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Abstract— End-to-end congestion control mechanisms such as those in

TCP are not enough to prevent congestion collapse in the Internet (for

starters, not all applications might be willing to use them), and they must

be supplemented by control mechanisms inside the network. The IRTF

has singled out Random Early Detection (RED) as one queue management

scheme recommended for rapid deployment throughout the Internet. How-

ever, RED is not a thoroughly understood scheme – witness for example how

the recommended parameter settings, or even the various benefits RED is

claimed to provide, have changed over the past few years.

In this paper, we describe simple analytic models for RED, and use these

models to quantify the benefits (or lack thereof) brought about by RED. In

particular, we examine the impact of RED on the loss and delay suffered

by bursty and less bursty traffic (such as TCP and UDP traffic, respec-

tively). We find that (i) RED does eliminate the higher loss bias against

bursty traffic observed with Tail Drop, but not by decreasing the loss rate

of bursty traffic, rather by increasing that of non bursty traffic; (ii) the

number of consecutive packet drops is higher with RED than Tail Drop,

suggesting RED might not help as anticipated with the global synchroniza-

tion of TCP flows; (iii) RED can be used to control the average queueing

delay in routers and hence the end to end delay, but increases the jitter of

non bursty streams. Thus, applications that generate smooth traffic, such

as interactive audio applications, will suffer higher loss rates and require

large playout buffers, thereby negating at least in part the lower mean de-

lay brought about by RED.

I. INTRODUCTION

Buffers are a key component of a packet-switched network,

as they absorb burst arrivals of packets and hence reduce losses.

Larger buffers can absorb larger bursts, but they tend to build

up at high load and increase queueing delays. The traditional

technique for managing delay is to set a maximum length for

each buffer queue, accept packets in the queue until the maxi-

mum length is reached, then drop subsequent incoming packets

until the queue decreases below its maximum value. This buffer

management scheme is referred to as Tail Drop.

End-to-end control mechanisms are used in the Internet to

regulate the amount of traffic in the network and match it to

available capacity, thereby making sure that queue lengths and

loss rates remain reasonable. The most widely used control

mechanism is TCP’s window based mechanism [12]. TCP has

prevented an Internet-wide collapse, however some thorny prob-

lems remain. For example, the mechanism in TCP tends to keep

queue occupancy high, and thus tends to discriminate against

bursty traffic (since bursts of packets arriving at a router won’t

find much free buffer space to squeeze into). Furthermore, TCP

traffic itself is bursty1 [16], [1], which means that a loss event

at a router tends to involve many packets at a time, leading

to reduced throughput and synchronization between TCP con-

nections sharing the ressources of that router. Finally, not all

applications are willing to use control mechanisms; in particu-

lar, many interactive audio (IP telephony) applications send data

at a rate independent of the state of congestion in the network,

and thus grab all the bandwidth of the network when competing

with rate adaptive applications such as those that rely on TCP.

Clearly, the uncontrolled use of such applications again raises

the possibility of Internet-wide congestion collapse.

The difficulties above bring out the necessity to complement

end-to-end control mechanisms with router-based control mech-

anisms that extend beyond the current Tail Drop scheme. The

Internet Research Task Force (IRTF) produced a document, now

an information RFC [3], urging the deployment of router-based

control schemes. Specifically, the document, often referred to

as the “RED manifesto”, singles out the Random Early Detec-

tion (RED) scheme, as the recommended scheme for use in the

Internet.

The RED scheme was initially described and analyzed in [8].

Basically, RED starts dropping packets randomly before the

buffer gets full. Thus, it forces connections to back off before

the buffer fills up and multiple packets are dropped; if connec-

tions ignore packet drops and keep sending at too-high rates,

they keep suffering from high loss rates. RED is claimed to

provide several benefits, in particular 1) decrease the end-to-end

delay for both responsive (TCP) and non necessarily responsive

real-time traffic (UDP), 2) prevent large number of consecutive

packet losses by ensuring available buffer space even with bursty

traffic, and 3) remove the higher loss bias against bursty traf-

fic observed with Tail Drop. Some of these claims have been

validated with simulation studies. However, despite the IRTF

recommendation that RED be widely deployed, RED is not thor-

oughly understood: there is little operational experience of RED

in large scale networks – one of the few published measurement

study is limited in scope because it only considers the router

1The burstiness of TCP traffic can be explained by user behavior, and by char-
acteristics of the TCP closed-loop feedback control mechanism, coupled with
ACK compression [5]. Thus, it appears to be a salient feature of the Internet.



2

performance (as opposed to the end-to-end performance) and it

does not clearly describe the measurement settings and the ex-

act information being measured [4] –, it is not quite clear how

to choose RED parameters (and indeed the recommended val-

ues have changed over time), and there is, to our knowledge,

no published analytical model of RED2 that would for example

allow us to quantify the impact of parameters settings on per-

formance, or the impact of different parameters values taken by

different ISPs in a large network.

In this paper, we develop simple analytic models for the RED

and Tail Drop buffer management schemes, and use these mod-

els to quantify the benefits (or lack thereof) brought about by

RED. In particular, we examine the impact of RED on the loss

rates, the number of consecutively lost packets, the mean de-

lay, and the delay jitter, suffered by bursty and less bursty traffic

(such as TCP and UDP traffic, respectively). We find that (i)

RED does indeed eliminate the bias against bursty traffic ob-

served with Tail Drop (claim 3 in the previous paragraph); how-

ever it does so not by decreasing the loss probability of bursty

(TCP) traffic, but rather by increasing that of smooth (UDP) traf-

fic; (ii) the number of consecutively lost packets is larger with

RED than with Tail Drop, suggesting that RED might not help

as much as anticipated with the global synchronization of TCP

flows (claim 2 above), (iii) RED is crucial to control the average

queueing delay in routers and hence the end-to-end delay (claim

1 above), but increases the jitter of non bursty (UDP) streams,

and hence their playout buffer requirements, thereby negating at

least in part the gains on the lower mean delay. In addition to

these three main findings, we also show that the often used claim

that the loss rate suffered by a flow in a RED router is propor-

tional to the flow intensity (claim first made in [8]) is true only

if the flow arrival process is Poisson (specifically, it requires the

PASTA property).

The rest of the paper is organized as follows. In Section II,

we describe our basic model, and use it to examine the bias of

Tail Drop against bursty traffic and whether RED eliminates this

bias. In Section III, we examine the number of consecutively

lost packets in both Tail Drop and RED routers. In Section IV,

we compare the average delay and delay jitter in Tail Drop and

RED routers. In Section V, we use simulations to validate the

analytic results obtained with the model, and to further examine

the issue of delay jitter for UDP flow with RED routers. Sec-

tion VI concludes the paper.

II. BIAS AGAINST BURSTY TRAFFIC

In this section, we describe our basic model, and use it to

examine the bias of Tail Drop against bursty traffic and whether

RED eliminates this bias.

We consider a router with a buffer size ofK packets. With the

RED buffer management scheme, incoming packets are dropped

with a probability that is an increasing function d of the average

queue size k̂. The average queue size is estimated using an ex-

ponential weighted moving average :

k̂  (1� w)k̂ + w k;

2There are specific models such as in [11] that abstract a RED router as a
router in which the loss rate is proportional to input flow intensity; we get back
to such models in Section II.

where w is a fixed (small) parameter and k is the instantaneous

queue size. A typical drop function d is defined by three param-

eters minth, maxth and maxp as follows :

d(k̂) = 0 if k̂ < minth; d(k̂) = 1 if k̂ � maxth;

d(k̂) =
k̂ �minth

maxth �minth
�maxp otherwise.

Refer to Figure 1.
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Fig. 1. Drop function of RED

A. A RED router with bursty input traffic

Let us first derive a model of a RED router with a single input

stream of bursty traffic. We assume that packets arrive according

to a batch Poisson process; specifically, bursts (or batches) ofB
packets arrive according to a Poisson process of rate�. Note that

this model does not really match empirically derived models of

TCP and other bursty traffic patterns [13], [16], [19]. However,

it is analytically tractable; furthermore, our purpose here is to

compare the relative impact of RED on bursty and less bursty

traffic. We can imagine (and this will be confirmed with simu-

lation in Section V) that the difference between a smooth input

traffic and a batch Poisson process (as examined here) would

be a lower bound to that observed between a smooth input and

an input process with long range dependence. The processing

times of the packets in the router are assumed to be exponen-

tially distributed with mean ��1. We define the offered load by

� = B�=�.

B

Poisson
Drop

Router

Fig. 2. Model of RED router with bursty input traffic

The number of packets buffered in the queue defines a

Markov chain, the stationary distribution of which can be easily

computed. We denote by � this stationary distribution. Using

the PASTA property, we obtain the drop probability of a packet

in a Tail Drop router:

PTD = �(K) + �(K � 1)
B � 1

B
+ : : :+ �(K �B + 1)

1

B
:

We now consider a RED router, and we make the assumption for

now that the drop rate d(k) depends on the instantaneous queue

size k rather than on the average queue size k̂ (i.e. we assume
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w = 1). Note that there is no reason for choosing maxth < K
in this case, hence we let maxth = K. We use the following

approximation:

Approximation 1: The RED router uses the same drop prob-

ability d(k) on all packets in the same burst, where k is the in-

stantaneous queue size at the time the first packet in the burst

arrives at the router.

Note that in reality the difference between the drop probabil-

ity of the first packet of the burst d(k) and the drop probability

of any other packet of the burst cannot exceed:

�d(k) = d(k +B � 1)� d(k):

Thus, the approximation above provides a lower bound on the

drop rate. Furthermore, it is accurate (�d(k) is small) when the

drop function is sufficiently smooth (namely for small values of

minth and high values of maxp) and the burst size B is not too

large compared to the buffer size K. Now, using the PASTA

property again, we approximate the drop probability of a packet

in a RED router by:

PRED = �(K) + �(K � 1)d(K � 1) + : : :+ �(1)d(1):

Note that the stationary distribution � in this case is different

from that obtained with Tail Drop.

Example 1: Consider a buffer size of K = 40 packets, with

RED parameters minth = 20, maxth = 40 and maxp = 1.

Figure 3 shows the drop probability of an incoming packet as a

function of offered load for different burst sizes, obtained by

previous analysis (with Approximation 1) and by simulation

(without Approximation 1). The figure clearly shows that the

approximation is very accurate, even for large values of the burst

size.
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Fig. 3. Drop probability vs. offered load for different values of the burst size.

Note that the drop probability is always higher with RED than

with Tail Drop (this is a sample-path property). For large of-

fered load (which may represent transient congestion periods),

the drop probability is very close to that suffered by a Poisson

traffic in a Tail Drop router, which is given by the loss probabil-

ity for the M=M=1=K queue:

PM=M=1=K = 1�
1� �K

1� �K+1
:

We conclude that whatever the burst size,

PRED � PTD = 1�
1

�
+ o

�
1

�

�
when � >> 1: (1)

B. A RED router with bursty and smooth input traffic

We consider now a router with two input flows, one bursty

with batch Poisson arrivals as above and batch size B (we take

B = 3 in the numerical examples below), the other a smoother

(non batch) Poisson stream. We denote by�(b) and �(s) the load

of the bursty and the smooth traffic, and by � = �(b) + �(s) the

total offered load.

B

Poisson

Poisson

Bursty Traffic

Smooth Traffic

Router

Fig. 4. Model of RED router with a mix of bursty and smooth traffic

Let � be the stationary distribution of the total number of

packets in the queue. Using the PASTA property, we obtain the

drop probability of a packet for the bursty flow and the smooth

flow in a Tail Drop router:

PTD(b) = �(K) + �(K � 1)
B � 1

B
+ : : :+ �(K �B + 1)

1

B

and

PTD(s) = �(K):

Clearly PTD(b) > PTD(s), meaning that there is a bias against

bursty traffic with Tail Drop. On the other hand, we obtain for

the RED router (using the same approximation as earlier)

PRED(b) =
KX
k=1

�(k)d(k) = PRED(s);

meaning that there is no bias against bursty traffic with RED.

In fact, RED distributes the drops among both types of traffic.

Noting that

PTD =
�(b)

�
PTD(b) +

�(s)

�
PTD(s);

we obtain in view of (1) for high values of the offered load,

PRED(b) = PRED(s) �
�(b)

�
PTD(b) +

�(s)

�
PTD(s): (2)

C. Including queue size averaging in the model

We have so far assumed that the drop probability in the RED

router only depends on the instantaneous queue size. Adding

queue size averaging increases the complexity of the model (as it

increases the memory needed to keep track of past queue sizes).

A key observation, however, is that when the weight w of the

moving average scheme is small (which is the case in practice),
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the estimated average queue size k̂ varies slowly, so that con-

secutive packets belonging to the same burst are likely to exper-

iment the same drop probability d(k̂). As a result, the Approxi-

mation 1 used in previous analysis is still valid in this case. Even

more, it is acurate whatever the drop function, and in particular

for the RED parameters recommended in [8].

Example 2: Consider a buffer of size K = 40 and RED

parameters minth = 10, maxth = 30, maxp = 0:1 and

w = 0:002. Figures 5 and 6 show the drop probability as a

function of the fraction of bursty traffic in the input traffic, ob-

tained using the analytic expressions above (continuous line for

RED, dashed for Tail Drop), and using simulations (done with

queue size averaging, and without Approximation 1). Figure

5 shows that, with an offered load of � = 2, the drop prob-

ability is the same for both types of traffic with RED, namely

PRED(s) � PRED(b) � 0:5, and it is equal to the average drop

probability with Tail Drop, as predicted by equations (1) and (2).
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Fig. 5. Drop probability vs. fraction of bursty traffic for an offered load of� = 2

We conclude that RED avoids the bias against bursty traffic,

and that this results in a significant decrease of the drop rate suf-

fered by bursty traffic only when the fraction of bursty traffic is

small (see Figure 5). Otherwise, the main effect of RED is to in-

crease the drop probability of smooth traffic, without improving

the drop probability of bursty traffic. In practice, if we replace

”bursty” with ”TCP” and ”smooth” with ”interactive UDP au-

dio” for example, and if we note that TCP makes up the vast

majority of Internet traffic, the result above means that the over-

all loss rate suffered by TCP connections when going from Tail

Drop to RED will not change much, but that the loss rate suf-

fered by UDP/IP telephony applications (whether they are rate

adaptive or not) will increase significantly. In all cases, the drop

rate (namely the number of packets dropped per unit of time)

of a flow going through a RED router does not depend of the

burstiness of this flow, but only on the load it generates (refer to

Equation (2) above).

D. An important observation about PASTA

It is important to note that the analysis above heavily relies

on the PASTA property of Poisson processes. In general, it is

not true that the stationary distribution of the number of pack-

ets k buffered in the queue immediately before the arrival of a
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Fig. 6. Drop probability vs. offered load for small (10% – top) and large (90%

– bottom) fraction of bursty traffic

burst of packets (that is under the Palm probability [2]) coin-

cides with �, the continuous-time stationary distribution of k.

This means that the claim made in [8], and used in recent mod-

els of additive increase and multiplicative decrease congestion

control schemes in a RED environment (e.g. [11]), namely the

loss rate of a flow in a RED router is proportional to the intensity

of the flow, is valid only for Poisson flows. However, it is not

valid for other types of flows found in practice such as periodic

flows, or flows with heavy-tailed characteristics. For example,

Figure 7 shows the drop probabilities obtained in a RED router

with both a bursty input traffic with Pareto inter-arrival times be-

tween bursts and a Poisson input traffic. The Pareto coefficient

in the figure is 1:4 and the RED parameters are those of Example

2. Unlike what we saw earlier in the case of the batch Poisson

arrival process, the drop probability for the Pareto traffic is dif-

ferent from the drop probability for smooth traffic even for the

RED router. Thus, it is important to be aware of, and careful

about, strong traffic assumptions one might making when mod-

eling RED routers as in [11].

III. SYNCHRONIZATION OF TCP FLOWS

The combination of a TCP mechanism which keeps queue

occupancy high, of bursty TCP traffic, and of the Tail Drop bias

against bursty traffic, means that loss events at a router tend to

involve many packets. If these packets belong to different TCP

connections, these connections then experience losses at about

the same time, decrease their rates/windows in synchrony, and

then tend to stay synchronized. This phenomenom, referred to
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Fig. 7. Drop probability for RED and Tail Drop vs. offered load for bursty

(batch arrivals and Pareto distributed interarrivals) and smooth (Poisson)

traffic, and a high fraction of bursty traffic (90%).

as the synchronization of multiple TCP connections, has been

observed in simulation [20], however it is hard to observe in the

operational Internet.

In any case, one claim made by the RED designers is that,

since RED spreads out packet drops, it will help break the syn-

chronization pattern which (is thought to) occurs with Tail Drop.

To investigate this claim, we examine in this section the impact

of RED on the distribution of the number of consecutive packet

losses in a loss event at a router. We consider the same model as

before, except that the traffic is now simply a Poisson process of

intensity �, so that the offered load is equal to � = �=�.

A. Tail Drop

Assume that a drop occurs at time t = 0 in a Tail Drop

router. Since the exponential distribution is memoryless, the

next incoming packet is dropped if and only if its arrival time

is smaller than the service time of a packet. Thus when a packet

is dropped, the next packet is dropped with probability p, where

p =

Z
1

0

�(1� e��x)e��x dx =
�

�+ �
:

As a result, the number of consecutive drops in a Tail Drop

router NTD satisfies

8n � 0; P (NTD > n) = pn:

Using the expression

p =
�

�+ 1
;

we conclude that the mean and the variance of the number of

consecutive drops in a Tail Drop router are respectively given

by

E(NTD) = �+ 1 and var(NTD) = �(�+ 1): (3)

B. RED with instantaneous queue size

As in Section II, we first consider the case where the drop

rate d(k) depends on the instantaneous queue size k, and we let

maxth = K in this case. We use the following approximation:

Approximation 2: Consecutively dropped packets are dropped

with the same probability.

Note that in reality when a packet is dropped with probabil-

ity d(k), the next packet is dropped with probability d(l), where

l � k depends on the number of packets served between both ar-

rivals. Thus the approximation above provides an upper bound

on the number of consecutive drops. Furthermore, it is accurate

(i.e. the difference d(k)� d(l) is small) when the drop function

is sufficiently smooth (namely for small values of minth and

high values of maxp) and the offered load is high. Denoting by

�(�jdrop) the stationary distribution of the number of packets

in the queue, conditionally to the fact that a drop occured, and

assuming that �(Kjdrop) is negligeable, the number of consec-

utive drops in a RED router NRED satisfies

8n � 0; P (NRED > n) =

K�1X
k=0

�(kjdrop) d(k)n:

By Bayes’ formula,

�(kjdrop) =
�(k)

P (drop)
d(k):

We conclude that

8n � 0; P (NRED > n) =

K�1X
k=0

�(k)d(k)n+1

K�1X
k=0

�(k)d(k)

: (4)

Figure 8 compares the analytic result above with simulation for

an offered load of � = 2 and RED parameters as in Example 1.

We observe a very good fit.
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Fig. 8. Distribution of the number of consecutive drops for an offered load of

� = 2

Equation (4) allows us in particular to evaluate the mean and

the variance of the number of consecutive drops in a RED router.

We obtain

E(NRED) = 1 +

K�1X
k=0

�(k)
d(k)2

1� d(k)

K�1X
k=0

�(k)d(k)

;
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and

var(NRED) =

K�1X
k=0

�(k)

�
d(k)

1� d(k)

�2

K�1X
k=0

�(k)d(k)

:

Table I shows the results obtained for a Tail Drop router and a

RED router, when the offered load is � = 2. We conclude that

RED effectively spreads out packet losses, and thus may avoid

the synchronization of TCP flows.

mean variance

Tail Drop 3 6

RED 2.3 4.1

TABLE I

MEAN AND VARIANCE OF THE NUMBER OF CONSECUTIVE DROPS FOR AN

OFFERED LOAD OF � = 2

C. RED with average queue size

As mentionned earlier, the model becomes much more com-

plex when RED uses the average queue size instead of the in-

stantaneous queue size to compute the drop probability of a

packet. But, here again, the key observation is that when the

parameter w is small, the estimated average queue size k̂ varies

slowly, so that consecutive packets are likely to experiment the

same drop probability d(k̂). As a result, Approximation 2 is

still valid in this case. In fact, it is acurate whatever the drop

function, and in particular when maxth < K, provided that the

offered load is high. It follows then from (4) that the distribution

of the number of consecutive drops satisfies

8n � 0; P (NRED > n) �

K�1X
k=maxth

�(k)

K�1X
k=0

�(k)d(k)

> 0:

Hence, when the parameter w tends to 0, the number of consec-

utive drops becomes infinite with a positive probability ! The

interpretation of this result is that, under high load, the aver-

age queue size slowly oscillates around the valuemaxth, result-

ing in long (infinite when w tends to 0) periods of consecutive

drops (when k̂ > maxth), and long (infinite when w tends to

0) periods of random drops (when k̂ < maxth). This is illus-

trated by the simulation results of Figure 9 and Table II, obtained

for an offered load of � = 2 and the same RED parameters as

those of Example 2 (except that w takes the values 0:1, 0:01 and

0:001). The results show that RED dramatically increases the

mean number of consecutive drops as well as the variance of the

number of consecutive drops, in particular whenw is close to its

recommended value 0:002 [8]. This means that deploying RED

might in fact contribute to the synchronization of TCP flows,

which is exactly the opposite of one of its initial objectives.
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Fig. 9. Distribution of the number of consecutive drops for an offered load of

� = 2

mean variance

Tail Drop 3.0 6.0

RED w = 0:1 5.9 40

RED w = 0:01 7.7 170

RED w = 0:001 7.2 190

TABLE II

MEAN AND VARIANCE OF THE NUMBER OF CONSECUTIVE DROPS FOR AN

OFFERED LOAD OF � = 2

IV. QUEUEING DELAY

We next compare the delay through a router with both the

RED and Tail Drop management schemes. We use the same

model as in previous section, where the input traffic is a Poisson

process of intensity �, to evaluate the queueing delay (equiva-

lently the queue size) in the router.

A. Tail Drop

The stationary distribution of the queue size in a Tail Drop

router is simply given by

8k = 0; : : : ;K; �TD(k) =
�k(1� �)

1� �K+1
:

B. RED with instantaneous queue size

As we did earlier, we assume here that the drop rate d(k)
depends on the instantaneous queue size k, and we let maxth =
K. Then the number of packets in the queue is a birth-death

process, the stationary distribution of which is simply given by

8k = 0; : : : ;K; �RED(k) =

�k
k�1Y
l=0

(1� d(l))

KX
k=0

�k
k�1Y
l=0

(1� d(l))

: (5)

As illustrated by Figure 10 and Table III (for an offered load of

� = 2 and the RED parameters of Example 1), RED reduces the

mean delay, but increases the delay variance significantly.
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Fig. 10. Distribution of the queue size for an offered load of � = 2

mean variance

Tail Drop 39.0 2.0

RED 29.0 10.0

TABLE III

MEAN AND VARIANCE OF THE QUEUE SIZE FOR AN OFFERED LOAD OF

� = 2

Consider then the case of a UDP-based IP telephony applica-

tion, which sends smooth traffic (typically on/off periodic traf-

fic when silence detection is used). We saw in Section II that

that application would loose many more packets with RED than

with Tail Drop. We see here that the average delay suffered

by the UDP packets would be much lower than with Tail Drop

(depending on the choice of maxth), which is a key benefit in

telephony applications. However, the delay variance (computed

from Equation 5) is such that the end to end delay, including the

playout delay at the destination, does not reflect the gain RED

brought to the mean delay. We can then expect the audio quality

perceived at the destination to be mediocre at best.

C. RED with average queue size

Consider now the case when the drop rate computed by RED

is a function of the average queue size. As mentionned earlier,

provided that the parameter w is small and the offered load is

high, the estimated average queue size (and hence the stationary

instantaneous queue size) will slowly oscillate around the value

maxth. Thus, although RED reduces the mean delay, RED also

adds jitter in the delay, and so as much as the parameter w is

small. This is illustrated in Figure 11 and Table IV, for an of-

fered load of � = 2 and the RED parameters of Example 2.

mean variance

Tail Drop 39.0 2.0

RED 29.9 38.7

TABLE IV

MEAN AND VARIANCE OF THE QUEUE SIZE FOR AN OFFERED LOAD OF

� = 2
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p
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)
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RED simulation

Fig. 11. Distribution of the queue size for an offered load of � = 2

V. SIMULATION

In Sections II and III, we derived analytic expressions of var-

ious measures of interest to evaluate RED. While the analytic

approach is important to quantify relationships between param-

eters and performance measures, it must be complemented with

simulation or experiments to validate the hypotheses made dur-

ing the analysis, and to explore phenomena not amenable to

tractable analysis.

In this section, we focus on simulation results. We obtained

these with ns [9].

A. Validating the analytic results

In a first set of simulations, we verify that the main conclu-

sions of our analysis are valid. We use a simple network setup

with many sources si send TCP and UDP traffic to destinations

di via a RED or Tail Drop router, as shown in Figure 12.

s0

router routers2

s1

sn

d0

d1

d2

dn

Fig. 12. Network topology for the simulation studies

The TCP sources use the NewReno algorithm, the UDP

sources send CBR traffic. We use different propagation delays

for the links between the sources and the router, so as to have

a range of round trip delays. In practice, the round trip delays

vary between 120ms and 220ms. In the first router we choose

the buffer management scheme to be RED or Tail Drop. In our

simulations, we have over 100 TCP connections sending packets

from the sources to the destinations. We also have UDP connec-

tions sending at a constant rate which, summed over all UDP

sources, equals 10% of the bottleneck link speed. The bottle-

neck in our setup is the link between the two routers, with a
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bandwidth of 10Mb/s. We measure in the first router the drop

rates of both UDP and TCP traffic, and the delay of UDP pack-

ets; we also compute the total goodput of the TCP connections.

We have already compared earlier in the paper our analytic

model with simulations that did not make assumptions (such as

Assumption 1 and Assumption 2) used in the models, and we

did observe good correlation. We now investigate how well our

model, which models TCP connections as a bursty open-loop

traffic source, ties in with reality, or at least with our simulation

setup, in which TCP connections are closed-loop rate controlled

connections. To do so, we compare the total TCP goodput and

the loss rates for TCP and UDP traffic obtained with simulation.

Refer to Table V.

UDP loss rate TCP loss rate Goodput

Tail Drop 0.051 0.102 5.55 (Mb/s)

RED 0.083 0.102 5.56 (Mb/s)

TABLE V

LOSS RATES AND GOODPUT FOR RED AND TAIL DROP

We observe that the loss probability for TCP (bursty) traffic

does not change between RED and Tail Drop. Furthermore, the

loss rate for UDP (smooth) traffic increases significantly when

going from Tail Drop to RED. Both these results match those

obtained with the analysis in Section II. The first result also fur-

ther suggests that TCP synchronization might not happen at all

in practice. We also note that, unlike what is sometimes claimed,

the total TCP goodput does not increase with RED.
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Fig. 13. Queueing delay for RED and Tail Drop with buffer size of 40 (top) and

150 packets (bottom)

We now compare the delay properties derived with the model

with those obtained with the simulations. Figure 13 shows the

evolutions with time, as the simulation progresses, of the de-

lay in the router with RED and Tail Drop, when the buffer size

is equal to 40 packets and 150 packets, respectively. With Tail

Drop, and given the high load in the router, the buffer occupancy

quickly increases then remains close to its maximum value.

Note that with 100 TCP flows and different round trip delays, we

do not observe system-wide synchronization patterns that would

indicate large scale TCP synchronization. The situation is quite

different with RED. The queue builds up quickly; RED starts

dropping packets when the average queue size reaches minth,

then drops all packets when the average queue size reaches

maxth. The drop rate decreases when the average queue drops

below maxth, traffic picks up, the average queue tends toward

maxth and eventually exceeds it, and the cycle resumes (refer to

our earlier discussion in Section III). Thus, as expected, the av-

erage queue stays close to maxth, and the RED router behaves

essentially like a Tail Drop router with buffer size maxth [6],

[15]. However the instantaneous queue size varies heavily with

time, more so than a Tail Drop queue does in the same situation.

Again, this shows good correlation with our analytic results.

B. Impact of the number of flows

Finally, we use simulation to examine an issue we did not

consider in our analysis, namely the impact of the number of

TCP flows on performance.
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Fig. 14. Goodput of the TCP connections and UDP loss rate as a function of

the number of active flows in the router for a buffer size of 40 packets
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Figures 14 shows the evolutions of the total TCP goodput (top

graph), and the UDP loss rate (bottom graph) as a function of the

number of TCP flows. We first observe that using RED or Tail

Drop does not change much the total TCP goodput, indepen-

dent of the number of flows. When the number of flows is large

(and therefore the load in the router is sustained and high), RED

performs slightly better, but only at the cost of dropping many

more UDP packets than Tail Drop would. Again, this ties in

well with our analysis. We also observe that RED drops more

UDP packets than Tail Drop independent of the number of flows,

and that the drop rate keeps still increasing even as goodput re-

mains steady when the number of flows increases. Furthermore,

the goodput does not increase significantly when more than 75

flows are active in the network. In addition, Tail Drop performs

better when only few flows are active.

We now examine how the number of flows impacts the router

performance (as opposed to the end to end performance dis-

cussed above). To do this, we plot in Figures 15 the evolutions of

the actual queue size during an experiment with different num-

bers of active flows in the network. We set up the network as

described before but used a large buffer of 200 packets. For the

RED router, we set minth = 50, maxth = 150, maxp = 10%
and the averaging parameter w = 0:002. When the number of

flows is small the Tail Drop queue router is rarely empty, while

the RED actual queue size oscillates heavily and is more often

idle. When the number of flows is higher, the router is never

idle for RED nor for Tail Drop. This means that we should

not expect much difference in throughput for the two dropping

schemes; this in turn confirms our earlier observation when we

saw a larger throughput with Tail Drop than with RED. Note

that, in any case, we observe a much more pronounced oscil-

lation of the actual queue size with RED then with Tail Drop.

This reflects our observations earlier in this section on large de-

lay variance with RED.

VI. CONCLUSION

We have shown in the paper that (i) RED does eliminate the

higher loss bias against bursty traffic observed with Tail Drop,

but not by decreasing the loss rate of bursty traffic, rather by in-

creasing that of non bursty traffic; (ii) the number of consecutive

packet drops is higher with RED than Tail Drop, indicating that

RED might contribute to, rather than solve, the global synchro-

nization of TCP flows; (iii) the lower mean delay brought about

by RED is compensated by a large delay variance for smooth

traffic, which would be detrimental to interactive applications

such as IP telephony.

Our results indicate that the benefits of RED are not as clear

cut as claimed in [8]. Rather, they do point at a definite need to

obtain a thorough analytic (quantitative) understanding of RED,

together with clear operational supporting evidence, to weight

the benefits that a large scale deployment of RED would bring.
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Fig. 15. Evolutions of the instantaneous queue size for RED and Tail Drop with

25, 50, 75, and 100 active TCP flows



10

REFERENCES

[1] P. Abry, P. Flandrin, M. Taqqu, D. Veitch, “Wavelets for the analysis, es-
timation, and synthesis of scaling data”, in Self-Similar Network Traffic
Analysis and Performance Evaluation, K. Park and W. Willinger (eds),
1999.

[2] F. Baccelli and P. Bremaud, Elements of Queueing Theory, Springer-
Verlag, 1994.

[3] B. Braden et al, “Recommendations on Queue Management and Conges-
tion Avoidance in the Internet”, RFC2309, April 1998.

[4] S. Doran, Interface Graphs, http://adm.ebone.net/̃smd/red-1.html.
[5] A. Feldman, A. Gilbert, P. Huang, W. Willinger, “Dynamics of IP traffic:

A study of the role of variability and the impact of control”, to appear in
ACM Sigcomm’99, Cambridge, MA, Aug. 1999.

[6] W. Feng, “BLUE: A New Class of Active Queue Management Algo-
rithms”, Department of EECS, Network Systems Department University
of Michigan, 1999.

[7] W. Feng et al., “A self-configuring RED gateway”, IEEE Infocom ’99, San
Francisco, CA, April 1999.

[8] S. Floyd and V. Jacobson, “Random Early Detection gateways for conges-
tion avoidance”, IEEE/ACM Trans. on Networking, vol. 1, pp. 397–413,
1993.

[9] S. Floyd, NS network simulator, www-mash.cs.berkeley.edu/ns/
[10] S. Floyd, K. Fall, “Promoting the use of end-to-end congestion control in

the Internet”, to appear in IEEE/ACM Trans. Networking, Aug. 1999.
[11] P. Hurley, J.Y. Le Boudec, P. Thiran, “A Note on the Fairness of Additive

Increase and Multiplicative Decrease”, Proc. ITC 16, Edinburgh, UK, June
1999.

[12] V. Jacobson, “Congestion avoidance and control”, Proc. ACM Sig-
comm’88, Stanford, CA, Aug. 1988.

[13] W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On the Self-Similar
Nature of Ethernet Traffic”, IEEE/ACM Transactions on Networking, vol.
2, no. 1, pp. 1-15, February 1994.

[14] D. Lin, R. Morris, “Dynamics of Random Early Detection”, Proc. ACM
Sigcomm’97, Cannes, France, Sept. 1997.

[15] T. J. Ott, T.V. Lakshman, L. Wong, “SRED: Stabilized RED”, Proc. IEEE
Infocom’99, San Francisco, CA, March 1999.

[16] V. Paxson, S. Floyd, “Wide area traffic: the failure of Poisson modeling”,
IEEE/ACM Trans. Networking, vol. 3, June 1995.

[17] RED page, www.aciri.org/floyd/red.html
[18] Stevens, W., ”TCP Slow Start, Congestion Avoidance, Fast Retransmit,

and Fast Recovery Algorithms”, RFC 2001, January 1997.
[19] D. Veitch, J. Andren, M. Hilding, “Understanding end to end Internet traf-

fic dynamics”, IEEE Globecom’98, Melbourne, AU, 1998.
[20] L. Zhang, D. D. Clark, “Oscillating behavior of network traffic: A case

study simulation”, Internetworking: Research and Experience, vol. 1, no.
2, pp. 101-112, Dec. 1990.


