.
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5. Ordinary differential equation associated with a
nonminimal spherical hypersurface

In this section we prove Theorem 3.3, which describes a (singular)
second order ODE associated with the real hypersurface M . We also
prove Theorem 3.4, which allows us to reduce the study of the associ-
ated mapping F to the study of solutions for the associated ODE. As
explained in Section 2, in general, a nonminimal real hypersurface does
not admit a second order ODE associated with it. However, such ODE
always exists in the spherical case. The proof of this crucially depends
on the global properties of the mapping F associated with M .

5.1. Existence of an associated singular ODE. In what follows
we assume that M is a hypersurface of class P0, U is the associated
neighbourhood, and F is the associated mapping. We start by intro-
ducing the regular set U0 = F−1(C2) ⊂ U \X and the exceptional set
E = (U \ X) \ U0 = F−1(CP2 \ C

2). The set E is the pre-image of
the projective line CP

2 \ C
2, and since each element of F at a point

p ∈ U \ X is biholomorphic in a sufficiently small polydisc, E is a lo-
cally countable union of one-dimensional locally complex-analytic sets
in U \X. This implies that E has Hausdorff dimension 2, so that U0 is
an open, connected and dense subset in U \X, see, e.g, [13]. We first
study the behaviour of F on the regular set.

Fix a point p ∈ U0 and a biholomorphic element Fp of F at p, defined
in a sufficiently small polydisc Up ⊂ U0. We claim that in Up there exists
a second order ODE that is satisfied by all Segre varieties of M that
have nonempty intersection with Up.

To prove the claim we write Fp = (f, g), as the components of F
are well-defined in U0. For some point s ∈ Qp there exists a polydisc
Us ⊂ U \ X such that ∪q∈UsQq contains a neighbourhood of p. By
shrinking Up, we may assume that this neighbourhood is Up. The Q-
Segre property of F (see [32, Prop. 4.1]) implies that Fp sends open
pieces Qq ∩Up of Segre varieties to affine complex lines Πq ⊂ C

2. For a
fixed q ∈ Us, assume that Πq is given by

(5.1) z∗λ+ w∗μ = 1

for some λ, μ ∈ C, with μ �= 0. Setting (z∗, w∗) = (f, g) we see that
the set Qq ∩ Up, considered as a graph w = wq(z), z ∈ U z

p , satisfies the
equation:

(5.2) f(z, wq(z))λ + g(z, wq(z))μ = 1.

Differentiation of (5.2) once w.r.t. z yields

fz(z, wq(z))λ + gz(z, wq(z))μ + fw(z, wq(z))w
′
q(z)λ(5.3)

+gw(z, wq(z))w
′
q(z)μ = 0.
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Consider (5.2) and (5.3) as a system of linear equations w.r.t. λ and
μ. This system correctly defines a map (z, q) → (λ, μ). Indeed, suppose
that for some (z0, q0) there exist more than one solution (λ, μ) of the
system (5.2), (5.3). Then (5.2) implies that for all solutions (λ, μ) the
corresponding complex lines (5.1) pass through the point F(z0, wq0(z

0)),
while (5.3) implies that the line DF(T(z0,w

q0
(z0))Qq0) is tangent to (5.1).

But since DF �= 0, it follows that there exists only one such pair (λ, μ).
By solving the system (5.2), (5.3) we may express λ and μ as functions of
(z, q). By the invariance of Segre varieties, these are, in fact, functions
of q only.

Differentiating (5.2) twice yields (we omit the arguments for simplic-
ity of the formula)

w′′(λfw + μgw) + (w′)2(λfww + μgww)(5.4)

+w′(2λfzw + 2μgzw) + (λfzz + μgzz) = 0.

Now, substitution of λ and μ with solutions of the system, gives

w′′(fwgz − fzgw) = (fz + fww
′)(gzz + 2gzww

′ + gww(w
′)2)

−(gz + gww
′)(fzz + 2fzww

′ + fww(w
′)2).

Since Fp is biholomorphic in Up, the Jacobian J = fwgz−fzgw is nonzero
in Up, and we obtain

(5.5) w′′ = I0 + I1w
′ + I2(w

′)2 + I3(w
′)3,

where

I0 =
1

fwgz−gwfz
(fzgzz − gzfzz) ,

I1 =
1

fwgz−gwfz
(fwgzz − gwfzz + 2fzgzw − 2gzfzw) ,(5.6)

I2 =
1

fwgz−gwfz
(fzgww − gzfww + 2fwgzw − 2gwfzw) ,

I3 =
1

fwgz−gwfz
(fwgww − gwfww) .

Furthermore, (5.5) is satisfied by Qq∩Up for all q ∈ U \X with Qq∩Up �=
∅, not just for q ∈ Us. To see this, observe that there exists a pair
of polydiscs U1 ⋐ U2 ⋐ Up with the property that if Qq ∩ U1 �= ∅,
then Qq ∩ U2 is a graph w = wq(z) over U z

2 . We shrink Up to U1 and
considerQq as graphs in U2. Then the assertion follows from the analytic
dependence of Qq on q, and the fact that the set {q : Qq ∩ Up �= ∅}
coincides with ∪Qr, r ∈ Up, and hence is open and connected. This
proves our claim.

Since Fp extends analytically along any path in U0, so do the four an-
alytic elements I0(z, w), I1(z, w), I2(z, w), I3(z, w). On the other hand,
equation (5.5) is independent of the choice of the germ of F at p. This
can be argued as follows: from the previous discussion we may conclude
that {Qq ∩ Up, q ∈ Us} is an anti-holomorphic 2-parameter family of
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holomorphic curves in Up. Then this family has the transversality prop-
erty, i.e., the map (z, α, β) → (z, w(α,β)(z), w

′
(α,β)(z)) is injective, and

thus there exists a unique second order ODE w′′ = θ(z, w,w′) satisfied
by the family {Qq ∩ Up, q ∈ Us} (see Section 2.3). From this we con-
clude that the ODE (5.5) is unique, i.e., is independent of the choice of
Fp.

From the uniqueness of (5.5) we conclude that the four functions
I0, I1, I2, I3 are holomorphic in all of U0, in particular, single-valued.
For the same reason the replacement of the mapping F by a mapping
σ ◦ F , σ ∈ hol(CP2), does not change the expressions I0, I1, I2, I3 in
a neighbourhood of p, provided σ ◦ Fp is still a mapping to the affine

chart C2 ⊂ CP
2.

Take now a point p ∈ E and replace F by the mapping F̃ = σ ◦ F
such that σ ∈ hol(CP2) and F̃p = σ ◦ Fp ⊂ C

2 maps Up into C
2. Then

the regular set U0 is replaced by an open dense set Ũ0 and using the
map F̃ we obtain a second order ODE in a neighbourhood of p with
the properties analogous to those of (5.5). This shows that I0, I1, I2, I3
extend holomorphically to E.

Finally, since I0, I1, I2, I3 are holomorphic in U \ X, we conclude
that (5.5) is satisfied by all entire (i.e., in all of U \X) Segre varieties
Qq for q ∈ U \X. We summarize our arguments in the following key

Proposition 5.1. In the assumptions of Theorem 3.3, there exist
four holomorphic in U \X functions I0(z, w), I1(z, w), I2(z, w), I3(z, w)
such that the differential equation (5.5) is satisfied by the defining func-
tion wq(z) of each of the Segre varieties Qq, q ∈ U \ X, considered as
graphs w = wq(z). In each neighbourhood Up, p ∈ U0, and for any
element Fp of F with Fp(Up) ⊂ C

2 that has components (f, g) as a
map Up −→ C

2, the four functions I0, I1, I2, I3 are given by (5.6). The
expressions in (5.6) are invariant under the exterior action of elements
σ ∈ Aut(CP2) with σ(Fp(Up)) ⊂ C

2. At points p ∈ E the four expres-
sions I0, I1, I2, I3 can be computed by formulas (5.6) applied to σ ◦ Fp

with σ(Fp(Up)) ⊂ C
2.

We now determine the behaviour of I0, I1, I2, I3 near the complex
locus X, using smoothness of M given in prenormalized form (3.1).

Proposition 5.2. In the assumptions of Theorem 3.3 one has I0 =
I1 ≡ 0. Furthermore, the functions wmI2(z, 2), w

2mI3(z, w) extend to
X holomorphically, i.e., I2 has the pole of order ≤ m w.r.t w at w = 0
and I3 has the pole of order ≤ 2m w.r.t w at w = 0.

Proof. We find a relationship between the defining function ϕ as
in (3.1) and (5.5). Assume first thatM is positive. Let q = (a, b) ∈ U\X
so that b �= 0. Then Qq is given by

(5.7) w = w(z) = b̄eiϕ(z,ā,b̄) = b̄+ ib̄mzā+O(z2ā2b̄m).
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Differentiation of (5.7) w.r.t. z yields

w′ = ib̄eiϕ(z,ā,b̄)ϕz(z, ā, b̄)

= (ib̄− zāb̄m +O(z2ā2b̄m))(āb̄m−1 +O(zā2b̄m−1)) = iāb̄m +O(zā2b̄m).

Now set ζ := w′

wm ; this is well-defined because w(z) �= 0 for a Segre
variety Qq, q ∈ U \X. Then, combining the last equalities, we obtain

(5.8) ζ = iā+O(zā2b̄m).

Equation (5.8) shows that choosing possibly a smaller initial neighbour-
hood U of the origin we can apply the implicit function theorem for the
system (5.7), (5.8) near the origin to get
(5.9)
ā = P (z, w, ζ) = −iζ +O(zζ2wm), b̄ = Q(z, w, ζ) = w +O(zζwm).

Differentiating (5.7) twice w.r.t. z and plugging (5.9) into the result
we conclude that for each point (z, w) ∈ Qq the values z, w,w′, w′′ are
related by

w′′ = O(P (z, w, ζ)2 ·Q(z, w, ζ)m)(5.10)

=
∑

j≥0,k≥2,l≥m

hjklz
j

(
w′

wm

)k

wl := Φ(z, w,w′).

We note that the values (z, w,w′) in (5.10) belong to some open do-
main Ω ⊂ C

3 (to see the openness we argue as in the proof of Proposi-
tion 5.1 and consider the locally biholomorphic mapping χ : (z, q) −→
(z, wq(z), w

′
q(z)), q ∈ U \X, z ∈ U z; then simply Ω = χ(U \X)). The

series (5.10) converges in Ω uniformly on compact subsets. From (3.1)
we get Φ(z, w,w′) ≡ I0(z, w)+ I1(z, w)w

′ + I2(z, w)(w
′)2+ I3(z, w)(w

′)3

(as the uniqueness implies). On the other hand, considering the bi-

holomorphic in Ω mapping ψ : (z, w,w′) −→ (z, w, w′

wm ) = (z, w, ζ) we

obtain a domain Ω̃ = ψ(Ω) ⊂ C
3 and may consider the holomorphic in

Ω̃ function H(z, w, ζ) := Φ(z, w, ζwm). Then H(z, w, ζ) is given in Ω̃
by the power series

(5.11)
∑

j≥0,k≥2,l≥m

hjklz
jζkwl.

This implies that there exists a polydisc V ⊂ C
3, centred at 0, such that

V ∩ Ω̃ �= ∅ and the power series (5.11) converges in V . Then in V ∩ Ω̃
we have

H(z, w, ζ) = Φ(z, w, ζwm)

= I0(z, w) + I1(z, w)ζw
m + I2(z, w)ζ

2w2m + I3(z, w)ζ
3w3m.



ANALYTIC DIFFERENTIAL EQUATIONS 97

Comparing with (5.11) we finally obtain that

I0(z, w) ≡ 0, I1(z, w) ≡ 0,

I2(z, w)w
2m =

∑

j≥0,l≥m

hj2lz
jwl, I3(z, w)w

3m =
∑

j≥0,l≥m

hj3lz
jwl.

This proves the proposition in the positive case. The negative case is
analogous. q.e.d.

5.2. Proof of Theorem 3.3(i) and representation (3.6).

Proof of representation (3.6). Choose a point p ∈ U0 and an element
Fp = (f, g) : Up −→ C

2 of F in a polydisc Up = U z × Uw
p ⊂ U0

p

centred at p. We consider (5.6) and use the two identities I0(z, w) ≡ 0
and I1(z, w) ≡ 0 proved in Proposition 5.2. The first one gives fzgzz −
gzfzz = 0, so that

(
gz
fz

)
z
= 0 assuming fz �= 0, while the second implies

gz = λ(w)fz , so that

(5.12) g(z, w) = λ(w)f(z, w) + μ(w)

for some λ(w), μ(w) holomorphic in Uw
p . Plugging (5.12) into I1(z, w) ≡

0 yields

(5.13) −λ′ffzz − μ′fzz + 2λ′(fz)
2 = 0.

By the implicit function theorem, using the condition fz �= 0, there
exists a function P (ζ, w), holomorphic in {f(Up)}×Uw

p , such that fz =
P (f,w). Then fzz(z, w) = P (f(z, w), w)Pζ (f(z, w), w), which can be
rewritten in a simple form fzz = PPf . Substituting this into (5.13)
gives

−λ′fPPf − μ′PPf + 2λ′P 2 = 0.

This can be considered, for each fixed w, as a first-order elementary
differential equation with the independent variable f and the dependent

variable P . Separation of variables gives
Pf

P = 2λ′

μ′+λ′f . After integration

we conclude that P = ρ(w)(μ′(w) + λ′(w)f)2 for some function ρ(w)
holomorphic in Uw. So finally we obtain another first-order elementary
ODE

fz = ρ(μ′ + λ′f)2

with the independent variable z and the dependent variable f . Separat-

ing variables and integrating, we get − 1/λ′

μ′+λ′f = ρz+ν for an appropriate

holomorphic function ν(w). The latter equality implies that f is linear-
fractional w.r.t. z in Up. Changing the notation and using (5.12), we
conclude that

(5.14) f(z, w) =
α1(w)z + β1(w)

α0(w)z + β0(w)
, g(z, w) =

α2(w)z + β2(w)

α0(w)z + β0(w)
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for appropriate holomorphic functions α0(w), ..., β2(w) in Uw, which
is equivalent to (3.6) restricted to the polydisc Up. The collection
α0(w), ..., β2(w) is defined uniquely up to scaling by a function h(w),
holomorphic and nonzero in Uw. Returning to the assumption fz �= 0,
observe that the Jacobian fwgz − gwfz is nonzero in Up, so that in-
terchanging, if necessary, f and g, we may still assume that the con-
dition fz �= 0 holds true in a sufficiently small polydisc centred at p.
Thus, (5.14) holds in the general case as well. Note also that the
form (5.14) is invariant under projective transformations in the image-
space CP2. This means that after replacing F by an appropriate compo-
sition, equation (5.14) holds for a small neighbourhood of an arbitrary
point p ∈ U \X.

Consider now two polydiscs Up and Uq, p, q ∈ U \ X, with Up ∩
Uq �= ∅, and two elements Fp, Fq there such that Fp = Fq in Up ∩
Uq. Given the representations (5.14) in both polydiscs, we may solve
a simple multiplicative Cousin problem to show that the collections
α0(w), ..., β2(w) can be scaled in such a way that they coincide in Up∩Uq.
This means that each fixed collection α0(w), ..., β2(w) in a polydisc Up

can be extended analytically along an arbitrary path in U\X, starting at
p, because the mapping F does, and this proves the representation (3.6).

q.e.d.

Proof of Theorem 3.1(i). To prove (3.2) we find the functions I2(z, w),
I3(z, w), using the linear-fractional representation (3.6). As the func-
tions wmI2(z, w), w

2mI3(z, w) are holomorphic in the entire neighbour-
hood U (from Proposition 5.2), for the proof of (4.1) it suffices to show
that I2 is linear and I3 is cubic w.r.t. the variable z. In fact, we can do
that in a neighbourhood Up ⊂ U0 of a point p ∈ U0. We first suppose
α0(w) �≡ 0 and change the form of the representation (3.6), rewriting it
in Up for a fixed element Fp of F as

(5.15) f(z, w) =
α

z + δ
+ β, g(z, w) =

a

z + δ
+ b,

where α(w), β(w), δ(w), a(w), b(w) are meromorphic in Uw
p . Then I1 ≡ 0

and (5.6) imply

(5.16) β′a− b′α ≡ 0,

which after differentiation gives β′′a − b′′α + β′a′ − b′α′ = 0. Straight-
forward computations using (5.16) give

(5.17) J = fwgz − gwfz =
a′α− α′a

(z + δ)3
,
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I2(z, w) =

[
aα′′ − αa′′

a′α− α′a

]
+ 3

[
b′α′ − β′a′

a′α− α′a

]
(z + δ),(5.18)

I3(z, w) =

[
δ′′ + δ′

aα′′ − αa′′

a′α− α′a

]
(5.19)

+

[
a′′α′ − α′′a′

a′α− α′a
+ 3δ′

b′α′ − β′a′

a′α− α′a

]
(z + δ)+

+

[
β′a′′ − b′α′′ + α′b′′ − a′β′′

a′α− α′a

]
(z + δ)2 +

[
β′b′′ − b′β′′

a′α− α′a

]
(z + δ)3.

The identities (5.18) and (5.19) demonstrate the desired polynomial de-
pendence. Suppose now that α0 ≡ 0. Since f is a local biholomorphism,
α1 and α2 cannot be both identically zero. Thus, after relabelling the
functions, we return to the previous case. This completely proves state-
ment (i) of Theorem 3.3. q.e.d.

5.3. Proof of Theorem 3.4. In what follows, by M(0) (resp. O(0))
we denote the space of germs at the origin of meromorphic (resp. holo-
morphic) functions in w ∈ C.

Proof of Theorem 3.4. Note that (3.6) is proved in Section 5.2. To com-
plete the proof of statement (i) we need to show that F extends from
U \X = {|z| < δ} ×Δ∗

ǫ to CP
1 ×Δ∗

ǫ analytically and the restriction of
F to C×Δ∗

ǫ is locally biholomorphic in Δ∗
ǫ . Using representation (3.6),

we extend F as

F̃(z, w) := (α0(w)z + β0(w)t, α1(w)z(5.20)

+β1(w)t, α2(w)z + β2(w)t) ∈ CP
2

(we fixed here a germ of each of the functions α0, ..., β2 and denote by

(z, t) the homogeneous coordinates in CP
1). To prove that F̃ is, in

fact, analytic, we need to show that the 3 expressions α0(w)z+ β0(w)t,
α1(w)z+β1(w)t, and α2(w)z+β2(w)t cannot vanish for (z, t) �= (0, 0),
0 < |w| < ǫ.

We first observe that α0(w
∗) = α1(w

∗) = α2(w
∗) = 0 is not possible

for any fixed w∗, 0 < |w∗| < ǫ, since otherwise, by (3.6), F(z, w∗) is
independent of z, but F is biholomorphic in U \X. Assume now that
for some z∗, t∗, w∗ one has

α0(w
∗)z∗+β0(w

∗)t∗ = α1(w
∗)z∗+β1(w

∗)t∗ = α2(w
∗)z∗+β2(w

∗)t∗ = 0.

Suppose first t∗ �= 0. Then βj(w
∗) = −z

∗

t∗
αj , j = 0, 1, 2. Then for

z �= z∗/t∗,

F (z, w∗) =

[
α0(w

∗)

(
z − z∗

t∗

)
, α1(w

∗)

(
z − z∗

t∗

)
, α2(w

∗)

(
z − z∗

t∗

)]

= [α0(w
∗), α1(w

∗), α2(w
∗)].
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This means that the line {(z, w∗)} is mapped into a point, which is a
contradiction. Similarly, if t∗ = 0 then, in view of z∗ �= 0, we conclude
that α0(w

∗) = α1(w
∗) = α2(w

∗) = 0 which is not possible by the above
argument.

To show that all elements of F̃ , i.e., local maps obtained by analytic
continuation, at points lying in C × Δ∗

ǫ are locally biholomorphic, we
fix p = (z∗, w∗) ∈ C × Δ∗

ǫ , choose a polydisc Up ⊂ C × Δ∗
ǫ and re-

place F̃ , if necessary, with σ ◦ F̃ for an appropriate σ ∈ Aut(CP2) in

order to have F̃(Up) ⊂ C2. Note that F̃p admits a single-valued exten-
sion to U(w∗) × C for some disc U(w∗), centred at w∗, using (5.20).
Then (5.15) and (5.17) show that Fp is biholomorphic near p, un-
less (a′α − α′a)(w∗) = 0. Choosing now z such that |z| < δ and
F(z, w∗) ∈ C

2, which is possible since Fp maps an open piece of the
line C × {w∗} to C

2, we conclude that Fp is not biholomorphic at
(a,w∗) ∈ U \X. This is a contradiction, and statement (i) is proved.

In order to prove (ii), we first fix p = (p1, p2) ∈ U , p1, p2 �= 0, and
consider Qp as the graph w = θp(z). Expanding as in (5.7), we get
θp(z) = p̄2 + ip̄1p̄

m
2 z + O(z2p̄21p̄

m
2 ). Choosing now a possibly smaller

polydisc U , we may assume θp(z) is injective in {|z| < δ}, where δ
is independent of p. Indeed, θp(z) = θp(z

∗) implies from (5.7) that
(z − z∗)[1 + O(|p1|)] = 0, and that implies injectivity of θp(z) for all
p. We may then consider the inverse holomorphic function z = ψ(w)
in some domain Δp ⊂ Δ∗

ǫ . The graphs w = θ(z) and z = ψ(w) both
coincide with Qp. As Qp is simply-connected, we may consider a single-
valued restriction Fp of F to a simply-connected neighbourhood V of
Qp. Then Fp(Qp) is contained in a projective line λ0ξ0+λ1ξ1+λ2ξ2 = 0.
From (5.20), the substitution

(ξ0, ξ1, ξ2) = (α0(w)z + β0(w)t, α1(w)z + β1(w)t, α2(w)z + β2(w)t)

into the equation of the projective line shows that Qp is a subset of a
bigger set

(5.21) {P (w)z +Q(w)t = 0} ⊂ CP
1 ×Δ∗

ǫ

for some (multiple-valued) analytic functions P (w), Q(w) in Δ∗
ǫ , where

P (w) is not a zero function, as (5.21) contains the graph {z = ψ(w)} =
Qp. Hence, there exists a (multiple-valued) analytic mapping hp(w) :

Δ∗
ǫ −→ CP

1 such that the graph {z = hp(w)} is contained in (5.21) (in
fact, the union of the graph with a countable collection of horizontal
projective lines {w = const} is given by (5.21). The latter means that
Qp is contained in the graph z = hp(w), as required for statement (ii).

To prove (iii) we note that the mapping F is single-valued if and
only if the functions αj(w), βj(w), j = 0, 1, 2, can be scaled to be
single-valued. Now for each Segre variety Qp of a point in p = (p1, p2),
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p1, p2 �= 0, we may represent hp(w) explicitly, using (5.21), as

(5.22) hp(w) = − λ0β0(w) + λ1β1(w) + λ2β2(w)

λ0α0(w) + λ1α1(w) + λ2α2(w)
.

Since F is locally biholomorphic, the parameter λ ∈ CP
2 in (5.22) runs

over some open subset of CP2. This implies that hp(w) as in (5.22) is
single-valued for all p ∈ U \ X if and only if the functions αj(w) and
βj(w) can be scaled to be single-valued. This completes the proof of
(iii).

The proof of (iv) also uses representation (5.22) and is analogous to
(iii). However, one needs to take care of certain details. Suppose first
that F extends holomorphically toX. Replacing F by σ◦F for some σ ∈
Aut(CP2) if necessary, we may use the representation (5.15). For each
z ∈ Δr consider the discrete set Ez = {w ∈ Δ∗

ǫ : z = −δ(w)}. Then,
considering the two expressions f |z=z0 , g|z=z0 as in (5.15) for a fixed z0 ∈
Δr, we conclude that these expressions, defined on the set Ez0 , extend
to w = 0 meromorphically. Hence, they extend meromorphically to the
disc Δǫ. The latter fact, applied to an arbitrary z0 ∈ Δr, implies that
α(w), a(w), β(w), b(w), δ(w) ∈ M(0). We conclude that the functions
αj(w), βj(w) ∈ M(0) in (5.22), so that hp(w) ∈ M(0), as required.

Suppose now that each of the functions hp(w) ∈ M(0). After taking

a composition of F with an element of Aut(CP2), the representation
(5.15) can be applied (note that, from statement (iii) of the theorem,
all functions in (5.15) are single-valued). Then (5.22) takes the form

(5.23) hp(w) = −δ(w) − λ1α(w) + λ2a(w)

λ0 + λ1β(w) + λ2β(w)
.

Using the fact that the right-hand side in (5.23) belongs to the
class M(0) for arbitrary (λ0, λ1, λ2) ∈ CP

2, we conclude that
α(w), a(w), β(w), b(w), δ(w) ∈ M(0). We then can assume, perform-
ing in (3.6) scaling by an appropriate wl, l ∈ Z, that the functions
αj(w), βj(w) ∈ O(0) in (3.6) and, moreover, that at least one of the
six functions is nonzero at w = 0. It is then clear that (3.6) with
αj(w), βj(w) ∈ O(0) allows us to extend the mapping F to any point
(z0, 0) ∈ X, z0 ∈ Δr, unless there exists z0 ∈ Δr such that

α0(0)z0 + β0(0) = α1(0)z0 + β1(0) = α2(0)z0 + β2(0) = 0.

We claim that this is not possible. Indeed, assume, without loss of
generality, that z0 = 0. Then β0(0) = β1(0) = β2(0) = 0, and for some
j ∈ {0, 1, 2} we have αj(0) �= 0. Applying now (5.22), we conclude that
for an appropriate open dense set of the projective line, determined by
an element (λ0, λ1, λ2) ∈ CP

2, the corresponding function z = h(w), as
in (5.22), satisfies h(0) = 0. Denote by Q ⊂ CP

2 the quadric, containing
F(M \X). Since the set of projective lines L in CP

2 with L ∩Q = ∅ is



102 I. KOSSOVSKIY & R. SHAFIKOV

open, we choose a graph z = h(w), as in (5.22), such that h(0) = 0 and
F({z = h(w), w �= 0}) ∩ Q = ∅. However, F({z = h(w), w �= 0}) ∩ Q
contains the set

F({z = h(w), Imw = ρ(h(w), h(w),Rew), 0 < |w| < ǫ}),
where Imw = ρ(z, z̄,Rew) is the defining function of the hypersurface

M with dρ(0) = 0. Since {z = h(w), Imw = ρ(h(w), h(w),Rew), |w| <
ǫ} ⊂ M is a nonconstant real curve passing through the origin and F is
locally biholomorphic for w �= 0, we obtain a contradiction. The proof
for 0 < |z0| < r is analogous. q.e.d.

5.4. Proof of statements (ii) and (iii) of Theorem 3.3. The fol-
lowing two computations furnish the proof of part (ii).

Proposition 5.3. The following relations hold for the equation (3.2):

(5.24) C(w) = −1

9
A2(w), D(w) =

1

3
w2m

(
A(w)

wm

)′

− 1

3
A(w)B(w).

Proof. By taking the composition with an appropriate element σ ∈
Aut(CP2), we choose the associated mapping F to be given as in
(5.15) with δ �= 0. Using the representations I2 = −Az+B

wm and I3 =

−Cz3+Dz2+Ez+F
w2m from (3.2) and (3.1), and applying (5.18) and (5.19),

we obtain

−A(w)

3wm
=

b′α′ − β′a′

a′α− α′a
, −C(w)

w2m
=

β′b′′ − b′β′′

a′α− α′a
.

We let k(w) = a(w)
α(w) . Using (5.17) we conclude that k(w) is not a

constant. Then, using (5.16) and expressing everything in terms of k,
α, and β, we calculate that

(5.25) b′ = kβ′,
A(w)

3wm
=

β′

α
,

C(w)

w2m
= −β′2

α2
,

and so C(w) = −1
9A

2(w). Further, (5.18) and (5.19) show that

−B(w)

wm
=

aα′′ − αa′′

a′α− α′a
− A(w)

wm
δ,

−D(w)

w2m
=

β′a′′ − b′α′′ + α′b′′ − a′β′′

a′α− α′a
− 3C(w)

w2m
δ.

Expressing everything in terms of k, α, β, and δ again gives (5.24).
q.e.d.

Proposition 5.4. The following relations hold between the ODE
(3.2) and the exponential defining equation (3.1) of an m-nonminimal
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hypersurface M ∈ P0:

F (w) = 2ϕ23(w), A(w) = ±6iϕ32(w), B(w) = ±2iϕ22(w) − wm−1,

E(w) = 6ϕ33 ± 2i(m− 1)ϕ22w
m−1 − 8(ϕ22)

2 ∓ 2iϕ′
22w

m.(5.26)

A(w) = ±3iF̄ (w).

Proof. Consider the case when M is positive. We use the form

Q(a,b) = {w = b̄eiϕ(z,ā,b̄)} for Segre varieties of M and substitute this
representation into (3.2). As a result we obtain an identity for two power
series in z, ā, b̄. We rewrite both sides of this identity as power series in
z and ā with coefficients depending on b̄. If we equate the coefficients
of ā3, we obtain 2φ23(b̄) = F (b̄). If we equate the terms zā2 we obtain
6iφ32(b̄) = A(b̄). Similar computations for ā2 and z3ā give the formulas
for B and E.

In order to prove the relation A(w) = 3iF̄ (w) we consider the reality
condition (2.2) as equality of power series in z, z̄, and w̄, and compare
the terms with z3z̄2. Taking into account that ϕ does not contain z2z̄-
degree terms (as M ∈ P0), we get ϕ32(w) = ϕ̄23(w), which gives, using
(5.26), A(w) = 3iF̄ (w), as required. The proof in the negative case is
analogous. q.e.d.

Propositions 5.3 and 5.4 prove statement (ii) of Theorem 3.3.

To prove statement (iii) we argue as in the proof of statement (ii) of
Theorem 3.4 and conclude that there exists a possibly smaller associated
neighbourhood U such that each Segre variety Qp, p ∈ Δ∗

δ ×Δ∗
ǫ , is the

graph of an injective function wp(z), so that it can be also represented
as a graph z = zp(w). It is straightforward then to recalculate the
derivatives:

wz =
1

zw
, wzz =

(
1

zw

)

w

· wz = − zww

(zw)3
.

Substituting these into (3.2) we obtain (3.5), so that all the functions
zp(w) satisfy (3.5).

The injectivity of the correspondenceM −→ E(M) follows from state-
ment (ii). This completely proves the theorem.

6. Associated equation and the analytic continuation

The main conclusion that can be drawn from the results of the pre-
vious section is that we can associate with a hypersurface M ⊂ C

2 of
class P0 the complex differential equation E(M), given by (3.5) and sat-
isfying the relations (3.4), in such a way that the Segre varieties of M
are open domains on the graphs of solutions of the equation E(M). In
particular, statements (iii) and (iv) of Theorem 3.4 admit the following
ODE-interpretation:
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All solutions in the annulus Δ∗
ǫ of the equation E(M) exist as globally

defined, possibly multiple-valued, analytic mappings h : Δ∗
ǫ −→ CP

1.
Furthermore:

(iii)′ The analytic mapping F : U \ {w = 0} −→ CP
2 associated with

M is single-valued if and only if all solutions of the equation E(M) are
single-valued mappings Δ∗

ǫ −→ CP
1.

(iv)′ The analytic mapping F : U \{w = 0} −→ CP
2 associated with M

extends to the complex locus {w = 0} holomorphically if and only if all
local solutions of the equation E(M) extend meromorphically to Δǫ.

Statements (iii)’ and (iv)’ now give a hint on how to prove Theorem 3:
we need to show the moderate growth of solutions of the ODE E(M) as
w −→ 0. This allows us to reduce Theorem 3 to a question that can be
formulated purely in terms of analytic theory of differential equations.
Realization of this strategy is the content of Sections 6 and 7.

6.1. Fuchsian and non-Fuchsian hypersurfaces. Equation E(M)
obtained in Section 5 is an ordinary second order meromorphic differen-
tial equation defined in the domain Δǫ ⊂ C. E(M) is polynomial w.r.t.
the unknown function z and its derivative z′, and has in Δǫ a unique
(and hence isolated) meromorphic singularity at the point w = 0. The
study of this type of equations was initiated by Poincaré and Painlevé
(see [43], [19], [3], [54]), and it continues to be an active area of research
(see, for example, [22], [9], [35], [20], [25] and references therein). In
his celebrated work [40] Painlevé classified second order complex ODEs,
rational in the dependent variable z and its derivative, meromorphic in
some domain Ω in the independent variable w, and having no movable
critical points (ODEs of this type are called ODEs of class P). The
mapping, bringing an ODE of class P to its standard form in this clas-
sification, is locally biholomorphic in CP

1×Ω and is linear-fractional in
the dependent variable (see, e.g., [3]). Note that the associated map-
ping F , considered in the present paper, has the above described form
and brings the associated ODE E(M) to its standard form z′′ = 0. Thus
real hypersurfaces, considered in the paper, are associated with ODEs
of class P with the simplest standard form z′′ = 0. This explains the
P0-notation for them.

As explained in Section 2, in the particularly important linear case
the behaviour of solutions for the ODE E(M) is characterized by the
Fuchsian condition. The Fuchsian type condition for a hypersurface
M ∈ P0, described in Introduction, can be stated in terms of the associ-
ated equation E(M) and is imposed by a similarity with the linear case.
To show that, we first observe that a hypersurface M ∈ P0 satisfies
the Fuchsian type condition if and only if the associated equation E(M)
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satisfies

ord0B(w) ≥ m− 1, ord0E(w) ≥ 2m− 2,(6.1)

ord0A(w) = ord0F (w) ≥ 3

2
(m− 1).

The formulated statement follows directly from formulas (3.3). Here
for a nonzero function h(w) ∈ M(0) we denote by ord0h the order of
vanishing of h if it is holomorphic at 0, and the negative order of pole
for h otherwise.

Next we investigate the Fuchsian type condition. For that we intro-
duce an alternative to (6.1) description.

Definition 6.1. A hypersurface M ∈ P0 is called l-reducible, l ∈ Z,
if the change of variables Z = zwl, W = w brings the associated ODE
E(M) to an ODE of the form

(6.2) Z ′′ =
1

W
(ÂZ + B̂)Z ′ +

1

W 2
(ĈZ3 + D̂Z2 + ÊZ + F̂ )

for some holomorphic near the origin functions
Â(W ), B̂(W ), Ĉ(W ), D̂(W ), Ê(W ), F̂ (W ).

The l-reducibility condition turns out to be equivalent to the Fuchsian
type. In particular, it is a biholomorphic invariant of M .

Proposition 6.2.

(1) A hypersurface M ∈ P0 is of Fuchsian type if and only if the
associated ODE E(M) is l-reducible for some l ≥ 0. Moreover, l can be

chosen in such a way that the polynomial Ĉ(0)t3+D̂(0)t2+Ê(0)t+F̂ (0)
is not a nonzero constant.

(2) The Fuchsian type condition for a nonminimal hypersurface M ⊂
C
2, spherical in the complement to the complex locus, is biholomorphi-

cally invariant. In particular, this condition is independent of the choice
of prenormal coordinates.

Proof. (1) Suppose first that F (w) ≡ 0 in E(M). It follows from
(3.4) that A = C = D = F ≡ 0, and the equation E(M) is linear. In
this case it can be seen immediately that the Fuchsian type condition
is equivalent to E(M) being Fuchsian in the sense of theory of linear

ODEs, which means 0-reducibility. Moreover, the polynomial Ĉ(0)t3 +

D̂(0)t2 + Ê(0)t + F̂ (0) has a root t0 = 0, which proves the proposition
under the assumption F (w) ≡ 0.

Consider now the case when F �≡ 0. Suppose first that M is l-
reducible for some l ∈ Z. Perform in the equation E(M) associated with
the hypersurface M ∈ P0 the change of variables Z = zwl, W = w, and
rewrite the new equation in the form Z ′′ = (p1Z+p0)Z

′+(q3Z
3+q2Z

2+
q1Z + q0) for certain pi, qj ∈ M(0). Then, by recalculating the deriva-
tives and substituting them into E(M), it is not difficult to check that
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the properties ord0p0 ≥ −1 and ord0q1 ≥ −2 hold simultaneously if and

only if the terms B(w)
wm and E(w)

w2m have the same properties simultaneously,
so that from l-reducibility we have ord0B ≥ m − 1, ord0E ≥ 2m − 2.
Also we compute that ord0q0 = ord0F + l−2m. From the l-reducibility,
ord0q0 = −2+s for some integer s ≥ 0, and thus l = 2m−2+s−ord0F .
From (5.26) we have ord0A = ord0F, ord0C = 2ord0F , so that, after a
computation, ord0p1 = 2ord0F − 3m − s + 2. From the l-reducibility
now 2ord0F −3m−s+2 ≥ −1, and we obtain 2ord0F ≥ s+3(m−1) ≥
3(m− 1), as required for the Fuchsian type.

Suppose now thatM is of Fuchsian type. Put l := ord0F−m+1. Now

arguing as above and using ord0
B(w)
wm ≥ −1, ord0

E(w)
w2m ≥ −2, ord0A =

ord0F, ord0C = 2ord0F, we get ord0p0 ≥ −1, ord0q1 ≥ −2, ord0q0 =
ord0F + l− 2m ≥ −2, ord0p1 = ord0A− l−m = −1, ord0q3 = ord0C −
2l − 2m = −2, ord0q2 ≥ −2, so that we obtain an equation of the
form required for l-reducibility. The integer l here is equal to ord0F −
m + 1 ≥ m−1

2 and thus is nonnegative. To check that the polynomial

Ĉ(0)t3 + D̂(0)t2 + Ê(0)t + F̂ (0) is not a constant, we note that for the

latter choice of l we have ord0q3 = −2, so that Ĉ(0) �= 0. This finally
proves (1).

In order to prove (2) we consider two hypersurfaces M,M̃ ∈ P0 and

a local biholomorphism G : (M, 0) −→ (M̃ , 0) between them. Suppose
that M is of Fuchsian type. Then, according to (1), the transformation
H : (z, w) −→ (zwl, w) for an appropriate integer l ≥ 0 brings E(M)
into an ODE of the form (6.2). Hence, the transformation H ◦ G−1,
which has the form (f(z, w)wl +O(|z|2|w|l) +O(|w|l+1), g(z, w)) for an
appropriate local biholomorphism (f, g) : (C2, 0) −→ (C2, 0), brings

E(M̃ ) into an ODE of the form (6.2). Arguing now similarly to the

proof of (1) we deduce from here that M̃ is of Fuchsian type, which
proves statement (2) and the proposition. q.e.d.

Definition 6.3. Let M ∈ P0 be an m-nonminimal hypersurface of
Fuchsian type. The ODE

Z ′′ =
1

W
(ÂZ + B̂)Z ′ +

1

W 2
(ĈZ3 + D̂Z2 + ÊZ + F̂ ),

obtained from E(M) by the change of variables Z = zwl, W = w with
l := ord0F −m+1 ≥ 0 (as in the proof of Proposition 6.2), is called the
associated ODE Er(M).

According to Proposition 6.2, the associated ODE Er(M) always ex-

ists in the Fuchsian type case, and the polynomial Ĉ(0)t3 + D̂(0)t2 +

Ê(0)t + F̂ (0) is not a nonzero constant.

6.2. Hypersurfaces with rotational symmetries. Examples.
The associated ODE E(M) is particularly simple in the special case
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when a hypersurface M ∈ P0 is invariant under the group (z, w) −→
(eitz, w), t ∈ R, of rotational symmetries. As each above rotational
symmetry sends a Segre variety of M into another Segre variety, it
must be a symmetry of the ODE E(M), and it is not difficult to see
that the associated ODE E(M) is linear in the rotational case. Thus
we conclude that Theorems 2 and 3.5 follow from the Fuchs theorem
in the rotational case. This also shows that the regularity condition
in Theorem 3 (namely, the Fuchsian type condition) is optimal in the
rotational case.

Remark 6.4. As follows from the described connection between rota-
tional hypersurfaces of class P0, Theorem 3.15 in [33] and Theorem 3.3
of the present paper, the algorithm for obtaining nonminimal spheri-
cal hypersurfaces with rotational symmetries, described in Remark 3.18
in [33], gives a complete description of hypersurfaces of class P0 with
rotational symmetries.

However, as the example of hypersurfaces MR,0 in [31] shows, the
investigation of nonminimal spherical hypersurfaces in C

2 cannot be
reduced to the rotational case. Below we demonstrate applications of
Theorems 1 and 2 (or, alternatively, Theorems 3.4 and 3.6) and give
explicit examples of the associated ODE construction in the rotational
case.

Example 6.5. The 1-nonminimal hypersurfaces Ls, s ∈ R, s �= 0,
with the complex locus {w = 0}, given by

v = u tan

(
1

s
ln(1 + s|z|2)

)
,

were obtained in [8] as examples of nonminimal hypersurfaces with 4-
dimensional infinitesimal automorphism algebras (see also [31]). It is
not difficult to check that each Ls is of class P0. Indeed, one has
to check only the sphericity of Ls at Levi nondegenerate points, and
this follows from the fact that only spherical hypersurfaces admit ≥ 4
dimensional infinitesimal automorphism algebras at Levi nondegener-
ate points [6]. The complex defining equation of Ls has the form
w = w̄ exp

(
2i
s ln(1 + szz̄)

)
. For a point (a, b) ∈ C

2 with a, b �= 0 its
Segre variety Q(a,b) equals (locally)

z(w) = h(a,b)(w) =
1

sā

(w
b̄

) s
2i − 1

sā
.

Clearly, for any s ∈ R, a, b ∈ C, s, a, b �= 0, the germ h(a,b)(w) does not
extend to the origin meromorphically, so by Theorem 2 the associated
mapping F does not extend to the complex locus holomorphically.

The next example illustrates in detail the connection between a fam-
ily of hypersurfaces Mγ ∈ P0, the associated ODEs E(Mγ), and the
associated mappings Fγ .
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Example 6.6. For the 1-nonminimal hypersurfaces Mγ ⊂ C
2, γ ∈

R \ {0}, containing the complex hypersurface X = {w = 0} and given
in a neighbourhood of the origin by

w = w̄
(
i|z|2 +

√
1− |z|4

) 1

γ

(see [31]), the family of Segre varieties near the origin has the form

Q(a,b) = {w = b̄(izā +
√
1− z2ā2)

1

γ }. Elementary computations show
that Q(a,b) with a, b �= 0 are open domains on the graphs

(6.3) Q̃(a,b) =

{
z =

1

2iā

(
wγ

b̄γ
− b̄γ

wγ

)}
.

By Theorem 2, the associated mapping Fγ extends to the complex locus
holomorphically if and only if γ ∈ Z. In fact one can see that Fγ is given
by z −→ zwγ , w −→ w2γ .

Following the elimination process described in Section 2 it is not
difficult to conclude that all the graphs Q̃(a,b), a, b �= 0 satisfy the linear
ODE

z′′ = − 1

w
z′ +

γ2

w2
z,

which coincides, by uniqueness, with E(Mγ). This ODE is Fuchsian for
any γ ∈ R.

The next two examples show that for m > 1 the ODE E(M) asso-
ciated with a hypersurface of class P0 may be both of Fuchsian and
non-Fuchsian type.

Example 6.7. Consider the m-nonminimal with m ≥ 2 hypersur-
faces Mm

0 ∈ P0 (see [33]), given near the origin by the complex defining
equations

(6.4) w = w̄

(
1 +

i

2
(1−m)w̄m−1 ln

1

1− 2|z|2
) 1

1−m

.

The Levi nondegenerate part of Mm
0 is the preimage of a domain in the

quadric Q =
{
2|Z|2 + |W |2 = 1

}
⊂ C

2 under the single-valued mapping

Λm : (Z,W ) =
(
z, e

2i
1−m

w1−m
)
.

It follows that the mapping Λm is associated with Mm
0 . Remarkably,

each mapping Λm does not extend to the complex locus {w = 0}, even
though it is single-valued. From the elimination procedure from Section
2 (or the arguments from [33]), we conclude that the associated ODE
E(Mm

0 ) is of non-Fuchsian form z′′ =
(

2i
wm − m

w

)
z′. This agrees with

Theorem 3.
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Example 6.8. For the 2-nonminimal hypersurface M ∈ P0, given by
v = (u2 + v2)|z|2, it is not difficult to see that the polynomial mapping
F(z, w) = (zw,w) maps M into the hyperquadric {Imw = |z|2} ⊂ C

2.
The associated ODE z′′ = − 2

wz
′ is Fuchsian.

Remark 6.9. As the family of hypersurfacesMm
β ∈ P0 in [33] shows,

the associated mapping F cannot be in general expressed in terms of
elementary functions when m > 1, even though the associated ODE is
given by elementary functions. In this case the extension/no extension
dichotomy can be resolved only using the associated equation E(M) and
Theorem 3.

6.3. Reduction of Theorem 3 to the existence of a holomorphic
solution. In this subsection we perform an important step toward the
proof of sufficiency in Theorem 3, reducing it to Theorem 3.5, i.e., the
question that can be formulated purely in terms of analytic theory of
differential equations.

Proposition 6.10. Suppose that an m-nonminimal hypersurface
M ∈ P0 is of Fuchsian type and the associated mapping F is single-
valued. Suppose, in addition, that the associated equation Er(M) admits
a holomorphic at the origin solution z = h(w). Then F extends to the
complex locus X = {w = 0} holomorphically.

Proof. We choose l := ord0F − m + 1 ≥ 0 as in the definition of
the ODE Er(M), and reduce the ODE E(M) to the ODE Er(M) by
the change of variables Z = zwl, W = w. Using Theorem 3.4, we
represent all solutions of the equation E(M) in the form (5.22) with
single-valued α0(w), ..., β2(w). We introduce a locally biholomorphic

mapping F̂ : C1 ×Δ∗
ǫ −→ CP

2 given by

(Z,W ) −→ (α̂0(W )Z + β̂0(W ), α̂1(W )Z + β̂1(W ), α̂2(W )Z + β̂2(W )),

where the single-valued functions α̂j , β̂j are defined as α̂j :=
1
wlαj, β̂j :=

1
wlβj. According to Theorem 3.4, it is sufficient to prove that the col-
lection of functions αj , βj can be scaled to belong to the class M(0).

Obviously, it is sufficient to prove the same fact for the collection α̂j, β̂j .

Since Z = h(W ) is a solution of the ODE Er(M), the mapping F̂
sends {Z = h(W )} into some projective hyperplane in CP

2. We then

compose F̂ with an element of Aut(CP2) in such a way that {Z = h(W )}
is mapped into CP

2 \C2. Using the representation of type (5.15) for the

mapping F̂ with appropriate functions α̂(W ), â(W ), β̂(W ), b̂(W ), δ̂(W ),

we conclude that δ̂(W ) = −h(W ) ∈ O(0). Arguments similar to those

in the proof of Theorem 3.3 show that the fact that F̂ transforms the
ODE E into (Z∗)′′ = 0 yields formulas identical to (5.18),(5.19) in terms
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of α̂(W ), â(W ), β̂(W ), b̂(W ), δ̂(W ). Set k̂(W ) := â(W )
α̂(W ) . Then

(6.5)

b̂′ = k̂β̂′,
β̂′

α̂
=

Â(W )

3w
, â′α̂− α̂′â = k̂′α̂2,

(k̂′α̂2)′

k̂′α̂2
=

Â(W )

W
δ̂ − B̂(W )

W
.

Formulas (6.5) show that if α̂ ∈ M(0), then β̂, k̂, â, b̂ ∈ M(0). The
reason is that if a meromorphic in a punctured disc Δ∗

ǫ(0) function

u(W ) satisfies Wu′

u ∈ O(0), then u ∈ M(0).
To verify the fact α̂ ∈ M(0), we continue a detailed expansion of

(5.19), using (6.5), in terms of α̂, k̂. Then a computation shows that

− Ê(W )

W 2
=

(
B̂(W )

W
− Â(W )

W
δ̂

)
α̂′

α̂
+
α̂′′

α̂
−δ̂′

Â(W )

W
−2δ

D̂(W )

W 2
−3δ

Ĉ(W )

W 2
.

The obtained equality can be considered as a second order Fuchsian
ODE with the unknown function α̂(W ). By the Fuchs theorem we

conclude that α̂(W ) ∈ M(0), which proves α̂, β̂, â, b̂, δ̂ ∈ M(0). Hence,

the collection α̂j , β̂j can be scaled to become holomorphic at W = 0, as
required. q.e.d.

7. Existence of a holomorphic solution

By the results of the previous section, in order to prove Theorem 2 we
need to show that equation Er(M) associated with an m-nonminimal
Fuchsian type hypersurface M ∈ P admits a holomorphic at the origin
solution z = h(w), provided its solutions are single-valued. In this
section we prove a more general fact (Theorem 3.5), stating that any
ODE similar to Er(M) must have at least one holomorphic at the origin
solution, provided that no solution can branch about the origin.

Section 6.1 shows that if the ODE Er(M) associated with a Fuchsian
type hypersurface M ∈ P is such that the associated mapping F is
single-valued, then it satisfies the conditions of Theorem 3.5. To see this
it is enough to choose z0 as a root of the polynomial Ĉ(0)t3 + D̂(0)t2 +

Ê(0)t + F̂ (0)). Hence, Theorem 3.5 implies Theorems 3.6 and 3.
The idea of the proof of Theorem 3.5 is as follows: The result is trivial

if the function Q(z, w) is independent of w because we may simply take
z(w) := z0 as a holomorphic solution. For the general case we apply the
Poincaré Small Parameter Method. Further, thanks to the convergence
result in [20] (see Theorem A.12 there), in order to prove Theorem 3.5
it is sufficient to prove the existence of a formal holomorphic solution
for the equation E , as any such solution is automatically convergent,
without any assumption on the eigenvalues of the linearization matrix.
We note that the convergence result can be also proved using the stan-
dard technique of majorizing functions, but we do not provide the proof
here. By a formal holomorphic solution for the equation E we mean a
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formal power series z(w) =
∞∑
r=0

arw
r, that makes E an identity of two

Laurent series in w (with finite principal parts).
After a simple substitution z −→ z−z0 we may assume z0 = 0. Thus,

for the proof of Theorem 3.5 it remains to prove the following

Theorem 7.1. In the assumptions of Theorem 3.5 with z0 = 0, the

equation E admits a formal solution z(w) =
∞∑
r=1

arw
r.

Proof. We represent equation E as a system by introducing a new
unknown function

u(w) := wz′(w).

Then we have z′ = u
w and z′′ = u′

w − u
w2 , so that E becomes the system

(7.1)

{
z′ = u

w ,

u′ = 1
w [(1 + P (z, w))u +Q(z, w)] .

Recall that we assume z0 = 0, so that Q(0, 0) = 0. Clearly, the
existence of the desired solution is equivalent to the existence of a for-

mal holomorphic solution z(w) =
∞∑
r=1

arw
r, u(w) =

∞∑
r=1

brw
r for the

system (7.1). We expand the functions 1 + P (z, w) and Q(z, w) as
1+P (z, w) =

∑
k,j≥0

pkjz
kwj , Q(z, w) = q10z+q01w+

∑
k,j>0

qkjz
kwj . Plug-

ging all the power series representations into (7.1) and gathering terms
with wr−1, r ≥ 1, we obtain

a1 − b1 = 0,(7.2)

b1 − p00b1 − q10a1 = q01,

for r = 1, and

rar − br = 0

rbr − p00br − q10ar =
∑

2≤k+j≤r

qkj
∑

i1+...+ik=r−j
ai1 · ... · aik +(7.3)

+
r−1∑
l=1

bl
∑

1≤k+j≤r−l

pkj
∑

i1+...+ik=r−j−l

ai1 · ... · aik ,

for r > 1. It is presumed in (7.3) that a sum of the form
∑

ai1 · ... · aik
equals 1 for k = 0. It is also important that for a fixed r on the left-hand
side, the right-hand side in both (7.2) and (7.3) contains only ai, bl with
i, l < r.
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Now let us introduce some vector and matrix notation. We denote
by hr ∈ C

2 the vector with components ar, br, and by L the 2× 2 ma-

trix

(
0 1
q10 p00

)
. Then, if I denotes the identity matrix, the equations

(7.2),(7.3) can be rewritten for all r ≥ 1 as:

(7.4) (rI − L)hr =

(
0
Kr

)
,

where K1 = q01, and for r ≥ 2,

Kr(a1, ..., ar−1, b1, ..., br−1, {pkj}1≤k+j≤r−1, {qkj}2≤k+j≤r)

is a polynomial scalar expression from the right-hand side of (7.3). It is
crucial that all polynomials Kr have nonnegative coefficients. We now
consider two cases.

Nonresonant case. We assume that L does not have any eigen-
values r ∈ Z

+. In this case each of the equations (7.4) has a unique
solution hr, if h1, ..., hr−1 are already found, and this determines the
collection {hr}r≥1 uniquely. We then put

(7.5)

(
z∗

u∗

)
(w) :=

∞∑

r=1

hrw
r,

and (z∗(w), u∗(w)) becomes a formal holomorphic solution of the equa-
tion the system (7.1) by construction. This proves the theorem in the
nonresonant case.

Resonant case. This case turns out to be much more delicate and
requires additional considerations. We will prove the existence of a
collection {hr}r≥1, satisfying (7.4), which will imply the existence of
a formal holomorphic solution (7.5). Our main strategy is to show
that the absence of a solution for the system of equations (7.4) leads
to multiple-valuedness of certain solutions of E , which contradicts the
assumption of Theorem 3.5. In order to do that, we consider the case of a
general equation E as a perturbation of the above ”constant coefficient”
case Q = Q(z), by introducing a small parameter ε. Perform in the
system (7.1) the change of variables w = εw∗, z = z∗, 0 < |ε| < 1, ε ∈
C. In the new coordinates the system becomes

(7.6) Sε =

{
z′ = u

w ,

u′ = 1
w [(1 + P (z, εw))u +Q(z, εw)] .

Although for the change of variables we have ε �= 0, we may ex-
tend (7.6) holomorphically to {|ε| < 1}. Thus we get a holomorphic
in the unit disc family Sε of first-order systems. Each Sε is a holomor-
phic perturbation of the system S0, that has the holomorphic solution
z = 0, u = 0. So the strategy now is to find analytic solutions of Sε
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in annuli {r1 < |w| < r2}, 0 < r1 < r2 < ǫ for sufficiently small ε as
perturbations of the constant solution for E0. This general approach is
known as the Small Parameter Method. It was invented by H. Poincaré
to investigate solutions of nonlinear systems considering them as per-
turbations of already known solutions of initial ”simple” systems. In
the modern language, the method simply uses the analytic dependence
of solutions of a system of first-order holomorphic ODEs on the ini-
tial conditions and holomorphic parameters, see [22]. We give below a
convenient formulation of this

Theorem 7.2 (Poincaré, 1892, see, e.g., [19].). Let F (x, y, ε), x ∈ C,
y ∈ C

2, ε ∈ C, be a holomorphic function in the domain D × G × E,
x0 ∈ D is a fixed point and γ(t), 0 ≤ t ≤ 1, is a smooth real-analytic path
with γ(t) ⊂ D and γ(0) = x0. Suppose that 0 ∈ E and the ODE system
y′ = F (x, y, 0) has a holomorphic solution y0(x) in a neighborhood U of
[γ(t)] with y0(x0) = p0. Then for any sequence pr ∈ C

2, r ≥ 1, such that
the power series

∑
prε

r is convergent in some disc, and any sufficiently
small ε, the ODE system y′ = F (x, y, ε) has a holomorphic w.r.t. the
time t on γ solution of the form

(7.7) yε(γ(t)) =
∞∑

r=0

yr(t)ε
r,

where yr(t), r ≥ 1, are analytic on [0, 1], with yr(0) = pr, r ≥ 0, and
the series (7.7) is uniformly convergent w.r.t. t and ε. Each of the

yr(t) extends to an open neighbourhood Ũ of [γ] as a (possibly multiple-

valued) analytic function yr(x) such that yε(x) =
∞∑
r=0

yr(x)ε
r is a (pos-

sibly multiple-valued) solution of y′ = F (x, y, ε). Moreover, each yr(x),
r ≥ 1, is a solution of some first-order inhomogeneous linear system of
ODEs with homogeneous part independent of r.

We proceed now with Poincaré’s Small Parameter Method. We sup-
pose, without loss of generality, ǫ > 1 (where {0 < |w| < ǫ} is the
punctured disc where E is defined) and let γ be the unit circle and
w0 = 1 ∈ γ be the starting point in Poincaré’s theorem. We expand

zε(w) =
∞∑

r=1

zr(w)ε
r, uε(w) =

∞∑

r=1

ur(w)ε
r.

We now substitute the expansions for zε(w), 1 + P (z, w), and Q(z, w)
into (7.6) and collect terms with εr, r ≥ 1. For r = 1 we obtain the
following inhomogeneous first-order linear ODE system in z1, u1:

{
z′1 =

u1

w ,

u′1 =
1
w (p00u1 + q10z1) + q01,
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which can be rewritten as

(7.8)

(
z′1
u′1

)
=

1

w
L

(
z1
u1

)
+

(
0
K1

)
,

where L,K1 are as in (7.4).

Definition 7.3. By a logarithmic quasipolynomial we mean a (pos-
sibly multiple-valued) analytic in C \ {0} function P (wλ1 , ..., wλs , lnw),
where s ∈ Z≥0, P is a complex polynomial in s+1 variables, and λj ∈ C.

We need now the following

Lemma 7.4. The eigenvalues of L are two distinct integers.

Proof. Consider (7.8) as a inhomogeneous Euler system (see [22]).
The characteristic roots of this system are the eigenvalues of L. Let
ϕ(w), ψ(w) be two vector-functions, forming a basis of the space of so-
lutions for the homogeneous part of (7.8). Suppose that the eigenvalues
of L coincide, or at least one of them is not an integer. Then at least
one of the two non-zero vector-functions ϕ(w), ψ(w) (say, ϕ(w)) con-
tains either a factor wλ, λ /∈ Z, or a factor wλ lnw, λ ∈ C, and hence is
not single-valued along γ. The general solution of (7.8) has the form:

(7.9)

(
z1
u1

)
= c1ϕ+ c̃1ψ + θ1,

where c1, c̃1 are constants and θ1 is a vector-function with components
being logarithmic quasipolynomials (the latter fact follows from the vari-
ation of constants algorithm, applied to the Euler system, see [22]). We
may assume, without loss of generality, ψ(1) �= 0 (otherwise we replace
γ with a circle {|w| = R} with 0 < R < 1 and ψ(R) �= 0, and take
w0 = R as a starting point). Choose in (7.9) any c1, c̃1 with c1 �= 0 and(
z1
u1

)
(1) = 0. This fixes the term

(
z1
u1

)
ε in the expansion (7.7) of the

solution.
We continue with the iteration process and collect terms with εr, r ≥

2. We obtain the following series of inhomogeneous Euler systems (with
the homogeneous part identical to that in (7.8) for arbitrary r ≥ 2):

(7.10)

(
z′r
u′r

)
=

1

w
L

(
zr
ur

)
+Mr,

where the components of the vector-function Mr are logarithmic
quasipolynomials, depending on Mj with j < r (this again follows by in-
duction from the variation of constants algorithm). The general solution
has the form

(7.11)

(
zr
ur

)
= crϕ+ c̃rψ + θr,
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where the components of the vector-function θr are again logarithmic

quasipolynomials. We choose in (7.11) any cr, c̃r with

(
zr
ur

)
(1) = 0.

Then, applying Poincaré’s theorem, for sufficiently small ε we obtain
a (possibly multiple-valued) analytic in an open neighborhood of γ

solution of the system Sε, given by z(w :) =
∞∑
r=1

zr(w)ε
r , u(w) :=

∞∑
r=1

ur(w)ε
r . The uniform convergence in Poincaré’s theorem implies

that this solution is not single-valued along γ, because the first term in

its expansion

(
z1
u1

)
ε is not single-valued along γ. As the system (7.6)

is obtained from (7.1) by scaling of the independent variable w, we
conclude that there exists a nonsingle-valued solution for (7.1) in some
annulus. We get a contradiction with the assumptions of Theorem 3.5,
which proves the lemma. q.e.d.

End of the proof of Theorem 7.1. Let k1 ≥ 1 be the smallest
positive eigenvalue of the matrix L (which exists by the assumption),
and k2 �= k1 be the second eigenvalue (not necessarily positive).

Suppose first k1 = 1. Then we claim that K1 = 0 in (7.8), and

one can put

(
z1
u1

)
= 0. Indeed, the system (7.8) implies the scalar

inhomogeneous Euler equation

(7.12) z′′1 =
p00 + 1

w
z′1 +

q10
w2

z1 +
q01
w

,

for which the basic solutions of the homogeneous equation are some
single-valued rational functions of the form const · w and const · wk2 .
Then it is straightforward to check that the variation of constants gives
a partial solution containing two terms of the form const ·w and const ·
w lnw, and that the second term is non-zero (and hence not single-
valued) iff K1 �= 0. Proceeding now as in the proof of Lemma 7.4, we see
that the possibility K1 �= 0 contradicts the assumptions of Theorem 3.5,
and so K1 must vanish. Hence, for r = 1 in (7.4) one can simply put
h1 := 0.

If k2 is not positive, we may repeat the proof of the proposition
in the nonresonant case, as there are no more obstructions to solve
equations (7.4). If k2 is a positive integer, we return to Poincaré’s Small
Parameter method and analyze it simultaneously with system (7.4). As

K1 = 0, we put

(
z1
u1

)
= 0 and h1 = 0 in (7.4). Then, using the

expansions for zε(w), uε(w), P (z, εw), Q(z, εw) and collecting terms
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with εr for r = 2 in (7.4), we have

(7.13)

(
z′2
u′2

)
=

1

w
L

(
z2
u2

)
+

(
0
K2

)
· w,

where L,K2 are as in (7.4) (more precisely we substitute the values a1 =
0 and b1 = 0, found in the previous step, into K2). We consider (7.13),
again, as an inhomogeneous Euler equation. The basic solutions are
const · w and const · wk2 . If r = k2 = 2 is the resonant integer, we
apply the variation of constants and conclude, in the same way as for
the resonant value r = k1 = 1, that K2 �= 0 contradicts the assumptions
of Theorem 3. We may then put h2 := 0 in (7.4) and the rest of the
proof repeats that of the proposition in the nonresonant case, as no more
resonant integers can exist. If, otherwise, k2 > 2 and hence r = 2 is not
a resonant integer, one can check that the variation of constants gives a

partial solution of the form

(
z2
u2

)
= h2w

2, where h2 is a constant vector.

It is easy to see that the fact that h2w
2 is a solution of (7.13) implies

that h2 is a (unique!) solution of (7.4). It is then straightforward to
check that, proceeding further with the small parameter method and
gathering terms with ε3, one has, in the same spirit as before,

(7.14)

(
z′3
u′3

)
=

1

w
L

(
z3
u3

)
+

(
0
K3

)
· w2,

where L,K3 are as in (7.4) (more precisely, one has to substitute the
values a1, b1, a2, b2, found on the previous steps, into K3). The latter
follows from the fact that the second term h2w

2ε2 in the small parameter
expansion agrees with the solution h2 of (7.4) for r = 2. In the same
way as before, we conclude now that if k2 = 3, then K3 = 0 and we set
h3 = 0 in (7.4), in order to avoid a contradiction with the assumptions
of Theorem 3.5. We then repeat the proof as in the nonresonant case.

Otherwise, we again obtain a partial solution

(
z3
u3

)
= h3w

3, where h3

is a constant vector, satisfying (7.4) for r = 3.
We continue with the similar arguments until we reach the step r =

k2, to get Kk2 = 0, hk2 = 0 in (7.4) and then repeat the proof as in
the nonresonant case. This completes the case k1 = 1. The proof in
the case k1 > 1 uses the same arguments as above and is completely
analogous. q.e.d.

Thus Theorem 3.5 is finally proved. Theorem 3.5 and Proposi-
tion 6.10 now imply Theorem 3.6.

8. Analytic continuation and infinitesimal automorphisms

It was explained in Section 2 that the monodromy of a mapping
associated with a nonminimal pseudospherical hypersurface is given by
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some σ ∈ Aut(CPn). This allows us to obtain in this section a useful
representation of the infinitesimal automorphism algebra hol(M,p) for
p ∈ X of a nonminimal pseudospherical hypersurface. Combining this
representation with Theorem 3.4, we will prove in the next section the
Dimension Conjecture.

Proof of Theorem 3.7. Fix a collection {p, U,F0,F ,Q}, where p ∈ M is
a Levi-nondegenerate point, Q ⊂ CP

n a nondegenerate hyperquadric,
F0 : (Cn, p) −→ (CPn, p′) a biholomorphic mapping with F0(M) ⊂ Q,
and U is an open neighbourhood of the origin such that F0 extends in U\
X to a (multiple-valued) locally biholomorphic mapping F into CP

n in
the sense of Weierstrass. We denote by M+,M− the two sides of M \X
and assume, without loss of generality, that p ∈ M+. Fix an element L ∈
hol (M, 0) and consider the (connected) flow ψt : (C

n, 0) −→ (Cn, 0), t ∈
R, ψ0 = Id, generated by ReL. Note that any local automorphism ψt

must preserve the complex hypersurface X, and so we may assume that
ψt(M

+) ⊂ M+. For p sufficiently close to 0, we may suppose that ψt

with sufficiently small t are defined in a neighbourhood of p and consider
their push-forwards

τt := F0 ◦ ψt ◦ F−1
0 .

Then τt is a flow of local CR-automorphisms of Q at p′ = F0(p) and,
according to [12], τt ∈ Aut (Q). It is also shown in [12] that Aut (Q)
is a maximally totally real subgroup of Aut(CPn). Note that the cor-
respondence ψt → τt is injective w.r.t. the flows. Now let us consider
the analytic mappings F t := F ◦ ψt in Ut \ X for a sufficiently small
polydisc Ut ⊂ U , centred at 0. It is easy to see from the definition of F t

that its germ at p also maps (M,p) into Q, and if σ is the monodromy
matrix associated with F then F t has the same monodromy matrix σ.
On the other hand, (2.8) shows that the monodromy of F t is given by
the matrix τt ◦ σ ◦ τ−1

t with τt being exactly the push-forward of ψt.
Hence,

σ = τt ◦ σ ◦ τ−1
t .

Therefore, the push-forward of the automorphisms τt belong to the sub-
group C ⊂ Aut(Q) that consists of elements of Aut(Q) ⊂ Aut(CPn),
commuting with the element σ ∈ Aut(CPn). The subgroup C is the in-
tersection of the centralizer Z(σ) (see [52]) of the element σ ∈ Aut (CPn)
with the totally real subgroup Aut(Q) ⊂ Aut(CPn). Its tangent alge-
bra is c = z(σ) ∩ hol (Q, p′), where z(σ) is the tangent algebra to Z(σ)
(we also call it the centralizer of σ). The above arguments imply the
existence of an injective embedding of hol (M,p) into the algebra c.

q.e.d.

As an application we obtain

Corollary 8.1. Let M ⊂ C
2 be a smooth real-analytic hypersurface,

passing through the origin, and dim hol (M, 0) ≥ 5. Then either (i) M
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is Levi-flat, or (ii) (M, 0) is spherical, or (iii) M is holomorphically
equivalent to a hypersurface of class P0 such that its monodromy op-
erator σ is the identity (in other words, the associated mapping F is
single-valued).

Proof. We consider several cases depending on the Levi form of M .
If M is Levi-flat, then dim hol (M, 0) = ∞, see [4].
If M is Levi nondegenerate at 0, then the classical results in [43]

and [12] imply that dim hol (M, 0) ≤ 8. Further analysis in [6] shows
that dim aut (M, 0) ≤ 1, unless (M, 0) is spherical. Combining this with
the classification of E. Cartan [10] of homogeneous hypersurfaces in C

2,
we obtain dim hol (M, 0) ≤ 3, if M is Levi-nondegenerate and is not
spherical at zero.

If M is Levi-degenerate at 0, but not Levi-flat, the hypersurface M
can either be of finite type at 0 (see [4] for various definitions of type),
which is equivalent to its minimality, or M can be of infinite type, which
is equivalent to its nonminimality. Some generalizations of Poincaré-
Chern-Moser arguments provide the estimate dim hol (M, 0) ≤ 4 in the
finite type case (e.g., [29]). Thus we may assume M is nonminimal at
0. Let Σ ⊂ M be the set of points where the Levi form is degenerate.
If Σ �= X near the origin, then, since X is the only complex hypersur-
face contained in M in a sufficiently small neighbourhood of the origin,
there exist finite type Levi degenerate points in M , arbitrarily close to
0. Applying the bounds from [29], we obtain again dimhol (M, 0) ≤ 4.
Thus, we may assume that M \X is Levi-nondegenerate in a sufficiently
small neighbourhood of the origin. The inequality dim hol (M, 0) ≥ 5
implies that for a Levi-nondegenerate point p ∈ M \X its infinitesimal
automorphism algebra has dimension at least 5. Applying again [6] and
[10], we conclude that M \X is spherical and therefore it is biholomor-

phically equivalent to some M̃ ∈ P0. Thus, it remains to consider only
the case when M ∈ P0. Theorem 3.7 gives

(8.1) dim hol (M, 0) ≤ dimC z(σ),

where σ is the monodromy operator forM (σ can be interpreted as a 3×3
matrix, defined up to scaling). Centralizers of elements of GL(3,C) can
be easily analyzed, using the Jordan normal form, and it is not difficult
to see that for all nonscalar matrices the centralizer has dimension at
most 5. Taking the scaling into account, we have dimC z(σ) ≤ 4, unless
σ = Id. q.e.d.

It follows immediately follows from Corollary 8.1 that Theorem 3.8
implies the Strong Dimension Conjecture. The following proposition
gives the answer in the case when F is single-valued and extends to X.

Proposition 8.2. Let M ⊂ C
2 be of class P0, and U be the associated

neighbourhood. Assume, in addition, that the associated mapping F
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extends to the complex locus X holomorphically. Then hol (M, 0) can be
injectively embedded into the stability algebra aut (S3, o′) for some point
o′ ∈ S3. In particular, dim hol (M, 0) ≤ 5.

Proof. First note that F(X) is a locally countable union of locally
complex analytic sets [13]. On the other hand, F(X) is connected and
F(X) ⊂ S3, so that we conclude that F(X) = {o′} for some point
o′ ∈ S3. Choose now a point q ∈ M+ (M+,M− are the sides of M \
X) and a local flow ψt of local automorphisms of M near the origin,
ψt(M

+) ⊂ M+. Shrinking U if necessary, we may suppose that ψt is
defined in U . Arguing as in the proof of Theorem 3.7, we may consider
the push-forward τt := F ◦ ψt ◦ F−1 defined in a neighbourhood of the
point q′ = F(q) (we choose the element of F−1 with F−1(q′) = q).
Since ψt(M) ⊂ M , we have τt(S

3) ⊂ S3, so τt extends to an element of
Aut (S3) ⊂ Aut (CP2) (see [12]). Then for points z ∈ C

2, close to q, we
have F◦ψt(z) = τt◦F(z). By uniqueness the latter equality holds for all
z ∈ U . Therefore, F(ψt(0)) = τt(F(0)) and, since 0 ∈ X, ψt(X) ⊂ X,
and F(X) = {o′}, we conclude that τt(o

′) = o′, and so τt stabilize the
point o′. Applying this to a local flow ψt, generated by ReL for some
L ∈ hol (M, 0), we conclude that the flow τt := F ◦ ψt ◦ F−1 extends
to a flow τt ∈ Aut (S3) with τt(o

′) = o′, and then for the corresponding
vector field L′ ∈ hol (S3, q′) we have L′(o′) = 0. As the correspondence
ψt −→ τt is injective w.r.t. a flow ψt, the proposition follows. q.e.d.

Corollary 8.3. Theorem 3.8 holds true for any hypersurface M ∈
P0, except, possibly, the case of a hypersurface with a single-valued asso-
ciated mapping F , which does not extend holomorphically to the complex
locus X. In particular, the Strong Dimension Conjecture holds true
for any 1-nonminimal at the origin smooth real-analytic hypersurface
M ⊂ C

2.

9. Solution of the Dimension Conjecture

In this section we complete the proof of the Dimension Conjecture.
In view of Section 8, it remains to treat the case of an m-nonminimal
hypersurface M ∈ P0 with a single-valued mapping F : U \X −→ CP

2

associated with M , which does not extend to {w = 0} holomorphically.
Consider the Lie algebra g = hol(M, 0) and its complexification h =

gC = g⊗C. Fix a Levi nondegenerate point p ∈ M , for which all vector
fields L ∈ g are defined, and for a vector field L ∈ g consider, as in the
proof of Theorem 3.7, its push-forward L∗ ∈ hol(CP2). Then we obtain
a well-defined push-forward (g∗, h∗) for the pair (g, h). Here g∗ and
h∗ are a real and a complex Lie subalgebras of hol(CPn) respectively,
naturally isomorphic to the algebras g and h respectively. It follows from
our construction that the pulled-back algebra F−1 ◦ h∗ coincides with
h, in particular, all vector fields from the well-defined in U \X algebra
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F−1 ◦ h∗ extend to X holomorphically. We also note that a projective
change of coordinates in CP

2, given by τ ∈ PGL(3,C), replaces the
mapping F with the mapping τ ◦ F . At the same time, τ conjugates
the Lie algebra hol(CPn) ≃ sl(3,C), and h∗ changes accordingly (see
Section 2).

We now need the following statement.

Proposition 9.1. Fix an affine chart V ⊂ CP
2 with the affine coor-

dinates (z∗, w∗). Then the algebra h∗ cannot contain the 2-dimensional
subalgebra, given in V by

(9.1) spanC

{
∂

∂z∗
,

∂

∂w∗

}
.

Proof. Assume on the contrary that spanC
{

∂
∂z∗ ,

∂
∂w∗

}
⊂ h∗. Take

the regular set U0 ⊂ U \ X (see Section 5) and consider F , re-
stricted to U0, as a mapping into V . Consider first the case when
α0(w) �≡ 0 in (3.6). We represent F as in (5.15) with single-valued
α(w), β(w), a(w), b(w), δ(w). Then, applying (5.15), we have

F−1 ◦ ∂

∂z∗
= T1(z, w)

∂

∂z
+

a

α′a− a′α
(z + δ)

∂

∂w
,(9.2)

F−1 ◦ ∂

∂w∗
= T2(z, w)

∂

∂z
− α

α′a− a′α
(z + δ)

∂

∂w
.(9.3)

Here T1(z, w), T2(z, w) are some specific functions, but their exact form
is of no importance to us. Since the vector fields in (9.2) and (9.3)
extend holomorphically to X, the functions P (z, w) = a

α′a−a′α(z + δ)

and Q(z, w) = α
α′a−a′α(z + δ) are holomorphic near the origin. From

this it follows that δ(w) ∈ M(0). Further, letting a(w) = k(w)α(w),
we conclude that k(w) = P

Q ∈ M(0). Since Q(z, w) = − 1
k′α(z + δ), it

follows that k′α ∈ M(0), so that α(w), a(w) ∈ M(0). Note that k(w) is
not a constant, as this would contradict (5.17). Thus, by Theorem 3.4,
F extends to X holomorphically, which is a contradiction.

Now consider the case when α0(w) ≡ 0 in (3.6). It follows that
F = (f, g) satisfies

(9.4) f = αz + β, g = az + b

for some single-valued meromorphic in Δ∗
ǫ functions

α(w), β(w), a(w), b(w). Then either α �≡ 0 or a �≡ 0 (as F is lo-

cally injective). Say, α �≡ 0, so we set k(w) := a(w)
α(w) . Then the fact that

I1(z, w) = 0 in (5.6) (see Proposition 5.2) yields the special relation
α′a− a′α = 0, which implies that k is a constant. We now apply (9.4)
to conclude that the Jacobian of the mapping F is equal to α(b′ − kβ′),



ANALYTIC DIFFERENTIAL EQUATIONS 121

and that

F−1 ◦ ∂

∂z∗
=

(
k
α′

α

1

b′ − kβ′
z +

b′

α

1

b′ − kβ′

)
∂

∂z
− k

1

b′ − kβ′

∂

∂w
,(9.5)

F−1 ◦ ∂

∂w∗
= −

(
α′

α

1

b′ − kβ′
z +

β′

α

1

b′ − kβ′

)
∂

∂z
+

1

b′ − kβ′

∂

∂w
.(9.6)

As both (9.5) and (9.6) extend to X holomorphically, we conclude first
that b′ − kβ′ ∈ M(0) and second, considering the linear combination
F−1 ◦ ∂

∂z∗ + kF−1 ◦ ∂
∂w∗ = 1

α
∂
∂z , that α ∈ M(0). These two conclusions

imply β′, b′ ∈ M(0) and finally β, b, a ∈ M(0). Then, by Theorem 3.4,
F extends to X holomorphically, which is again a contradiction. This
proves the proposition. q.e.d.

Our next goal is the classification of higher-dimensional Lie subal-
gebras of sl(3,C). We could not find an appropriate reference in the
literature, so for the sake of completeness we provide the proof that
was suggested to us by Andrey Minchenko. By a matrix element eij we
mean a square matrix all of whose entries are zero, except the entry in
the i-th row and the j-th column which equals 1.

Proposition 9.2. Let l ⊂ sl(3,C) be a complex Lie subalgebra,
dim l ≥ 5. Denote by b± the subalgebras of upper-triangular and lower-
triangular elements of sl(3,C) respectively, and by r± the subalgebras of
zero last row and zero last column elements of sl(3,C) respectively. Let
p+ = b+ ⊕ Ce21, and p− = b− ⊕ Ce23. Then l is conjugated in sl(3,C)
to one of the subalgebras b+, r±, p±, or sl(3,C).

Proof. In what follows we refer to [52] for various facts from the Lie
theory. First, consider the case when l is solvable. Then, as dim l ≥ 5,
we conclude that l is the Borel subalgebra. As the Borel subalgebra is
unique, up to a conjugation, we conclude that l is conjugated to b+. If,
otherwise, l is not solvable, then its Levi-Malcev decomposition contains
a nontrivial semi-simple factor. From the structure theory of semi-
simple Lie algebras, any such factor contains a subalgebra, isomorphic
to sl(2,C). It is known that there exist, up to a conjugation, exactly two
subalgebras in sl(3,C), isomorphic to sl(2,C): the first one is so(3,C) ⊂
sl(3,C), and the second one is sl(2,C) ⊂ sl(3,C), embedded as the left
upper 2 × 2 block, so that we may suppose that, after an appropriate
conjugation, l contains one of the above subalgebras. Consider first the
case of so(3,C) ⊂ l ⊂ sl(3,C). Then the subalgebra so(3,C) acts on
sl(3,C) by the adjoint representation of sl(3,C), restricted onto so(3,C).
Decomposing sl(3,C) into a direct sum of irreducible invariant subspaces
for the above action, we get the decomposition

sl(3,C) = so(3,C)⊕ V,

where V is the subspace of all symmetric matrices from sl(3,C). The
subalgebra l must be the sum of so(3,C) and some of the invariant
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subspaces, so l = sl(3,C) or l = so(3,C). As dim l ≥ 5, we summarize
the so(3,C)-case with the conclusion l = sl(3,C).

Consider now the case sl(2,C) ⊂ l ⊂ sl(3,C). Arguing as in the
so(3,C)-case, we obtain the decomposition

sl(3,C) = sl(2,C) ⊕ (Ce13 ⊕ Ce23)⊕ (Ce31 ⊕Ce32)⊕ Ch

of sl(3,C) into the direct sum of irreducible invariant subspaces of
sl(3,C) under the adjoint action of sl(3,C), restricted onto sl(2,C).
Here h = diag{1, 1,−2}. The algebra l is the direct sum of sl(2,C)
and some of the invariant subspaces. Then, in view of the assumption
dim l ≥ 5, we obtain the following list of distinct decompositions of l:

l = sl(2,C)⊕ (Ce13 ⊕ Ce23);

l = sl(2,C)⊕ (Ce31 ⊕ Ce32);

l = sl(2,C)⊕ (Ce13 ⊕ Ce23)⊕ Ch;

l = sl(2,C)⊕ (Ce31 ⊕ Ce32)⊕ Ch;

l = sl(2,C)⊕ (Ce13 ⊕ Ce23)⊕ (Ce31 ⊕ Ce32)⊕ Ch.

This implies the claim of the proposition. q.e.d.

The classification implies

Proposition 9.3. Let l be a subalgebra in hol(CP2) with dim l ≥ 5.
Then there exists an affine chart V with coordinates (z∗, w∗) such that
l contains the 2-dimensional subalgebra a, given in V by (9.1).

Proof. Interpreting the commutative Lie algebra a of holomorphic
vector fields as a subalgebra in sl(3,C), we obtain the representation
of a as spanC{e13, e23} (we use the notation of Proposition 9.2 in what
follows). In order to use the classification, given by Proposition 9.2, we
assign to each conjugacy in the Lie algebra sl(3,C) a projective coor-
dinate change in CP

2, and get the corresponding affine chart V ⊂ CP
2

with the coordinates (z∗, w∗) (see Section 2.5). Note that the subalge-
bras b+, r+, p+ ⊂ sl(3,C) already contain a. Further, it is straightfor-
ward to check that the matrix A = e31+e12+e23 ∈ SL(3,C) conjugates
the matrices e21, e31 ∈ r− ∩ p− with the matrices e13, e23 respectively.
The latter implies that any subalgebra l ⊂ sl(3,C) with dim l ≥ 5 con-
tains, after an appropriate conjugation, the algebra a. This proves the
proposition. q.e.d.

Combined, Propositions 9.1, Proposition 9.3 and Corollary 8.1 yield

Corollary 9.4. Let M ∈ P0, and the associated mapping F does not
extend to X holomorphically. Then dim hol(M, 0) ≤ 4.

Corollary 9.4 immediately implies the proof of Theorem 3.8. Com-
bining with Corollary 8.1, we obtain also Theorem 3.9. Theorem 3.10
follows from a combination of Corollary 9.4, Theorem 3.9 and Corollary
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8.1. Finally, Theorem 3.11 follows from the fact the any Lie algebra
of dimension ≤ 3 is contained in su(2, 1) (see, e.g., [52]), and in the
case 4 ≤ dim hol(M, 0) < ∞ M needs to be spherical at its generic
point and the embedding into hol(S3, o) is immediate. The bound
dim hol(M, 0) ≤ 5 in the nonspherical case follows from Theorem 3.10.

All the results of the paper are completely proved now.
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[30] M. Kolář. Finite type hypersurfaces with divergent normal form. Math. Ann.
354 (2012), no. 3, 813–825, MR 2983069, Zbl 1267.32035.



ANALYTIC DIFFERENTIAL EQUATIONS 125
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